
Cache remapping to improve the performance of

tiled algorithms

Kristof Beyls and Erik D’Hollander

University of Ghent
Department of Electrical Engineering

St.-Pietersnieuwstraat 41
B-9000 Gent, Belgium

Abstract. With the increasing processing power, the latency of the
memory hierarchy becomes the stumbling block of many modern com-
puter architectures. In order to speed-up the calculations, different forms
of tiling are used to keep data at the fastest cache level. However, con-
flict misses cannot easily be avoided using the current techniques. In this
paper cache remapping is presented as a new way to eliminate conflict
as well as capacity and cold misses in regular array computations. The
method uses advanced cache hints which can be exploited at compile
time. The results on a set of typical examples are very favorable and
it is shown that cache remapping is amenable to an efficient compiler
implementation.

1 Introduction

With Moore’s Law still doubling the performance in 18 months, there is almost
no limit to the processing power for the foreseeable future. Many performance
programmers know that this is not the case, due to the speed gap between the
processor and the memory. In fact, where the processor speed gains about 67%
per year, the memory lags behind with only a gain of about 5-10%[3]. Using
the same reasoning as Moore, one quickly finds out that a similar law says the
memory speed with respect to the processor halves each 22 months... . From this
observation, the growing importance of L1, L2 and L3 caches becomes evident
and the objective is to keep the used data in the cache all the time.

Tiling[1, 15] is a well known method to improve the reuse of cached data in
numerical applications by shortening the distance between the use and reuse
of array elements. Tiling algorithms successfully eliminate capacity misses and
therefore increase the cache hit ratio. However, the low associativity of caches
may lead to a high number of conflict misses and slow down execution so that
only a fraction of the attainable performance is obtained. Additional fine tuning
of the tiling transformation is needed to reduce the conflict misses[2, 7, 9, 11, 13].

Research financed by the Flemish government under contracts IWT-SB/991147 and
GOA-12.0508.95)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55838971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, cache remapping is offered as a new technique to eliminate
conflict misses in tiled algorithms. In addition, cache remapping produces no
capacity misses and also cold misses are avoided for all but the first iteration.

Cache remapping is based on a dynamic rearrangement of the data at run
time. During the execution of a loop, a parallel remap thread running concur-
rently with the original program thread relocates the tiled data needed by future
iterations. The cache is split in two regions. One region contains all the data in
the tile currently being processed, enabling the calculations to continue without
memory stalls. At the same time the remap thread copies the data of the next tile
into the other cache region, using proper address relocation and cache bypass.
When the calculations have completed processing a tile, the original processing
thread can immediately continue processing the next tile as it is already brought
in the cache by the remap thread.

Section 2 explains cache remapping in detail. In section 3, experimental re-
sults are presented. Section 4 compares the techniques and the results with
related work.

2 Cache remapping technique

2.1 Tiled Loop Nests

Fig. 1 shows a loop nest and the corresponding tiled loop.

Definition 1. Tiling[15] transforms an n-deep loop nest into a 2n-deep loop
nest. The tiled loops in the resulting tiled loop nest are the n inner loops. The
tiling loops are the n outermost loops. A loop nest will be notated as L. The tiled
and the tiling loops for L are Td(L) and Ti(L) respectively. An iteration tile is
the iteration space traversed by Td(L). The part of an array that is referenced
during the execution of an iteration tile is a data tile. A tile set is the union of
the data tiles of all the arrays accessed during an iteration tile execution.

do i=1,N,1

do j=1,N,1

do k=1,N,1

H(i,j,k)

(a) Original loop
nest

do II = 1,N,B1

do KK = 1,N,B3
do i = II,min(II+B1-1,N),1

do k = KK,min(KK+B3-1,N),1
H(i,j,k)

do JJ = 1,N,B2

L

Ti(L)

Td(L) do j = JJ,min(JJ+B2-1,N),1

(b) Tiled loop nest

Fig. 1. A tiled loop nest

2.2 Cache Memory

For the development of the cache remapping technique, a cache is represented
by a tuple (Cs, Ns, k, Ls)[4]

Definition 2. The cache size (Cs) defines the total number of bytes in the cache.
The line size (Ls) determines how many contiguous bytes are fetched from mem-
ory on a cache miss. A memory line refers to a cache-line-sized block in the
memory which is aligned such that the data in it map into the same cache line.
A cache set is the collection of cache lines in which a particular memory line can
reside. Ns denotes the number of cache sets in a cache. Associativity (k) refers
to the number of cache lines in a cache set. These parameters are related by the
equation Cs = Ns × k × Ls.

