16,591 research outputs found

    H∞ controller design for networked predictive control systems based on the average dwell-time approach

    Get PDF
    This brief focuses on the problem of H∞ control for a class of networked control systems with time-varying delay in both forward and backward channels. Based on the average dwell-time method, a novel delay-compensation strategy is proposed by appropriately assigning the subsystem or designing the switching signals. Combined with this strategy, an improved predictive controller design approach in which the controller gain varies with the delay is presented to guarantee that the closed-loop system is exponentially stable with an H∞-norm bound for a class of switching signal in terms of nonlinear matrix inequalities. Furthermore, an iterative algorithm is presented to solve these nonlinear matrix inequalities to obtain a suboptimal minimum disturbance attenuation level. A numerical example illustrates the effectiveness of the proposed method

    Comprehensive Control of Networked Control Systems with Multistep Delay

    Get PDF
    In networked control systems with multi-step delay, long time-delay causes vacant sampling and controller design difficulty. In order to solve the above problems, comprehensive control methods are proposed in this paper. Time-delay compensation control and linear-quadratic-Guassian (LQG) optimal control are adopted and the systems switch different controllers between two different states. LQG optimal controller is used with probability 1-α in normal state, which is shown to render the systems mean square exponentially stable. Time-delay compensation controller is used with probability α in abnormal state to compensate vacant sampling and long time-delay. In addition, a buffer window is established at the actuator of the systems to store some history control inputs which are used to estimate the control state of present sampling period under the vacant sampling cases. The comprehensive control methods simplify control design which is easier to be implemented in engineering. The performance of the systems is also improved. Simulation results verify the validity of the proposed theory

    Networked Predictive Control of Uncertain Constrained Nonlinear Systems: Recursive Feasibility and Input-to-State Stability Analysis

    Get PDF
    Abstract-In this paper, the robust state feedback stabilization of uncertain discrete-time constrained nonlinear systems in which the loop is closed through a packet-based communication network is addressed. In order to cope with model uncertainty, timevarying transmission delays, and packet dropouts (typically affecting the performances of networked control systems), a robust control scheme combining model predictive control with a network delay compensation strategy is proposed in the context of non-acknowledged UDP-like networks. The contribution of the paper is twofold. First, the issue of guaranteeing the recursive feasibility of the optimization problem associated to the receding horizon control law has been addressed, such that the invariance of the feasible region under the networked closed-loop dynamics can be guaranteed. Secondly, by exploiting a novel characterization of regional Input-to-State Stability in terms of time-varying Lyapunov functions, the networked closed-loop system has been proven to be Input-to-State Stable with respect to bounded perturbations

