10 research outputs found

    Compensations in the Shapley value and the compensation solutions for graph games

    Get PDF
    We consider an alternative expression of the Shapley value that reveals a system of compensations: each player receives an equal share of the worth of each coalition he belongs to, and has to compensate an equal share of the worth of any coalition he does not belong to. We give an interpretation in terms of formation of the grand coalition according to an ordering of the players and define the corresponding compensation vector. Then, we generalize this idea to cooperative games with a communication graph. Firstly, we consider cooperative games with a forest (cycle-free graph). We extend the compensation vector by considering all rooted spanning trees of the forest (see Demange 2004) instead of orderings of the players. The associated allocation rule, called the compensation solution, is characterized by component efficiency and relative fairness. The latter axiom takes into account the relative position of a player with respect to his component. Secondly, we consider cooperative games with arbitrary graphs and construct rooted spanning trees by using the classical algorithms DFS and BFS. If the graph is complete, we show that the compensation solutions associated with DFS and BFS coincide with the Shapley value and the equal surplus division respectively.

    Compensations in the Shapley value and the compensation solutions for graph games

    Get PDF
    We consider an alternative expression of the Shapley value that reveals a system of compensations: each player receives an equal share of the worth of each coalition he belongs to, and has to compensate an equal share of the worth of any coalition he does not belong to. We give an interpretation in terms of formation of the grand coalition according to an ordering of the players and define the corresponding compensation vector. Then, we generalize this idea to cooperative games with a communication graph. Firstly, we consider cooperative games with a forest (cycle-free graph). We extend the compensation vector by considering all rooted spanning trees of the forest (see Demange 2004) instead of orderings of the players. The associated allocation rule, called the compensation solution, is characterized by component efficiency and relative fairness. The latter axiom takes into account the relative position of a player with respect to his component. Secondly, we consider cooperative games with arbitrary graphs and construct rooted spanning trees by using the classical algorithms DFS and BFS. If the graph is complete, we show that the compensation solutions associated with DFS and BFS coincide with the Shapley value and the equal surplus division respectively.Shapley value ; compensations ; relative fairness ; compensation solution ; DFS ; BFS ; equal surplus division

    Compensations in the Shapley value and the compensation solutions for graph games

    Get PDF
    We consider an alternative expression of the Shapley value that reveals a system of compensations: each player receives an equal share of the worth of each coalition he belongs to, and has to compensate an equal share of the worth of any coalition he does not belong to. We give an interpretation in terms of formation of the grand coalition according to an ordering of the players and define the corresponding compensation vector. Then, we generalize this idea to cooperative games with a communication graph. Firstly, we consider cooperative games with a forest (cycle-free graph). We extend the compensation vector by considering all rooted spanning trees of the forest (see Demange 2004) instead of orderings of the players. The associated allocation rule, called the compensation solution, is characterized by component efficiency and relative fairness. The latter axiom takes into account the relative position of a player with respect to his component. Secondly, we consider cooperative games with arbitrary graphs and construct rooted spanning trees by using the classical algorithms DFS and BFS. If the graph is complete, we show that the compensation solutions associated with DFS and BFS coincide with the Shapley value and the equal surplus division respectively

    Estado del arte para un sistema de informaciĂłn para la valoraciĂłn estratĂ©gica y financiera de las empresas que desean cooperar en un clĂșster, basada en el valor de shapley

    Get PDF
    Bahinipati et al. (2009) [16] proponen un plan de reparto de ingresos y participantes de coaliciones en el mercado elĂ©ctrico de la Industria de semiconductores. Como resultado de la investigaciĂłn se concluyĂł que el beneficio total derivado del mecanismo desarrollado, incrementaba con el nĂșmero de eslabones de la Cadena de Suministro. Ahmadi y Hoseinpour (2011) [17] estudian la coordinaciĂłn de decisiones de publicidad en conjunto de una cadena de suministro conformada por Fabricante y Minorista, utilizando distintos modelos propios de la TeorĂ­a de juegos y analizando las posibles acciones de cada jugador dado ciertos escenarios
    corecore