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ABSTRACT 

This article presents a survey of language features for distributed memory multiproces­
sor systems (DMMs), in particular, systems that provide features for data partitioning 
and distribution. In these systems the programmer is freed from consideration of the 
low-level details of the target architecture in that there is no need to program explicit 
processes or specify interprocess communication. Programs are written according to 
the shared memory programming paradigm but the programmer is required to specify, 
by means of directives, additional syntax or interactive methods, how the data of the 
program are decomposed and distributed. c0 1995 by John Wiley & Sons, Inc. 

1. INTRODUCTION 

One solution to the need for higher-performance 
computers is to connect multiple sequential pro­
cessors, each having its own local memory. into 
what is known as a distributed memory multipro­
cessor (D:\1.\1). The combined computational 
power of these processors, which communicate by 
passing messages between one another, may then 
be brought to bear on a single problem. In many 
cases these systems are constructed from ordinary 
production microprocessors: for example, the 
Intel iPSC /2 consists of multiple ·'nodes,'' each of 
which includes an Intel 80386 CPL and an 80:387 
FPC coprocessor. DM'Vls can be both cost-effec-
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tive and potentially highly iicalable .. due to the low 
cost of their component microprocessors and the 
modular nature of their interconnection: further­
more, they can achieve high levels of performance 
for certain types of application. 

Cnfortunately prowams for these machines are 
much more difficult to write. debug. maintain. 
and understand than sequential programs. being 
complicated by such concerns as livelock. dead­
lock, processor topology, communications. syn­
chronization, task wanularity. and separate ad­
dress spaces. :\lessage-passing languages. such as 
Occam for the lnmos transputer. offer a relatively 
low-level programming interface to the multi­
processing hardware: the situation is analogous to 
programming a sequential processor in assembly 
language. A further problem is that the low-level 
nature of a message-passing language leads to 
programs that are closely tied to the hardware 
charaeteristics of the D~IM for which it was de­
signed, resulting in a lack of code portability be­
tween the various D~l:\I machines now available. 

Consequently a considerable amount of current 
research is aimed at providing appropriate pro­
gramming tools for D:\fMs. Included in this re­
search is the construction of compilation systems 
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for translating high-level programs into message­
passing code. One method of exploiting the paral­
lelism offered by DMMs entails the decomposition 
(or partitioning) of data for distribution over the 
processors of the machine to achieve program 
speed-up through data-parallel execution. The 
parallelization strategies of a number of compila­
tion systems based on this principle are consid­
ered in the next section. 

The choice of data partition is important as it, 
along with the data dependencies present in the 
program, determines the amount of communica­
tion required between processors. This, in turn, 
influences the overall performance because off­
processor references can be an order of magnitude 
more costly that references to local memory. The 
choice of an "optimal" data partition must take 
into account the program structure, compiler ca­
pabilities, characteristics of the underlying ma­
chine (memory structure, number of processors 
and their topology, communication characteris­
tics), and the sizes of distributed data structures. 

An appropriate heuristic method for automati­
cally determining an optimal data partition has yet 
to be found. One method of overcoming this prob­
lem is to enlist the help of the user, who must then 
provide the system with a suitable data partition, 
specified by means of directives, language exten­
sions (additional syntax), or interactive methods. 
Typically an iterative, experimental approach 
would be adopted in choosing a partition. There 
are many degrees of freedom in this choice but the 
user would normally be sufficiently au fait with the 
computational code to have a good idea about 
which partitions are the most promising (although 
he/ she might not be so knowledgeable about the 
underlying hardware characteristics). Efficient 
parallelization may also require the help of the 
user, via assertions, directives, etc., with regard to 
global, high-level properties of the algorithm 
whose detection by even the most able systems 
may be intractable. One example of this is the 
specification of FORALL "loops" to indicate the 
possible parallel execution of loop iterations. 

This article considers some of the most signifi­
cant of these compilation systems. These systems 
provide what may be called a virtual shared mem­
ory, in other words they enable the programmer to 
write programs as though the memory of the target 
machine were a single, shared memory; this (logi­
cal) shared memory model is put into effect on the 
underlying (physical) distributed memory of the 
target DMM by the compilation system. 

One example of this approach is high-perfor-

mance Fortran [HPF; 1, 2] in which compiler di­
rectives are used within a Fortran 90 program to 
specify data distribution and redistribution. How­
ever, this survey concentrates on systems that pre­
ceded HPF and so represents the research context 
in which the HPF effort was established. Further­
more, HPF currently exists largely as a proposal, 
whereas the systems presented below have been 
fully (or largely) implemented. 

2. DATA PARTITIONING AND 
DISTRIBUTION SCHEMES 

One of the problems in this area is the wide range 
of terminology. As a consequence the following 
terms, as used in this article, perhaps require clar­
ification. The terms user and programmer are 
used interchangeably; normally the user of the 
parallelization system will be the author of the 
program to be parallized; in any case, the use of 
all but one (SUPERB) of the systems covered in 
this section entails additional programming, 
thereby causing the user to be a programmer. We 
use the term DMM to refer to a message-passing 
multiple instruction stream, multiple data stream 
(MIMD) computer where each processor has its 
own local memory and there is no shared memory. 
The terms decomposition and partition are used 
interchangeably to refer to the splitting up of data 
arrays into segments, each of which is distributed 
to a different processor; that processor is then said 
to own that segment, i.e. this data is stored in its 
local memory. A data distribution is a mapping of 
data to multiple processors in this way. 

A data distribution may be static (the mapping 
of segments to processors is unchanged during 
program execution) or dynamic (the data-to-pro­
cessor mapping changes at run-time, as decided 
either automatically by the parallelizing system or 
explicitly by the programmer). Dynamic distribu­
tion may be used to maintain a balanced compu­
tational load over the processors of a DMM during 
program execution. Where there is a conflict be­
tween the "lowest-cost" distributions (in terms of 
the amount of interprocess communication) of a 
given array at different points in a program, static 
distribution of that array in accordance with one 
of those "best" distributions would generally 
result in excessive interprocess communication at 
the other points in the program, since at each such 
point the best distribution is not in effect. Dy­
namic distribution enables the resolution of such 
conflicts, although it is important that the com-



munication incurred bv the redistribution of an 
array (to resolve these conflicts and hence mini­
mize communication during a computation) does 
not exceed the communication overhead which 
that redistribution was intended to reduce. 

Some systems permit explicit interarray align­
ment. This is the explicit specification of a posi­
tional relationship between data structures; it may 
be defined in an indirect form, using an interme­
diate reference frame, or as a direct relationship 
between the data structures. For example, two 
4 X 4 arrays A and B may be directly aligned such 
that their elements are overlapped as shown in 
Figure 1. When these arrays are subsequently dis­
tributed over processors their elements will be po­
sitioned in relation to one another as shown in 
Figure 1; for example, each shaded element of B 
is guaranteed to reside on the same processor as 
the shaded element of A aligned with it in the dia­
gram. 
~ Most of the systems discussed in this article 
produce target code in accordance with the single 
program multiple data (SP:vlD) model [3]. Cnder 
this scheme each processor runs the same pro­
gram but executes different code depending on its 
processor id and the data held in its local memory, 
examining every statement to determine what part 
it must play, if any, in the execution of that state­
ment. 

In the owner-computes paradigm all computa­
tions updating a given datum are performed by 
the processor owning that datum. An alternative 
scheme is the owner-stores paradigm, whereby 
the right-hand side expression of an assignment is 
computed by a processor which owns data ap­
pearing in that expression and this result is then 
sent to the processor owning the left-hand side 

A 

B 

FIGURE 1 The alignment of two 4X4 arrays A and B. 
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PROGRAM JACOBIRELAXATION 
REAL OLD, NEW 
DIMENSION OLD(l28,128), NEW(128,128) 

C INPUT VALUES OF ARRAY 'OLD' 

DO 10 I= 2, 127 
DO 10 J = 2, 127 
NEW(!, J) = C *(OLD(!, J) + OLD(I-1, J) + OLD(I+1, J) 

& +OLD(!, J-1) +OLD(!, 1+1)) 
10 CONTINUE 
C OUTPUT VALUES OF ARRAY 'NEW' 

END 

FIGURE 2 Sequential algorithm for Jacobi relaxation 
on 128x128 grid. 

datum; in some cases this scheme may incur less 
communication than the owner-computes para­
digm. 

The data -parallel programming style is a 
SL\1D-like style, making use of a single execution 
thread and a global name space in expressing 
(loosely) synchronous operations. Regular com­
putations are those for which all the necessary 
communications can be precisely determined at 
compile-time. Irregular computations, however, 
do not permit this-the data transfer behavior of 
the computation depends on the input with the 
result that communications can only be deter­
mined exactly at run-time. One example of irregu­
larity is indirect array referencing of the form 
A[B[i]] where the array A is distributed. With a 
reference of the form B [ i] the i is generally some 
loop counter whose range of values is known at 
compile-time so that the compiler can determine 
which communications statements must be gener­
ated for that subset of the iterations of the loop 
which is to be executed by a given processor (i.e., 
the set of other processors with which communi­
cation is necessary is determinable at compile­
time). If, however, instead of i we have some ex­
pression that is completely indeterminable until 
execution time when the compiler cannot make 
any deductions regarding the communicants of a 
given processor; the subscript B[i] in the indirect 
reference A[B[i]] is an example. In this case if A is 
distributed (regardless of whether B is distributed) 
then we have an irregularity and suitable run-time 
facilities are required that the compiler can ensure 
are invoked during program execution. (Note that 
if A is not distributed, but is instead replicated, 
and B is distributed then there is no irregularity 
because the situation is simply equivalent to an 
ordinary occurrence of B [ i ]. ) 

Figure 2 outlines a sequential algorithm, writ­
ten in Fortran 77, for Jacobi relaxation on a grid of 
128X 128 points. The thrust of the algorithm is to 
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update each point in the grid using its north, 
south, east, and west neighbors, with special con­
ditions at the boundaries. This is an example that 
requires the partitioning of data in a many-pro­
cessor system. Where appropriate each of the fol­
lowing scheme descriptions includes an examplP 
of how this procedure could be implemented un­
der that scheme. In each case the parallelization 
constructs are highlighted in bold type. 

2.1 SUPERB 

The SUPERB parallelization system [ 4-8] was 
completed in 1989 and was the first implemented 
system to transform FORTRA~ 77 code (with ac­
cdmpanying data distribution description) into 
message-passing code for a DYIM. It restructured 
sequential FORTRAK 77 code into SCPRENU\1 
Fortran for execution on the SCPREJ\C::\1 multi­
processor; message-passing Fortran for the Intel 
iPSC and GENESIS machines could also be gen­
erated. As each node in the SCPRE~Lvi machine 
possessed a pipelined vector uniL parallelization 
consisted of two phases: .V1Lv1D parallelization 
(creating a set of processes) followed by vectoriza­
tion (within each process). The SLPRE.\T.\11 pro­
ject was primarily aimed at the numerical simula­
tion of large grid-based problems (typically having 
106 to 109 grid points) where the computations at 
each grid point are mostly local. 

SUPREJ'IUYI Fortran is an extended Fortran 
that includes the task concept (a task can be acti­
vated more than once. each activation creating a 
process) and Fortran 90-style array features. The 
SPMD and owner-computes models were ob­
served and some compile-time optimizations .. 
such as message vectorization and iteration elimi­
nation, were carried out. Irregular problems in­
volving subscript indirection were supported: 
however, dynamic distribution and explicit in­
terarray alignment were not. Scalar variables were 
replicated over all processors. 