    A non-uniform predictor-observer for a networked control system

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s12555-011-0621-5This paper presents a Non-Uniform Predictor-Observer (NUPO) based control approach in order to deal with two of the main problems related to Networked Control Systems (NCS) or Sensor Networks (SN): time-varying delays and packet loss. In addition, if these delays are longer than the sampling period, the packet disordering phenomenon can appear. Due to these issues, a (scarce) nonuniform, delayed measurement signal could be received by the controller. But including the NUPO proposal in the control system, the delay will be compensated by the prediction stage, and the nonavailable data will be reconstructed by the observer stage. So, a delay-free, uniformly sampled controller design can be adopted. To ensure stability, the predictor must satisfy a feasibility problem based on a time-varying delay-dependent condition expressed in terms of Linear Matrix Inequalities (LMI). Some aspects like the relation between network delay and robustness/performance trade-off are empirically studied. A simulation example shows the benefits (robustness and control performance improvement) of the NUPO approach by comparison to another similar proposal. © ICROS, KIEE and Springer 2011.This work was supported by the Spanish Ministerio de Ciencia y Tecnologia Projects DPI2008-06737-C02-01 and DPI2009-14744-C03-03, by Generalitat Valenciana Project GV/2010/018, by Universidad Politecnica de Valencia Project PAID06-08.Cuenca Lacruz, ÁM.; García Gil, PJ.; Albertos Pérez, P.; Salt Llobregat, JJ. (2011). A non-uniform predictor-observer for a networked control system. International Journal of Control, Automation and Systems. 9(6):1194-1202. doi:10.1007/s12555-011-0621-5S1194120296K. Ogata, Discrete-time Control Systems, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.Y. Tipsuwan and M. Chow, “Control methodologies in networked control systems,” Control Eng. Practice, vol. 11, no. 10, pp. 1099–1111, 2003.T. Jia, Y. Niu, and X. Wang, “H ∞ control for networked systems with data packet dropout,” Int. J. Control, Autom., and Syst., vol. 8, no. 2, pp. 198–203, 2010.Y. Wang and G. Yang, “Robust H ∞ model reference tracking control for networked control systems with communication constraints,” Int. J. Control, Autom., and Syst., vol. 7, no. 6, pp. 992–1000, 2009.H. Gao and T. Chen, “Network-based H ∞ output tracking control,” IEEE Trans. Autom. Control, vol. 53, no. 3, pp. 655–667, 2008.H. Karimi, “Robust H ∞ filter design for uncertain linear systems over network with network-induced delays and output quantization,” Modeling, Identification and Control, vol. 30, no. 1, pp. 27–37, 2009.H. R. Karimi, “Delay-range-dependent linear matrix inequality approach to quantized H ∞ control of linear systems with network-induced delays and norm-bounded uncertainties,” Proc. of the Inst. of Mech. Eng., Part I: J. of Syst. and Control Eng., vol. 224, no. 6, pp. 689–700, 2010.K. Lee, S. Lee, and M. Lee, “Remote fuzzy logic control of networked control system via Profibus-DP,” IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 784–792, 2003.Y. Tipsuwan and M.-Y. Chow, “Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperationpart I: networked Control,” IEEE Trans. on Industrial Electronics, vol. 51, no. 6, pp. 1218–1227, December 2004.A. Sala, A. Cuenca, and J. Salt, “A retunable PID multi-rate controller for a networked control system,” Inform. Sci., vol. 179, no. 14, pp. 2390–2402, June 2009.A. Cuenca, J. Salt, V. Casanova, and R. Piza, “An approach based on an adaptive multi-rate Smith predictor and gain scheduling for a networked control system: implementation over Profibus-DP,” Int. J. Control, Autom., and Syst., vol. 8, no. 2, pp. 473–481, April 2010.A. Cuenca, J. Salt, A. Sala, and R. Piza, “A delay-dependent dual-rate PID controller over an Ethernet network,” IEEE Trans. Ind. Informat., vol. 7, no. 1, pp. 18–29, Feb. 2011.Y. Tian and D. Levy, “Compensation for control packet dropout in networked control systems,” Inform. Sci., vol. 178, no. 5, pp. 1263–1278, 2008.Y. Zhao, G. Liu, and D. Rees, “Modeling and stabilization of continuous-time packet-based networked control systems.” IEEE Trans. Syst., Man, Cybern. B, vol. 39, no. 6, pp. 1646–1652, Dec. 2009.X. Zhao, S. Fei, and C. Sun, “Impulsive controller design for singular networked control systems with packet dropouts,” Int. J. Control, Autom., and Syst., vol. 7, no. 6, pp. 1020–1025, 2009.H. Gao and T. Chen, “H ∞ estimation for uncertain systems with limited communication capacity,” IEEE Trans. Autom. Control, vol. 52, no. 11, pp. 2070–2084, 2007.S. Oh, L. Schenato, P. Chen, and S. Sastry, “Tracking and coordination of multiple agents using sensor networks: System design, algorithms and experiments,” Proc. of the IEEE, vol. 95, no. 1, pp. 234–254, 2007.M. Moayedi, Y. Foo, and Y. Soh, “Optimal and suboptimal minimum-variance filtering in networked systems with mixed uncertainties of random sensor delays, packet dropouts and missing measurements,” Int. J. Control, Autom., and Syst., vol. 8, no. 6, pp. 1179–1188, 2010.W. Zhang, M. Branicky, and S. Phillips, “Stability of networked control systems,” IEEE Control Syst. Mag., vol. 21, no. 1, pp. 84–99, 2001.J. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in networked control systems,” Proc. of the IEEE, vol. 95, no. 1, pp. 138–162, 2007.J. Baillieul and P. Antsaklis, “Control and communication challenges in networked real-time systems,” Proc. of the IEEE, vol. 95, no. 1, pp. 9–28, 2007.P. Garcia, P. Castillo, R. Lozano, and P. Albertos, “Robustness with respect to delay uncertainties of a predictor-observer based discrete-time controller,” Proc. of the 45th IEEE Conf. on Decision and Control, pp. 199–204, 2006.C. Lien, “Robust observer-based control of systems with state perturbations via LMI approach,” IEEE Trans. Autom. Control, vol. 49, no. 8, pp. 1365–1370, 2004.A. Sala, “Computer control under time-varying sampling period: an LMI gridding approach,” Automatica, vol. 41, no. 12, pp. 2077–2082, Dec. 2005.J. Li, Q. Zhang, Y. Wang, and M. Cai, “H ∞ control of networked control systems with packet disordering,” IET Control Theory Appl., vol. 3, no. 11, pp. 1463–1475, March 2009.Y. Zhao, G. Liu, and D. Rees, “Improved predictive control approach to networked control systems,” IET Control Theory Appl., vol. 2, no. 8, pp. 675–681, Aug. 2008.K. Astrom, “Event based control,” Analysis and Design of Nonlinear Control Systems, pp. 127–147, 2007.A. Cuenca, P. García, K. Arzén, and P. Albertos, “A predictor-observer for a networked control system with time-varying delays and non-uniform sampling,” Proc. Eur. Control Conf., pp. 946–951, 2009.J. Xiong and J. Lam, “Stabilization of linear systems over networks with bounded packet loss,” Automatica, vol. 43, no. 1, pp. 80–87, 2007.H. Song, L. Yu, and A. Liu, “H ∞ filtering for network-based systems with communication constraints and packet dropouts,” Proc. of the 7th Asian Control Conf., pp. 220–225, 2009.P. Garcia, A. Gonzalez, P. Castillo, R. Lozano, and P. Albertos, “Robustness of a discrete-time predictor-based controller for time-varying measurement delay,” Proc. of the 9th IFAC Workshop on Time Delay Systems, 2010.J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization methods and software, vol. 11, no. 1, pp. 625–653, 1999.T. Henningsson and K. Astrom, “Log-concave observers,” Proc. of the 17th Int. Symp. on Mathematical Theory of Networks and Systems, pp. 2163–2170, 2006.D. Davison and E. Hwang, “Automating radiotherapy cancer treatment: use of multirate observer-based control,” Proc. of American Control Conf., vol. 2, pp. 1194–1199, 2003

