8,847 research outputs found

    Vienna FORTRAN: A FORTRAN language extension for distributed memory multiprocessors

    Get PDF
    Exploiting the performance potential of distributed memory machines requires a careful distribution of data across the processors. Vienna FORTRAN is a language extension of FORTRAN which provides the user with a wide range of facilities for such mapping of data structures. However, programs in Vienna FORTRAN are written using global data references. Thus, the user has the advantage of a shared memory programming paradigm while explicitly controlling the placement of data. The basic features of Vienna FORTRAN are presented along with a set of examples illustrating the use of these features

    Macroservers: An Execution Model for DRAM Processor-In-Memory Arrays

    Get PDF
    The emergence of semiconductor fabrication technology allowing a tight coupling between high-density DRAM and CMOS logic on the same chip has led to the important new class of Processor-In-Memory (PIM) architectures. Newer developments provide powerful parallel processing capabilities on the chip, exploiting the facility to load wide words in single memory accesses and supporting complex address manipulations in the memory. Furthermore, large arrays of PIMs can be arranged into a massively parallel architecture. In this report, we describe an object-based programming model based on the notion of a macroserver. Macroservers encapsulate a set of variables and methods; threads, spawned by the activation of methods, operate asynchronously on the variables' state space. Data distributions provide a mechanism for mapping large data structures across the memory region of a macroserver, while work distributions allow explicit control of bindings between threads and data. Both data and work distributuions are first-class objects of the model, supporting the dynamic management of data and threads in memory. This offers the flexibility required for fully exploiting the processing power and memory bandwidth of a PIM array, in particular for irregular and adaptive applications. Thread synchronization is based on atomic methods, condition variables, and futures. A special type of lightweight macroserver allows the formulation of flexible scheduling strategies for the access to resources, using a monitor-like mechanism

    Optimal Compilation of HPF Remappings

    No full text
    International audienceApplications with varying array access patterns require to dynamically change array mappings on distributed-memory parallel machines. HPF (High Performance Fortran) provides such remappings, on data that can be replicated, explicitly through therealign andredistribute directives and implicitly at procedure calls and returns. However such features are left out of the HPF subset or of the currently discussed hpf kernel for effeciency reasons. This paper presents a new compilation technique to handle hpf remappings for message-passing parallel architectures. The first phase is global and removes all useless remappings that appear naturally in procedures. The code generated by the second phase takes advantage of replications to shorten the remapping time. It is proved optimal: A minimal number of messages, containing only the required data, is sent over the network. The technique is fully implemented in HPFC, our prototype HPF compiler. Experiments were performed on a Dec Alpha farm

    A Global Communication Optimization Technique Based on Data-Flow Analysis and Linear Algebra

    Get PDF
    Reducing communication overhead is extremely important in distributed-memory message-passing architectures. In this paper, we present a technique to improve communication that considers data access patterns of the entire program. Our approach is based on a combination of traditional data-flow analysis and a linear algebra framework, and works on structured programs with conditional statements and nested loops but without arbitrary goto statements. The distinctive features of the solution are the accuracy in keeping communication set information, support for general alignments and distributions including block-cyclic distributions and the ability to simulate some of the previous approaches with suitable modifications. We also show how optimizations such as message vectorization, message coalescing and redundancy elimination are supported by our framework. Experimental results on several benchmarks show that our technique is effective in reducing the number of messages (an average of 32% reduction), the volume of the data communicated (an average of 37% reduction), and the execution time (an average of 26% reduction)

    Introducing Molly: Distributed Memory Parallelization with LLVM

    Get PDF
    Programming for distributed memory machines has always been a tedious task, but necessary because compilers have not been sufficiently able to optimize for such machines themselves. Molly is an extension to the LLVM compiler toolchain that is able to distribute and reorganize workload and data if the program is organized in statically determined loop control-flows. These are represented as polyhedral integer-point sets that allow program transformations applied on them. Memory distribution and layout can be declared by the programmer as needed and the necessary asynchronous MPI communication is generated automatically. The primary motivation is to run Lattice QCD simulations on IBM Blue Gene/Q supercomputers, but since the implementation is not yet completed, this paper shows the capabilities on Conway's Game of Life

    Language Constructs for Data Partitioning and Distribution

    Get PDF

    Using the High Productivity Language Chapel to Target GPGPU Architectures

    Get PDF
    It has been widely shown that GPGPU architectures offer large performance gains compared to their traditional CPU counterparts for many applications. The downside to these architectures is that the current programming models present numerous challenges to the programmer: lower-level languages, explicit data movement, loss of portability, and challenges in performance optimization. In this paper, we present novel methods and compiler transformations that increase productivity by enabling users to easily program GPGPU architectures using the high productivity programming language Chapel. Rather than resorting to different parallel libraries or annotations for a given parallel platform, we leverage a language that has been designed from first principles to address the challenge of programming for parallelism and locality. This also has the advantage of being portable across distinct classes of parallel architectures, including desktop multicores, distributed memory clusters, large-scale shared memory, and now CPU-GPU hybrids. We present experimental results from the Parboil benchmark suite which demonstrate that codes written in Chapel achieve performance comparable to the original versions implemented in CUDA.NSF CCF 0702260Cray Inc. Cray-SRA-2010-016962010-2011 Nvidia Research Fellowshipunpublishednot peer reviewe
    corecore