In the SCPERB system, the programmer in­
teractively specifies data partitioning (by block) 
and distribution using a special notation (the orig­
inal Fortran 77 code remains unaltered); the par­
titioning of ann-dimensional array is specified in 
the following form; 

part array-name ( sd_list 1 , sd_list2, 
sd_listn) 

Each sd_list1 is a list of segment descriptors speci­
fying the segmentation of dimension i of the array; 

an sd_list1 mav be a list of constant descriptors 
such as 

where Li and Ri are integer constants, or a list of 
variable descriptors such as 

where each integer constant c1 specifies a number 
of segments each of size x 1 (integer constant or 
variable). The values x 1 are determined by the sys­
tem. 

The following example illustrates the use of this 
notation in its simplest form where an array A is 
partitioned into four blocks in its second dimen­
sion and is left unpartitioned in its first dimension 
(note that the default lower bound Li in each case 
is 1 ): 

part A (1, 4) 

The above example makes use of a default (linear) 
processor arrangement. However. the target pro­
cessor arrangement may be specified as a proces­
sor array structure (pas). For example. the follow­
ing code declares GRID to be a two-dimensional 
abstraction of the underlying processors, whereas 
DIAG refers to those processors constituting the 
leading diagonal of GRID: 

pas GRID (4, 4) 
pas DIAG (4) with (i=l, 4 DIAG(i) ~ 
GRID (i, i)) 

This mechanism allows for considerable scope in 
the description of processor arrays because linear 
expressions are permitted in the processor-subset 
mapping. 

As a further example consider the Fortran 77 
code in Figure 2, assuming the GRID processor 
array structure, defined above. is used. To imple­
ment this by partitioning each of arrays OLD and 
NE\V- into contiguous segments, each of the size 
32 X 32 elements and each allocated to one pro­
cessor (assuming there are at least 16 processors), 
the user may specify the array decomposition us­
icg constant descriptors; 

part OLD (1:32- 33:64- 65:96 
1:32- 33:64- 65:96- 97:128) 
part NEW (1:32- 33:64- 65:96 
1:32- 33:64- 65:96- 97: 128) 

97:128, 

97:128, 



[ OL because this example requires equal-sized 
blocks, the simpler form may be used 

part OLD (4, 4) 
part NEW (4, 4)) 

or by using variable descriptors as in 

part OLD (4*n, 4*n) 
part NEW (4*n, 4*n) 

The first use of constant descriptors abm·e illus­
trates the possible specification of contiguous rec­
tangular data segments of arbitrarv size. 

"~n array may be partitioned to ~nly a subset of 
a giVen processor array structure: for example: 

part B(4) with (i=l, 4 B(i) ~ 
GRID (5-i, i)) 

maps the elements of B onto the secondarv diago-
nal of GRID. . . 

Alignment may be achieved using distribution 
variables. ln the following, array C is distributed 
~y block along DlAG (distribution variable j is de­
fined [on its first appearance; to the width of these 
blocks); D is distributed likewise but with its first 
block of size (j + 11): 

part C(4 <j>) with DIAG 
part D (1 <j+ll> - (3) <j> with DIAG 

The user may further specify the parallelization 
process itself. Analysis services are provided bv 
the system to enable the user to examine the com-­
munication overhead resulting from a chosen par­
tition. The analysis phase provided bv the svstem 
permits the inspection of the co~muni~ation 
overhead resulting from a partition, after which 
the user can interactively change the partition 
specification and apply a choice of transforma­
tions to optimize communications: further optimi­
zations may be chosen to improve vectorization. 

1\"onlocal read access to neiahborina arrav data e e . 
is provided by system-determined overlaps. These 
are private copies of adjoining nonlocal data: their 
consistency is maintained by interprocess com­
munications generated bv the SUPERB svstem. 
For the distribution spec.ified above. appiied to 
the Jacobi relaxation example (see Fig. 2). the svs­
tem will ensure, by appropriate analvsis of the r~f­
erences involved. a one-element -·wide overlap 
around each block. 
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2.2 ld Nouveau 

Rogers and Pingali [ 9, 10] present a compiler that 
transformed programs written in Id 1\"ouveau into 
semantically equivalent C code for the iPSC/2. Id 
1\"ouveau is a functional language augmented with 
write-once arrays called !-structures. As in the 
case of imperative language arrays, the allocation 
of storage for an !-structure is separate from the 
definition to its elements: however, each element 
of an !-structure may onlv be defined once. !­
structures therefore p~rmit the incremental defini­
tion of arrays without the duplication overhead of 
functional language arrays. Id Nouveau also in­
cludes features for the specification of data do­
main decomposition. 

Because the SPYID model of node program 
generation results in redundant activitv (each 
node process examining every statement.) the Id 
1\"ouveau compilation system applied compile­
time resolution where possible. This is the special­
ization of the code of each node process to its local 
data. Greater run-time efficiency is achieved bv 
virtue of the reduction of redundant activitv and 
because, in generaL this specialization mak~s the 
node programs different from one another the 
SPYID model is effectivelv abandoned. However. 
compile-time resolution c~nnot be applied in cer­
tain cases. such ail irregular computations. where 
sufficient information is not available at compile­
time. Run-time resolution must then be used as a 
last resort: although less efficienL this guarantees 
that such codes can be compiled. The Id Nouveau 
compiler could recognize opportunities for accu­
mulation. a form of owner-stores strategy that en­
tails the evaluation of the right-hand side of an 
assignment by the process most involved in pro­
viding the terms featured in the right-hand side 
expression: the owner-computes paradigm was 
otherwise applied as a default. 

In the ld 1\"ouveau compiler, data distribution is 
expressed within the source code using syntax ex­
tensions. For example. a scalar variable mav be 
replicated to all processors using: . 

(variable_name : ALL) 

or placed on a specified processor: 

(variable_name : Pid) 

where Pid uniquely identifies a particular proces­
sor. An array (I -structure) is distributed using one 
of three builtin, regular distributions; blocks, 
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wrapped rows (i.e., cyclically distributed), and 
wrapped columns. Figure 3, the Jacobi relaxation 
example, illustrates the use of the block distribu­
tion function in partitioning arrays OLD and NEW 
into contiguous blocks of size 32X32, to be dis­
tributed one block per processor. 

Procedure Jacobi_relaxation (OLD: block(32, 32)); block(32, 32) 
{ !-structures OLD and NEW are distributed block-wise in both dimensions) 
Let NEW= array (128, 128): block(32, 32) in 

for i=2to 127do 
for j = 2 to 127 do 

NEW [i,j] = C * (OLD[i,j] + OLD[i-l,j] + OLD[i+l,j] 
+ OLD[i, j-1] + OLD[i, j+ 1 ]); 

retumNEW 

FIGURE 3 Id Nouveau code for Jacobi relaxation. 

Array distributions are limited to the above 
three mappings and neither explicit interarray 
alignment nor dynamic distribution is supported. 
Consequently this system can support efficiently 
fewer applications than other languages such as 
Fortran D and Vienna Fortran (see later). How­
ever, array distribution specification is straightfor­
ward, requiring only the use of simple mappings, 
although knowledge of processor identification is 
required for the distribution of scalar variables. 

2.3 Kali 

Kali [11, 12] provides a set of parallelization ex­
tensions supporting sequential-style programming 
on distributed memory architectures. For devel­
opment purposes Kali (which grew out of the 
BLAZE project by the same group) was imple­
mented as a Pascal-based language, although it 
could be based on any other sequential language. 
The Kali compiler transformed a program written 
in this language into SPMD message-passing C 
code for the NCUBE/7 or iPSC/2. As far as possi­
ble the analysis required to produce the necessary 
communications and synchronizations was per­
formed at compile-time; irregular problems were 
supported but these dictated that their analysis be 
done (less efficiently) at run-time, using inspec­
tor/ executor loops. Kali did not support the ex­
plicit alignment of arrays or the dynamic distribu­
tion of data. 

Figure 4 illustrates the use of Kali in imple­
menting the Jacobi relaxation example. The pro­
grammer's first task is to specify an array of physi­
cal processors using a processors statement, in 
this example it is defined to be a two-dimensional 
PxP processor array called Procrs. The parame­
ter P is chosen by the run-ti.me system to be the 

(* specify PxP processor array called Procrs *) 
processors Procrs : array [I .. P, 1 .. P] with P in 1 .. 4; 

(*block decomposition of arrays OLD and NEW in each dimension, and*) 
(* distribution of these blocks over Procrs *) 
var0LD,NEW:array[l .. l28, 1 .. 128] ofreal dist by [block,block] onProcrs 

(*input values of array OLD *) 

(*computational code*) 
forall i in 2 .. 127,j in 2 .. 127 on NEW[i,j].loc do 

NEW[i,j] :=C * (OLD[i,j] +OLD[i-l,j] + OLD[i+l,j] 
+ OLD[i, j-1] + OLD[i, j+ I]); 

end; 

(* output values of array NEW *) 

FIGURE 4 Jacobi relaxation in Kali. 

largest possible integer constant in the given range 
(in this case 1..4). 

Next the programmer must define how arrays 
are to be distributed over this target architecture. 
This is achieved by appending a distribution 
(dist) clause to the declarations of those arrays 
intended for distribution; scalar variables. and ar­
rays declared without a distribution clause, are 
universally replicated. Within a distribution 
clause the programmer specifies the distribution 
pattern for each dimension of the data arrav, ob­
serving the limitation that the number of distrib­
uted dimensions in a distribution clause must 
equal the number of processor array dimensions. 
Lser-defined distribution patterns are possible 
but Kali additionally provides the intrinsics block 
and cyclic, illustrated below; block-cyclic distri­
bution is also supported. 

processors line : array 1 . . P] 
with P in 1 .. 10; 
var A : array [1 .. 100] of real dist 
by [block] on line; 

B : array [1 .. 100] of real dist 
by [cyclic] on line; 

C : array [1 100, 1 .. 100] of 
real dist by [*, block] on line; 

D : array [1 100] of real; 

Array A is distributed over the one-dimensional 
processor array "line" as contiguous blocks of 10 
elements each, whereas the elements of B are dis­
tributed individually in a round-robin fashion. 
The asterisk indicates that a dimension is not to 
be distributed and so each processor in "line" will 
receive a block of 10 contiguous columns of C. 
Array D is undistributed and each processor in 
"line" receives a complete copy of D. In the ex-



ample of Figure 4 arrays OLD and NEW are dis­
tributed over Procrs as contiguous two-dimen­
sional blocks. 

Computations using distributed arrays must be 
enclosed in forallloops. These are treated as fully 
parallel loops and no provision is made for any 
parallelization of loops with interiteration depen­
dences. Within a forallloop, the values used are 
those that were current immediately before the 
loop (a strategy referred to as "copy-in/ copy-out 
semantics"). Furthermore, the programmer must 
append an on clause to forall loops, specifying 
which processor is to execute each iteration of the 
loop. Figure 4 illustrates the use of the .loc func­
tion for this purpose, which ensures that the itera­
tion updating NEW[i, j] is executed on the proces­
sor owing NEW[i, j]. However, this need not be 
the case because it is possible to depart from the 
owner-computes paradigm by explicitly referenc­
ing processors in an on clause. 

Kali presents the programmer with a relatively 
large set of parallelization concerns. In addition to 
specifying data distributions, the programmer 
must also declare the underlying processor topol­
ogy and explicitly indicate not only parallel loops 
but also the processors on which the iterations of 
these loops are to be executed, i.e., the user must 
take responsibility for both data and iteration dis­
tributions. 

