
Language Constructs for Data Partitioning
and Distribution

P. CROOKS AND R. H. PERROTT
Department of Computer Science, The Queen's University of Belfast, Belfast BT7 INN, i\'orthern Ireland

ABSTRACT

This article presents a survey of language features for distributed memory multiproces­
sor systems (DMMs), in particular, systems that provide features for data partitioning
and distribution. In these systems the programmer is freed from consideration of the
low-level details of the target architecture in that there is no need to program explicit
processes or specify interprocess communication. Programs are written according to
the shared memory programming paradigm but the programmer is required to specify,
by means of directives, additional syntax or interactive methods, how the data of the
program are decomposed and distributed. c0 1995 by John Wiley & Sons, Inc.

1. INTRODUCTION

One solution to the need for higher-performance
computers is to connect multiple sequential pro­
cessors, each having its own local memory. into
what is known as a distributed memory multipro­
cessor (D:\1.\1). The combined computational
power of these processors, which communicate by
passing messages between one another, may then
be brought to bear on a single problem. In many
cases these systems are constructed from ordinary
production microprocessors: for example, the
Intel iPSC /2 consists of multiple ·'nodes,'' each of
which includes an Intel 80386 CPL and an 80:387
FPC coprocessor. DM'Vls can be both cost-effec-

Received December 1993
Revised October 1994

e-mail: p. crooks orr. perrott@qub.ac.uk

The authors apologize in advance to any of the designers of
the described systems for any misinterpretation or misreprP­
sentation of their work; it certainly was not intentional.

© 1995 by John Wiley & Sons. Inc.

Scientific Programming, VoL 4, pp . ."i9-8.5 (199:'>)
CCC 1058-9244/9:'>/020059-27

tive and potentially highly iicalable .. due to the low
cost of their component microprocessors and the
modular nature of their interconnection: further­
more, they can achieve high levels of performance
for certain types of application.

Cnfortunately prowams for these machines are
much more difficult to write. debug. maintain.
and understand than sequential programs. being
complicated by such concerns as livelock. dead­
lock, processor topology, communications. syn­
chronization, task wanularity. and separate ad­
dress spaces. :\lessage-passing languages. such as
Occam for the lnmos transputer. offer a relatively
low-level programming interface to the multi­
processing hardware: the situation is analogous to
programming a sequential processor in assembly
language. A further problem is that the low-level
nature of a message-passing language leads to
programs that are closely tied to the hardware
charaeteristics of the D~IM for which it was de­
signed, resulting in a lack of code portability be­
tween the various D~l:\I machines now available.

Consequently a considerable amount of current
research is aimed at providing appropriate pro­
gramming tools for D:\fMs. Included in this re­
search is the construction of compilation systems

60 CROOKS AND PERROTT

for translating high-level programs into message­
passing code. One method of exploiting the paral­
lelism offered by DMMs entails the decomposition
(or partitioning) of data for distribution over the
processors of the machine to achieve program
speed-up through data-parallel execution. The
parallelization strategies of a number of compila­
tion systems based on this principle are consid­
ered in the next section.

The choice of data partition is important as it,
along with the data dependencies present in the
program, determines the amount of communica­
tion required between processors. This, in turn,
influences the overall performance because off­
processor references can be an order of magnitude
more costly that references to local memory. The
choice of an "optimal" data partition must take
into account the program structure, compiler ca­
pabilities, characteristics of the underlying ma­
chine (memory structure, number of processors
and their topology, communication characteris­
tics), and the sizes of distributed data structures.

An appropriate heuristic method for automati­
cally determining an optimal data partition has yet
to be found. One method of overcoming this prob­
lem is to enlist the help of the user, who must then
provide the system with a suitable data partition,
specified by means of directives, language exten­
sions (additional syntax), or interactive methods.
Typically an iterative, experimental approach
would be adopted in choosing a partition. There
are many degrees of freedom in this choice but the
user would normally be sufficiently au fait with the
computational code to have a good idea about
which partitions are the most promising (although
he/ she might not be so knowledgeable about the
underlying hardware characteristics). Efficient
parallelization may also require the help of the
user, via assertions, directives, etc., with regard to
global, high-level properties of the algorithm
whose detection by even the most able systems
may be intractable. One example of this is the
specification of FORALL "loops" to indicate the
possible parallel execution of loop iterations.

This article considers some of the most signifi­
cant of these compilation systems. These systems
provide what may be called a virtual shared mem­
ory, in other words they enable the programmer to
write programs as though the memory of the target
machine were a single, shared memory; this (logi­
cal) shared memory model is put into effect on the
underlying (physical) distributed memory of the
target DMM by the compilation system.

One example of this approach is high-perfor-

mance Fortran [HPF; 1, 2] in which compiler di­
rectives are used within a Fortran 90 program to
specify data distribution and redistribution. How­
ever, this survey concentrates on systems that pre­
ceded HPF and so represents the research context
in which the HPF effort was established. Further­
more, HPF currently exists largely as a proposal,
whereas the systems presented below have been
fully (or largely) implemented.

2. DATA PARTITIONING AND
DISTRIBUTION SCHEMES

One of the problems in this area is the wide range
of terminology. As a consequence the following
terms, as used in this article, perhaps require clar­
ification. The terms user and programmer are
used interchangeably; normally the user of the
parallelization system will be the author of the
program to be parallized; in any case, the use of
all but one (SUPERB) of the systems covered in
this section entails additional programming,
thereby causing the user to be a programmer. We
use the term DMM to refer to a message-passing
multiple instruction stream, multiple data stream
(MIMD) computer where each processor has its
own local memory and there is no shared memory.
The terms decomposition and partition are used
interchangeably to refer to the splitting up of data
arrays into segments, each of which is distributed
to a different processor; that processor is then said
to own that segment, i.e. this data is stored in its
local memory. A data distribution is a mapping of
data to multiple processors in this way.

A data distribution may be static (the mapping
of segments to processors is unchanged during
program execution) or dynamic (the data-to-pro­
cessor mapping changes at run-time, as decided
either automatically by the parallelizing system or
explicitly by the programmer). Dynamic distribu­
tion may be used to maintain a balanced compu­
tational load over the processors of a DMM during
program execution. Where there is a conflict be­
tween the "lowest-cost" distributions (in terms of
the amount of interprocess communication) of a
given array at different points in a program, static
distribution of that array in accordance with one
of those "best" distributions would generally
result in excessive interprocess communication at
the other points in the program, since at each such
point the best distribution is not in effect. Dy­
namic distribution enables the resolution of such
conflicts, although it is important that the com-

munication incurred bv the redistribution of an
array (to resolve these conflicts and hence mini­
mize communication during a computation) does
not exceed the communication overhead which
that redistribution was intended to reduce.

Some systems permit explicit interarray align­
ment. This is the explicit specification of a posi­
tional relationship between data structures; it may
be defined in an indirect form, using an interme­
diate reference frame, or as a direct relationship
between the data structures. For example, two
4 X 4 arrays A and B may be directly aligned such
that their elements are overlapped as shown in
Figure 1. When these arrays are subsequently dis­
tributed over processors their elements will be po­
sitioned in relation to one another as shown in
Figure 1; for example, each shaded element of B
is guaranteed to reside on the same processor as
the shaded element of A aligned with it in the dia­
gram.
~ Most of the systems discussed in this article
produce target code in accordance with the single
program multiple data (SP:vlD) model [3]. Cnder
this scheme each processor runs the same pro­
gram but executes different code depending on its
processor id and the data held in its local memory,
examining every statement to determine what part
it must play, if any, in the execution of that state­
ment.

In the owner-computes paradigm all computa­
tions updating a given datum are performed by
the processor owning that datum. An alternative
scheme is the owner-stores paradigm, whereby
the right-hand side expression of an assignment is
computed by a processor which owns data ap­
pearing in that expression and this result is then
sent to the processor owning the left-hand side

A

B

FIGURE 1 The alignment of two 4X4 arrays A and B.

LA:"o!GUAGE CONSTRUCTS 61

PROGRAM JACOBIRELAXATION
REAL OLD, NEW
DIMENSION OLD(l28,128), NEW(128,128)

C INPUT VALUES OF ARRAY 'OLD'

DO 10 I= 2, 127
DO 10 J = 2, 127
NEW(!, J) = C *(OLD(!, J) + OLD(I-1, J) + OLD(I+1, J)

& +OLD(!, J-1) +OLD(!, 1+1))
10 CONTINUE
C OUTPUT VALUES OF ARRAY 'NEW'

END

FIGURE 2 Sequential algorithm for Jacobi relaxation
on 128x128 grid.

datum; in some cases this scheme may incur less
communication than the owner-computes para­
digm.

The data -parallel programming style is a
SL\1D-like style, making use of a single execution
thread and a global name space in expressing
(loosely) synchronous operations. Regular com­
putations are those for which all the necessary
communications can be precisely determined at
compile-time. Irregular computations, however,
do not permit this-the data transfer behavior of
the computation depends on the input with the
result that communications can only be deter­
mined exactly at run-time. One example of irregu­
larity is indirect array referencing of the form
A[B[i]] where the array A is distributed. With a
reference of the form B [i] the i is generally some
loop counter whose range of values is known at
compile-time so that the compiler can determine
which communications statements must be gener­
ated for that subset of the iterations of the loop
which is to be executed by a given processor (i.e.,
the set of other processors with which communi­
cation is necessary is determinable at compile­
time). If, however, instead of i we have some ex­
pression that is completely indeterminable until
execution time when the compiler cannot make
any deductions regarding the communicants of a
given processor; the subscript B[i] in the indirect
reference A[B[i]] is an example. In this case if A is
distributed (regardless of whether B is distributed)
then we have an irregularity and suitable run-time
facilities are required that the compiler can ensure
are invoked during program execution. (Note that
if A is not distributed, but is instead replicated,
and B is distributed then there is no irregularity
because the situation is simply equivalent to an
ordinary occurrence of B [i].)

Figure 2 outlines a sequential algorithm, writ­
ten in Fortran 77, for Jacobi relaxation on a grid of
128X 128 points. The thrust of the algorithm is to

62 CROOKS A:\"D PERROTT

update each point in the grid using its north,
south, east, and west neighbors, with special con­
ditions at the boundaries. This is an example that
requires the partitioning of data in a many-pro­
cessor system. Where appropriate each of the fol­
lowing scheme descriptions includes an examplP
of how this procedure could be implemented un­
der that scheme. In each case the parallelization
constructs are highlighted in bold type.

2.1 SUPERB

The SUPERB parallelization system [4-8] was
completed in 1989 and was the first implemented
system to transform FORTRA~ 77 code (with ac­
cdmpanying data distribution description) into
message-passing code for a DYIM. It restructured
sequential FORTRAK 77 code into SCPRENU\1
Fortran for execution on the SCPREJ\C::\1 multi­
processor; message-passing Fortran for the Intel
iPSC and GENESIS machines could also be gen­
erated. As each node in the SCPRE~Lvi machine
possessed a pipelined vector uniL parallelization
consisted of two phases: .V1Lv1D parallelization
(creating a set of processes) followed by vectoriza­
tion (within each process). The SLPRE.\T.\11 pro­
ject was primarily aimed at the numerical simula­
tion of large grid-based problems (typically having
106 to 109 grid points) where the computations at
each grid point are mostly local.

SUPREJ'IUYI Fortran is an extended Fortran
that includes the task concept (a task can be acti­
vated more than once. each activation creating a
process) and Fortran 90-style array features. The
SPMD and owner-computes models were ob­
served and some compile-time optimizations ..
such as message vectorization and iteration elimi­
nation, were carried out. Irregular problems in­
volving subscript indirection were supported:
however, dynamic distribution and explicit in­
terarray alignment were not. Scalar variables were
replicated over all processors.

In the SCPERB system, the programmer in­
teractively specifies data partitioning (by block)
and distribution using a special notation (the orig­
inal Fortran 77 code remains unaltered); the par­
titioning of ann-dimensional array is specified in
the following form;

part array-name (sd_list 1 , sd_list2,
sd_listn)

Each sd_list1 is a list of segment descriptors speci­
fying the segmentation of dimension i of the array;

an sd_list1 mav be a list of constant descriptors
such as

where Li and Ri are integer constants, or a list of
variable descriptors such as

where each integer constant c1 specifies a number
of segments each of size x 1 (integer constant or
variable). The values x 1 are determined by the sys­
tem.

The following example illustrates the use of this
notation in its simplest form where an array A is
partitioned into four blocks in its second dimen­
sion and is left unpartitioned in its first dimension
(note that the default lower bound Li in each case
is 1):

part A (1, 4)

The above example makes use of a default (linear)
processor arrangement. However. the target pro­
cessor arrangement may be specified as a proces­
sor array structure (pas). For example. the follow­
ing code declares GRID to be a two-dimensional
abstraction of the underlying processors, whereas
DIAG refers to those processors constituting the
leading diagonal of GRID:

pas GRID (4, 4)
pas DIAG (4) with (i=l, 4 DIAG(i) ~
GRID (i, i))

This mechanism allows for considerable scope in
the description of processor arrays because linear
expressions are permitted in the processor-subset
mapping.