The start address A of a memory line determines the cache set N it maps to:

N =

⌊

A

Ls

⌋

mod Ns (1)

A replacement algorithm decides the cache line in set N a memory line is
copied to. In the rest of this paper the least recently used (LRU) replacement
policy is assumed.

Definition 3. Consider the memory lines accessed during the execution of L.
Then Ml(L, N) represents the set of memory lines which map to cache set N .

2.3 Conflict Misses in Tiled Algorithms

Consider a tiled loop Td(L) and a cache set N . When #Ml(Td(L), N) > k, more
than k memory lines must be placed in the same cache set N . Only part of the
memory lines can reside in the cache at the same time, and conflict misses arise.

Cache remapping copies tile sets into a contiguous Cs-sized buffer. Because
of (1), k memory lines in the buffer map to each cache set. So, ∀N ∈ Ns :
#Ml(Td(L), N) = k and no conflict misses arise.

2.4 High-Level View of Cache Remapping

Cache remapping adds a remap thread to the program, which executes concur-
rently with the original processing thread executing the tiled loop nest L (see
fig. 2). These two threads can execute in parallel on processors with multiple
functional units. (for further detail, see sect. 2.5).

Consider an iteration point i of Ti(L). The two threads work in a pipelined
way(see fig. 3):

– The processing thread executes tile i.
– The remap thread copies data tile set i + 1 into the cache. If there is written

data of tile set i − 1 in the cache, it is first copied back to main memory to
make place for tile set i + 1.

At most two consecutive tile sets are in the cache at the same time. Between
iterations of Ti(L), the two threads synchronize.

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���

���

���������
���������
���������

	�	�	�	
	�	�	�	
	�	�	�	

�
���

�����
�����
�
�

�������
�������
�����
�����

��������������������
������
���

���������������
������
���

m
ai

n
m

em
or

y

ca
ch

e
pr

oc
es

so
r

RemapProcessing
Thread Thread

scalar area

current tile set

next tile set

P3

P2

P1

Fig. 2. The remap thread puts the next tile set in the cache while the original thread
processes the current tile set. In the next phase, the processing and the remap thread
will access P3 and P2 respectively.

Fitting the Current and Next Tile Set in the Cache The process thread
accesses two kinds of variables in the memory: scalar variables which do not fit
into the registers and arrays. To ensure that all data referenced by the process
thread is in the cache, it is logically divided in three partitions: P1, P2 and P3.
P1 is used to cache the scalars. P2 and P3 will each contain one tile set.

During the odd iterations of Ti(L), the process thread uses P2, during the
even iterations, it accesses P3. The remap thread uses P3 during the odd iter-
ations and P2 during the even iterations. It is clear that P2 and P3 must have
the same size as they are used symmetrically.

Respecting Data Dependencies Problems arise when there are data depen-
dencies between the tile sets of two consecutive iteration tiles.

If the process thread currently processes tile set i and writes into elements
of tile set i + 1, the remap thread prefetches these elements into the cache with
the old values. When the process thread executes tile i + 1, it will use the old
values instead of the new.

A solution is to copy the new value of the shared elements to the cache
partition the process thread will use. This must be done during the thread syn-
chronization, which occurs between iterations of Ti(L).

remap thread: copy tile
process thread: calculations
remap thread: put back modified data��

��
��
��
��

��
��
��
��

� � �� � �� � �� � �	 	 	

 � �� � ����������� � �� �� �� � � �� �� �� �
� �� �� �� � ���

�� �� ���
������������
���
�

��

!!""