2.4 ARF 

Wu et al. [13] presented an experimental com­
piler and run-time support system, predominantly 
aimed at enabling the execution of sparse, un­
structured applications written in ARF (ARguably 
Fortran), an extended dialect of Fortran 77. The 
ARF compiler produced an SPMD node program 
containing embedded PARTI primitives [ 14] to 
implement the necessary communications. PARTI 
(Parallel Automated Run-time Toolkit at ICASE) 
is a library of run-time procedures that support 
irregular distribution patterns and irregular com­
putations involving subscript indirection. A run­
time resolution scheme was used, employing an 
inspector/ executor approach for communication 
preprocessing; even for regular computations, no 
message communications were firmly decided at 
compile-time. 

Using ARF's language extensions, data distri­
bution can be regular (block or cyclic) or user 
defined and irregular; the latter is achieved using 
a regularly distributed integer-valued mapping ar­
ray of the same size and shape as the array to be 
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distributed, as illustrated below: 

distributed regular using block 
real A (1000) 
distributed regular using block 
integer maparray(lOOO) 
distributed irregular using 
maparray real B(lOOO) 

Here the processor to which B(i) is mapped is 
identified by the value of maparray(i). The current 
implementation of ARF can only support parti­
tioning of one dimension (the last dimension) of 
an array, although the PARTI primitives are capa­
ble of supporting more general distributions. Nei­
ther dynamic data distribution nor explicit in­
terarray alignment is supported. 

The distributed do language extension indi­
cates that the iterations of a DO loop are to be 
distributed over the processors of the target ma­
chine, whereas another extension, the on clause, 
gives the user a means of controlling this distribu­
tion. As a result, the owner-computes rule is not 
necessarily adhered to. 

An example of the use of the ARF language in 
implementing the Jacobi relaxation problem is 
given in Figure 5. Note that only the last (i.e., the 
second) dimension of OLD and NEW can be par­
titioned and therefore these arrays are partitioned 
and distributed as blocks of columns, one block 
per processor. This example is tentative because 
the researchers state that the syntax accepted by 
the current version of the ARF compiler differs 
slightly from that presented by Wu et al. [13]. 

The ARF system provides relatively few paral­
lelization extensions but in enabling the treatment 
of irregular distributions the system requires the 
programmer to have some knowledge of processor 
identification. The on clause and distributed do 
construct, although necessary for sufficient pro­
grammer control in certain kinds of application, 

C distribute contiguous blocks of columns of arrays OLD and NEW 
distributed regular using block real OLD(l28, 128), NEW(l28, 128) 

C initialisation of array OLD 

distributed do 10 j = 2, 127 
do 10 i=2,127 

NEW(i, j) = C * (OLD(i, j) + OLD(i-1, j) + OLD(i+ 1, j) 
& + OLD(i,j-1) + OLD(i,j+l)) 

10 continue 

C output of array NEW 

FIGURE 5 ARF code for Jacobi relaxation. 
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nevertheless increase the involvement of the pro­
grammer in parallelization. 

2.5 ADAPT 

Merlin [15. 161 presents a system called ADAPT 
(Array Distribution Automatic Parallelization 
Tool) that was developed under Esprit Project 
2071 (PUMA). ADAPT transforms data-parallel 
programs written in distributed Fortran 90, a For­
tran 90 subset enhanced with data-partitioning 
extensions, into a form suitable for execution on 
arrays of T9000 transputers with C104 switches 
(although the techniques are applicable to any 
message-passing .\1L\1D system). ADAPT makes 
no attempt to parallelize DO loops: parallelism is 
obtained from the inherent parallelism of the For­
tran 90 array features. There is therefore an onus 
on the programmer to maximize the use of such 
features. 

ADAPT produces SP.\fD code in accordance 
with the owner-computes paradigm. This gener­
ated code takes the form of a Fortran 77 node 
program, including calls to communication proce­
dures provided by a purpose-built communica­
tions library called ADLIB (Array Distribution 
LIBrary). The same node program is executed by 
each process in a multidimensional process array 
(because each transputer can support more than 
one process the researchers refer to processes 
rather than processors). The communication pro­
cedures of ADLIB are high-level grid-based rou­
tines requiring at least nearest-neighbor connec­
tivity in every dimension of the process array. 
Indirect array referencing, expressible using (po­
tentially distributed) vector subscripts. is sup­
ported. ADAPT is currently at an early stage of 
development and little emphasis has as yet been 
placed on optimizations. 

The size of the logical process array is defined, 
in a separate file, in the form 

proc_array = (D1, 

PI P2 - ---r-- ----T 
P3 

As an example, a two-dimensional 4X4 process 
array for use by the Jacobi relaxation code would 
be declared as follows: 

proc_array = (4, 4) 

Preparation of a Fortran 90 program for paral­
lelization bv ADAPT consists of the declaration of 
a DISTRIBUTION attribute for each arrav to be 
distributed. For an n-dimensional real arrav A 
this takes the form 

REAL, DIMENSION (e 1 , 

DISTRIBUTION (d1 , 

Each non-negative integer d1 indicates the contig­
uous block distribution of dimension i of A over 
the process array (block distribution is the only 
form of distribution available). A value of 0 ford, 
indicates that dimension i of the data array is not 
to be distributed: a value d1 > 0 indicates that 
dimension i of the data arrav is dio;tributed across 
dimension d1 of the process array. For example 

REAL, DIMENSION (10, 10), 
DISTRIBUTION (0, 1) :: A 

results in the following distribution over a one­
dimensional five-proceso; array (Fig. 6 ). 

Omission of a DISTRIBUTION attribute for an 
array causes that array to be undistributed. Such 
arrays are replicated to all processes in the process 
array, as are scalar variables. An array can he 
distributed over onlv a subset of the dimensions of 
the process array. in which case it is replicated 
over the remaining process-array dimensions. For 
example, with proc_array = (2. 4) 

REAL, DIMENSION (8) , 
DISTRIBUTION (2) :: B 

gives the distribution seen in Figure 7. 
A dummy array argument may adopt ib distri­

bution from the corresponding actual argument. a 

P4 P5 

'I 
A(l:IO,l:2) A(l:I0,3:4) A(l: 10,5:6) A~l0,7~-~A(l:10,9:10)-J 

------ ---- - > 
dimension 1 of process array 

FIGURE 6 The distribution of array A. 
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FIGURE 7 The distribution of arrav B. 

-

strategy that the researchers call assumed distri­
bution (Fig. 8). Explicit interarray alignment is not 
supported. nor is dynamic data distribution. 

Apart from the definition of a process array in a 
separate file, the preparation of a distributed For­
tran 90 program from its Fortran 90 equivalent 
entails the use of only a single .. simple paralleliza­
tion feature, DISTRIBUTION. However. the price 
paid for such simplicity is the relatively limited 
applicability of the current ADAPT system com­
pared with other languages like Vienna Fortran 
and Fortran D. In fact this simplicity is deceptive 
because the programmer must also make effective 
use of the arrav features of Fortran 90 to maxi­
mize parallelism. 

PROGRAM JacobiRelaxation 
assumes a 4x4 underlying array of processors, declared in another file 
distribute dimensions I and 2 of arrays OLD and NEW over 
dimensions 1 and 2 of the underlying processor array 
REAL. DIMENSION (128, 128). DISTRIBUTION (I, 2) ::OLD, NEW 
input the values of array OLD 

computational code 
NEW(2:127, 2: 127) = C * (OLD(2: 127, 2: 127) +OLD(!: 126, 2: 127) 

& + OLD(3: 128, 2: 127) + OLD(2: 127, I: 126) 
& + OLD(2:127, 3:128)) 

output values of array NEW 

END PROGRAM JacobiRelaxation 

FIGURE 8 Jacobi relaxation in distributed Fortran 
90. 

2.6 Vienna Fortran 

Some authors [ 17-1 9: describe Vienna Fortran. 
an extended dialect of Fortran 77 that provides 
the programmer with facilities for the specification 
of data distribution within conventional Fortran 
77 code~ there is also a Fortran 90 subset[20: 
with Vienna Fortran extensions. The Vienna For­
tran compilation system. based largely on the 
achievements of the SUPERB project, is currently 
in an advanced stage of development. This system 
supports the full Fortran 77 language and targets 
the SUPREKC:YL iPSC/860, and GENESIS ma­
chines; optimized message-passing code is gener-
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ated in accordance with the SPMD paradigm. Vi­
enna Fortran makes use of the P ARTI primitives 
[ 14 J to support the indirect referencing of distrib­
uted arravs. 

The use of the Vienna Fortran extensions in the 
annotation of Fortran 77 code essentiallv com­
prises three main aspects: 

1. The declaration of target processors. 
2. The distribution of data arrays over the tar­

get processors. 
3. The specification of parallel loops and the 

allocation of their iterations to processors. 

Declaration 

In any given Vienna Fortran program there is an 
implicitly declared one-dimensional array of tar­
get processors, called $P, which consists of all the 
processors available in the target machine. If any 
other processor structure is required then the pro­
grammer may superimpose that structure upon 
the SP arrangement, which is achieved using a 
PROCESSORS statement. For example 

PROCESSORS procrs3D (N, N, N) 

declares a three-dimensional array of processors, 
called procrs3D. The value of]\\ in the above ex­
ample is determined at load time in accordance 
with the number of processors available in the tar­
get machine. It is important to note that this pro­
cessor arrav is merelv an alternative view of the 
NxNxK ta~get proce~sors constituting $P; the in­
dices of a given processor within $P and procrs3D 
are related according to the column-major order­
ing convention of Fortran 77. Individual proces­
sors may be referenced as elements in an array: 
for example, $P(2) is also procrs3D(2, 1, 1). For­
tran 90 array section notation may also be used to 
reference subsets of processor structures, for ex­
ample, procrs3D(1 :4, 3, 9). An intrinsic function 
$MYPROC is provided which, when called by a 
node program executing on one of the processors, 
returns the processor's index within $P. 

The processor structure declared in a PRO­
CESSORS statement, such as procrs3D above, is 
known as the primary processors structure. If fur­
ther alternative views of the processors of $P are 
required then these may be obtained by reshaping 
the primary processor structure, again in accor­
dance with Fortran 77 column-major ordering. 
For example, if a two-dimensional structure were 
also needed then the above declaration might read 
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PROCESSORS procrs3D (N, N, N) 
RESHAPE procrs2D (N, NXN) 

The additional structures obtained by reshaping, 
such as procrs2D, are known as secondary pro­
cessor structures. All processor arrays declared in 
a Vienna Fortran program must contain the same 
number of processors. 

No particular interconnection between proces­
sors is assumed in either $P or any defined pro­
cessor structures. For example, procrs2D is not 
necessarily connected as a nearest-neighbor grid. 

Distribution 

Some data arrays may not require distribution in a 
given application, for such arrays no Vienna For­
tran annotations are required-the arrays are de­
clared in the normal Fortran 77 manner and as a 
result are replicated on every processor. Scalar 
variables may also be universally replicated. How­
ever, in general some arrays will need to be dis­
tributed to achieve program speed-up through 
data-parallel execution. To this end Vienna For­
tran provides an extensive and powerful set of fea­
tures that enable the specification of a wide range 
of (static or dynamic) array distributions. 