As a further example consider the Fortran 77
code in Figure 2, assuming the GRID processor
array structure, defined above. is used. To imple­
ment this by partitioning each of arrays OLD and
NE\V- into contiguous segments, each of the size
32 X 32 elements and each allocated to one pro­
cessor (assuming there are at least 16 processors),
the user may specify the array decomposition us­
icg constant descriptors;

part OLD (1:32- 33:64- 65:96
1:32- 33:64- 65:96- 97:128)
part NEW (1:32- 33:64- 65:96
1:32- 33:64- 65:96- 97: 128)

97:128,

97:128,

[OL because this example requires equal-sized
blocks, the simpler form may be used

part OLD (4, 4)
part NEW (4, 4))

or by using variable descriptors as in

part OLD (4*n, 4*n)
part NEW (4*n, 4*n)

The first use of constant descriptors abm·e illus­
trates the possible specification of contiguous rec­
tangular data segments of arbitrarv size.

"~n array may be partitioned to ~nly a subset of
a giVen processor array structure: for example:

part B(4) with (i=l, 4 B(i) ~
GRID (5-i, i))

maps the elements of B onto the secondarv diago-
nal of GRID. . .

Alignment may be achieved using distribution
variables. ln the following, array C is distributed
~y block along DlAG (distribution variable j is de­
fined [on its first appearance; to the width of these
blocks); D is distributed likewise but with its first
block of size (j + 11):

part C(4 <j>) with DIAG
part D (1 <j+ll> - (3) <j> with DIAG

The user may further specify the parallelization
process itself. Analysis services are provided bv
the system to enable the user to examine the com-­
munication overhead resulting from a chosen par­
tition. The analysis phase provided bv the svstem
permits the inspection of the co~muni~ation
overhead resulting from a partition, after which
the user can interactively change the partition
specification and apply a choice of transforma­
tions to optimize communications: further optimi­
zations may be chosen to improve vectorization.

1\"onlocal read access to neiahborina arrav data e e .
is provided by system-determined overlaps. These
are private copies of adjoining nonlocal data: their
consistency is maintained by interprocess com­
munications generated bv the SUPERB svstem.
For the distribution spec.ified above. appiied to
the Jacobi relaxation example (see Fig. 2). the svs­
tem will ensure, by appropriate analvsis of the r~f­
erences involved. a one-element -·wide overlap
around each block.

LA!'\Gl:AGE CO:\"STRUCTS 63

2.2 ld Nouveau

Rogers and Pingali [9, 10] present a compiler that
transformed programs written in Id 1\"ouveau into
semantically equivalent C code for the iPSC/2. Id
1\"ouveau is a functional language augmented with
write-once arrays called !-structures. As in the
case of imperative language arrays, the allocation
of storage for an !-structure is separate from the
definition to its elements: however, each element
of an !-structure may onlv be defined once. !­
structures therefore p~rmit the incremental defini­
tion of arrays without the duplication overhead of
functional language arrays. Id Nouveau also in­
cludes features for the specification of data do­
main decomposition.

Because the SPYID model of node program
generation results in redundant activitv (each
node process examining every statement.) the Id
1\"ouveau compilation system applied compile­
time resolution where possible. This is the special­
ization of the code of each node process to its local
data. Greater run-time efficiency is achieved bv
virtue of the reduction of redundant activitv and
because, in generaL this specialization mak~s the
node programs different from one another the
SPYID model is effectivelv abandoned. However.
compile-time resolution c~nnot be applied in cer­
tain cases. such ail irregular computations. where
sufficient information is not available at compile­
time. Run-time resolution must then be used as a
last resort: although less efficienL this guarantees
that such codes can be compiled. The Id Nouveau
compiler could recognize opportunities for accu­
mulation. a form of owner-stores strategy that en­
tails the evaluation of the right-hand side of an
assignment by the process most involved in pro­
viding the terms featured in the right-hand side
expression: the owner-computes paradigm was
otherwise applied as a default.

In the ld 1\"ouveau compiler, data distribution is
expressed within the source code using syntax ex­
tensions. For example. a scalar variable mav be
replicated to all processors using: .

(variable_name : ALL)

or placed on a specified processor:

(variable_name : Pid)

where Pid uniquely identifies a particular proces­
sor. An array (I -structure) is distributed using one
of three builtin, regular distributions; blocks,

64 CROOKS A~D PERROTT

wrapped rows (i.e., cyclically distributed), and
wrapped columns. Figure 3, the Jacobi relaxation
example, illustrates the use of the block distribu­
tion function in partitioning arrays OLD and NEW
into contiguous blocks of size 32X32, to be dis­
tributed one block per processor.

Procedure Jacobi_relaxation (OLD: block(32, 32)); block(32, 32)
{ !-structures OLD and NEW are distributed block-wise in both dimensions)
Let NEW= array (128, 128): block(32, 32) in

for i=2to 127do
for j = 2 to 127 do

NEW [i,j] = C * (OLD[i,j] + OLD[i-l,j] + OLD[i+l,j]
+ OLD[i, j-1] + OLD[i, j+ 1]);

retumNEW

FIGURE 3 Id Nouveau code for Jacobi relaxation.

Array distributions are limited to the above
three mappings and neither explicit interarray
alignment nor dynamic distribution is supported.
Consequently this system can support efficiently
fewer applications than other languages such as
Fortran D and Vienna Fortran (see later). How­
ever, array distribution specification is straightfor­
ward, requiring only the use of simple mappings,
although knowledge of processor identification is
required for the distribution of scalar variables.

2.3 Kali

Kali [11, 12] provides a set of parallelization ex­
tensions supporting sequential-style programming
on distributed memory architectures. For devel­
opment purposes Kali (which grew out of the
BLAZE project by the same group) was imple­
mented as a Pascal-based language, although it
could be based on any other sequential language.
The Kali compiler transformed a program written
in this language into SPMD message-passing C
code for the NCUBE/7 or iPSC/2. As far as possi­
ble the analysis required to produce the necessary
communications and synchronizations was per­
formed at compile-time; irregular problems were
supported but these dictated that their analysis be
done (less efficiently) at run-time, using inspec­
tor/ executor loops. Kali did not support the ex­
plicit alignment of arrays or the dynamic distribu­
tion of data.

Figure 4 illustrates the use of Kali in imple­
menting the Jacobi relaxation example. The pro­
grammer's first task is to specify an array of physi­
cal processors using a processors statement, in
this example it is defined to be a two-dimensional
PxP processor array called Procrs. The parame­
ter P is chosen by the run-ti.me system to be the

(* specify PxP processor array called Procrs *)
processors Procrs : array [I .. P, 1 .. P] with P in 1 .. 4;

(*block decomposition of arrays OLD and NEW in each dimension, and*)
(* distribution of these blocks over Procrs *)
var0LD,NEW:array[l .. l28, 1 .. 128] ofreal dist by [block,block] onProcrs

(*input values of array OLD *)

(*computational code*)
forall i in 2 .. 127,j in 2 .. 127 on NEW[i,j].loc do

NEW[i,j] :=C * (OLD[i,j] +OLD[i-l,j] + OLD[i+l,j]
+ OLD[i, j-1] + OLD[i, j+ I]);

end;

(* output values of array NEW *)

FIGURE 4 Jacobi relaxation in Kali.

largest possible integer constant in the given range
(in this case 1..4).

Next the programmer must define how arrays
are to be distributed over this target architecture.
This is achieved by appending a distribution
(dist) clause to the declarations of those arrays
intended for distribution; scalar variables. and ar­
rays declared without a distribution clause, are
universally replicated. Within a distribution
clause the programmer specifies the distribution
pattern for each dimension of the data arrav, ob­
serving the limitation that the number of distrib­
uted dimensions in a distribution clause must
equal the number of processor array dimensions.
Lser-defined distribution patterns are possible
but Kali additionally provides the intrinsics block
and cyclic, illustrated below; block-cyclic distri­
bution is also supported.

processors line : array 1 . . P]
with P in 1 .. 10;
var A : array [1 .. 100] of real dist
by [block] on line;

B : array [1 .. 100] of real dist
by [cyclic] on line;

C : array [1 100, 1 .. 100] of
real dist by [*, block] on line;

D : array [1 100] of real;

Array A is distributed over the one-dimensional
processor array "line" as contiguous blocks of 10
elements each, whereas the elements of B are dis­
tributed individually in a round-robin fashion.
The asterisk indicates that a dimension is not to
be distributed and so each processor in "line" will
receive a block of 10 contiguous columns of C.
Array D is undistributed and each processor in
"line" receives a complete copy of D. In the ex-

ample of Figure 4 arrays OLD and NEW are dis­
tributed over Procrs as contiguous two-dimen­
sional blocks.

Computations using distributed arrays must be
enclosed in forallloops. These are treated as fully
parallel loops and no provision is made for any
parallelization of loops with interiteration depen­
dences. Within a forallloop, the values used are
those that were current immediately before the
loop (a strategy referred to as "copy-in/ copy-out
semantics"). Furthermore, the programmer must
append an on clause to forall loops, specifying
which processor is to execute each iteration of the
loop. Figure 4 illustrates the use of the .loc func­
tion for this purpose, which ensures that the itera­
tion updating NEW[i, j] is executed on the proces­
sor owing NEW[i, j]. However, this need not be
the case because it is possible to depart from the
owner-computes paradigm by explicitly referenc­
ing processors in an on clause.

Kali presents the programmer with a relatively
large set of parallelization concerns. In addition to
specifying data distributions, the programmer
must also declare the underlying processor topol­
ogy and explicitly indicate not only parallel loops
but also the processors on which the iterations of
these loops are to be executed, i.e., the user must
take responsibility for both data and iteration dis­
tributions.

2.4 ARF

Wu et al. [13] presented an experimental com­
piler and run-time support system, predominantly
aimed at enabling the execution of sparse, un­
structured applications written in ARF (ARguably
Fortran), an extended dialect of Fortran 77. The
ARF compiler produced an SPMD node program
containing embedded PARTI primitives [14] to
implement the necessary communications. PARTI
(Parallel Automated Run-time Toolkit at ICASE)
is a library of run-time procedures that support
irregular distribution patterns and irregular com­
putations involving subscript indirection. A run­
time resolution scheme was used, employing an
inspector/ executor approach for communication
preprocessing; even for regular computations, no
message communications were firmly decided at
compile-time.

Using ARF's language extensions, data distri­
bution can be regular (block or cyclic) or user
defined and irregular; the latter is achieved using
a regularly distributed integer-valued mapping ar­
ray of the same size and shape as the array to be

LANGUAGE CONSTRUCTS 65

distributed, as illustrated below:

distributed regular using block
real A (1000)
distributed regular using block
integer maparray(lOOO)
distributed irregular using
maparray real B(lOOO)

Here the processor to which B(i) is mapped is
identified by the value of maparray(i). The current
implementation of ARF can only support parti­
tioning of one dimension (the last dimension) of
an array, although the PARTI primitives are capa­
ble of supporting more general distributions. Nei­
ther dynamic data distribution nor explicit in­
terarray alignment is supported.

The distributed do language extension indi­
cates that the iterations of a DO loop are to be
distributed over the processors of the target ma­
chine, whereas another extension, the on clause,
gives the user a means of controlling this distribu­
tion. As a result, the owner-computes rule is not
necessarily adhered to.

An example of the use of the ARF language in
implementing the Jacobi relaxation problem is
given in Figure 5. Note that only the last (i.e., the
second) dimension of OLD and NEW can be par­
titioned and therefore these arrays are partitioned
and distributed as blocks of columns, one block
per processor. This example is tentative because
the researchers state that the syntax accepted by
the current version of the ARF compiler differs
slightly from that presented by Wu et al. [13].

The ARF system provides relatively few paral­
lelization extensions but in enabling the treatment
of irregular distributions the system requires the
programmer to have some knowledge of processor
identification. The on clause and distributed do
construct, although necessary for sufficient pro­
grammer control in certain kinds of application,

C distribute contiguous blocks of columns of arrays OLD and NEW
distributed regular using block real OLD(l28, 128), NEW(l28, 128)

C initialisation of array OLD

distributed do 10 j = 2, 127
do 10 i=2,127

NEW(i, j) = C * (OLD(i, j) + OLD(i-1, j) + OLD(i+ 1, j)
& + OLD(i,j-1) + OLD(i,j+l))

10 continue

C output of array NEW

FIGURE 5 ARF code for Jacobi relaxation.

66 CROOKS AND PERROTT

nevertheless increase the involvement of the pro­
grammer in parallelization.

2.5 ADAPT

Merlin [15. 161 presents a system called ADAPT
(Array Distribution Automatic Parallelization
Tool) that was developed under Esprit Project
2071 (PUMA). ADAPT transforms data-parallel
programs written in distributed Fortran 90, a For­
tran 90 subset enhanced with data-partitioning
extensions, into a form suitable for execution on
arrays of T9000 transputers with C104 switches
(although the techniques are applicable to any
message-passing .\1L\1D system). ADAPT makes
no attempt to parallelize DO loops: parallelism is
obtained from the inherent parallelism of the For­
tran 90 array features. There is therefore an onus
on the programmer to maximize the use of such
features.