    모델 예측 제어와 네트워크 지연 보상 기법을 이용한 무인기의 네트워크 제어

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 공과대학 기계항공공학부, 2019. 2. 김현진.본 연구는 시간에 따라 변화하는 네트워크 지연이 존재하는 네트워크 환경에서의 무인 항공기 (UAV)의 제어 기법에 대하여 소개한다. 네트워크 지연은 주로 상태 피드백과 제어 입력의 지연을 야기시키고, 이로 인해 UAV 제어 시스템의 안정성에 악영향을 미친다. 이와 같은 네트워크 지연에 대처하기 위하여 몇 가지 네트워크 제어 알고리즘이 제안되었지만 대부분의 기존 연구에서는 플랜트 동역학이 매우 단순하거나 정확히 알고 있다고 가정하였고, 일정한 네트워크 지연이 발생하는 상황에서만 수행되었다. 하지만 이러한 가정은 비선형 모델 및 시간에 민감한 제어 특성을 가지는 멀티로터 형태의 UAV에 적합하지 않다. 이러한 문제를 해결하기 위하여 멀티로터의 특성을 고려하여 설계된 모델 예측 제어 (MPC)를 이용한 네트워크 제어 시스템을 제안한다. 또한 경로 계획 및 상태 추정의 정확도를 높이고자 가우시안 프로세스 (GP) 기법을 적용하여, 멀티로터 동역학에 고려되지 않은 미지의 모델을 학습하도록 한다. 실내 비행 실험을 통하여 제안 된 알고리즘이 네트워크 지연을 효과적으로 보상하고 가우시안 프로세스 학습이 UAV의 경로 추적 성능을 향상 시킨다는 것을 보여준다.This study addresses an operation of unmanned aerial vehicles (UAVs) in a network environment where there is time-varying network delay. The network delay entails undesirable effects on the stability of the UAV control system due to delayed state feedback and outdated control input. Although several networked control algorithms have been proposed to deal with the network delay, most existing studies have assumed that the plant dynamics is known and simple, or the network delay is constant. These assumptions are improper to multirotor-type UAVs because of their nonlinearity and time-sensitive characteristics. To deal with these problems, we propose a networked control system using model predictive control (MPC) designed under the consideration of multirotor characteristics. We also apply a Gaussian process (GP) to learn an unknown nonlinear model, which increases the accuracy of path planning and state estimation. Flight experiments show that the proposed algorithm successfully compensates the network delay and Gaussian process learning improves the UAVs path tracking performance.Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 GP-MPC for path planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Uplink delay compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Downlink delay compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Clock synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Model learning using Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 System dynamics for multirotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Gaussian process to improve dynamic model . . . . . . . . . . . . . . . . . . . . . . 11 4 Model predictive control for networked UAV . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1 MPC formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 MPC formulation for networked control systems . . . . . . . . . . . . . . . . . . . 15 5 Flight experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1 Delay analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3 Experiment 1: circular flight with network delays . . . . . . . . . . . . . . . . . . . 20 5.4 Experiment 2: two UAVs control with different network delays . . . . . . . . . . . 24 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Maste