Static Distribution. A two-dimensional array A 
may be statically distributed over the .pro~essor 
structure procrs2D (i.e., in terms of this view of 
the target processors) by annotating its de clara­
tion in the following manner 

REAL A (N, NXN) 
DIST distribution-expression 
TO procrs2D 

The TO clause is optional; if it is omitted then the 
distribution occurs over the primary processor 
structure. The distribution-expression specifies a 
distribution type, which is a class of distributions 
described using distribution functions; a list of 
functions may be given, each of which defines the 
distribution pattern of one dimension of the array 

FIGURE 9a Processor array p2D. 
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FIGURE 9b The distribution pattern of array B. 

over a dimension of the target processor array, or 
a single distribution function may be given which 
defines the distribution pattern for the entire ar­
ray. A range of intrinsic distribution functions are 
available that provide BLOCK, CYCLIC and 
block-cyclic (CYCLIC(block-size )) distributions 
of array dimensions. Examples are 

PROCESSORS p2D (3, 3) 
REAL B(9, 9) DIST (BLOCK, CYCLIC) 
REAL C(90, 90) DIST (BLOCK, CYCLIC(10)) 

These distributions and the p2D grid are illus­
trated in Figure 9 (a, b, and c); processor id num­
bers are indicated in the boxes (for brevity proces­
sor (i, j) is indicated by ij). BLOCK distribution 
produces the distribution of an array dimensi~n i.n 
equally sized contiguous sections; CYCLIC distn­
bution produces a round-robin distribution of the 
individual elements along a dimension. In Figure 

array ~ 

indices~ 20 30 40 50 60 70 80 90 lO ---=-~ ITT 
I 

~" 
13 II 12 

30 

I 

21 22 23 21 22 

i 
60 

l" "I" 31 32 

90 

13 111 J 13

1 

-1 ti 
I 22 23 23 21 fd:'' on which 

33 31 

i 

32 ! 33 

i 

these data 
elements 
reside 

FIGURE 9c The distribution pattern of array C. 



9c the second dimension of array C is partitioned 
into 10-element blocks that are placed cyclically 
onto processors. 

The elision symbol ":" in place of a distribu­
tion function for a dimension of an array prevents 
the distribution of that dimension. For example, 
the distribution 

REAL D(10, 100) DIST(CYCLIC, :) TO $P 

cyclically distributes the rows of D over the one­
dimensional processor array $P as shown in Fig­
ure 10 (assuming, for this example, that $P con­
tains five processors). 

In the case where the number of processor-ar­
ray dimensions exceeds the number of data-array 
dimensions being distributed the entire array is 
replicated over the extra dimensions of the pro­
cessor array. 

Programmers may define their own distribution 
functions, for example 

DFUNCTION distfunc 
TARGET T(1:) 
DO 10 I = 1, SIZE(T) 

T(I) DIST TO $P(SIZE(T) - I) 
10 CONTINUE 

END DFUNCTION distfunc 

The TARGET array T in the definition of distfunc 
represents the array being distributed. This simple 
distribution function may be used to specify the 
distribution of an array F. For example 

REAL F(10) DIST (distfunc) 

achieves a reverse-order distribution of the ele-

$P(l) 
D(l,l:IOO) 

D(6,1:100) 

$P(2) ! D(2, 1:100) I' 

D(7,1:100) 
--- ------ ----

,---- ----

$P(3) 
D(3, 1:100) 

D(8,1:100) ____ I 
,---

D(4,1:100) 
$P(4) L 

D(9,1:100) _ _j 

,-
D(S,l:IOO) $P(5) ! 

D(IO, 1:100) 

FIGURE 10 Cyclical distribution of array D over $P. 
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PROGRAM JACOBIRELAXATION 
PROCESSORS grid2D(4, 4) 
REAL OLD(l28, 128) DIST (BLOCK, BLOCK) 
REAL NEW(l28, 128) DIST (=OLD) 

C INPUT VALVES OF ARRAY 'OLD' 

DO 10 I= 2, 127 
DO 10 J = 2, 127 
NEW(!, J) = C *(OLD(!, J) + OLD(I-1, J) +OLD(!+ I, J) 

& +OLD(!, J-1) +OLD(!, 1+1)) 
10 CONTINUE 
C OUTPUT VALVES OF ARRAY 'NEW' 

END 

FIGURE 11 Vienna Fortran code for Jacobi relaxa­
tion. 

ments ofF over the processors of $P (assuming a 
sufficient number of processors). 

The distribution of an array may alternatively 
be specified using the distribution functions con­
stituting the distribution -expression of another ar­
ray. For example, 

REAL G(2000, 20, 300) 
DIST (CYCLIC, CYCLIC, BLOCK) 
REAL H(100, 2500) 
DIST (=G.3, =G.1) TO procrs2D 

distributes the first dimension of H by BLOCK 
(the distribution function of G.3, the third dimen­
sion of G) and the second dimension of H in CY­
CLIC fashion (in accordance with the distribution 
of G. 1, the first dimension of G). This feature is 
further illustrated in the Jacobi relaxation exam­
ple given in Figure 11. This code declares a two­
dimensional array of 16 processors, called 
grid2D, and distributes the array OLD over 
grid2D in contiguous blocks of size 32x32 ele­
ments. The array New is distributed in the same 
way by virtue of the (=OLD) distribution expres­
sion. Note that although Vienna Fortran makes no 
assumption concerning the interconnection pat­
terns of target processors, clearly the annotations 
in Figure 11 will minimize the communications 
overhead in the case of the target processors being 
connected in a nearest-neighbor manner. 

The foregoing distributions are all examples of 
the direct specification of distributions. Vienna 
Fortran also allows the implicit distribution of one 
array (called the target array) in terms of the distri­
bution of another array (the source array), i.e., 
interarray alignment. This is achieved using the 
ALIGN keyword, for example: 

REAL K(100, 100) ALIGN K(I, J) 
WITH H(J, I*10) 
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aligns each element of the target array K with the 
source array element identified by evaluating the 
subscript expressions of the source array H. 1 and 
J are placeholders, i.e., bound variables in this 
annotation that each range from 1 to 100 (their 
corresponding subscript ranges in array K). 
Hence, for example, target element K(5, 21) is 
aligned with source element H(21, .50). 

Programmers can also define their own align­
ment functions, for example: 

AFUNCTION alfunc 
TARGET T (i:) 
SOURCE S (1:) 
DO 10 I= 1, SIZE(T) 

T (I) ALIGN WITH S ( (I+6) 
MODSIZE (S) +1) 

10 CONTINUE 
END AFUNCTION alfunc 

This alignment function may be used to specify 
the alignment of an array L to a four-element ar­
ray M thus 

REAL L(10) ALIGN (alfunc) WITH M 

which results in the following alignment of ele­
ments: 

M(1) ~L(2), L(6), L(10) 
M(2) ~L(3), L(7) 
M(3) ~ L(4), L(S) 
M(4) ~L(1), L(5), L(9) 

It is possible to define irregular data distributions 
in Vienna Fortran where individual elements of an 
array may each be mapped to a specified proces­
sor using the INDIRECT distribution function 
and an integer-valued mapping array of the same 
shape and size as the data array. This mapping 
array may itself be distributed. 

INTEGER map (10) DIST(CYCLIC) 
REAL Q(10) DYNAMIC 

DISTRIBUTE Q : : INDIRECT (map) 

In the above example the value of map(i) is the 
index within $P of the processor to which Q(i) is to 
be mapped. 

Dynamic Distribution. Vienna Fortran also pro­
vides for the dvnamic distribution of arravs. Such . . 
an array is distinguished by an additional annota-

tion to its declaration, the DYNAMIC kevword. 
Examples are: 

REAL R(lOO) DYNAMIC, DIST(CYCLIC) TO $P 
REAL U (100) DYNAMIC 

The array R is initially distributed cyclically but 
this distribution can later be altered, by virtue of 
its DYNAMIC declaration. The array C has no 
initial distribution and must not be accessed until 
it has been distributed. The distributions that a 
dynamically distributed array is permitted to 
adopt at run-time can be limited by specifying ex­
plicitly the allowed distributions. For example 

REAL V(100) DYNAMIC, 
RANGE(BLOCK, CYCLIC) 

specifies that V may only be distributed in a block 
or cvclic fashion. Anv other distribution of V will . . 
have an undefined effect. 

The alignment and initial distribution of dy­
namic arrays are specified in the same way as for 
static arrays; the array to which a dynamic array is 
aligned may be either static or dynamic. Such 
alignment is not maintained if either array is later 
redistributed. Such an association can. however. 
be achieved using the CONNECT keyword. For 
example 

REAL W(100, 100) DYNAMIC, 
DIST (CYCLIC, BLOCK) TO procrs2D 
REAL X(100, 100) DYNAMIC, CONNECT (=W) 

Here ·w is called the primary array and X is a 
secondary array. A primary array and the second­
ary arrays CONI'iECTed to it constitute a connect 
set. A dvnamic arrav mav be a member of onlv one . . . . 
connect set. Only the primary array in a connect 
set may be redistributed and when this happens 
each of its secondary arrays is redistributed in a 
manner related to the primary's new distribution 
by that secondary's CONNECTion. The COI\­
NECTion in the above example specifies that the 
distribution type of X will always be that of W. 

Dynamic distribution is specified by a DIS­
TRIBUTE statement of the form 

DISTRIBUTE A1 , 

[NOTRANSFER (Ai , 
, An : : distrib 

, Ak)] 

On execution of this statement each listed dvnam­
ically distributed array A; is given the distribution 
distrib, which may be a direct. INDIRECT. or im-



plicit specification as described above. For any 
primary array distributed by the DISTRIBUTE 
statement its secondary arravs are also distributed 
in accordance with th~ir CONNECTions. The op­
tional NOTRANSFER clause attributes new ac­
cess functions to the listed arrays Ai, . . . , Ak 
(which are selected from the list A1, . . . , An and 
their CONNECT sets) in accordance with the 
specified distribution distrib but does not produce 
any transfer of their data: the previous data values 
of .the arrays Ai, . . . , Ak are subsequently ig­
nored. 

It must be noted that although dynamic distri­
bution directives are provided, it is the user's re­
sponsibility to ensure that they are used wisely. 
especially that their use does not incur greater re­
distribution costs than the costs (of suboptimal 
execution with unredistributed arravs) that there­
distribution is intended to alleviate. This decision 
may be far from trivial; tools are needed to help 
the. programmer in making such decisions. An­
other part of the VFCS is a static performance 
estimation module [21] that may be of some use 
in this respect. 

Other Distribution-Related Features: Control 
Constructs. Vienna Fortran provides two features, 
the IF construct and the DCASE construct. that 
enable the distribution of an array to dictate the 
flow of execution. For example 

REAL Y(1000, 100) DYNAMIC 

IF (IDT(Y, (BLOCK, BLOCK))) THEN 
if-code 

END IF 

the if-code will only be executed if both dimen­
sions of Y are block distributed: IDT (Identical 
Distribution Types) is an intrinsic inquiry function 
that compares the distribution of an array with a 
specified distribution type. 

In the following example of a DCASE construct 
the code to be executed is determined by the first 
pair (in textual order) of CASE limb distribution 
expressions to match the actual distributions of 
AA and BB: the asterisk signifies "anv distribu­
tion." 