ADAPT produces SP.\fD code in accordance
with the owner-computes paradigm. This gener­
ated code takes the form of a Fortran 77 node
program, including calls to communication proce­
dures provided by a purpose-built communica­
tions library called ADLIB (Array Distribution
LIBrary). The same node program is executed by
each process in a multidimensional process array
(because each transputer can support more than
one process the researchers refer to processes
rather than processors). The communication pro­
cedures of ADLIB are high-level grid-based rou­
tines requiring at least nearest-neighbor connec­
tivity in every dimension of the process array.
Indirect array referencing, expressible using (po­
tentially distributed) vector subscripts. is sup­
ported. ADAPT is currently at an early stage of
development and little emphasis has as yet been
placed on optimizations.

The size of the logical process array is defined,
in a separate file, in the form

proc_array = (D1,

PI P2 - ---r-- ----T
P3

As an example, a two-dimensional 4X4 process
array for use by the Jacobi relaxation code would
be declared as follows:

proc_array = (4, 4)

Preparation of a Fortran 90 program for paral­
lelization bv ADAPT consists of the declaration of
a DISTRIBUTION attribute for each arrav to be
distributed. For an n-dimensional real arrav A
this takes the form

REAL, DIMENSION (e 1 ,

DISTRIBUTION (d1 ,

Each non-negative integer d1 indicates the contig­
uous block distribution of dimension i of A over
the process array (block distribution is the only
form of distribution available). A value of 0 ford,
indicates that dimension i of the data array is not
to be distributed: a value d1 > 0 indicates that
dimension i of the data arrav is dio;tributed across
dimension d1 of the process array. For example

REAL, DIMENSION (10, 10),
DISTRIBUTION (0, 1) :: A

results in the following distribution over a one­
dimensional five-proceso; array (Fig. 6).

Omission of a DISTRIBUTION attribute for an
array causes that array to be undistributed. Such
arrays are replicated to all processes in the process
array, as are scalar variables. An array can he
distributed over onlv a subset of the dimensions of
the process array. in which case it is replicated
over the remaining process-array dimensions. For
example, with proc_array = (2. 4)

REAL, DIMENSION (8) ,
DISTRIBUTION (2) :: B

gives the distribution seen in Figure 7.
A dummy array argument may adopt ib distri­

bution from the corresponding actual argument. a

P4 P5

'I
A(l:IO,l:2) A(l:I0,3:4) A(l: 10,5:6) A~l0,7~-~A(l:10,9:10)-J

------ ---- - >
dimension 1 of process array

FIGURE 6 The distribution of array A.

dimension 1

1
1

1
of process

array
2

B(1:2)

r----
B(1:2)

2 3 4

B(3:4) B(5:6) B(7:8)

B(3:4) B(5:6) B(7:8)

~· . ·~-~~-- ~-~-

dimension 2 of process array

FIGURE 7 The distribution of arrav B.

-

strategy that the researchers call assumed distri­
bution (Fig. 8). Explicit interarray alignment is not
supported. nor is dynamic data distribution.

Apart from the definition of a process array in a
separate file, the preparation of a distributed For­
tran 90 program from its Fortran 90 equivalent
entails the use of only a single .. simple paralleliza­
tion feature, DISTRIBUTION. However. the price
paid for such simplicity is the relatively limited
applicability of the current ADAPT system com­
pared with other languages like Vienna Fortran
and Fortran D. In fact this simplicity is deceptive
because the programmer must also make effective
use of the arrav features of Fortran 90 to maxi­
mize parallelism.

PROGRAM JacobiRelaxation
assumes a 4x4 underlying array of processors, declared in another file
distribute dimensions I and 2 of arrays OLD and NEW over
dimensions 1 and 2 of the underlying processor array
REAL. DIMENSION (128, 128). DISTRIBUTION (I, 2) ::OLD, NEW
input the values of array OLD

computational code
NEW(2:127, 2: 127) = C * (OLD(2: 127, 2: 127) +OLD(!: 126, 2: 127)

& + OLD(3: 128, 2: 127) + OLD(2: 127, I: 126)
& + OLD(2:127, 3:128))

output values of array NEW

END PROGRAM JacobiRelaxation

FIGURE 8 Jacobi relaxation in distributed Fortran
90.

2.6 Vienna Fortran

Some authors [17-1 9: describe Vienna Fortran.
an extended dialect of Fortran 77 that provides
the programmer with facilities for the specification
of data distribution within conventional Fortran
77 code~ there is also a Fortran 90 subset[20:
with Vienna Fortran extensions. The Vienna For­
tran compilation system. based largely on the
achievements of the SUPERB project, is currently
in an advanced stage of development. This system
supports the full Fortran 77 language and targets
the SUPREKC:YL iPSC/860, and GENESIS ma­
chines; optimized message-passing code is gener-

LAI\GCAGE CO'ISTRUCTS 67

ated in accordance with the SPMD paradigm. Vi­
enna Fortran makes use of the P ARTI primitives
[14 J to support the indirect referencing of distrib­
uted arravs.

The use of the Vienna Fortran extensions in the
annotation of Fortran 77 code essentiallv com­
prises three main aspects:

1. The declaration of target processors.
2. The distribution of data arrays over the tar­

get processors.
3. The specification of parallel loops and the

allocation of their iterations to processors.

Declaration

In any given Vienna Fortran program there is an
implicitly declared one-dimensional array of tar­
get processors, called $P, which consists of all the
processors available in the target machine. If any
other processor structure is required then the pro­
grammer may superimpose that structure upon
the SP arrangement, which is achieved using a
PROCESSORS statement. For example

PROCESSORS procrs3D (N, N, N)

declares a three-dimensional array of processors,
called procrs3D. The value of]\\ in the above ex­
ample is determined at load time in accordance
with the number of processors available in the tar­
get machine. It is important to note that this pro­
cessor arrav is merelv an alternative view of the
NxNxK ta~get proce~sors constituting $P; the in­
dices of a given processor within $P and procrs3D
are related according to the column-major order­
ing convention of Fortran 77. Individual proces­
sors may be referenced as elements in an array:
for example, $P(2) is also procrs3D(2, 1, 1). For­
tran 90 array section notation may also be used to
reference subsets of processor structures, for ex­
ample, procrs3D(1 :4, 3, 9). An intrinsic function
$MYPROC is provided which, when called by a
node program executing on one of the processors,
returns the processor's index within $P.

The processor structure declared in a PRO­
CESSORS statement, such as procrs3D above, is
known as the primary processors structure. If fur­
ther alternative views of the processors of $P are
required then these may be obtained by reshaping
the primary processor structure, again in accor­
dance with Fortran 77 column-major ordering.
For example, if a two-dimensional structure were
also needed then the above declaration might read

68 CROOKS AND PERROTT

PROCESSORS procrs3D (N, N, N)
RESHAPE procrs2D (N, NXN)

The additional structures obtained by reshaping,
such as procrs2D, are known as secondary pro­
cessor structures. All processor arrays declared in
a Vienna Fortran program must contain the same
number of processors.

No particular interconnection between proces­
sors is assumed in either $P or any defined pro­
cessor structures. For example, procrs2D is not
necessarily connected as a nearest-neighbor grid.

Distribution

Some data arrays may not require distribution in a
given application, for such arrays no Vienna For­
tran annotations are required-the arrays are de­
clared in the normal Fortran 77 manner and as a
result are replicated on every processor. Scalar
variables may also be universally replicated. How­
ever, in general some arrays will need to be dis­
tributed to achieve program speed-up through
data-parallel execution. To this end Vienna For­
tran provides an extensive and powerful set of fea­
tures that enable the specification of a wide range
of (static or dynamic) array distributions.

Static Distribution. A two-dimensional array A
may be statically distributed over the .pro~essor
structure procrs2D (i.e., in terms of this view of
the target processors) by annotating its de clara­
tion in the following manner

REAL A (N, NXN)
DIST distribution-expression
TO procrs2D

The TO clause is optional; if it is omitted then the
distribution occurs over the primary processor
structure. The distribution-expression specifies a
distribution type, which is a class of distributions
described using distribution functions; a list of
functions may be given, each of which defines the
distribution pattern of one dimension of the array

FIGURE 9a Processor array p2D.

4

array

indicesG 1

~1+'1"
4

21 22 23 21

6

31 32 33 31

9

6

12 13

22 23

32 33

11 12

21 22
I

31 32

13

~I

I

231

33

I
identi tier of

ssor
hich
data
nts

proce
onw
these
eleme
resid e

FIGURE 9b The distribution pattern of array B.

over a dimension of the target processor array, or
a single distribution function may be given which
defines the distribution pattern for the entire ar­
ray. A range of intrinsic distribution functions are
available that provide BLOCK, CYCLIC and
block-cyclic (CYCLIC(block-size)) distributions
of array dimensions. Examples are

PROCESSORS p2D (3, 3)
REAL B(9, 9) DIST (BLOCK, CYCLIC)
REAL C(90, 90) DIST (BLOCK, CYCLIC(10))

These distributions and the p2D grid are illus­
trated in Figure 9 (a, b, and c); processor id num­
bers are indicated in the boxes (for brevity proces­
sor (i, j) is indicated by ij). BLOCK distribution
produces the distribution of an array dimensi~n i.n
equally sized contiguous sections; CYCLIC distn­
bution produces a round-robin distribution of the
individual elements along a dimension. In Figure

array ~

indices~ 20 30 40 50 60 70 80 90 lO ---=-~ ITT
I

~"
13 II 12

30

I

21 22 23 21 22

i
60

l" "I" 31 32

90

13 111 J 13

1

-1 ti
I 22 23 23 21 fd:'' on which

33 31

i

32 ! 33

i

these data
elements
reside

FIGURE 9c The distribution pattern of array C.

9c the second dimension of array C is partitioned
into 10-element blocks that are placed cyclically
onto processors.

The elision symbol ":" in place of a distribu­
tion function for a dimension of an array prevents
the distribution of that dimension. For example,
the distribution

REAL D(10, 100) DIST(CYCLIC, :) TO $P

cyclically distributes the rows of D over the one­
dimensional processor array $P as shown in Fig­
ure 10 (assuming, for this example, that $P con­
tains five processors).

In the case where the number of processor-ar­
ray dimensions exceeds the number of data-array
dimensions being distributed the entire array is
replicated over the extra dimensions of the pro­
cessor array.

Programmers may define their own distribution
functions, for example

DFUNCTION distfunc
TARGET T(1:)
DO 10 I = 1, SIZE(T)

T(I) DIST TO $P(SIZE(T) - I)
10 CONTINUE

END DFUNCTION distfunc

The TARGET array T in the definition of distfunc
represents the array being distributed. This simple
distribution function may be used to specify the
distribution of an array F. For example

REAL F(10) DIST (distfunc)

achieves a reverse-order distribution of the ele-

$P(l)
D(l,l:IOO)

D(6,1:100)

$P(2) ! D(2, 1:100) I'

D(7,1:100)
--- ------ ----

,---- ----

$P(3)
D(3, 1:100)

D(8,1:100) ____ I
,---

D(4,1:100)
$P(4) L

D(9,1:100) _ _j

,-
D(S,l:IOO) $P(5) !

D(IO, 1:100)

FIGURE 10 Cyclical distribution of array D over $P.

LANGCAGE CONSTRUCTS 69

PROGRAM JACOBIRELAXATION
PROCESSORS grid2D(4, 4)
REAL OLD(l28, 128) DIST (BLOCK, BLOCK)
REAL NEW(l28, 128) DIST (=OLD)

C INPUT VALVES OF ARRAY 'OLD'

DO 10 I= 2, 127
DO 10 J = 2, 127
NEW(!, J) = C *(OLD(!, J) + OLD(I-1, J) +OLD(!+ I, J)

& +OLD(!, J-1) +OLD(!, 1+1))
10 CONTINUE
C OUTPUT VALVES OF ARRAY 'NEW'

END

FIGURE 11 Vienna Fortran code for Jacobi relaxa­
tion.

ments ofF over the processors of $P (assuming a
sufficient number of processors).

The distribution of an array may alternatively
be specified using the distribution functions con­
stituting the distribution -expression of another ar­
ray. For example,

REAL G(2000, 20, 300)
DIST (CYCLIC, CYCLIC, BLOCK)
REAL H(100, 2500)
DIST (=G.3, =G.1) TO procrs2D

distributes the first dimension of H by BLOCK
(the distribution function of G.3, the third dimen­
sion of G) and the second dimension of H in CY­
CLIC fashion (in accordance with the distribution
of G. 1, the first dimension of G). This feature is
further illustrated in the Jacobi relaxation exam­
ple given in Figure 11. This code declares a two­
dimensional array of 16 processors, called
grid2D, and distributes the array OLD over
grid2D in contiguous blocks of size 32x32 ele­
ments. The array New is distributed in the same
way by virtue of the (=OLD) distribution expres­
sion. Note that although Vienna Fortran makes no
assumption concerning the interconnection pat­
terns of target processors, clearly the annotations
in Figure 11 will minimize the communications
overhead in the case of the target processors being
connected in a nearest-neighbor manner.