##
##
##
##

$$
$$
$$
$$

%%
%%
%%
%%

&&
&&
&&
&&

time

execution time of 1 iteration of Ti(L)

Fig. 3. The pipelined nature of cache remapping

2.5 Low-level Details

Controlling Cache Behavior

Cache Shadow At the start of the program, a consecutive block of memory with
size Cs is allocated and aligned on a memory line. We call this memory block
the cache shadow. There’s a one-to-one relation between the addresses in the
cache shadow and the storage area in the cache. The area’s P1, P2 and P3 are
allocated in this cache shadow.

To assure that the contents of the cache shadow always resides in the cache
completely, cache hints are used. They make it possible to only cache the ad-
dresses in the cache shadow by bypassing the cache on memory references outside
the cache shadow.

Cache Hints In modern instruction sets, cache hints[5, 6] are attached to load
and store instructions. They specify if the referred data should be cached or not.
When data is loaded/stored from/to P1, P2 or P3, a cache hint tells the processor
to cache the data. If an address outside the cache shadow is referenced, the cache
hint tells the processor not to cache the data.

Thread Scheduling on a Single Threaded Superscalar Processor The
process and remap threads need to run concurrently. Current microprocessors
offer parallelism at the instruction level (ILP). This means that only nearby in-
structions in one thread can be executed simultaneously. To execute the remap
thread and the process thread concurrently, these two threads need to be inter-
woven into a single thread at compile time. The instructions of the two threads
must be interleaved so that the processor can execute instructions of the two
threads during the same cycle.

On current processors, about a dozen functional units are present. Typically,
data dependencies cause an average IPC (instructions per clock-cycle) no more
than 2 to 3, so about ten functional units are left unused every clock-cycle.
There are no dependencies between the remap and the process thread during
the execution of Td(L). As a result, the remap thread can use the functional

units that are not used by the process thread. A good optimizing compiler can
schedule the instructions of both threads so that they execute simultaneously.

Non-Stalling Memory Access The remap thread accesses main memory. Because
the two threads are interwoven into one, it is important that the memory ac-
cess doesn’t stall the processor. When an instruction from the remap thread ac-
cesses main memory, there are enough independent instructions from the process
thread ahead in the instruction stream to perform useful in-cache computations
to overlap the latency.

Selection of Tile Size The tile size (B1,. . .,Bn; n = 3 in the example) is chosen
so that every tile set fits in P2 and P3. A large number of tile sizes satisfy
this constraint. Let iterp = B1 ∗ · · · ∗ Bn, the number of iterations executed
by the process thread during a tile execution. Let iterr be the number of array
elements that need to be remapped or put back during a tile execution. We
choose to optimize the tile sizes so that the ratio r =

iterp

iterr

is maximal. This
choice assures that the processing power needed by the remap thread is as small
as possible relative to the processing power needed by the process thread.

Loop Transformations and Thread Scheduling To lower the scheduling over-
head, a number of loop transformations are performed to the loop nests in both
threads. The remap thread originally consists of Q loop nests. Every loop nest
remaps or puts back a data tile. Qr

i is the number of elements that are remapped
by loop nest i. Each of these loop nests are coalesced[10], and the body of the re-
maining loop is placed in an inlined remapping function (e.g. remapA in fig. 4(a)).

The innermost loop in the tiled loop nest Td(L) is unrolled brc times, then
a remap call is inserted (see fig. 4(c)).

It is known at compile time how many times each remap function must be
executed per iteration of Td(L). The outermost loop of Td(L) is split into Q

parts. In each part, another remap function is called. The number of iterations
in each part is chosen so that every remapping function is called at least Qr

i

times. So QB1

i ∗ B2 ∗
⌊

B3

r

⌋

≥ Qr
i .

3 Implementation and results

3.1 Processor Requirements

Three conditions must be met to enable cache remapping:

1. the processor provides the possibility to load data from main memory with-
out bringing it into the cache, e.g. using cache hints,

2. multiple instructions execute concurrently, e.g. a superscalar processor,
3. the processor does not stall on a cache miss, as long as independent instruc-

tions are available in the instruction stream. This can be achieved using
speculative loads[5].