REAL AA(1000, 100), BB(200, 200) 
DYNAMIC ... 
SELECT DCASE (AA, BB) 

CASE (BLOCK, CYCLIC) , (BLOCK, BLOCK) 
code 1 
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CASE (CYCLIC, *) , (BLOCK, CYCLIC) 
code 2 

CASE (DEFAULT) 
cod en 

END SELECT 

Other Distribution-Related Features: Subroutine 
Parameters. The distribution of a formal parame­
ter in a subroutine can be static or dynamic. For 
each formal parameter a distribution is specified 
which is enforced at subroutine entry. If the for­
mal parameter is dynamic, however, then its dis­
tribution mav be inherited from the actual argu­
ment by sp~cifying the annotation DIST(*). A 
RANGE clause mav also be used to specify the 
permissible distrib~tions of a dummy argument 
with inherited distribution, thereby providing the 
compiler with useful information that may not 
otherwise be determinable. For example 

REAL Z(N) DIST(*) RANGE((CYCLIC(10)), 
(BLOCK)) 

declares that the formal parameter Z inherits its 
distribution from the corresponding actual pa­
rameter and that this distribution will either be a 
block -cvclic pattern with block size 10 or a simple 
block distribution. If the actual argument is stati­
callv distributed then any redistribution per­
for~ed within the subroutine is undone at exit. 
Such distribution restoration may optionally be 
enforced, using the RESTORE keyword, for dy­
namicallv distributed actual arguments. A NO­
TRANSFER attribute can be given to specify that 
anv redistribution carried out on entry to a sub­
ro~tine involves only a change in access function 
and no movement of data. A local array can be 
aligned with a formal parameter or given its own 
distribution. Where appropriate actual arguments 
may be specified using Fortran 90 array section 
notation. 

Parallel Loops 

Vienna Fortran provides a FORALL loop con­
struct that enables the programmer to assert that 
the iterations of a loop may be executed in parallel 
by virtue of their being independent (i.e .. the data 
written within one iteration are neither read nor 
written within anv other iteration of the loop). 

Loop iteration's may be assigned to specified 
processors, for example 



72 CROOKS AND PERROTT 

FORALL I= 1, NON $P(PROC(I)) 

END FORALL 
FORALL I= 1, M ON OWNER(V(I)) 

END FORALL 

it is assumed that PROC is some array, defined 
elsewhere, whose contents may be used as proces­
sor indices. OWNER is a Vienna Fortran intrinsic 
function that identifies the home processor of its 
argument. In the default case, when the ON clause 
is omitted, the loop iterations are assigned by the 
compiler. This may be carried out so as to mini­
mize communication, perhaps splitting individual 
iterations across several processors, or a simple 
(inefficient) assignment of several iterations to a 
single processor may be enforced. 

FORALL loops are implicitly synchronized at 
start and finish. They may be (tightly) nested and 
may contain private variables, in which case each 
iteration is equipped with its own copy of those 
variables. Reduction statements, using intrinsic 
and user-defined reduction functions, may be 
used within the loop and their results become 
available at the end of the loop. Vienna Fortran 
also provides II 0 support for concurrent file ac­
cess by individual processors to several storage 
devices. 

Summary 

Vienna Fortran provides the programmer with a 
comprehensive range of features that enable the 
efficient parallelization of a wide range of algo­
rithms coded within the conventional Fortran 77 
programming paradigm and referencing a single 
(virtual) shared memory space. Although Vienna 
Fortran provides the expressive control needed to 
specify the parallelization of even quite pathologi­
cal algorithms, it has in so doing significantly in­
creased the complexity of the programmer's task 
and consequently increased the possibility of (po­
tentially very elusive) errors. 

Nevertheless, this increased involvement of the 
programmer in the parallelization process is much 
more palatable than the disadvantages of mes­
sage-passing programming and clearly may be 
justified by the program execution speed-ups 
achievable. Indeed the programmer requiring a 
simple one-dimensional processor array and only 
static distributions need only specify the appropri­
ate data distributions. 

2.7 Fortran D 

A few authors [22-25] describe an extended For­
tran, called Fortran D, that enables a programmer 
to specify the distribution of data and computa­
tional work across a DMM. Currently a Fortran 
77D (i.e., extended Fortran 77) compiler is being 
developed at Rice University and Wu and Fox 
[26] are developing a Fortran 90D (extended For­
tran 90) compiler at Syracuse Cniversity. Clti­
mately these two projects will converge with a sin­
gle definition of Fortran D, the current "official" 
version of which is summarized here. It is pro­
posed that the Fortran D compiler will form part of 
a data-parallel programming system that will also 
include a static performance estimator (to provide 
the user with predictions of relative performances 
of a Fortran D program with different data distri­
bution [27]) and an automatic data partitioner 
(which will make use of the static performance es­
timator either by interactively assisting a user in 
finding an efficient data distribution or by auto­
matically producing one). The Fortran D compiler 
will produce optimized code in the SPMD model. 

The annotation of Fortran code using the For­
tran D extensions essentially comprises four main 
components: 

1. The optimal specification of the number of 
target processors. 

2. The mapping of data arrays onto intermedi­
ate frames of reference (called decomposi­
tions). 

3. The distribution of decompositions over the 
target processors (implying the distribution 
of the arrays mapped onto these decompo­
sitions). 

4. The specification of parallel loops and the 
allocation of their iterations to processors. 

This categorization shows some similarity to 
that given in the previous section for Vienna For­
tran. The significant difference is the use of an 
intermediate mapping device (the decomposition) 
in Fortran D, which is intended to promote code 
portability. 

Specification 

The required number of processors may be stipu­
lated at the begining of a Fortran D program using 
the reserved variable n$proc; alternatively this 
may be omitted and the number of processors will 
be determined automatically at run-time accord­
ing to availability. 



Mapping 

Data distribution begins with the specification of 
one or more decompositions. A decomposition 
does not occupy any storage; it is simply an ab­
stract structure that can be regarded as a frame of 
reference for interarray alignment and as a vehicle 
for the distribution of arrays. An arrav intended 
for distribution is first alig~ed with a decomposi­
tion using placeholders (1, J, K, etc.) as in the fol­
lowing examples. Arrays for which no alignments 
are specified are replicated over all processors. 

2 

3 

4 

5 

6 

7 

8 

1. REAL A(N, N), B(N, K) 
DECOMPOSITION DECl(N, N) 
ALIGN A(l, J) with DECl(I, J) 
ALIGN B(I, J) with DECl(I, J) 

Here a two-dimensional Nxl\' decomposi­
tion called DEC1 is declared and arrays A 
and B aligned to it; on the distribution of 
DEC1, A and B will be codistributed. The 
above two ALIGNments can alternatively be 
stated as 

ALIGN A, B with DEC1 
2. REAL C(N, N), D(N, N) 

DECOMPOSITION DEC2(N, N) 
ALIGN C(I, J) with DEC2(6*I, J) 
ALIGN D(I, J) with DEC2(I,3*J-2) 

Here D has a stride of 3 and an offset of -2 
in the J dimension; C(1, 4), for example, will 

2 3 4 5 6 7 8 

D(l,l) D(l,2) D(l,3) 

D(2,1) D(2,2) D(2,3) 

D(3,1) D(3,2) D(3,3) 

D(4,1) D(4,2) D(4,3) DEC2(N,N) 

D(5,1) D(5,2) D(5,3) 

C(l,l) C(l,2) C(l,3) C(l,4) C(l,5) C(l,6) C(l,7) C(l,8) 

D(6,1) D(6,2) D(6,3) 

D(7,1) D(7,2) D(7,3) 

D(8,1) D(8,2) D(8,3) 

FIGURE 12 The alignment of arrays C and D with the 
decomposition DEC2. 
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2 3 4 

F(l,l:M,l) F(l,l:M,2) F(l,l:M,3) F(l,l:M,4) 

2 F(2,l:M,l) F(2,l:M,2) F(2,l:M,3) F(2,l:M,4) 

DEC4(N,N) 

3 F(3,l:M,l) F(3,l:M,2) F(3,l:M,3) F(3,l:M,4) 

4 F(4,l:M,l) F(4,l:M,2) F(4,l:M,3) F(4,l:M,4) 

FIGURE 13 Mapping of array F onto decomposition 
DEC4, showing the collapsing of the J dimension of F. 

be codistributed with D(6, 2), as shown in 
Figure 12 (assuming N=8). 

3. REAL E(N, N) 
DECOMPOSITION DEC3(N, N) 
ALIGN E(I, J) with DEC3(J, I) 

This is an example of permutation, in this 
case the transpose of the array E is aligned 
with the decomposition. 

4. REAL F(N, M, N) 
DECOMPOSITION DEC4(N, N) 
ALIGN F(I, J, K) with DEC4(I, K) 

Here the second dimension of F is undis­
tributed so that elements in its J dimension 
are collapsed together in the eventual distri­
bution. This is illustrated in Figure 13 for 
the N=4 case. 

5. REAL G(N, N) 
DECOMPOSITION DEC5(N, N, N) 
ALIGN G(I, J) with DEC5 (I, J+l, 
3) 

This is an example of embedding, the map­
ping of an array onto a decomposition that 
has more dimensions. Depending on the 
distribution of its decomposition it might be 
the case that such an array is not mapped 
over all the processors in the target ma­
chine. 

It is possible to specify the mapping of an array 
onto a decomposition in such a way that some of 
its elements are mapped onto nonexistent posi­
tions in the decomposition. Fortran D therefore 
provides for an ALIGN statement with an optional 
overflow clause that specifies one of three options 
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FIGURE 14a The alignment of array II with decom­
position DEC6. 

(ERROR, TRUNC, and WRAP) per dimension. 
This is used to describe how arrav elements ex­
tending beyond the decomposition are to be 
treated, for example 

REAL H(N), K(N, N) 
DECOMPOSITION DEC6(N), DEC7(N, N) 
ALIGN H(I) with DEC6(I+l) overflow (ERROR) 
ALIGN K(I, J) with DEC7(I-1, J+l) 
overflow (TRUNC, WRAP) 

In this example, the element H(l") is aligned with 
DEC6(N + 1 ). This alignment is specified with type 
ERROR (the default type when the overflow 
clause is omitted): this means that H(l") is un­
mapped and attempts to access it are illegal (see 
Figure 14a). The TRUNC option causes the over­
flowing elements (here the first row of K) to be 
mapped to the overflowed edge of the decomposi­
tion; hence the first and second rows of K are both 
mapped to the first row of DEC?. The WRAP op­
tion maps the overflowing elements to the opposite 
end of the decomposition: the last column of K is 

2 N 

K(I.N) K(l.1) K(l.2) K(l,N-1) 

K(2,N) K(2,1) K(2,2) K(2,N-1) 

r < 
21 K(3,N) K(3,1) K(3,2) K(3,N-1) I 

! DEC7 

N-1• K(N,N) K(N,1) K(N,2) K(N,N-1) 

N 

FIGURE 14b The alignment of array K with decom­
position DEC7. 

mapped to the first column of DEC?. These align­
ments are illustrated in Figure 14b. 

The foregoing ALIGN statements mapped en­
tire arrays onto decompositions. However, it is 
also possible to map only part of an array where, 
for example, a large work array is to be subdivided 
into a collection of smaller logical arrays at run­
time. This partial mapping is achieved by specify­
ing a section of the array in a range clause. The 
following example illustrates that all rows of L (in­
dicated by the asterisk), but only columns 1 toN. 
are to be mapped. 

REAL L (N, N+N) 
DECOMPOSITION DECS(N, N) 
ALIGN L(I, J) with DECS(I, J) 
range ( *, 1: N) 

The replication of array elements over a dimen­
sion of a decomposition is specified by the pro­
grammer indicating a range of a decomposition 
dimension rather than a placeholder, for example 

REAL M (N) , P (N) , Q (N, N) 
DECOMPOSITION DEC9(N, N) 
ALIGN M(I) with DEC9(I, 2:5) 
ALIGN P(I) with DEC9(*, I+5) 
ALIGN Q(I, J) with DEC9(J, *) 

This example is illustrated in Figure 1;) where 
each of the second. third, fourth. and fifth 
columns of DEC9 is associated with the whole of 
M. For everv row of DEC9 there is an association 
between its last (.'i -5) elements and the first (l'\ -5) 
elements of P. Each column of Q is mapped to 
every element in the corresponding row of DEC9. 