The foregoing distributions are all examples of
the direct specification of distributions. Vienna
Fortran also allows the implicit distribution of one
array (called the target array) in terms of the distri­
bution of another array (the source array), i.e.,
interarray alignment. This is achieved using the
ALIGN keyword, for example:

REAL K(100, 100) ALIGN K(I, J)
WITH H(J, I*10)

70 CROOKS A~D PERROTT

aligns each element of the target array K with the
source array element identified by evaluating the
subscript expressions of the source array H. 1 and
J are placeholders, i.e., bound variables in this
annotation that each range from 1 to 100 (their
corresponding subscript ranges in array K).
Hence, for example, target element K(5, 21) is
aligned with source element H(21, .50).

Programmers can also define their own align­
ment functions, for example:

AFUNCTION alfunc
TARGET T (i:)
SOURCE S (1:)
DO 10 I= 1, SIZE(T)

T (I) ALIGN WITH S ((I+6)
MODSIZE (S) +1)

10 CONTINUE
END AFUNCTION alfunc

This alignment function may be used to specify
the alignment of an array L to a four-element ar­
ray M thus

REAL L(10) ALIGN (alfunc) WITH M

which results in the following alignment of ele­
ments:

M(1) ~L(2), L(6), L(10)
M(2) ~L(3), L(7)
M(3) ~ L(4), L(S)
M(4) ~L(1), L(5), L(9)

It is possible to define irregular data distributions
in Vienna Fortran where individual elements of an
array may each be mapped to a specified proces­
sor using the INDIRECT distribution function
and an integer-valued mapping array of the same
shape and size as the data array. This mapping
array may itself be distributed.

INTEGER map (10) DIST(CYCLIC)
REAL Q(10) DYNAMIC

DISTRIBUTE Q : : INDIRECT (map)

In the above example the value of map(i) is the
index within $P of the processor to which Q(i) is to
be mapped.

Dynamic Distribution. Vienna Fortran also pro­
vides for the dvnamic distribution of arravs. Such . .
an array is distinguished by an additional annota-

tion to its declaration, the DYNAMIC kevword.
Examples are:

REAL R(lOO) DYNAMIC, DIST(CYCLIC) TO $P
REAL U (100) DYNAMIC

The array R is initially distributed cyclically but
this distribution can later be altered, by virtue of
its DYNAMIC declaration. The array C has no
initial distribution and must not be accessed until
it has been distributed. The distributions that a
dynamically distributed array is permitted to
adopt at run-time can be limited by specifying ex­
plicitly the allowed distributions. For example

REAL V(100) DYNAMIC,
RANGE(BLOCK, CYCLIC)

specifies that V may only be distributed in a block
or cvclic fashion. Anv other distribution of V will . .
have an undefined effect.

The alignment and initial distribution of dy­
namic arrays are specified in the same way as for
static arrays; the array to which a dynamic array is
aligned may be either static or dynamic. Such
alignment is not maintained if either array is later
redistributed. Such an association can. however.
be achieved using the CONNECT keyword. For
example

REAL W(100, 100) DYNAMIC,
DIST (CYCLIC, BLOCK) TO procrs2D
REAL X(100, 100) DYNAMIC, CONNECT (=W)

Here ·w is called the primary array and X is a
secondary array. A primary array and the second­
ary arrays CONI'iECTed to it constitute a connect
set. A dvnamic arrav mav be a member of onlv one
connect set. Only the primary array in a connect
set may be redistributed and when this happens
each of its secondary arrays is redistributed in a
manner related to the primary's new distribution
by that secondary's CONNECTion. The COI\­
NECTion in the above example specifies that the
distribution type of X will always be that of W.

Dynamic distribution is specified by a DIS­
TRIBUTE statement of the form

DISTRIBUTE A1 ,

[NOTRANSFER (Ai ,
, An : : distrib

, Ak)]

On execution of this statement each listed dvnam­
ically distributed array A; is given the distribution
distrib, which may be a direct. INDIRECT. or im-

plicit specification as described above. For any
primary array distributed by the DISTRIBUTE
statement its secondary arravs are also distributed
in accordance with th~ir CONNECTions. The op­
tional NOTRANSFER clause attributes new ac­
cess functions to the listed arrays Ai, . . . , Ak
(which are selected from the list A1, . . . , An and
their CONNECT sets) in accordance with the
specified distribution distrib but does not produce
any transfer of their data: the previous data values
of .the arrays Ai, . . . , Ak are subsequently ig­
nored.

It must be noted that although dynamic distri­
bution directives are provided, it is the user's re­
sponsibility to ensure that they are used wisely.
especially that their use does not incur greater re­
distribution costs than the costs (of suboptimal
execution with unredistributed arravs) that there­
distribution is intended to alleviate. This decision
may be far from trivial; tools are needed to help
the. programmer in making such decisions. An­
other part of the VFCS is a static performance
estimation module [21] that may be of some use
in this respect.

Other Distribution-Related Features: Control
Constructs. Vienna Fortran provides two features,
the IF construct and the DCASE construct. that
enable the distribution of an array to dictate the
flow of execution. For example

REAL Y(1000, 100) DYNAMIC

IF (IDT(Y, (BLOCK, BLOCK))) THEN
if-code

END IF

the if-code will only be executed if both dimen­
sions of Y are block distributed: IDT (Identical
Distribution Types) is an intrinsic inquiry function
that compares the distribution of an array with a
specified distribution type.

In the following example of a DCASE construct
the code to be executed is determined by the first
pair (in textual order) of CASE limb distribution
expressions to match the actual distributions of
AA and BB: the asterisk signifies "anv distribu­
tion."

REAL AA(1000, 100), BB(200, 200)
DYNAMIC ...
SELECT DCASE (AA, BB)

CASE (BLOCK, CYCLIC) , (BLOCK, BLOCK)
code 1

LA:\'GCAGE COI'STRUCTS 71

CASE (CYCLIC, *) , (BLOCK, CYCLIC)
code 2

CASE (DEFAULT)
cod en

END SELECT

Other Distribution-Related Features: Subroutine
Parameters. The distribution of a formal parame­
ter in a subroutine can be static or dynamic. For
each formal parameter a distribution is specified
which is enforced at subroutine entry. If the for­
mal parameter is dynamic, however, then its dis­
tribution mav be inherited from the actual argu­
ment by sp~cifying the annotation DIST(*). A
RANGE clause mav also be used to specify the
permissible distrib~tions of a dummy argument
with inherited distribution, thereby providing the
compiler with useful information that may not
otherwise be determinable. For example

REAL Z(N) DIST(*) RANGE((CYCLIC(10)),
(BLOCK))

declares that the formal parameter Z inherits its
distribution from the corresponding actual pa­
rameter and that this distribution will either be a
block -cvclic pattern with block size 10 or a simple
block distribution. If the actual argument is stati­
callv distributed then any redistribution per­
for~ed within the subroutine is undone at exit.
Such distribution restoration may optionally be
enforced, using the RESTORE keyword, for dy­
namicallv distributed actual arguments. A NO­
TRANSFER attribute can be given to specify that
anv redistribution carried out on entry to a sub­
ro~tine involves only a change in access function
and no movement of data. A local array can be
aligned with a formal parameter or given its own
distribution. Where appropriate actual arguments
may be specified using Fortran 90 array section
notation.

Parallel Loops

Vienna Fortran provides a FORALL loop con­
struct that enables the programmer to assert that
the iterations of a loop may be executed in parallel
by virtue of their being independent (i.e .. the data
written within one iteration are neither read nor
written within anv other iteration of the loop).

Loop iteration's may be assigned to specified
processors, for example

72 CROOKS AND PERROTT

FORALL I= 1, NON $P(PROC(I))

END FORALL
FORALL I= 1, M ON OWNER(V(I))

END FORALL

it is assumed that PROC is some array, defined
elsewhere, whose contents may be used as proces­
sor indices. OWNER is a Vienna Fortran intrinsic
function that identifies the home processor of its
argument. In the default case, when the ON clause
is omitted, the loop iterations are assigned by the
compiler. This may be carried out so as to mini­
mize communication, perhaps splitting individual
iterations across several processors, or a simple
(inefficient) assignment of several iterations to a
single processor may be enforced.

FORALL loops are implicitly synchronized at
start and finish. They may be (tightly) nested and
may contain private variables, in which case each
iteration is equipped with its own copy of those
variables. Reduction statements, using intrinsic
and user-defined reduction functions, may be
used within the loop and their results become
available at the end of the loop. Vienna Fortran
also provides II 0 support for concurrent file ac­
cess by individual processors to several storage
devices.

Summary

Vienna Fortran provides the programmer with a
comprehensive range of features that enable the
efficient parallelization of a wide range of algo­
rithms coded within the conventional Fortran 77
programming paradigm and referencing a single
(virtual) shared memory space. Although Vienna
Fortran provides the expressive control needed to
specify the parallelization of even quite pathologi­
cal algorithms, it has in so doing significantly in­
creased the complexity of the programmer's task
and consequently increased the possibility of (po­
tentially very elusive) errors.

Nevertheless, this increased involvement of the
programmer in the parallelization process is much
more palatable than the disadvantages of mes­
sage-passing programming and clearly may be
justified by the program execution speed-ups
achievable. Indeed the programmer requiring a
simple one-dimensional processor array and only
static distributions need only specify the appropri­
ate data distributions.

2.7 Fortran D

A few authors [22-25] describe an extended For­
tran, called Fortran D, that enables a programmer
to specify the distribution of data and computa­
tional work across a DMM. Currently a Fortran
77D (i.e., extended Fortran 77) compiler is being
developed at Rice University and Wu and Fox
[26] are developing a Fortran 90D (extended For­
tran 90) compiler at Syracuse Cniversity. Clti­
mately these two projects will converge with a sin­
gle definition of Fortran D, the current "official"
version of which is summarized here. It is pro­
posed that the Fortran D compiler will form part of
a data-parallel programming system that will also
include a static performance estimator (to provide
the user with predictions of relative performances
of a Fortran D program with different data distri­
bution [27]) and an automatic data partitioner
(which will make use of the static performance es­
timator either by interactively assisting a user in
finding an efficient data distribution or by auto­
matically producing one). The Fortran D compiler
will produce optimized code in the SPMD model.

The annotation of Fortran code using the For­
tran D extensions essentially comprises four main
components:

1. The optimal specification of the number of
target processors.

2. The mapping of data arrays onto intermedi­
ate frames of reference (called decomposi­
tions).

3. The distribution of decompositions over the
target processors (implying the distribution
of the arrays mapped onto these decompo­
sitions).

4. The specification of parallel loops and the
allocation of their iterations to processors.

This categorization shows some similarity to
that given in the previous section for Vienna For­
tran. The significant difference is the use of an
intermediate mapping device (the decomposition)
in Fortran D, which is intended to promote code
portability.

Specification

The required number of processors may be stipu­
lated at the begining of a Fortran D program using
the reserved variable n$proc; alternatively this
may be omitted and the number of processors will
be determined automatically at run-time accord­
ing to availability.

Mapping

Data distribution begins with the specification of
one or more decompositions. A decomposition
does not occupy any storage; it is simply an ab­
stract structure that can be regarded as a frame of
reference for interarray alignment and as a vehicle
for the distribution of arrays. An arrav intended
for distribution is first alig~ed with a decomposi­
tion using placeholders (1, J, K, etc.) as in the fol­
lowing examples. Arrays for which no alignments
are specified are replicated over all processors.

2

3

4

5

6

7

8

1. REAL A(N, N), B(N, K)
DECOMPOSITION DECl(N, N)
ALIGN A(l, J) with DECl(I, J)
ALIGN B(I, J) with DECl(I, J)

Here a two-dimensional Nxl\' decomposi­
tion called DEC1 is declared and arrays A
and B aligned to it; on the distribution of
DEC1, A and B will be codistributed. The
above two ALIGNments can alternatively be
stated as

ALIGN A, B with DEC1
2. REAL C(N, N), D(N, N)

DECOMPOSITION DEC2(N, N)
ALIGN C(I, J) with DEC2(6*I, J)
ALIGN D(I, J) with DEC2(I,3*J-2)

Here D has a stride of 3 and an offset of -2
in the J dimension; C(1, 4), for example, will

2 3 4 5 6 7 8

D(l,l) D(l,2) D(l,3)

D(2,1) D(2,2) D(2,3)

D(3,1) D(3,2) D(3,3)

D(4,1) D(4,2) D(4,3) DEC2(N,N)

D(5,1) D(5,2) D(5,3)

C(l,l) C(l,2) C(l,3) C(l,4) C(l,5) C(l,6) C(l,7) C(l,8)

D(6,1) D(6,2) D(6,3)

D(7,1) D(7,2) D(7,3)

D(8,1) D(8,2) D(8,3)

FIGURE 12 The alignment of arrays C and D with the
decomposition DEC2.