The IA-64 architecture satisfies these requirements as well as all Explicitly
Parallel Instruction Computing (EPIC)-style architectures.

remapA(int iter,A,p) {

i1 = de_coalesce(iter);

i2 = de_coalesce(iter);

remap(p+i1*B2+i2,

A[i1+II,i2+JJ]);

}

(a) One of the Q functions
that remap one element

remap(double* x, double* y)

{

fld.nta r1,y

fst.nt1 x,r1

}

(b) The remap function.
The nta cache hint means
“don’t cache”, the nt1

cache hint means “cache
into L1”.

swap(p2,p3)

iter=0

do i = II,II+Q
B1

1
-1

do j = JJ,JJ+B2-1

do k = KK,KK+B3-1,r

H(i,j,k,p2) /* body r */

... /* times unrolled */

H(i,j,k+r-1,p2)

/* remap code */

remapA(iter++,A,p3)

iter=0

do i = II+Q
B1

1
,II+Q

B1

1
+ Q

B1

2
-1

do j = JJ,JJ+B2-1

do k = KK,KK+B3-1,r

...

remapB(iter++,B,p3)

...

(c) The transformed tiled loop
nest.

Fig. 4. The program transformations to efficiently interweave and schedule both
threads into one. p2 and p3 are the start addresses of P2 and P3 respectively. It is
assumed that — after inlining — the instruction scheduler will move enough inde-
pendent instructions between both instructions in remap to allow useful computations
during the main memory access.

3.2 Simulation

Since EPIC processors are not yet available, the Trimaran simulator[14] was used
to simulate the behavior of the processor. The cache behavior was modeled by
the well known Dinero cache simulator.

The experiment is a tiled matrix multiply executed on a processor with a
2-level cache. The L1 cache is 16Kb direct mapped with 32 byte lines. The L2
cache is a 256Kb 4-way set associative with 64 byte lines. We assume that the
access latency of the L2 cache is 20 clock cycles and the access latency of the
main memory is 65 clock cycles.

The cache remapping technique was compared with the original algorithm,
a naively tiled algorithm not considering limited cache associativity and three
optimized tiling algorithms, namely padding[9], copying[13] and LRW[7]. Each
algorithm was coded, compiled and simulated for matrix dimensions between
20 and 400. For the cache remapping algorithm, the tiles on the border of the
iteration space were processed using the copying technique, because the pipelined

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400

P
er

fo
rm

an
ce

 (
F

lo
p/

C
lo

ck
 C

yc
le

)

Matrix Dimension

zoom see fig.6

cache remapping
original

padding
copying

LRW
naively tiled

Fig. 5. Smoothed plot of the performance of several tiled matrix multiplications for
dimensions 20 to 400. In this smoothed plot it is clear that the cache remapped algo-
rithm outperforms the others for matrix sizes bigger than 150. A zoom of the actual
performance plot can be found in figure 6.

0.2

0.22

0.24

0.26

0.28

0.3

200 250 300 350 400

P
er

fo
rm

an
ce

 (
F

lo
p/

C
lo

ck
 C

yc
le

)

Matrix Dimension

cache remapping
padding

copying
LRW

Fig. 6. The performance of cache remapping, padding[9], copying[13] and LRW[7] on
matrix dimensions 200 to 400. The cache remapped algorithm has the same perfor-
mance as the next best algorithm at worst. At best, a speedup of 10% over the next
best algorithm is obtained.

nature of cache remapping suffers from processing tiles not completely filled with
data.

The performance of the algorithms, expressed in number of floating point
operations per clock cycle, is plotted in figure 5. Because the performance of
some algorithms fluctuate, the data was smoothed using bezier curves to clearly
visualize the trends. In figure 6 an exact plot is given for the four best algorithms
for matrix dimensions 200 to 400. This plot shows that at worst, cache remapping
is as good as, and at best it is 10% better than the next best algorithm.

For matrix dimensions bigger than 150, cache remapping outperforms the
alternative tiled algorithms. For matrix dimensions between 200 and 400, the
average speedup compared to the second best algorithm (copying) is 5%. Com-
pared with the original non-tiled algorithm, a speedup of 454% is obtained.

4 Comparison with related work

Methods that select tile sizes to eliminate conflict misses[2, 7] sometimes result
in small tiles, which reduce the performance. Padding[9] on the other hand uses
large tile sizes and changes the data layout of the arrays by enlarging the di-
mensions with unused elements, in order to avoid cache conflicts. Unfortunately,
this static adjustment cannot be optimized for every loop in a program simul-
taneously. Copying[13, 7, 11] eliminates conflict misses by copying the array tiles
with the worst self interference to a contiguous buffer. Copying naturally involves
overhead and the tradeoffs between copying and cache conflicts are discussed in
[13].