Distribution 

The distribution of an array over the target rna­
chine is achieved by specifying its associated de­
composition in a DISTRIBUTE statement: the 
execution of such a statement distributes the ar­
rays ALIGNed to the specified decomposition. 
The svntax for the n-dimensional case is 

DISTRIBUTE decomposition (attribute], 
, attributen) 

Each attribute specifies the manner in which that 
dimension of the decomposition is to he distrib­
uted over the target machine. The attribute* indi­
cates no distribution and as a result the corre­
sponding dimension is allocated locally. Three 
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--- DEC9 

I 

2 3 -~~ _2~~6~,- 7 •. N-1 N 

1 

P(N-6) I P(N-5) : M(N) ~ M(N) M(N) : M(N) P(l) I P(2) 

I _Q(l N,l) Q(l:N,l)~()(l:J,l,l)~~N,l)' Q(l N,l) Q(lN,l)~~ Q(l:N,l)jl 

M(N) I M(N) ' M(N) M(N) I P(l) P(2) ! 

Q(l:N,l)>l' Q(l:N,l) 

P(N-6) P(N-5) 
2 I I ' ' ' 

Q(l N,2l_~~_.:>!_~LN,2)~ Q(l:N,2): Q(l N,2) I Q(l N,2)~(1 N,2)+ ! Q(l:N,2) Q(l:N,2) 
j ----- -------

' I 

---~--~ 

' M(N) 
1 

M(N) 1 M(N) M(N) P(l) P(2) P(N-6) P(N 5) 

N ' ' 
Q(l:N,N) Q(l:N.N)I Q(l:N,N)I Q(l:N,N) Q(l:N,N) Q(I:N,N) Q(I:N,N) Q(l:N,N) Q(!N,N) 

FIGURE 15 The alil2'nment of arrays .\1. P, and Q with decomposition DEC9. 

regular distribution attributes are available. 
namelv BLOCK, CYCLIC, and BLOCK_CY­
CLIC: their use implicitly creates a processor ar­
ray in that the target processors are allocated as 
evenly as possible between the dimensions. 

DISTRIBUTE DEC9(BLOCK, *) 
DISTRIBUTE DEClO(CYCLIC, 
BLOCILCYCLIC(2)) 

The above examples are illustrated in Figure 16 
for the case where n$proc = 4. Figure 16a shows 
the first dimension of the decomposition DEC9 
partitioned into contiguous blocks distributed be­
tween the processors p1 to p4: the remaining di­
mension of DEC9 is not distributed. The elements 
of DEClO (assumed to have been declared with 
size 8x8) are distributed individually. in a round­
robin fashion. in one dimension and grouped into 
blocks of size 2 in the other dimension, these 
blocks also being distributed cyclically as shown 
in Figure 16b. 

Another example of the use of the DISTRIB­
UTE statement is given in Figure 1? for the Jacobi 

I N 
-----~l 

pi ~-----1-
--~ 

-->-- ----1 I 
p2 processor to which 

.. ------j this section of DEC9 
is distributed 

DEC9 p3 

-I 
I p4 I 

I Nl -
FIGURE 16a The distribution pattern of the ~Xi\ de­
composition DEC9. 

relaxation example where 16 target processors are 
specified and a decomposition DD of size 
128X 128 is declared. Having mapped arrays 
OLD and l\EW directly onto DD it is then distrib­
uted in BLOCK fashion in both dimensions over 
the target processors. Because processors are allo­
cated evenly between the dimensions of a decom­
position this example causes DD (and hence the 
arrays OLD and l\EW) to be partitioned and dis­
tributed as 16 (i.e., 4X4) contiguous blocks. each 
of size 32X32 elements. 

Extended forms of the regular distribution at­
tributes are provided, allowing the programmer to 
specify explicitly the number of processors allo­
cated to each dimension. As virtual processors are 
not supported in Fortran D the programmer must 
ensure that the specified attributes do not require 
more processors than n$proc. The number of 

2 3 4 5 6 7 8 
I T-- i 
I I. pi pi p3 p3 pi pi p3 p3 I 

' 
2 p2 p2 p4 p4 p2 p2 p4 p4 

-+--~--1 r 3 pi pi p3 p3 pi pl p3 p3 

·-~·~-- --- ----+- --

4 p2 p2 p4 p4 p2 p2 p4 p4 j 
5 pl pi p3 p3 pl pi p3 p3 1. 

: DEC10(8, 8) 
I 

6 p2 p2 p4! p4 p2 p2 p4 p4 

7; ~-~~ F~~ p3 pi pi p3 p3 

8 p4 I p2 p2 p4 p4 

l I ' -~- -----

FIGURE 16b The distribution pattern of the 8 X 8 de-
composition DEClO. 
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PROGRAM JACOBIRELAXATION 
n$proc = 16 

C 16 TARGET PROCESSORS DECLARED 
REAL OLD, NEW 
DIMENSION OLD(128, 128), NEW(128, 128) 
DECOMPOSITION DD(l28, 128) 
ALIGN OLD, NEW with DD 
DISTRIBUTE DD(BLOCK, BLOCK) 

C BOTH OLD AND NEW ARE NOW PARTITIONED IN A 
C 4X4 FASHION (AS BLOCKS OF SIZE 32X32) AND 
C DISTRffiUTED OVER 16 TARGET PROCESSORS. 
C INPUT VALUES OF ARRAY 'OLD' 

DO 10 1=2, 127 
DO 10 J = 2, 127 

NEW(!, J) = C *(OLD(!, J) +OLD(!- I, J) +OLD(!+!, J) 
& +OLD(I,J-l)+OLD(I,J+l)) 

10 CONTINUE 
C OUTPUT VALVES OF ARRAY 'NEW' 

END 

FIGURE 17 Fortran D code for Jacobi relaxation. 

processors per dimension is specified as an extra 
parameter. Taking the distribution of the decom­
position DD in the Jacobi relaxation example, if 
rather than allocating the 16 target processors 
evenly between its two dimensions, giving the 4x4 
scheme shown in Figure 18a, we had instead re­
quired the 2 X 8 scheme illustrated in Figure 18b 
then the DISTRIBUTE statement would have 
been written as follows 

DISTRIBUTE DD(BLOCK(2), BLOCK(8)) 

Irregular distributions are achieved in Fortran D 
by using replicated or distributed mapping arrays 
of integers in a manner analogous to the use of the 
INDIRECT distribution function in Vienna For­
tran. In the following example element R(I, J) is 

DISTRIBUTE DD(BLOCK(2), BLOCK(8)) 

32 64 96 128 

pi p5 p9 pl3 

2 ..., 
..... 

' p2 p6 p!O p14 

64 DD(l2 8, 128) 

p3 I p7 pll piS 

9 6 

p4 ~p12 p16 

8 12 

FIGURE 18a The mapping of decomposition DD 
onto 16 processors, resulting from the even allocation of 
processors between dimensions. 

distributed to the processor identified by the value 
of the mapping array element MAP(I, J) 

n$proc = 16 
REAL R(4, 4) 
INTEGER MAP(4, 4) 
DECOMPOSITION DEC11(4, 4), 

DEC12 (4, 4) 
ALIGN R with DECll 
ALIGN MAP with DEC12 
DISTRIBUTE DEC12(CYCLIC, BLOCK) 

C FILL MAP WITH PROCESSOR ID NUMBERS 

DISTRIBUTE DECll(MAP) 

Fortran D also supports the dynamic alignment 
and distribution of arrays where both ALIGN and 
DISTRIBUTE are executable statements. As the 
example below illustrates, however, Fortran D dif­
fers from Vienna Fortran by not discriminating 
between statically and dynamically distributed ar­
rays. 

REAL S(N, N), T(N, N) 
DECOMPOSITION DEC13(N, N) 
ALIGNS, T with DEC13 
DISTRIBUTE DEC13(CYCLIC, CYCLIC) 

C BOTH S AND T ARE DISTRIBUTED 
(CYCLIC, CYCLIC) 

DISTRIBUTE DEC13(BLOCK, BLOCK) 
C BOTH S AND T ARE NOW REDISTRIBUTED 
(BLOCK, BLOCK) 

ALIGN T(I, J) with DEC13(J, I) 
C THE TRANSPOSE OF T IS NOW ALIGNED 
WITH S 

I 16 32 48 64 80 96 112 128 
11-1 ,- --- ! 

p31 
i 

p9 1 pll I p13 pi p5 p7 I piS 
I . 

! 

641 
-~ 

I 00(128, 128) 

i p2 p4 . p6 p8 p!O pl21 p14 p16 

I 

128 

FIGURE 18b The mappinf! of decomposition DD 
onto 16 processors. resulting from an uneven allocation 
of processors between dimensions. 



Distributed arrays may be used as actual pa­
rameters to procedures and such an array may be 
dynamically redistributed within a procedure. 
However, unlike the Vienna Fortran equivalent 
such redistribution cannot be maintained outside 
the procedure because Fortran D limits the effect 
of a DECOMPOSITION, ALIGN, or DISTRIB­
UTE to the scope of the enclosing procedure. An­
other difference with Vienna Fortran is the lack of 
a facility for the querying of distribution patterns 
at run-time. 

Although ordinary sequential-style DO loops 
may be used for regular computations, situations 
can arise where a compiler cannot fully exploit the 
inherent parallelism in such a loop (e.g., irregular 
computations) and must make worst-case as­
sumptions about interiteration dependences. In 
these cases, if the programmer knows that parallel 
execution will be possible then, as in Vienna For­
tran, a FORALL loop may be specified instead; 
communication-free, determinate parallel execu­
tion of the loop iterations is then obtained (al­
though communication may still be required be­
fore and after the loop for nonlocal values). In 
each iteration of a FORALL loop only values de­
fined before the loop or within that iteration may 
be used. FORALL loops may be nested. 

Although the code produced by the compiler is 
by default based on the owner-computes model, it 
is possible to override this using an ON clause, 
which specifies on which processor each iteration 
of a FORALL loop will execute, for example 

n$proc = 16 
REAL U(400, 400), V(400, 400), 
W(400, 400), X (400, 400) 
DECOMPOSITION DEC14(400, 400) 
ALIGN U, V, W, X with DEC14 
DISTRIBUTE DEC14(BLOCK, BLOCK) 

FORALL I = 201, 400 
FORALL J = 1, 400 ON HOME (X(I-200, J)) 

X(I, J) = (U(I-200, J) + V(I-200, J) 

+ W(I-200, J)) * X(I-200, J) 

END FOR 
END FOR 

In this example it will probably be more efficient to 
execute each assignment on the processor owning 
the right-hand side values rather than on that 
holding X(L J), thereby implementing the owner­
stores paradigm. This is achieved by the use of the 
HOME function. which returns the identifier of 
the processor owning the specified datum X(I-
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200, J) and is analogous to the OWNER intrinsic 
function in Vienna Fortran. 

As with Vienna Fortran, the range of applica­
tions that may be efficiently parallelized using 
Fortran Dis extensive., but the comprehensive set 
of extended features that it provides makes possi­
ble a substantial increase in the involvement of the 
programmer in the program parallelization pro­
cess and a corresponding increase in the complex­
ity (and error proneness) of that task. 

2.8 Booster 

Paalvast et al. [28, 29] describe the Booster lan­
guage, a subproject of the ParTool Parallel Pro­
cessing Environment project. Booster enables the 
description of parallel algorithms, based on array­
like data structures, for both shared memory 
multiprocessors and DMMs. Booster introduces 
the concepts of index and data domains. An index 
domain consists of ordered index sets (each of 
which is a finite set of tuples of integers) and a 
data domain consists of data values of certain 
types. Different syntaxes are used for manipula­
tions on index and data domains; data manipula­
tions are imperative whereas index manipulations 
are functional. 

