1,089 research outputs found

    Competitive Data Trading Model with Privacy Valuation for Multiple Stakeholders in IoT Data Markets

    Get PDF
    With the widespread of Internet of Things (IoT) environment, a big data concept has emerged to handle a large number of data generated by IoT devices. Moreover, since data- driven approaches now become important for business, IoT data markets have emerged, and IoT big data are exploited by major stakeholders such as data brokers and data service providers. Since many services and applications utilize data analytic methods with collected data from IoT devices, the conflict issues between privacy and data exploitation are raised, and the markets are mainly categorized as privacy protection markets and privacy valuation markets, respectively. Since these kinds of data value chains (which are mainly considered by business stakeholders) are revealed, data providers are interested in proper incentives in exchange for their privacy (i.e., privacy valuation) under their agreement. Therefore, this paper proposes a competitive data trading model that consists of data providers who weigh the value between privacy protection and valuation as well as other business stakeholders. Each data broker considers the willingness-to-sell of data providers, and a single data service provider considers the willingness-to-pay of service consumers. At the same time, multiple data brokers compete to sell their dataset to the data service provider as a non-cooperative game model. Based on the Nash Equilibrium analysis (NE) of the game, the feasibility is shown that the proposed model has the unique NE that maximizes the profits of business stakeholders while satisfying all market participants

    Data Trading and Monetization: Challenges and Open Research Directions

    Full text link
    Traditional data monetization approaches face challenges related to data protection and logistics. In response, digital data marketplaces have emerged as intermediaries simplifying data transactions. Despite the growing establishment and acceptance of digital data marketplaces, significant challenges hinder efficient data trading. As a result, few companies can derive tangible value from their data, leading to missed opportunities in understanding customers, pricing decisions, and fraud prevention. In this paper, we explore both technical and organizational challenges affecting data monetization. Moreover, we identify areas in need of further research, aiming to expand the boundaries of current knowledge by emphasizing where research is currently limited or lacking.Comment: Paper accepted by the International Conference on Future Networks and Distributed Systems (ICFNDS 2023

    Blockchain for Internet of Things:Data Markets, Learning, and Sustainability

    Get PDF

    Data Assets: Tokenization and Valuation

    Get PDF
    Your Data (new gold, new oil) is hugely valuable (est. $13T globally) but not a 'balance-sheet' asset. Tokenization- used by banks for payments and settlement- lets you manage, value, and monetize your data. Data is the ultimate commodity industry. This position paper outlines our vision and a general framework for tokenizing data, managing data assets and data liquidity to allow individuals and organizations in the public and private sectors to gain the economic value of data, while facilitating its responsible and ethical use. We will examine the challenges associated with developing and securing a data economy, as well as the potential applications and opportunities of the decentralised data-tokenized economy. We will also discuss the ethical considerations to promote the responsible exchange and use of data to fuel innovation and progress

    Preference-Based Privacy Markets

    Get PDF
    Correction IEEE ACCESS Volume9 Pages14179-14180 Article Numbere abe4038 DOI10.1109/ACCESS.2021.3051825 Published 2021In the modern era of the mobile apps (the era of surveillance capitalism - as termed by Shoshana Zuboff) huge quantities of surveillance data about consumers and their activities offer a wave of opportunities for economic and societal value creation. ln-app advertising - a multi-billion dollar industry, is an essential part of the current digital ecosystem driven by free mobile applications, where the ecosystem entities usually comprise consumer apps, their clients (consumers), ad-networks, and advertisers. Sensitive consumer information is often being sold downstream in this ecosystem without the knowledge of consumers, and in many cases to their annoyance. While this practice, in cases, may result in long-term benefits for the consumers, it can result in serious information privacy breaches of very significant impact (e.g., breach of genetic data) in the short term. The question we raise through this paper is: Is it economically feasible to trade consumer personal information with their formal consent (permission) and in return provide them incentives (monetary or otherwise)?. In view of (a) the behavioral assumption that humans are 'compromising' beings and have privacy preferences, (b) privacy as a good not having strict boundaries, and (c) the practical inevitability of inappropriate data leakage by data holders downstream in the data-release supply-chain, we propose a design of regulated efficient/bounded inefficient economic mechanisms for oligopoly data trading markets using a novel preference function bidding approach on a simplified sellers-broker market. Our methodology preserves the heterogeneous privacy preservation constraints (at a grouped consumer, i.e., app, level) upto certain compromise levels, and at the same time satisfies information demand (via the broker) of agencies (e.g., advertising organizations) that collect client data for the purpose of targeted behavioral advertising.Peer reviewe