LANGUAGE CONSTRUCTS 73

2 3 4

F(l,l:M,l) F(l,l:M,2) F(l,l:M,3) F(l,l:M,4)

2 F(2,l:M,l) F(2,l:M,2) F(2,l:M,3) F(2,l:M,4)

DEC4(N,N)

3 F(3,l:M,l) F(3,l:M,2) F(3,l:M,3) F(3,l:M,4)

4 F(4,l:M,l) F(4,l:M,2) F(4,l:M,3) F(4,l:M,4)

FIGURE 13 Mapping of array F onto decomposition
DEC4, showing the collapsing of the J dimension of F.

be codistributed with D(6, 2), as shown in
Figure 12 (assuming N=8).

3. REAL E(N, N)
DECOMPOSITION DEC3(N, N)
ALIGN E(I, J) with DEC3(J, I)

This is an example of permutation, in this
case the transpose of the array E is aligned
with the decomposition.

4. REAL F(N, M, N)
DECOMPOSITION DEC4(N, N)
ALIGN F(I, J, K) with DEC4(I, K)

Here the second dimension of F is undis­
tributed so that elements in its J dimension
are collapsed together in the eventual distri­
bution. This is illustrated in Figure 13 for
the N=4 case.

5. REAL G(N, N)
DECOMPOSITION DEC5(N, N, N)
ALIGN G(I, J) with DEC5 (I, J+l,
3)

This is an example of embedding, the map­
ping of an array onto a decomposition that
has more dimensions. Depending on the
distribution of its decomposition it might be
the case that such an array is not mapped
over all the processors in the target ma­
chine.

It is possible to specify the mapping of an array
onto a decomposition in such a way that some of
its elements are mapped onto nonexistent posi­
tions in the decomposition. Fortran D therefore
provides for an ALIGN statement with an optional
overflow clause that specifies one of three options

74 CROOKS AND PERROTT

FIGURE 14a The alignment of array II with decom­
position DEC6.

(ERROR, TRUNC, and WRAP) per dimension.
This is used to describe how arrav elements ex­
tending beyond the decomposition are to be
treated, for example

REAL H(N), K(N, N)
DECOMPOSITION DEC6(N), DEC7(N, N)
ALIGN H(I) with DEC6(I+l) overflow (ERROR)
ALIGN K(I, J) with DEC7(I-1, J+l)
overflow (TRUNC, WRAP)

In this example, the element H(l") is aligned with
DEC6(N + 1). This alignment is specified with type
ERROR (the default type when the overflow
clause is omitted): this means that H(l") is un­
mapped and attempts to access it are illegal (see
Figure 14a). The TRUNC option causes the over­
flowing elements (here the first row of K) to be
mapped to the overflowed edge of the decomposi­
tion; hence the first and second rows of K are both
mapped to the first row of DEC?. The WRAP op­
tion maps the overflowing elements to the opposite
end of the decomposition: the last column of K is

2 N

K(I.N) K(l.1) K(l.2) K(l,N-1)

K(2,N) K(2,1) K(2,2) K(2,N-1)

r <
21 K(3,N) K(3,1) K(3,2) K(3,N-1) I

! DEC7

N-1• K(N,N) K(N,1) K(N,2) K(N,N-1)

N

FIGURE 14b The alignment of array K with decom­
position DEC7.

mapped to the first column of DEC?. These align­
ments are illustrated in Figure 14b.

The foregoing ALIGN statements mapped en­
tire arrays onto decompositions. However, it is
also possible to map only part of an array where,
for example, a large work array is to be subdivided
into a collection of smaller logical arrays at run­
time. This partial mapping is achieved by specify­
ing a section of the array in a range clause. The
following example illustrates that all rows of L (in­
dicated by the asterisk), but only columns 1 toN.
are to be mapped.

REAL L (N, N+N)
DECOMPOSITION DECS(N, N)
ALIGN L(I, J) with DECS(I, J)
range (*, 1: N)

The replication of array elements over a dimen­
sion of a decomposition is specified by the pro­
grammer indicating a range of a decomposition
dimension rather than a placeholder, for example

REAL M (N) , P (N) , Q (N, N)
DECOMPOSITION DEC9(N, N)
ALIGN M(I) with DEC9(I, 2:5)
ALIGN P(I) with DEC9(*, I+5)
ALIGN Q(I, J) with DEC9(J, *)

This example is illustrated in Figure 1;) where
each of the second. third, fourth. and fifth
columns of DEC9 is associated with the whole of
M. For everv row of DEC9 there is an association
between its last (.'i -5) elements and the first (l'\ -5)
elements of P. Each column of Q is mapped to
every element in the corresponding row of DEC9.

Distribution

The distribution of an array over the target rna­
chine is achieved by specifying its associated de­
composition in a DISTRIBUTE statement: the
execution of such a statement distributes the ar­
rays ALIGNed to the specified decomposition.
The svntax for the n-dimensional case is

DISTRIBUTE decomposition (attribute],
, attributen)

Each attribute specifies the manner in which that
dimension of the decomposition is to he distrib­
uted over the target machine. The attribute* indi­
cates no distribution and as a result the corre­
sponding dimension is allocated locally. Three

LA:\'GCAGE CO:\'STRUCTS 75

--- DEC9

I

2 3 -~~ _2~~6~,- 7 •. N-1 N

1

P(N-6) I P(N-5) : M(N) ~ M(N) M(N) : M(N) P(l) I P(2)

I _Q(l N,l) Q(l:N,l)~()(l:J,l,l)~~N,l)' Q(l N,l) Q(lN,l)~~ Q(l:N,l)jl

M(N) I M(N) ' M(N) M(N) I P(l) P(2) !

Q(l:N,l)>l' Q(l:N,l)

P(N-6) P(N-5)
2 I I ' ' '

Q(l N,2l_~~_.:>!_~LN,2)~ Q(l:N,2): Q(l N,2) I Q(l N,2)~(1 N,2)+ ! Q(l:N,2) Q(l:N,2)
j ----- -------

' I

---~--~

' M(N)
1

M(N) 1 M(N) M(N) P(l) P(2) P(N-6) P(N 5)

N ' '
Q(l:N,N) Q(l:N.N)I Q(l:N,N)I Q(l:N,N) Q(l:N,N) Q(I:N,N) Q(I:N,N) Q(l:N,N) Q(!N,N)

FIGURE 15 The alil2'nment of arrays .\1. P, and Q with decomposition DEC9.

regular distribution attributes are available.
namelv BLOCK, CYCLIC, and BLOCK_CY­
CLIC: their use implicitly creates a processor ar­
ray in that the target processors are allocated as
evenly as possible between the dimensions.

DISTRIBUTE DEC9(BLOCK, *)
DISTRIBUTE DEClO(CYCLIC,
BLOCILCYCLIC(2))

The above examples are illustrated in Figure 16
for the case where n$proc = 4. Figure 16a shows
the first dimension of the decomposition DEC9
partitioned into contiguous blocks distributed be­
tween the processors p1 to p4: the remaining di­
mension of DEC9 is not distributed. The elements
of DEClO (assumed to have been declared with
size 8x8) are distributed individually. in a round­
robin fashion. in one dimension and grouped into
blocks of size 2 in the other dimension, these
blocks also being distributed cyclically as shown
in Figure 16b.

Another example of the use of the DISTRIB­
UTE statement is given in Figure 1? for the Jacobi

I N
-----~l

pi ~-----1-
--~

-->-- ----1 I
p2 processor to which

.. ------j this section of DEC9
is distributed

DEC9 p3

-I
I p4 I

I Nl -
FIGURE 16a The distribution pattern of the ~Xi\ de­
composition DEC9.

relaxation example where 16 target processors are
specified and a decomposition DD of size
128X 128 is declared. Having mapped arrays
OLD and l\EW directly onto DD it is then distrib­
uted in BLOCK fashion in both dimensions over
the target processors. Because processors are allo­
cated evenly between the dimensions of a decom­
position this example causes DD (and hence the
arrays OLD and l\EW) to be partitioned and dis­
tributed as 16 (i.e., 4X4) contiguous blocks. each
of size 32X32 elements.

Extended forms of the regular distribution at­
tributes are provided, allowing the programmer to
specify explicitly the number of processors allo­
cated to each dimension. As virtual processors are
not supported in Fortran D the programmer must
ensure that the specified attributes do not require
more processors than n$proc. The number of

2 3 4 5 6 7 8
I T-- i
I I. pi pi p3 p3 pi pi p3 p3 I

'
2 p2 p2 p4 p4 p2 p2 p4 p4

-+--~--1 r 3 pi pi p3 p3 pi pl p3 p3

·-~·~-- --- ----+- --

4 p2 p2 p4 p4 p2 p2 p4 p4 j
5 pl pi p3 p3 pl pi p3 p3 1.

: DEC10(8, 8)
I

6 p2 p2 p4! p4 p2 p2 p4 p4

7; ~-~~ F~~ p3 pi pi p3 p3

8 p4 I p2 p2 p4 p4

l I ' -~- -----

FIGURE 16b The distribution pattern of the 8 X 8 de-
composition DEClO.

76 CROOKS AND PERROTT

PROGRAM JACOBIRELAXATION
n$proc = 16

C 16 TARGET PROCESSORS DECLARED
REAL OLD, NEW
DIMENSION OLD(128, 128), NEW(128, 128)
DECOMPOSITION DD(l28, 128)
ALIGN OLD, NEW with DD
DISTRIBUTE DD(BLOCK, BLOCK)

C BOTH OLD AND NEW ARE NOW PARTITIONED IN A
C 4X4 FASHION (AS BLOCKS OF SIZE 32X32) AND
C DISTRffiUTED OVER 16 TARGET PROCESSORS.
C INPUT VALUES OF ARRAY 'OLD'

DO 10 1=2, 127
DO 10 J = 2, 127

NEW(!, J) = C *(OLD(!, J) +OLD(!- I, J) +OLD(!+!, J)
& +OLD(I,J-l)+OLD(I,J+l))

10 CONTINUE
C OUTPUT VALVES OF ARRAY 'NEW'

END

FIGURE 17 Fortran D code for Jacobi relaxation.

processors per dimension is specified as an extra
parameter. Taking the distribution of the decom­
position DD in the Jacobi relaxation example, if
rather than allocating the 16 target processors
evenly between its two dimensions, giving the 4x4
scheme shown in Figure 18a, we had instead re­
quired the 2 X 8 scheme illustrated in Figure 18b
then the DISTRIBUTE statement would have
been written as follows

DISTRIBUTE DD(BLOCK(2), BLOCK(8))

Irregular distributions are achieved in Fortran D
by using replicated or distributed mapping arrays
of integers in a manner analogous to the use of the
INDIRECT distribution function in Vienna For­
tran. In the following example element R(I, J) is

DISTRIBUTE DD(BLOCK(2), BLOCK(8))

32 64 96 128

pi p5 p9 pl3

2 ...,
.....

' p2 p6 p!O p14

64 DD(l2 8, 128)

p3 I p7 pll piS

9 6

p4 ~p12 p16

8 12

FIGURE 18a The mapping of decomposition DD
onto 16 processors, resulting from the even allocation of
processors between dimensions.

distributed to the processor identified by the value
of the mapping array element MAP(I, J)

n$proc = 16
REAL R(4, 4)
INTEGER MAP(4, 4)
DECOMPOSITION DEC11(4, 4),

DEC12 (4, 4)
ALIGN R with DECll
ALIGN MAP with DEC12
DISTRIBUTE DEC12(CYCLIC, BLOCK)

C FILL MAP WITH PROCESSOR ID NUMBERS

DISTRIBUTE DECll(MAP)

Fortran D also supports the dynamic alignment
and distribution of arrays where both ALIGN and
DISTRIBUTE are executable statements. As the
example below illustrates, however, Fortran D dif­
fers from Vienna Fortran by not discriminating
between statically and dynamically distributed ar­
rays.

REAL S(N, N), T(N, N)
DECOMPOSITION DEC13(N, N)
ALIGNS, T with DEC13
DISTRIBUTE DEC13(CYCLIC, CYCLIC)

C BOTH S AND T ARE DISTRIBUTED
(CYCLIC, CYCLIC)

DISTRIBUTE DEC13(BLOCK, BLOCK)
C BOTH S AND T ARE NOW REDISTRIBUTED
(BLOCK, BLOCK)

ALIGN T(I, J) with DEC13(J, I)
C THE TRANSPOSE OF T IS NOW ALIGNED
WITH S

I 16 32 48 64 80 96 112 128
11-1 ,- --- !

p31
i

p9 1 pll I p13 pi p5 p7 I piS
I .

!

641
-~

I 00(128, 128)

i p2 p4 . p6 p8 p!O pl21 p14 p16

I

128

FIGURE 18b The mappinf! of decomposition DD
onto 16 processors. resulting from an uneven allocation
of processors between dimensions.