    Dynamics analysis and integrated design of real-time control systems

    Get PDF
    Real-time control systems are widely deployed in many applications. Theory and practice for the design and deployment of real-time control systems have evolved significantly. From the design perspective, control strategy development has been the focus of the research in the control community. In order to develop good control strategies, process modelling and analysis have been investigated for decades, and stability analysis and model-based control have been heavily studied in the literature. From the implementation perspective, real-time control systems require timeliness and predictable timing behaviour in addition to logical correctness, and a real-time control system may behave very differently with different software implementations of the control strategies on a digital controller, which typically has limited computing resources. Most current research activities on software implementations concentrate on various scheduling methodologies to ensure the schedulability of multiple control tasks in constrained environments. Recently, more and more real-time control systems are implemented over data networks, leading to increasing interest worldwide in the design and implementation of networked control systems (NCS). Major research activities in NCS include control-oriented and scheduling-oriented investigations. In spite of significant progress in the research and development of real-time control systems, major difficulties exist in the state of the art. A key issue is the lack of integrated design for control development and its software implementation. For control design, the model-based control technique, the current focus of control research, does not work when a good process model is not available or is too complicated for control design. For control implementation on digital controllers running multiple tasks, the system schedulability is essential but is not enough; the ultimate objective of satisfactory quality-of-control (QoC) performance has not been addressed directly. For networked control, the majority of the control-oriented investigations are based on two unrealistic assumptions about the network induced delay. The scheduling-oriented research focuses on schedulability and does not directly link to the overall QoC of the system. General solutions with direct QoC consideration from the network perspective to the challenging problems of network delay and packet dropout in NCS have not been found in the literature. This thesis addresses the design and implementation of real-time control systems with regard to dynamics analysis and integrated design. Three related areas have been investigated, namely control development for controllers, control implementation and scheduling on controllers, and real-time control in networked environments. Seven research problems are identified from these areas for investigation in this thesis, and accordingly seven major contributions have been claimed. Timing behaviour, quality of control, and integrated design for real-time control systems are highlighted throughout this thesis. In control design, a model-free control technique, pattern predictive control, is developed for complex reactive distillation processes. Alleviating the requirement of accurate process models, the developed control technique integrates pattern recognition, fuzzy logic, non-linear transformation, and predictive control into a unified framework to solve complex problems. Characterising the QoC indirectly with control latency and jitter, scheduling strategies for multiple control tasks are proposed to minimise the latency and/or jitter. Also, a hierarchical, QoC driven, and event-triggering feedback scheduling architecture is developed with plug-ins of either the earliest-deadline-first or fixed priority scheduling. Linking to the QoC directly, the architecture minimises the use of computing resources without sacrifice of the system QoC. It considers the control requirements, but does not rely on the control design. For real-time NCS, the dynamics of the network delay are analysed first, and the nonuniform distribution and multi-fractal nature of the delay are revealed. These results do not support two fundamental assumptions used in existing NCS literature. Then, considering the control requirements, solutions are provided to the challenging NCS problems from the network perspective. To compensate for the network delay, a real-time queuing protocol is developed to smooth out the time-varying delay and thus to achieve more predictable behaviour of packet transmissions. For control packet dropout, simple yet effective compensators are proposed. Finally, combining the queuing protocol, the packet loss compensation, the configuration of the worst-case communication delay, and the control design, an integrated design framework is developed for real-time NCS. With this framework, the network delay is limited to within a single control period, leading to simplified system analysis and improved QoC

    Development and Control of Networked Servo System

    Get PDF
    Control systems where the control loops are closed through a communication network are called Networked Control System (NCS). Research on NCS has received increased attention in recent years due to the advancement of control,computation and communication technologies. NCS makes the design and implementation of control systems with reduced complexity due to simpler installation and easy maintenance. But the insertion of the communication network in the feedback control loop introduces delay from sensor to controller and controller to actuator, that degrades the control system performance and also causes system instability.This thesis focuses on development of a networked DC Servo control system using LabVIEW and Peripheral Component Interconnect(PCI) card.The controller design for a NCS can be categorized into indirect and direct approach. An indirect approach controller design considers ¯rst without delay followed by design a suitable delay compensation technique. A PID controller with a Smith predictor as a compensater is implemented in real-time networked control of servo system. The above PID controller is tuned using gain margin and phase margin speci¯cations and Zigler-Nichols method are implemented. A direct NCS design approach in the other hand considers the delay as well as packet loss characteristics with system dynamics at one go.This approach gives more information about each instant of the system.It uses Lyapunov approach to design of asymptomatic stabilization of the system, the above stabilization uses a switched approach for NCS sta- bilization with packet loss and delay is proposed. The switched approach divides the NCS as di®erent subsystems considering both delay and packet loss, then designing of controllers for each subsystem. According to packet loss, the subsystems and controllers are switched to stabilize the NCS. In this approach the feedback gains are calculated by solving Linear Matrix Inequalities (LMIs). Both direct and indirect controller design approach are simulated using MATLAB and SIMULINK. Some Hardware in Loop simulations are also performed on a Servo System.A realtime networked servo control system has been developed using LabVIEW. Only indirect controller approach is implemented in this environment to remotely control the servo system. The results obtained by using PID controller and Smith predictor have been analyzed and it is conrmed that these controller provide good performances

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
    corecore