    Towards a human-centric data economy

    Get PDF
    Spurred by widespread adoption of artificial intelligence and machine learning, “data” is becoming a key production factor, comparable in importance to capital, land, or labour in an increasingly digital economy. In spite of an ever-growing demand for third-party data in the B2B market, firms are generally reluctant to share their information. This is due to the unique characteristics of “data” as an economic good (a freely replicable, non-depletable asset holding a highly combinatorial and context-specific value), which moves digital companies to hoard and protect their “valuable” data assets, and to integrate across the whole value chain seeking to monopolise the provision of innovative services built upon them. As a result, most of those valuable assets still remain unexploited in corporate silos nowadays. This situation is shaping the so-called data economy around a number of champions, and it is hampering the benefits of a global data exchange on a large scale. Some analysts have estimated the potential value of the data economy in US$2.5 trillion globally by 2025. Not surprisingly, unlocking the value of data has become a central policy of the European Union, which also estimated the size of the data economy in 827C billion for the EU27 in the same period. Within the scope of the European Data Strategy, the European Commission is also steering relevant initiatives aimed to identify relevant cross-industry use cases involving different verticals, and to enable sovereign data exchanges to realise them. Among individuals, the massive collection and exploitation of personal data by digital firms in exchange of services, often with little or no consent, has raised a general concern about privacy and data protection. Apart from spurring recent legislative developments in this direction, this concern has raised some voices warning against the unsustainability of the existing digital economics (few digital champions, potential negative impact on employment, growing inequality), some of which propose that people are paid for their data in a sort of worldwide data labour market as a potential solution to this dilemma [114, 115, 155]. From a technical perspective, we are far from having the required technology and algorithms that will enable such a human-centric data economy. Even its scope is still blurry, and the question about the value of data, at least, controversial. Research works from different disciplines have studied the data value chain, different approaches to the value of data, how to price data assets, and novel data marketplace designs. At the same time, complex legal and ethical issues with respect to the data economy have risen around privacy, data protection, and ethical AI practices. In this dissertation, we start by exploring the data value chain and how entities trade data assets over the Internet. We carry out what is, to the best of our understanding, the most thorough survey of commercial data marketplaces. In this work, we have catalogued and characterised ten different business models, including those of personal information management systems, companies born in the wake of recent data protection regulations and aiming at empowering end users to take control of their data. We have also identified the challenges faced by different types of entities, and what kind of solutions and technology they are using to provide their services. Then we present a first of its kind measurement study that sheds light on the prices of data in the market using a novel methodology. We study how ten commercial data marketplaces categorise and classify data assets, and which categories of data command higher prices. We also develop classifiers for comparing data products across different marketplaces, and we study the characteristics of the most valuable data assets and the features that specific vendors use to set the price of their data products. Based on this information and adding data products offered by other 33 data providers, we develop a regression analysis for revealing features that correlate with prices of data products. As a result, we also implement the basic building blocks of a novel data pricing tool capable of providing a hint of the market price of a new data product using as inputs just its metadata. This tool would provide more transparency on the prices of data products in the market, which will help in pricing data assets and in avoiding the inherent price fluctuation of nascent markets. Next we turn to topics related to data marketplace design. Particularly, we study how buyers can select and purchase suitable data for their tasks without requiring a priori access to such data in order to make a purchase decision, and how marketplaces can distribute payoffs for a data transaction combining data of different sources among the corresponding providers, be they individuals or firms. The difficulty of both problems is further exacerbated in a human-centric data economy where buyers have to choose among data of thousands of individuals, and where marketplaces have to distribute payoffs to thousands of people contributing personal data to a specific transaction. Regarding the selection process, we compare different purchase strategies depending on the level of information available to data buyers at the time of making decisions. A first methodological contribution of our work is proposing a data evaluation stage prior to datasets being selected and purchased by buyers in a marketplace. We show that buyers can significantly improve the performance of the purchasing process just by being provided with a measurement of the performance of their models when trained by the marketplace with individual eligible datasets. We design purchase strategies that exploit such functionality and we call the resulting algorithm Try Before You Buy, and our work demonstrates over synthetic and real datasets that it can lead to near-optimal data purchasing with only O(N) instead of the exponential execution time - O(2N) - needed to calculate the optimal purchase. With regards to the payoff distribution problem, we focus on computing the relative value of spatio-temporal datasets combined in marketplaces for predicting transportation demand and travel time in metropolitan areas. Using large datasets of taxi rides from Chicago, Porto and New York we show that the value of data is different for each individual, and cannot be approximated by its volume. Our results reveal that even more complex approaches based on the “leave-one-out” value, are inaccurate. Instead, more complex and acknowledged notions of value from economics and game theory, such as the Shapley value, need to be employed if one wishes to capture the complex effects of mixing different datasets on the accuracy of forecasting algorithms. However, the Shapley value entails serious computational challenges. Its exact calculation requires repetitively training and evaluating every combination of data sources and hence O(N!) or O(2N) computational time, which is unfeasible for complex models or thousands of individuals. Moreover, our work paves the way to new methods of measuring the value of spatio-temporal data. We identify heuristics such as entropy or similarity to the average that show a significant correlation with the Shapley value and therefore can be used to overcome the significant computational challenges posed by Shapley approximation algorithms in this specific context. We conclude with a number of open issues and propose further research directions that leverage the contributions and findings of this dissertation. These include monitoring data transactions to better measure data markets, and complementing market data with actual transaction prices to build a more accurate data pricing tool. A human-centric data economy would also require that the contributions of thousands of individuals to machine learning tasks are calculated daily. For that to be feasible, we need to further optimise the efficiency of data purchasing and payoff calculation processes in data marketplaces. In that direction, we also point to some alternatives to repetitively training and evaluating a model to select data based on Try Before You Buy and approximate the Shapley value. Finally, we discuss the challenges and potential technologies that help with building a federation of standardised data marketplaces. The data economy will develop fast in the upcoming years, and researchers from different disciplines will work together to unlock the value of data and make the most out of it. Maybe the proposal of getting paid for our data and our contribution to the data economy finally flies, or maybe it is other proposals such as the robot tax that are finally used to balance the power between individuals and tech firms in the digital economy. Still, we hope our work sheds light on the value of data, and contributes to making the price of data more transparent and, eventually, to moving towards a human-centric data economy.This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Georgios Smaragdakis.- Secretario: Ángel Cuevas Rumín.- Vocal: Pablo Rodríguez Rodrígue