The only data structure provided is the shape, 
which is a finite set of elements whose values are 
all of a single data type; each element is uniquely 
associated with an index of the shape's index set. 
Shapes differ from conventional arrays in that a 
shape-index set may be more complex than the 
simple linear indexing of an array. Selected shape 
elements are referenced using views. A view is not 
a data structure but is constructed from the index 
sets of one or more shapes. Effectively the view is 
an abstraction of array-like access and removes 
the need for index loops. 

Examples of these concepts can be seen in Fig­
ure 19 which is the algorithm module for an im­
plementation of the Jacobi relaxation method. A 
Booster program consists of a collection of sepa­
rately compiled modules of which there are two 
types, an algorithm module and an annotation 
module (considered later). in this example, OLD 
and NEW are declared as shapes of size 128 X 

128 elements and the computation shows the use 
of the simple view [1 :126, 1 :126] applied to the 
shape ]\;EW and other simple views applied to 
OLD to effect the update. 

In the next example the shape Sis declared as a 
rectangular 3 X 4 data structure and V is a view 
identifier defined as a view on S such that V[O, 0], 
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MODULE Jacobi (OLD)-> NEW 
SHAPE OLD (128#128) OF REAL; 

NEW (128#128) OF REAL; 
BEGIN 

NEW[1:126, 1:126] := C * (OLD[0:125, 1:126] + OLD[1:126, 1:126] + 
OLD[2:127, 1:126] + OLD[1:126, 0:125] + 
OLD[ 1:126, 2: 127]); 

END. 

FIGURE 19 Algorithm module for an implementation 
of Jacobi relaxation in Booster. 

V[O, 1], ... , V[2, .3] reference S[O, 01. S[O, 1], 
... , S[2, 3], respectively. 

SHAPE S(3#4) OF REAL; 
V ~ S; 

This view identifier V mav then be redefined or 
used to define other views of S, for example 

Vl ~ V [ 0 : 2 , 3] 

defines the view identifier V1 so that it references 
the fourth column of shape S. 

Irregular computations may be expressed in 
Booster using content selection views as follows 

SHAPE A(lO) OF REAL; 
B (10) OF INT; 

A [B<4] ... 

The view [B<4l is a content selection view be­
cause the Boolean expression B<4 results in an 
index set whose elements reference the values of B 
which obey this expression: this index set is then 
applied to A. Hence if B is the set {2, 1. 6, 6, .3, 7} 
then the index set B<4 is {1, 2, 5} and the ele­
ments referenced in A are A[1;, A[2L and A[5;. 
Clearly irregularity will result when A is distributed 
because the precise elements of A that are being 
referenced cannot be determined until run-time. 

The algorithm modules of a Booster program 
are machine independent and as a result informa­
tion regarding the decomposition and distribution 
of data over processor memories, and the assign­
ment of computation responsibility to processors. 
must be provided by the programmer in an anno­
tation module using an annotation language. 

Within an annotation module, the programmer 
first specifies a virtual machine that serves as a 
model onto which data and associated computa­
tion responsibility may be mapped. The processor 
structure of the virtual machine mav be defined 
separately from its memory structure, for example 

VIRTUAL MACHINE sharedmem 
(PROC procr(p), MEM memory(m)); 

declares a machine called sharedmem with a sin­
gle memory of size m, shared among p processors. 
whilst 

VIRTUAL MACHINE distribmen 
(PROC procr(p), MEM memory(n) (m)); 

declares a machine called distribmem consisting 
of p processors and n memory units each of size 
m. 

In the annotation module Jacobi (Figure 20) the 
virtual machine \'yf consists of a processor-plus­
memory arrangement PYI made up of 16 identical 
processors, each with its own local memory of size 
2X32X32. The module also defines the mapping 
of the shape OLD and of the associated responsi­
bility for the computation of its elements .. onto the 
virtual machine VYl. In the statement 

OLD [i, j] ~VM [(i div32)*4 
+ j div 32, 0, i mod 32, j mod 32]; 

The first subscript in \'yl[ ... 1 defines the processor 
responsible for performing assignments to the de­
ment OLD[i, jJ. A variant of the owner-computes 
convention is employed-the processor responsi­
ble for assignment to a shape element on the left­
hand side of an assignment statement is also re­
sponsible for the calculation of the expression on 
the right-hand side. The remaining :-;ubscripts in 
V:YI[ ... ] define the location on the local memory of 
the processor identified by the first subscript. into 
which the element OLD[i, j] is to be mapped. In­
terarray alignment is practised using the virtual 
machine as a reference frame. 

Thus the shape OLD is partitioned into 16 (i.e .. 
4 X 4) contiguous blocks. each of which is stored in 
the local memory of one of the 16 processors of 
VM. The same distribution is performed on the 
shape l\EW. giving the mapping shown in Figure 

ANNOTATION MODULE Jacobi; 
VIRTUAL MACHINE VM (PROCMEM PM (16)(2#32#32)); 
IMPORT Jacobi:: OLD. NEW (128#128); 
OLD [i, j] <- VM [(i div 32)*4 + j div 32, 0, i mod 32, j mod 32]; 
NEW[i,j] <- VM [(i div 32)*4 + j div 32, 1, i mod 32 ,j mod 32]; 
REAL MACHINE RM (PROCMEM RPM (16)(1max#mmax#nmax)); 
VM[i, 1, m, n] <- RM[i, 1, m, n]; 
END. 

FIGURE 20 Annotation module for an implementa­
tion of Jacobi relaxation in Booster. 
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FIGURE 21 The mapping of shapes OLD and :\'E\\ over the virtual machine Y\L 

21. Each local memory must therefore be capable 
of storing two 32 X :32 bloch of data. 

The programmer may also define a real ma­
chine and a mapping of the virtual machine. The 
processors of the real machine need not be identi­
cal and, unlike the virtual machine, a real ma­
chine possesses an interconnection structure. al­
though this is only visible to the compiler and not 
to the programmer. An example of a real machine 
is the machine Rvi in Figure 20. This consists of a 
processor-plus-memory arrangement RP:VI which 
comprises 16 processor-plus-memory units. each 
memory being of size lmax X mmax X nmax 
(where lmax 2: I. nrmax 2: nL and nrnax 2: n). 
These processors might be arranged as a 4 X 4 grid 
with a nearest-neighbor interconnection stru(> 
ture. Figure 20 specifies a very simple mapping 
from VM to R:VI, with each virtual processor being 
mapped onto its own real processor and each vir­
tual machine memory location being mapped onto 
its real counterpart. 

Although the above example defines a mapping 
in terms of a shape identifier (OLD and 1\E\V). 
giving a static distribution. it is possible to define a 
mapping in terms of a view identifier instead. Cn­
like a shape, the size of a view may change at run­
time; consequently a mapping defined in terms of 

MODULE shrinker (SH) -> (SH) 
SHAPE SH(4) OF REAL; 
BEGIN 

VW<-SH; 
WHILE SIZE (VW) > 0 DO 

computation 
VW <- VW[lwb:upb-2]; 

END; 
END. 

FIGURE 22a Algorithm module for ·'shrinking view'' 
example. 

a view identifier may also change. thereby achiev­
ing dynamic distribution. For example, in Figure 
22a V\V is declared as a view on shape SH. In 
each -WHILE iteration the view VW is redefined 
such that it shrinks: initially the correspondence 
between view V\V and shape SH is 

VW[O] 

VW[2] 
SH [0], VW [1] 

- SH [ 2] , VW [ 3] 

SH[l], 

SH[3] 

but after one iteration vw- is redefined so that the 
correspondence becomes 

VW[O] = SH[O], VW[l] = SH[l] 

(in Figure 22a, lwb and upb are lower bound and 
upper bound, respectively). 
The corresponding annotation module is given in 
Figure 22b which introduces a virtual machine 
and defines a mapping. 

Initially the value of the parameter VWsize is 4, 
giving the mapping shown in Figure 23a. How­
ever, after one iteration vw-size has the value 2 
and the mapping is as shown in Figure 23b. Dy­
namic distribution has occurred because shape 
element SH(1) has been moved from the local 
memory of processor 0 to that of processor 1. 
thereby achieving load balancing for the next 
phase of the computation. 

ANNOTATION MODULE shrinker; 
VIRTUAL MACHINE virt (PROCMEM procr(2)(2)); 
IMPORT shrinker :: VW(VWsize); 
VW[i] <- virt[i div (VWsize div 2), i mod (VWsize div 2)]; 
END. 

FIGURE 22b Annotation module for "shrinking 
view" example. 
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processor memory 

VW[O] VW[l] VW[2] VW[3] 

FIGURE 23a Initial state of virtual machine virt: the 
relationship between view VW and shape SH is also 
indicated. 

An accompanying calculus, called V -cal, has 
been developed as a formal basis for Booster. The 
algorithm modules constituting the computational 
parts of a program are translated into an equiva­
lent V -cal representation of the program. Trans­
formations and optimizations are performed on 
this V -cal representation. The information con­
tained in the annotation module is then translated 
into V -cal form; this is integrated with the V -cal 
representation of the computational code and the 
result undergoes some further optimizations. Fi­
nally an equivalent parallel program is generated 
using the SPMD model. 

The implementation of a compiler to translate 
Booster programs to Fortran and C is currently in 
progress. The Booster parallel software develop­
ment strategy is experimental and iterative with 
the compiler returning feedback information to 
the programmer which will, for example, enable 
an estimation of the amount of parallelism lost or 
introduced by different mappings. and the detec­
tion of communication hot-spots. Booster pro­
vides constructs that enable the specification of 
alternative mappings. The choice between alter­
natives is made by the compiler. so these con­
structs do not imply any dynamic distribution 
ability (i.e., they are not executable). The choice 
construct is of the (self-explanatory) form: 

processor memory 

VW[O] 

c (,;.( a 
l 

I 

VW[l] 

FIGURE 23b State of virtual machine virt after one 
iteration; the relationship between view VW and shape 
SH is also indicated. 

IF condition THEN mapping-statements 1 

ELSE mapping-statements 2 

where the condition may be dependent on, for ex­
ample, the size of a shape; the alternative con­
struct is of the form; 

ALTERNATIVE mapping-statements 1 

{OR mapping-statementsi} END 

This construct specifies a list of mapping strate­
gies, one of which is chosen by the compiler. The 
compiler will also inform the programmer of the 
annotations that it has chosen in the case of AL­
TERNATIVE annotations or in cases where map­
pings have not been provided by the programmer. 
An example of the latter is an assignment state­
ment in which some of the participant shapes 
have no mappings defined. In such a situation the 
compiler may select mapping annotations such 
that (relevant dimensions of) these shapes are 
mapped in the same way as an already mapped 
participant shape. The compiler may also make 
use of data dependence information in such situa­
tions or simply select a predefined built-in map­
ping. The compiler feedback information allows 
the programmer to improve upon chosen annota­
tions and perhaps also the computational code. 

The Booster system differs significantly from 
the other svstems outlined in that its source lan­
guage is not based on an existing, well-known lan­
guage. Booster contains several novel concepts 
that present a considerably greater barrier to the 
new user than the simple, relatively intuitive lan­
guage extensions employed by the other systems. 
Furthermore, it is perhaps unfortunate that even 
the simplest mappings (such as block distribution) 
must be defined explicitly-no intrinsic mappings 
are available to the programmer-although this 
same feature allows the specification of relatively 
irregular mappings. The separation of mapping 
information (annotations) from the algorithm en­
ables experimentation with different mappings. 
and even different machines .. without altering the 
computational code. See summarv table (Table 
1). 