Distributed arrays may be used as actual pa­
rameters to procedures and such an array may be
dynamically redistributed within a procedure.
However, unlike the Vienna Fortran equivalent
such redistribution cannot be maintained outside
the procedure because Fortran D limits the effect
of a DECOMPOSITION, ALIGN, or DISTRIB­
UTE to the scope of the enclosing procedure. An­
other difference with Vienna Fortran is the lack of
a facility for the querying of distribution patterns
at run-time.

Although ordinary sequential-style DO loops
may be used for regular computations, situations
can arise where a compiler cannot fully exploit the
inherent parallelism in such a loop (e.g., irregular
computations) and must make worst-case as­
sumptions about interiteration dependences. In
these cases, if the programmer knows that parallel
execution will be possible then, as in Vienna For­
tran, a FORALL loop may be specified instead;
communication-free, determinate parallel execu­
tion of the loop iterations is then obtained (al­
though communication may still be required be­
fore and after the loop for nonlocal values). In
each iteration of a FORALL loop only values de­
fined before the loop or within that iteration may
be used. FORALL loops may be nested.

Although the code produced by the compiler is
by default based on the owner-computes model, it
is possible to override this using an ON clause,
which specifies on which processor each iteration
of a FORALL loop will execute, for example

n$proc = 16
REAL U(400, 400), V(400, 400),
W(400, 400), X (400, 400)
DECOMPOSITION DEC14(400, 400)
ALIGN U, V, W, X with DEC14
DISTRIBUTE DEC14(BLOCK, BLOCK)

FORALL I = 201, 400
FORALL J = 1, 400 ON HOME (X(I-200, J))

X(I, J) = (U(I-200, J) + V(I-200, J)

+ W(I-200, J)) * X(I-200, J)

END FOR
END FOR

In this example it will probably be more efficient to
execute each assignment on the processor owning
the right-hand side values rather than on that
holding X(L J), thereby implementing the owner­
stores paradigm. This is achieved by the use of the
HOME function. which returns the identifier of
the processor owning the specified datum X(I-

LANGUAGE CONSTRCCTS 77

200, J) and is analogous to the OWNER intrinsic
function in Vienna Fortran.

As with Vienna Fortran, the range of applica­
tions that may be efficiently parallelized using
Fortran Dis extensive., but the comprehensive set
of extended features that it provides makes possi­
ble a substantial increase in the involvement of the
programmer in the program parallelization pro­
cess and a corresponding increase in the complex­
ity (and error proneness) of that task.

2.8 Booster

Paalvast et al. [28, 29] describe the Booster lan­
guage, a subproject of the ParTool Parallel Pro­
cessing Environment project. Booster enables the
description of parallel algorithms, based on array­
like data structures, for both shared memory
multiprocessors and DMMs. Booster introduces
the concepts of index and data domains. An index
domain consists of ordered index sets (each of
which is a finite set of tuples of integers) and a
data domain consists of data values of certain
types. Different syntaxes are used for manipula­
tions on index and data domains; data manipula­
tions are imperative whereas index manipulations
are functional.

The only data structure provided is the shape,
which is a finite set of elements whose values are
all of a single data type; each element is uniquely
associated with an index of the shape's index set.
Shapes differ from conventional arrays in that a
shape-index set may be more complex than the
simple linear indexing of an array. Selected shape
elements are referenced using views. A view is not
a data structure but is constructed from the index
sets of one or more shapes. Effectively the view is
an abstraction of array-like access and removes
the need for index loops.

Examples of these concepts can be seen in Fig­
ure 19 which is the algorithm module for an im­
plementation of the Jacobi relaxation method. A
Booster program consists of a collection of sepa­
rately compiled modules of which there are two
types, an algorithm module and an annotation
module (considered later). in this example, OLD
and NEW are declared as shapes of size 128 X

128 elements and the computation shows the use
of the simple view [1 :126, 1 :126] applied to the
shape]\;EW and other simple views applied to
OLD to effect the update.

In the next example the shape Sis declared as a
rectangular 3 X 4 data structure and V is a view
identifier defined as a view on S such that V[O, 0],

78 CROOKS A~D PERROTT

MODULE Jacobi (OLD)-> NEW
SHAPE OLD (128#128) OF REAL;

NEW (128#128) OF REAL;
BEGIN

NEW[1:126, 1:126] := C * (OLD[0:125, 1:126] + OLD[1:126, 1:126] +
OLD[2:127, 1:126] + OLD[1:126, 0:125] +
OLD[1:126, 2: 127]);

END.

FIGURE 19 Algorithm module for an implementation
of Jacobi relaxation in Booster.

V[O, 1], ... , V[2, .3] reference S[O, 01. S[O, 1],
... , S[2, 3], respectively.

SHAPE S(3#4) OF REAL;
V ~ S;

This view identifier V mav then be redefined or
used to define other views of S, for example

Vl ~ V [0 : 2 , 3]

defines the view identifier V1 so that it references
the fourth column of shape S.

Irregular computations may be expressed in
Booster using content selection views as follows

SHAPE A(lO) OF REAL;
B (10) OF INT;

A [B<4] ...

The view [B<4l is a content selection view be­
cause the Boolean expression B<4 results in an
index set whose elements reference the values of B
which obey this expression: this index set is then
applied to A. Hence if B is the set {2, 1. 6, 6, .3, 7}
then the index set B<4 is {1, 2, 5} and the ele­
ments referenced in A are A[1;, A[2L and A[5;.
Clearly irregularity will result when A is distributed
because the precise elements of A that are being
referenced cannot be determined until run-time.

The algorithm modules of a Booster program
are machine independent and as a result informa­
tion regarding the decomposition and distribution
of data over processor memories, and the assign­
ment of computation responsibility to processors.
must be provided by the programmer in an anno­
tation module using an annotation language.

Within an annotation module, the programmer
first specifies a virtual machine that serves as a
model onto which data and associated computa­
tion responsibility may be mapped. The processor
structure of the virtual machine mav be defined
separately from its memory structure, for example

VIRTUAL MACHINE sharedmem
(PROC procr(p), MEM memory(m));

declares a machine called sharedmem with a sin­
gle memory of size m, shared among p processors.
whilst

VIRTUAL MACHINE distribmen
(PROC procr(p), MEM memory(n) (m));

declares a machine called distribmem consisting
of p processors and n memory units each of size
m.

In the annotation module Jacobi (Figure 20) the
virtual machine \'yf consists of a processor-plus­
memory arrangement PYI made up of 16 identical
processors, each with its own local memory of size
2X32X32. The module also defines the mapping
of the shape OLD and of the associated responsi­
bility for the computation of its elements .. onto the
virtual machine VYl. In the statement

OLD [i, j] ~VM [(i div32)*4
+ j div 32, 0, i mod 32, j mod 32];

The first subscript in \'yl[... 1 defines the processor
responsible for performing assignments to the de­
ment OLD[i, jJ. A variant of the owner-computes
convention is employed-the processor responsi­
ble for assignment to a shape element on the left­
hand side of an assignment statement is also re­
sponsible for the calculation of the expression on
the right-hand side. The remaining :-;ubscripts in
V:YI[...] define the location on the local memory of
the processor identified by the first subscript. into
which the element OLD[i, j] is to be mapped. In­
terarray alignment is practised using the virtual
machine as a reference frame.

Thus the shape OLD is partitioned into 16 (i.e ..
4 X 4) contiguous blocks. each of which is stored in
the local memory of one of the 16 processors of
VM. The same distribution is performed on the
shape l\EW. giving the mapping shown in Figure

ANNOTATION MODULE Jacobi;
VIRTUAL MACHINE VM (PROCMEM PM (16)(2#32#32));
IMPORT Jacobi:: OLD. NEW (128#128);
OLD [i, j] <- VM [(i div 32)*4 + j div 32, 0, i mod 32, j mod 32];
NEW[i,j] <- VM [(i div 32)*4 + j div 32, 1, i mod 32 ,j mod 32];
REAL MACHINE RM (PROCMEM RPM (16)(1max#mmax#nmax));
VM[i, 1, m, n] <- RM[i, 1, m, n];
END.

FIGURE 20 Annotation module for an implementa­
tion of Jacobi relaxation in Booster.

- processor

O _ OLD[0:31,031]_

NEW[0:31 ,0:31]

1-4 ~ ()Lo[32:63,0:31J

. _NEW[32:63,0:31]

8
OLD[64:95,0:31]

N};_W[64 95,0:31]_

memory

I'
--

OLD[0:31 ,32:63]

NEW[0:31,32:63] -I

OLD[32:63,32:63]_J

- l'lll_~[3263,32:~ ,

'
9

i OLD[64:95,32:63]

NE_\\'164:95,32:63_1

2
OLD[0:31,64:95]

NEW[0:31,64:95]

OLD[32:63,64:95]
. 6- - ----
1 __ 1 NEW[32:63,64:95]

LA.\IGLAGE CO:\'STRCCTS 79

3 1
OLD[0:31,96: 127]

, ___ NEwro:31,96:127J

! I OLD[32:63,96:127] !
7! -- - '

:_NEW[32:63,96:127]

IO~OLD[64:<)5,64:95] I I ;;· OLD[64:95,96:127]

_ NEW[64CI5,64:95] NEW[64_:95,96127]

OLD[96:127,0:31]
12~- -
_l NEWfl_6:127,0:31]

· i
13

1 ow!<J6C0.3263J I i -,
4

oLDf96:127.64:95J

NEW[96: 127,32:63] NEW[96: 127,64:95]

OLD[96:127,96: 127]
IS

_ NEW[96:127,96:127]

FIGURE 21 The mapping of shapes OLD and :\'E\\ over the virtual machine Y\L

21. Each local memory must therefore be capable
of storing two 32 X :32 bloch of data.

The programmer may also define a real ma­
chine and a mapping of the virtual machine. The
processors of the real machine need not be identi­
cal and, unlike the virtual machine, a real ma­
chine possesses an interconnection structure. al­
though this is only visible to the compiler and not
to the programmer. An example of a real machine
is the machine Rvi in Figure 20. This consists of a
processor-plus-memory arrangement RP:VI which
comprises 16 processor-plus-memory units. each
memory being of size lmax X mmax X nmax
(where lmax 2: I. nrmax 2: nL and nrnax 2: n).
These processors might be arranged as a 4 X 4 grid
with a nearest-neighbor interconnection stru(>
ture. Figure 20 specifies a very simple mapping
from VM to R:VI, with each virtual processor being
mapped onto its own real processor and each vir­
tual machine memory location being mapped onto
its real counterpart.

Although the above example defines a mapping
in terms of a shape identifier (OLD and 1\E\V).
giving a static distribution. it is possible to define a
mapping in terms of a view identifier instead. Cn­
like a shape, the size of a view may change at run­
time; consequently a mapping defined in terms of

MODULE shrinker (SH) -> (SH)
SHAPE SH(4) OF REAL;
BEGIN

VW<-SH;
WHILE SIZE (VW) > 0 DO

computation
VW <- VW[lwb:upb-2];

END;
END.

FIGURE 22a Algorithm module for ·'shrinking view''
example.

a view identifier may also change. thereby achiev­
ing dynamic distribution. For example, in Figure
22a V\V is declared as a view on shape SH. In
each -WHILE iteration the view VW is redefined
such that it shrinks: initially the correspondence
between view V\V and shape SH is

VW[O]

VW[2]
SH [0], VW [1]

- SH [2] , VW [3]

SH[l],

SH[3]

but after one iteration vw- is redefined so that the
correspondence becomes

VW[O] = SH[O], VW[l] = SH[l]

(in Figure 22a, lwb and upb are lower bound and
upper bound, respectively).
The corresponding annotation module is given in
Figure 22b which introduces a virtual machine
and defines a mapping.

Initially the value of the parameter VWsize is 4,
giving the mapping shown in Figure 23a. How­
ever, after one iteration vw-size has the value 2
and the mapping is as shown in Figure 23b. Dy­
namic distribution has occurred because shape
element SH(1) has been moved from the local
memory of processor 0 to that of processor 1.
thereby achieving load balancing for the next
phase of the computation.

ANNOTATION MODULE shrinker;
VIRTUAL MACHINE virt (PROCMEM procr(2)(2));
IMPORT shrinker :: VW(VWsize);
VW[i] <- virt[i div (VWsize div 2), i mod (VWsize div 2)];
END.

FIGURE 22b Annotation module for "shrinking
view" example.

80 CROOKS AND PERROTT

processor memory

VW[O] VW[l] VW[2] VW[3]

FIGURE 23a Initial state of virtual machine virt: the
relationship between view VW and shape SH is also
indicated.

An accompanying calculus, called V -cal, has
been developed as a formal basis for Booster. The
algorithm modules constituting the computational
parts of a program are translated into an equiva­
lent V -cal representation of the program. Trans­
formations and optimizations are performed on
this V -cal representation. The information con­
tained in the annotation module is then translated
into V -cal form; this is integrated with the V -cal
representation of the computational code and the
result undergoes some further optimizations. Fi­
nally an equivalent parallel program is generated
using the SPMD model.