In contrast to Padding and Tile Size Selection, cache remapping is indepen-
dent of the array dimensions and doesn’t require a change of the data layout.
With respect to copying, cache remapping is able to cache tiles in a parallel
thread, which runs concurrently with the processing thread. As a consequence,
cache remapping has no conflict misses and incurs a minimal overhead.

The cache bypass and relocation technique was exploited by Lee[8] to use
the cache as a set of vector register on i860 processors mimicing Cray’s strided
get/put[12]. Yamada[16] proposed prefetching and relocation by extending the
hardware with a special data fetch unit which enables prefetching strided data
without cache pollution. Our technique also combines cache bypass and reloca-
tion, but isn’t limited to strided data patterns which allows it to prefetch and
relocate data structures with non-constant strides such as data tiles.

5 Conclusion

The Von Neumann bottleneck nowadays hinders even a single processor. Cache
remapping represents a promising technique to bridge the steadily growing gap
between processor and memory speeds. It favorably compares with existing tiling
techniques and it uses the concepts of a new generation of processors. In future
work the presented technique will be embedded in a EPIC compiler.

References

1. S. Carr and K. Kennedy. Compiler blockability of numerical algorithms. In Proceed-
ings, Supercomputing ’92, pages 114–124. IEEE Computer Society Press, November
1992.

2. S. Coleman and K. McKinley. Tile size selection using cache organization and
data layout. In SIGPLAN’95: conference on programming language design and
implementation, pages 279–290, June 1995.

3. D. P. et al. A case for intelligent RAM. IEEE Micro, 17(2):34–44, March-April
1997.

4. S. Ghosh. Cache Miss Equations: Compiler Analysis Framework for Tuning Mem-
ory Behaviour. PhD thesis, Princeton University, November 1999.

5. IA-64 Application Developer’s Architecture Guide, May 1999.
6. G. Kane. PA-RISC 2.0 architecture. Prentice Hall, 1996.
7. M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimiza-

tions of blocked algorithms. In Proceedings of the 4th International Conference on
Architectural Support for Programming Languages and Operating Systems, Palo
Alto, California, pages 63–74, April 1991.

8. K. Lee. The NAS860 library user’s manual, 1993.
9. P. Panda, H. Nakamura, N. Dutt, and A. Nicolau. Augmenting loop tiling with

data alignment for improved cache performance. IEEE transactions on computers,
48(2):142–149, Feb 1999.

10. C. D. Polychronopoulos. Loop coalesing: A compiler transformation for paral-
lel machines. In International Conference on Parallel Processing, pages 235–242,
Pennsylvania, Pa, USA, Aug. 1987. Pennsylvania State Univ. Press.

11. G. Rivera and C.-W. Tseng. A comparison of compiler tiling algorithms. In 8th
International Conference on Compiler Construction (CC’99), March 1999.

12. S. L. Scott. Synchronization and communication in the T3E multiprocessor. In
Proc. ASPLOS VII, Cambridge, MA, Octobe 1996.

13. O. Temam, E. D. Granston, and W. Jalby. To copy or not to copy: A compile-
time technique for assessing when data copying should be used to eliminate cache
conflicts. In IEEE, editor, Proceedings, Supercomputing ’93, pages 410–419, March
1993.

14. Trimaran. The Trimaran Compiler Research Infrastructure for Instruction Level
Parallelism. The Trimaran Consortium, 1998. http://www.trimaran.org.

15. M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proceed-
ings of the ACM SIGPLAN ’91 Conference on Programming Language Design and
Implementation, pages 30–44, 1991.

16. Y. Yamada, J. Gyllenhaal, G. Haab, and W. mei Hwu. Data relocation and
prefetching for programs with large data sets. In Proceedings of the 27th Annual In-
ternational Symposium on Microarchitecture, pages 118–127, San Jose, California,
Nov. 30–Dec. 2, 1994. ACM SIGMICRO and IEEE Computer Society TC-MICRO.