    Privacy markets in the Apps and IoT age

    Get PDF
    @TechReport{UCAM-CL-TR-925, author = {Pal, Ranjan and Crowcroft, Jon and Kumar, Abhishek and Hui, Pan and Haddadi, Hamed and De, Swades and Ng, Irene and Tarkoma, Sasu and Mortier, Richard}, title = {{Privacy markets in the Apps and IoT age}}, year = 2018, month = sep, url = {https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-925.pdf}, institution = {University of Cambridge, Computer Laboratory}, number = {UCAM-CL-TR-925} }In the era of the mobile apps and IoT, huge quantities of data about individuals and their activities offer a wave of opportunities for economic and societal value creation. However, the current personal data ecosystem is fragmented and inefficient. On one hand, end-users are not able to control access (either technologically, by policy, or psychologically) to their personal data which results in issues related to privacy, personal data ownership, transparency, and value distribution. On the other hand, this puts the burden of managing and protecting user data on apps and ad-driven entities (e.g., an ad-network) at a cost of trust and regulatory accountability. In such a context, data holders (e.g., apps) may take advantage of the individuals’ inability to fully comprehend and anticipate the potential uses of their private information with detrimental effects for aggregate social welfare. In this paper, we investigate the problem of the existence and design of efficient ecosystems (modeled as markets in this paper) that aim to achieve a maximum social welfare state among competing data holders by preserving the heterogeneous privacy preservation constraints up to certain compromise levels, induced by their clients, and at the same time satisfying requirements of agencies (e.g., advertisers) that collect and trade client data for the purpose of targeted advertising, assuming the potential practical inevitability of some amount inappropriate data leakage on behalf of the data holders. Using concepts from supply-function economics, we propose the first mathematically rigorous and provably optimal privacy market design paradigm that always results in unique equilibrium (i.e, stable) market states that can be either economically efficient or inefficient, depending on whether privacy trading markets are monopolistic or oligopolistic in nature. Subsequently, we characterize in closed form, the efficiency gap (if any) at market equilibrium

    Data Spaces

    Get PDF
    This open access book aims to educate data space designers to understand what is required to create a successful data space. It explores cutting-edge theory, technologies, methodologies, and best practices for data spaces for both industrial and personal data and provides the reader with a basis for understanding the design, deployment, and future directions of data spaces. The book captures the early lessons and experience in creating data spaces. It arranges these contributions into three parts covering design, deployment, and future directions respectively. The first part explores the design space of data spaces. The single chapters detail the organisational design for data spaces, data platforms, data governance federated learning, personal data sharing, data marketplaces, and hybrid artificial intelligence for data spaces. The second part describes the use of data spaces within real-world deployments. Its chapters are co-authored with industry experts and include case studies of data spaces in sectors including industry 4.0, food safety, FinTech, health care, and energy. The third and final part details future directions for data spaces, including challenges and opportunities for common European data spaces and privacy-preserving techniques for trustworthy data sharing. The book is of interest to two primary audiences: first, researchers interested in data management and data sharing, and second, practitioners and industry experts engaged in data-driven systems where the sharing and exchange of data within an ecosystem are critical
    corecore