The implementation of a compiler to translate
Booster programs to Fortran and C is currently in
progress. The Booster parallel software develop­
ment strategy is experimental and iterative with
the compiler returning feedback information to
the programmer which will, for example, enable
an estimation of the amount of parallelism lost or
introduced by different mappings. and the detec­
tion of communication hot-spots. Booster pro­
vides constructs that enable the specification of
alternative mappings. The choice between alter­
natives is made by the compiler. so these con­
structs do not imply any dynamic distribution
ability (i.e., they are not executable). The choice
construct is of the (self-explanatory) form:

processor memory

VW[O]

c (,;.(a
l

I

VW[l]

FIGURE 23b State of virtual machine virt after one
iteration; the relationship between view VW and shape
SH is also indicated.

IF condition THEN mapping-statements 1

ELSE mapping-statements 2

where the condition may be dependent on, for ex­
ample, the size of a shape; the alternative con­
struct is of the form;

ALTERNATIVE mapping-statements 1

{OR mapping-statementsi} END

This construct specifies a list of mapping strate­
gies, one of which is chosen by the compiler. The
compiler will also inform the programmer of the
annotations that it has chosen in the case of AL­
TERNATIVE annotations or in cases where map­
pings have not been provided by the programmer.
An example of the latter is an assignment state­
ment in which some of the participant shapes
have no mappings defined. In such a situation the
compiler may select mapping annotations such
that (relevant dimensions of) these shapes are
mapped in the same way as an already mapped
participant shape. The compiler may also make
use of data dependence information in such situa­
tions or simply select a predefined built-in map­
ping. The compiler feedback information allows
the programmer to improve upon chosen annota­
tions and perhaps also the computational code.

The Booster system differs significantly from
the other svstems outlined in that its source lan­
guage is not based on an existing, well-known lan­
guage. Booster contains several novel concepts
that present a considerably greater barrier to the
new user than the simple, relatively intuitive lan­
guage extensions employed by the other systems.
Furthermore, it is perhaps unfortunate that even
the simplest mappings (such as block distribution)
must be defined explicitly-no intrinsic mappings
are available to the programmer-although this
same feature allows the specification of relatively
irregular mappings. The separation of mapping
information (annotations) from the algorithm en­
ables experimentation with different mappings.
and even different machines .. without altering the
computational code. See summarv table (Table
1).

3 DATA PARTITIONING AND
DISTRIBUTION IN OTHER SYSTEMS

This section outlines some of the other systems
that have made contributions towards the devel-

Table 1. Summary Table

~ 0
>! ~ ::0 ::0

" " " [f) 7 7 a "0 (")
System Source Language ::::: n,

0 0 ~
t:) a a :t

"0 "0 "
~ ~ 2
~ ~

SCPERB Fortran ?7 Yes Yes :\'o

ld 1'\ouveau Id :\'ouveau :\'o Yes Yes

Kali Pascal Yes Yes Yes

ARF Fortran 77 Yes Yes Yes

ADAPT Fortran 90 Yes Yes :\'o

Vienna Fortran Fortran ?? and 90 Yes Yes Yes

Fortran D Fortran ?7 and 90 Yes Yes Yes

Booster Booster Yes Variant

opment of language constructs for data partition­
ing and distribution.

The source language for Pandore II [30, 31] is
a subset of C, with data distribution syntax exten­
sions from which message-passing DMYI code is
generated. The SPMD and owner-computes para­
digms are employed: howeveL irregular computa­
tions are not supported. A Pandore II source pro­
gram is a sequential program called distributed
phases. A distributed phase is similar to a proce­
dure in that its definition is given a name and a
formal parameter list and its body is sequential
code (the source language for Pandore II does not
contain any parallel constructs). A distributed
phase may only be called from within the main
program. The partitioning (into blocks) and distri­
bution of the data arravs used in a distributed
phase are specified in the formal parameter list of
the phase (called its distributed parameter list).
After the partitioning of an array into blocks. the
blocks are distributed over the processors of the
target machine. The mapping of the blocks onto
processors can be specified using one of two map­
ping styles, regular (contiguous allocation of
blocks to processors) or wrapped (cyclic alloca­
tion). 1\"o particular processor arrangement is as­
sumed in Pandore II: the user may specify the
number of processors at compile-time using the
command line interface. It is assumed that there is
an efficient routing system in the target machine.

ADAPTOR (Automatic DAta Parallelism
TranslatOR) [32] is a source-to-source transla­
tion package that translates programs written in a

LAI\'GUAGE CONSTRUCTS 81

t:) s :r
~ " 1:'1 <~ ~ ~ ~ "

5'. "0 oii> ~=-: ~ a ::0 5'. " ~ ~- -· ::::-:- 8. '" r;· ~ 0 o- ~ "" ~ ... ::0 ;:1 ~ ::0 [~ " t:) g"r: g. a "0 c. rn· c;·
(') "

... 0 ~ ~ "' ::0 r g iil
0 5'. ::0 ;:1. -· " o- 0 ... 0

"
o- "' o- ;;: b 0

=I "' "' "']
" ~ g- g- " " . .., ::n ·:!

::0 ::0 ::0

" P-

:\'o Yes :\'o Yes
work

:\'o :\'o
space

~0 Yes :'\o Yes :'\o :"o :'\o

:'\o Yes :'\o Yes Yes :'\o Yes

:'\o Yes :'\o Yes Yes :"o Yes

:'\o Yes :'\o Yes :\'o :\'o :\'o

Yes Yes Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes :"o Yes

Yes Yes Yes :\'o Yes :\'o :\'/A

subset of Fortran 77 (extended with some CM
Fortran features and many of the array-syntax
features of Fortran 90) into message-passing For­
tran 77 host and node programs for the iPSC I 860
hypercube; other targets include the Meiko Con­
certo and the Parsytec GCel. The user consults an
interactive transformation tool, XAdaptor, which
provides analysis information on user-selected
code units that the user can use to alter the source
code and to insert data distribution directives:
these directives may be used to specify block or
cvclic distribution of the last one or two dimen­
sions of an array. The generated code incor­
porates calls to message-passing communication
routines from a DALIB (Distributed Array
LIBrary). ADAPTOR does not support dynamic
redistribution.

DINO (Distributed Numerically Oriented lan­
guage) [33] was one of the first systems in this
area to be implemented (1986). It comprises stan­
dard C extended with high-level constructs for the
description of parallel numerical algorithms for
DMMs. There are three key concepts in DII'O:
environments. distributed data, and composite
procedures. An environment consists of data and
procedures and is equivalent to a process: the
user. in declaring an environment structure. effec­
tively defines a virtual parallel machine to fit the
communications and number of processes re­
quired by a parallel algorithm. Data structures are
distributed over this virtual machine/ environment
structure by specifying one-to-one or one-to­
many mappings that may be user defined (and

82 CROOKS A:"'D PERROTT

hence potentially irregular) or selected from a set
of built-in functions offering block, cyclic, and
replicate distributions. All data distributions are
static and explicit alignment is not supported. A
composite procedure is a set of identical proce­
dures, one in each environment in a given stnic­
ture, that are called concurrently. Dll'\0 requires
not only explicit parallel programming (in the form
of composite procedures) but also the explicit
marking of nonlocal accesses, using the '#'
svmbol.

Dataparallel C[34] is a SIMD-extended C vari­
ant and derivative of the C* language [35]. The
programmer must specify groups ("domains") of
virtual processors and the local computations and
data for these domains. A global name space is
supported but nonlocal references must be pre­
fixed by a reference to the appropriate domain
instance (the virtual processor owning the data).
Predefined and user-defined static data mappings
are possible. Dataparallel C compilers exist for
shared memory multiprocessors (Sequent Sym­
metry S81) and DMMs (iPSC/2, nCUBE 3200).

Koelbel and others [36, 37] describe a com­
piler that accepts programs written in BLAZE (a
largely sequential language but with functional
procedure calls) and annotated with arrav distri­
bution details. The compiler automatically gener­
ates equivalent E-BLAZE code where E-BLAZE
is a superset of BLAZE, which effectively provides
a virtual target architecture for the compiler. Par­
allel loops are specified using a forall construct.
Data distributions are static and there is no pro vi­
sion for explicit alignment of arrays. The BLAZE
project has been targeted at nonuniform memory
access (1'\UMA) machines, such as the BBN But­
terfly and the IBM RP3; its successor. Kali, targets
DMMs.

Baber's Hypertasking system [381 translates C
code annotated with data (block) distribution di­
rectives into message-passing code for the iPSC;
other directives enable the delineation of loops
that iterate over local data onlv. Distributed arravs . .
are prohibited from being passed in procedure
calls but dynamic redistribution is provided.

Carriero and others [39, 40] present the Linda
parallel programming model. This is a memory
model, based on the idea of tuple space and mak­
ing use of the Linda coordination language in or­
chestrating coarse-grain parallel processes, which
have been programmed in, for example, C code.
Distributed data structures are used to provide a
shared memory abstraction and can be regarded
conceptually as free-floating, delocalized struc-

tures that are accessible simultaneously by several
processes.

Crystal [41, 42] is a high-level functional lan­
guage compiled for execution on a D~fvl by a
compiler capable of implementing automatic data
decomposition. Consequently, no indication of
data partitioning/ distribution need be supplied by
the programmer. On compilation a Crystal pro­
gram is divided into different computational
phases, each represented by an index domain:
each phase has associated with it a set of data
fields that are interrelated by data dependence.
Data arrays are heuristically aligned with index
doml\ins and a varietv of block distributions are
supported. Crystal has also been used as an inter­
mediate language in the Crystallizing Fortran pro­
ject, transforming Fortran programs for execution
on massively parallel machines.

Another compiler capable of automatic data
decomposition is ASP AR [43] for C or Fortran 77
programs. ASPAR recognizes four general types of
loop and uses pattern-matching techniques to de­
tect common reference patterns, or stencils. in the
program. Using a knowledge base, a given stencil
and loop type direct the selection of collective
communication calls in the message-passing tar­
get program and an array within the loop is stati­
cally distributed as contiguous blocks of elements.
A major drawback is that ASPAR makes some as­
sumptions that can result in the semantic modifi­
cation of the program.

Paragon [44] is a programming environment
supporting the execution of SniD programs on
DMMs. Data distribution is performed by either
the user or the system; user-specified. arbitrary.
contiguous, rectangular data distributions are
permitted, although only the first two dimensions
of a given array may be distributed. Array re(lis­
tribution is supported but explicit alignment is
not.

The AL language [4.5: is compiled for the
WARP distributed memory systolic array. Distrib­
uted arrays are specified as such in DARRAY dec­
larations. Only one dimension of such an array
may be distributed and given the programmer· s
indication of this dimension the AL compiler au­
tomatically generates a distribution.

The ::\<1Lv1Dizer [46' is a commercially available
programming environment targeting both shared
and distributed memorv ::\<IL\1D machines. For
DMMs the user interactivelv selects block. cvclic. . .
or replicate distributions (maintained in a sepa­
rate file) for a chosen arrav dimension: the user is
also interactively involved in introducing parallel-

ism by specifying code spreading of loops, hence,
like SUPERB, this system is not fully automatic
after the data distribution has been specified.

Ruhl and Annaratone [4 7] present the ETHZ
Oxygen compiler for the K2 experimental distrib­
uted memory machine. This system differs from
the others in that it uses a functional rather than a
data-driven parallelization strategy. The user in­
serts directives in the Fortran source code to indi­
cate task-level and loop-level parallelism, reduc­
tions, and broadcast communications. Arrays
may be private, replicated. or distributed (in a
row-oriented, column-oriented, or ring fashion).

4 CONCLUSIONS

Features such as dynamic data distribution, irreg­
ular data distributions. support for irregular com­
putation, circumvention of the owner-computes
rule, interarray alignment (and the ability to main­
tain such an association after redistributions).
run-time querying of distribution patterns, etc.
are all desirable for ensuring the efficient parallel
execution of a wide range of applications on
D.\1Ms. The systems presented in Section 2 of this
article vary widely in the range of such features
made available to the user and in the depth to
which the user may become involved in the paral­
lelization process.

In the ideal case a parallelizer would take re­
sponsibility for all aspects of parallelization be­
cause users of such systems will generally be non­
computer scientists who wish to be involved a,;
little as possible in the parallelization proces,;.
while seeking the maximum possible performance
of their applications. However. certain aspects of
distributed memory parallelization are intractable
for even the most capable ,.;ystem: not lea,;t of
the,.;e is the 1'\P-completeness of the ·'shapes··
problem (that of finding an optimal storage pat­
tern for parallel execution in the general case) as
proved by :\<lace ["±8].