3 DATA PARTITIONING AND 
DISTRIBUTION IN OTHER SYSTEMS 

This section outlines some of the other systems 
that have made contributions towards the devel-



Table 1. Summary Table 

~ 0 
>! ~ ::0 ::0 

" " " [f) 7 7 a "0 (") 
System Source Language ::::: n, 

0 0 ~ 
t:) a a :t 

"0 "0 " 
~ ~ 2 
~ ~ 

SCPERB Fortran ?7 Yes Yes :\'o 

ld 1'\ouveau Id :\'ouveau :\'o Yes Yes 

Kali Pascal Yes Yes Yes 

ARF Fortran 77 Yes Yes Yes 

ADAPT Fortran 90 Yes Yes :\'o 

Vienna Fortran Fortran ?? and 90 Yes Yes Yes 

Fortran D Fortran ?7 and 90 Yes Yes Yes 

Booster Booster Yes Variant 

opment of language constructs for data partition­
ing and distribution. 

The source language for Pandore II [30, 31] is 
a subset of C, with data distribution syntax exten­
sions from which message-passing DMYI code is 
generated. The SPMD and owner-computes para­
digms are employed: howeveL irregular computa­
tions are not supported. A Pandore II source pro­
gram is a sequential program called distributed 
phases. A distributed phase is similar to a proce­
dure in that its definition is given a name and a 
formal parameter list and its body is sequential 
code (the source language for Pandore II does not 
contain any parallel constructs). A distributed 
phase may only be called from within the main 
program. The partitioning (into blocks) and distri­
bution of the data arravs used in a distributed 
phase are specified in the formal parameter list of 
the phase (called its distributed parameter list). 
After the partitioning of an array into blocks. the 
blocks are distributed over the processors of the 
target machine. The mapping of the blocks onto 
processors can be specified using one of two map­
ping styles, regular (contiguous allocation of 
blocks to processors) or wrapped (cyclic alloca­
tion). 1\"o particular processor arrangement is as­
sumed in Pandore II: the user may specify the 
number of processors at compile-time using the 
command line interface. It is assumed that there is 
an efficient routing system in the target machine. 

ADAPTOR (Automatic DAta Parallelism 
TranslatOR) [32] is a source-to-source transla­
tion package that translates programs written in a 
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subset of Fortran 77 (extended with some CM 
Fortran features and many of the array-syntax 
features of Fortran 90) into message-passing For­
tran 77 host and node programs for the iPSC I 860 
hypercube; other targets include the Meiko Con­
certo and the Parsytec GCel. The user consults an 
interactive transformation tool, XAdaptor, which 
provides analysis information on user-selected 
code units that the user can use to alter the source 
code and to insert data distribution directives: 
these directives may be used to specify block or 
cvclic distribution of the last one or two dimen­
sions of an array. The generated code incor­
porates calls to message-passing communication 
routines from a DALIB (Distributed Array 
LIBrary). ADAPTOR does not support dynamic 
redistribution. 

DINO (Distributed Numerically Oriented lan­
guage) [33] was one of the first systems in this 
area to be implemented (1986 ). It comprises stan­
dard C extended with high-level constructs for the 
description of parallel numerical algorithms for 
DMMs. There are three key concepts in DII'O: 
environments. distributed data, and composite 
procedures. An environment consists of data and 
procedures and is equivalent to a process: the 
user. in declaring an environment structure. effec­
tively defines a virtual parallel machine to fit the 
communications and number of processes re­
quired by a parallel algorithm. Data structures are 
distributed over this virtual machine/ environment 
structure by specifying one-to-one or one-to­
many mappings that may be user defined (and 
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hence potentially irregular) or selected from a set 
of built-in functions offering block, cyclic, and 
replicate distributions. All data distributions are 
static and explicit alignment is not supported. A 
composite procedure is a set of identical proce­
dures, one in each environment in a given stnic­
ture, that are called concurrently. Dll'\0 requires 
not only explicit parallel programming (in the form 
of composite procedures) but also the explicit 
marking of nonlocal accesses, using the '#' 
svmbol. 

Dataparallel C[34] is a SIMD-extended C vari­
ant and derivative of the C* language [35]. The 
programmer must specify groups ("domains") of 
virtual processors and the local computations and 
data for these domains. A global name space is 
supported but nonlocal references must be pre­
fixed by a reference to the appropriate domain 
instance (the virtual processor owning the data). 
Predefined and user-defined static data mappings 
are possible. Dataparallel C compilers exist for 
shared memory multiprocessors (Sequent Sym­
metry S81) and DMMs (iPSC/2, nCUBE 3200). 

Koelbel and others [36, 37] describe a com­
piler that accepts programs written in BLAZE (a 
largely sequential language but with functional 
procedure calls) and annotated with arrav distri­
bution details. The compiler automatically gener­
ates equivalent E-BLAZE code where E-BLAZE 
is a superset of BLAZE, which effectively provides 
a virtual target architecture for the compiler. Par­
allel loops are specified using a forall construct. 
Data distributions are static and there is no pro vi­
sion for explicit alignment of arrays. The BLAZE 
project has been targeted at nonuniform memory 
access (1'\UMA) machines, such as the BBN But­
terfly and the IBM RP3; its successor. Kali, targets 
DMMs. 

Baber's Hypertasking system [381 translates C 
code annotated with data (block) distribution di­
rectives into message-passing code for the iPSC; 
other directives enable the delineation of loops 
that iterate over local data onlv. Distributed arravs . . 
are prohibited from being passed in procedure 
calls but dynamic redistribution is provided. 

Carriero and others [39, 40] present the Linda 
parallel programming model. This is a memory 
model, based on the idea of tuple space and mak­
ing use of the Linda coordination language in or­
chestrating coarse-grain parallel processes, which 
have been programmed in, for example, C code. 
Distributed data structures are used to provide a 
shared memory abstraction and can be regarded 
conceptually as free-floating, delocalized struc-

tures that are accessible simultaneously by several 
processes. 

Crystal [41, 42] is a high-level functional lan­
guage compiled for execution on a D~fvl by a 
compiler capable of implementing automatic data 
decomposition. Consequently, no indication of 
data partitioning/ distribution need be supplied by 
the programmer. On compilation a Crystal pro­
gram is divided into different computational 
phases, each represented by an index domain: 
each phase has associated with it a set of data 
fields that are interrelated by data dependence. 
Data arrays are heuristically aligned with index 
doml\ins and a varietv of block distributions are 
supported. Crystal has also been used as an inter­
mediate language in the Crystallizing Fortran pro­
ject, transforming Fortran programs for execution 
on massively parallel machines. 

Another compiler capable of automatic data 
decomposition is ASP AR [ 43] for C or Fortran 77 
programs. ASPAR recognizes four general types of 
loop and uses pattern-matching techniques to de­
tect common reference patterns, or stencils. in the 
program. Using a knowledge base, a given stencil 
and loop type direct the selection of collective 
communication calls in the message-passing tar­
get program and an array within the loop is stati­
cally distributed as contiguous blocks of elements. 
A major drawback is that ASPAR makes some as­
sumptions that can result in the semantic modifi­
cation of the program. 

Paragon [ 44] is a programming environment 
supporting the execution of SniD programs on 
DMMs. Data distribution is performed by either 
the user or the system; user-specified. arbitrary. 
contiguous, rectangular data distributions are 
permitted, although only the first two dimensions 
of a given array may be distributed. Array re(lis­
tribution is supported but explicit alignment is 
not. 

The AL language [ 4.5: is compiled for the 
WARP distributed memory systolic array. Distrib­
uted arrays are specified as such in DARRAY dec­
larations. Only one dimension of such an array 
may be distributed and given the programmer· s 
indication of this dimension the AL compiler au­
tomatically generates a distribution. 

The ::\<1Lv1Dizer [ 46' is a commercially available 
programming environment targeting both shared 
and distributed memorv ::\<IL\1D machines. For 
DMMs the user interactivelv selects block. cvclic. . . 
or replicate distributions (maintained in a sepa­
rate file) for a chosen arrav dimension: the user is 
also interactively involved in introducing parallel-



ism by specifying code spreading of loops, hence, 
like SUPERB, this system is not fully automatic 
after the data distribution has been specified. 

Ruhl and Annaratone [ 4 7] present the ETHZ 
Oxygen compiler for the K2 experimental distrib­
uted memory machine. This system differs from 
the others in that it uses a functional rather than a 
data-driven parallelization strategy. The user in­
serts directives in the Fortran source code to indi­
cate task-level and loop-level parallelism, reduc­
tions, and broadcast communications. Arrays 
may be private, replicated. or distributed (in a 
row-oriented, column-oriented, or ring fashion). 

4 CONCLUSIONS 

Features such as dynamic data distribution, irreg­
ular data distributions. support for irregular com­
putation, circumvention of the owner-computes 
rule, interarray alignment (and the ability to main­
tain such an association after redistributions). 
run-time querying of distribution patterns, etc. 
are all desirable for ensuring the efficient parallel 
execution of a wide range of applications on 
D.\1Ms. The systems presented in Section 2 of this 
article vary widely in the range of such features 
made available to the user and in the depth to 
which the user may become involved in the paral­
lelization process. 

In the ideal case a parallelizer would take re­
sponsibility for all aspects of parallelization be­
cause users of such systems will generally be non­
computer scientists who wish to be involved a,; 
little as possible in the parallelization proces,;. 
while seeking the maximum possible performance 
of their applications. However. certain aspects of 
distributed memory parallelization are intractable 
for even the most capable ,.;ystem: not lea,;t of 
the,.;e is the 1'\P-completeness of the ·'shapes·· 
problem (that of finding an optimal storage pat­
tern for parallel execution in the general case) as 
proved by :\<lace [ "±8]. 

Hence. for the majority of problems, user assis­
tance is required and because data distribution 
has a significant effect on the performance nf a 
parallelized program a sufficiently wide and ex­
pressive range of features must be provided by a 
parallelizing compiler to enable the specification 
of sufficiently precise distribution specifications 
for a wide range of problem type,o;. The greater the 
control afforded by the provision of these features 
the greater the penalty incurred. namely. the ero­
sion of the shared memorv abstraction. A balance 
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must therefore be determined between, on the one 
hand, taking the responsibility for parallelization 
away from the users and, on the other, providing 
them with the control needed to obtain efficient 
parallel code. In other words automation and high 
performance are, in general, mutually exclusive. 

In general, the user cannot avoid giving at least 
some thought to the formulation of data parallel­
ization annotations. Although these annotations 
will insulate the user from the real technicalities of 
DMM programming (processes, message-passing 
communication, and so on), this abstraction will 
be destroyed if appropriate debugging facilities 
are not provided: otherwise the user will be faced 
with the formidable task of debugging message­
passing target code which, even if the user is fa­
miliar with the message-passing paradigm, will 
not have been seen previously. 

Finally it must be pointed out that these paral­
lelizing compilers complement but do not replace 
the programming of D.\1Ms by explicit message­
passing techniques. The situation is analogous to 
the use of high-levellanguages to write uniproces­
sor code, where assembly language may be used 
for the most performance-critical cases. D.\1M 
programming systems such as those suggested by 
this article mav be used for the ease of use and 
reduction of development time whereas lower­
level message-passing methods may be used in 
cases where performance is particularly critical 
and none of the available parallelizing svstems 
can provide the required facilities. 
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