Hence. for the majority of problems, user assis­
tance is required and because data distribution
has a significant effect on the performance nf a
parallelized program a sufficiently wide and ex­
pressive range of features must be provided by a
parallelizing compiler to enable the specification
of sufficiently precise distribution specifications
for a wide range of problem type,o;. The greater the
control afforded by the provision of these features
the greater the penalty incurred. namely. the ero­
sion of the shared memorv abstraction. A balance

LANGUAGE CONSTRUCTS 83

must therefore be determined between, on the one
hand, taking the responsibility for parallelization
away from the users and, on the other, providing
them with the control needed to obtain efficient
parallel code. In other words automation and high
performance are, in general, mutually exclusive.

In general, the user cannot avoid giving at least
some thought to the formulation of data parallel­
ization annotations. Although these annotations
will insulate the user from the real technicalities of
DMM programming (processes, message-passing
communication, and so on), this abstraction will
be destroyed if appropriate debugging facilities
are not provided: otherwise the user will be faced
with the formidable task of debugging message­
passing target code which, even if the user is fa­
miliar with the message-passing paradigm, will
not have been seen previously.

Finally it must be pointed out that these paral­
lelizing compilers complement but do not replace
the programming of D.\1Ms by explicit message­
passing techniques. The situation is analogous to
the use of high-levellanguages to write uniproces­
sor code, where assembly language may be used
for the most performance-critical cases. D.\1M
programming systems such as those suggested by
this article mav be used for the ease of use and
reduction of development time whereas lower­
level message-passing methods may be used in
cases where performance is particularly critical
and none of the available parallelizing svstems
can provide the required facilities.

ACKNOWLEDGMENTS

Considerable thanks must f!O to Barabara Chapman of
the University of Vienna for information regarding the
SCPERB system and for her helpful comments. Philip
Crooks is supported by a He,earch Studentship (Dis­
tinction Award) from the Department of Education for
I\orthern Ireland.

REFERENCES

[1~ D. B. Loveman (eJ.). '·lligh Performance For­
tran: Language Specification," Sci. Program­
ming. vol. 2. pp. 1-167. 1993.

l2] D. B. Loveman. ··IIif!h performance Fortran.""
IEEE Parallel Distri!J. Techno!., pp. 25-42. Feb­
marv 199:3.

[3; A. H. Karp. '·Programming for paralleli~rn:·
IEEE Computer, pp. 4:3-37. i\lay 1987.

i4J H. P. Zima. ll.-J. Bast. anJ l\1. Gerndt, ·'Sl-

84 CROOKS A_\ID PERROTT

PERB: A tool for semi-automatic .\'IlylD/SLvlD
parallelization,"' Parallel Computing, vol. 6, pp.
1-18. 1988.

[5] M. Gemdt, "Automatic parallelization for distrib­
uted-memory multiprocessing systems,,. Ph.D.
thesis, Institut fur Informatik, Bonn Cniversity.
December 18, 1989.

[6] H. P. Zima, H.-J. Bast, M. Gerndt. and P. J. Hop­
pen, "SUPERB-The SCPREI\T:M parallelizer,
Bonn," Research Report 861203. lnstitut fiir In­
formatik IlL Bonn University, December 1986.

[7] H. Zima and B. Chapman, .. Compiling for dis­
tributed-memory systems". Austrian Center for
Parallel Computation, Technical Report ACPC/
TR 92-17, November 1992.

[8] B. Chapman, e-mail dialol!ue with P. Crooks re­
garding SUPERB data partitioninl! notation. 1\lav
1993.

[9] A. Rogers and K. Pingali, "Process Decomposi­
tion Through Locality of Reference". in Proceed­
ings of the AC:'vl-SIOPLk\1 '89 Conference on
Programming Language Design and Implemen­
tation, Portland, OR. June 1989. pp. 69-80.

[10] K. Pingali and A. Rogers. "Compiling for Local­
ity", in Proceedings of the 1990 International
Conference on Parallel Processing, St. Charles,
JL, June 1990. pp. ll142-ll146.

[11] C. Koelbel, P. Ylehrotra, and J. Yan Rosendale ..
"Supporting shared data stmctures on distrib­
uted memory architectures:· Technical Report
ASD-TR 91.5, Department of Computer Science.
Purdue Cniversity. Department January 1990.

[12] C. Koelbel and P. Ylehrotra, "Compiling global
name-space parallel loops for distributed execu­
tion.'' IEEE Trans. Parallel Distrib. Systems, vol.
2, pp. 440-451. 1991.

[13] J. Wu, J. Saltz, H. Berryman, and S. Iliranan­
dani, "Distributed memory compiler design for
sparse problems,.. :\'ASA Contractor Report
187515, ICASE Report 1'\o. 91-13, January
1991.

[14] H. Berryman and J. Saltz, '·A manual for PARTI
mntime primitives," Interim Report 90-11,
ICASE, 1990.

[15] J. Merlin, "ADAPTing Fortran 90 Arrav Pro­
grams for Distributed Y1emory Architectures .. , in
Proceedings of the First International Conference
of the Austrian Centre for Parallel Computation,
Saltzburg, September 1991.

[16] J. Merlin, "Techniques for the automatic parallel­
ization of distributed Fortran 90," Esprit Project
2701 (Pl'YIA) Deliverable Report -+.3.3, Cniver­
sity of Southampton, November 1991.

[17] B. M. Chapman, P. Mehrotra, and H. P. Zima,
"Vienna Fortran-A Fortran Language Extension
for Distributed Y1emory Ylultiproressors... in
Compilers and Runtime Software for Scalable
Multiprocessors. J. Saltz & P . .\'lehrotra. Eds. Am­
sterdam: Elsev;er, 1 991 .

[18] B. Chapman, P. Mehrotra, and H. Zima. "Pro­
gramming in Vienna Fortran ... Sci. Program­
ming, vol. 1, pp. 31-50, 1992.

[19] H. Zima, P. Brezany. B. Chapman. P. Ylehrotra.
and A. Schwald, '·Vienna Fortran-a language
specification: Version 1. 1,' • I CASE Interim Re­
port 21, March 1991.

[20] S. Benkner, B. Chapman. and H. Zirna, '·Vienna
Fortran 90, presented at Sealable High Perfor­
mance Computing Conference 1992. v;:·illiams­
burg, VA."

[21] T. Fahringer, R. Bla~ko. and H. Zima. ··Auto­
matic Performance Prediction to Support Paral­
lelization of Fortran Programs for :\la,;~iveh­

Parallel Systems,•· in Proceedings of AC.VJ
International Cor~(erence on Supercomputing
1992. Washington. DC.

[22] S. Hiranandani, K. Kennedy. C. Koelbel. L. Kre­
mer, and C. Tseng, "An overview of the Fortran D
programming system.'' Centre for Research on
Parallel Computation CRPC-TR9112L Depart­
ment of Computer Science. Rice Cniversity.
March 1991.

[23] G. Fox. S. Iliranandani. K. Kennedv. C. Kodbel.
U. Kremer, C.-W. Tseng, and .\'1.- Y. V>'u, "For­
tran D Language Specification ... April 15. 1991.
Presented at High Performance Fortran Forum.
Houston, TX, January 2? -28, 1992.

[24] S. Hiranandani, K. Kennedy, and C.-V>-. Tseng.
'·Compiler support for machine-independent
parallel programming in fortran D, .. Rice CO:\fP
TR91-149, Department of Computer Science.
Rice University. January 1991.

[25] S. Hiranandani. K. Kennedy. and C.-W. Tseng,
"Compiler optimizations for Fortran D on :\1IY1D
distributed-memory machines," Rice COMP
TR91-156, Department of Computer Science,
Rice Cniversity. April 1991.

[26] M-Y. Wu and G. Fox. '·Compiling Fortran 90
programs for distributed memory :\1IYID parallel
computers.'' SCCS-88: CRPC-TR91126, Syra­
cuse Center for Computational Science, Svracuse
Cniversity. April 1991.

[27] V. Balasundaram. G. Fox, K. Kennedy, and L
KremeL '·A static performance estimator of guide
data partitioning decisions ... SCCS-1 "t, Syracuse
Center for Computational Science. Syracuse Cni­
versitv. :\'ovember 1990.

[28] E. YL R. yf. Paalvast. •·Programming for parallel­
ism and compiling for efficiency ... Ph.D. thesis.
T~O Institute of Applied Computer Science,
Delft. The :--;etherlands. January 1992.

[29] E. M. Paalvast. H. J. Sips. and L. C. Breebaart.
"Booster: A high-levellanguage for portable par­
allel algorithms.' • Applied .\'umerical .Hath., vol.
8,pp. 177-192,1991.

[30] F. Andre, 0. Cheron. and J-L. Pazat. "Compiling
Sequential Programs for Distributed Ylemory Par­
allel Computers with Pan don· II,·· in Proceedings

uf the .'3rd Workshop on Compilers fur Parallel
Computers. Ju(y 1992. Vienna. pp. 231-242.

[31] F. Andre, J-L. Pazat. and H. Thomas, "Pandore­
A system to manage data distribution," I:\' RIA
Prog. 2, Project '-'o. 1195, .March 1990.

[32] T. Brandes, "Efficient data parallel programming
without explicit message passing for distributed
memory multiprocessors,·· Internal Report (draft)
AIIR-92-4, High Performrnance Computing Cen­
ter. German :\'ational Research Institute for Com­
puter Science (G~ID).

[33] .M. Rosing ami R. B. Schnabel. "An Overview of
DI.'\iO-A 1'\ew LanguagP for :\'urnerical Computa­
tion on Distributed ~!emory ~1ultiprocessors," in
Proceedings of the .'3rd SIAJJ Conference on Par­
allel Processing for Scientific Computing 198 7.
pp. 312-316.

[34] P. Hatcher. M. Quinn, A. Lapadula, B. Seevers.
R. Anderson, and R. Jones. "Data-parallel pro­
gramming on ~1IMD computers." IEEE Trans.
Parallel !Jistribut. Sy-stems. vol. 3, pp. 377-383,
1991.

[35] J. R. Rose and G. L. Steele, "C*: An extended C
language for data parallel programming,'· Tech­
nical Report PL 87-5, Thinking Machines Corp ..
Cambridge, ~lA. 1987.

[36: C. Koclbel, P . .Mehrotra. and J. Van Rosendale.
"Semi-Automatic Domain Decomposition in
BLAZE," in Proceedings of the 1987 Interna­
tional Conference on Parallel Processing (IEEE).
pp. 521-524.

[37] P. ,\lehrotra and J. Van Rosendale, '·The BLAZE
language: A parallel language for scientific pro­
gramming." Parallel Comput., vol. 5, pp .. 339-
361, 1987.

[38] ~1. Baber. "Hypertasking Support for Dynami­
cally Redistributable and Resizable Arrays on the
iPSC," in Proceedings of the 5th Distributed
iHemory Computing Conference, 1990. pp. 59-
66.

[391 :'\. Carriero. D. Gelerntcr. and 1. Leichter. '·Dis-

LA~GCAGE CO:'\iSTRCCTS 85

tributed data structures in Linda," in 18th An­
nual ACM Sy-mposium on Principles of Program­
ming Languages, St. Petersburg Beach, FL,
1986. pp. 236-242.

[40] 1'\. Carriero and D. Gelernter. How to Write Paral­
lel Programs: A First Course. MIT Press. 1990.

[41] 1. Li and ~1. Chen, "Compiling communication­
efficient programs for massively parallel rna­
chines," IEEE Trans. Parallel Distrib. S_ystems,
vol. 2, pp. 361-376, 1991.

[42] J. Li and M. Chen, "Index domain alignment:
Minimizing cost of cross-referencing between dis­
tributed arrays," in Proceedings of Frontiers 90:
The 3rd Sy-mposium on the Frontiers of;vfassively­
Parallel Computation, College Park, .11D, Octo­
berl99~ pp. 424-433.

[43] K. Ikudome, G. Fox, A. Kolawa, and J. Flower.
"An automatic and symbolic parallelization sys­
tem for distributed memory parallel computers.''
in Proceedings of the 5th Distributed Memory
Computing Conference. Charleston, SC, April
1990. pp. 1105-1114.

[44] A. Reeves, ·'The Paragon programming paradigm
and distributed memory compilers." Technical
Report EE-CEG-90-7. Cornell Lniversity Com­
puter Engineering Group, Ithaca. :\'L June 1990.

[45] P. S. Tseng, ·'A parallelizing compiler for dis­
tributed memory parallel computers,'' in Pro­
ceedings of the SIGPLA:V '90 Conference on
Programming l-anguage Design and Implemen­
tation. White Plains. ,\'Y. June 1990.

[46 J Pacific Sierra Research Corporation. · '"'1I.\1Dizer
user's guide, version 7.02," Technical Report,
1991.

[4 7] R. Ruhl and .\1. Annaratone, "Parallelization of
Fortran code on distributed-memory parallel pro­
cessors,'' in Proceedings of the 1990 ACM Inter­
national Conference on Supercomputing, Am­
sterdam, The JVetherlands, June 1990.

[48] M. Mace, Memory Storage Patterns in Parallel
Processing. Boston, MA: Academic, 1987.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

