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H∞ Controller Design for Networked Predictive
Control Systems Based on the Average

Dwell-Time Approach
Rui Wang, Bo Wang, Guo-Ping Liu, Wei Wang, and David Rees

Abstract—This brief focuses on the problem of H∞ control
for a class of networked control systems with time-varying delay
in both forward and backward channels. Based on the aver-
age dwell-time method, a novel delay-compensation strategy is
proposed by appropriately assigning the subsystem or designing
the switching signals. Combined with this strategy, an improved
predictive controller design approach in which the controller gain
varies with the delay is presented to guarantee that the closed-loop
system is exponentially stable with an H∞-norm bound for a
class of switching signal in terms of nonlinear matrix inequalities.
Furthermore, an iterative algorithm is presented to solve these
nonlinear matrix inequalities to obtain a suboptimal minimum
disturbance attenuation level. A numerical example illustrates the
effectiveness of the proposed method.

Index Terms—Average dwell-time method, H∞ control, net-
worked control systems (NCSs), predictive control, switched
system.

I. INTRODUCTION

N ETWORKED control systems (NCSs) is a research area
that has emerged in recent years [1]–[8]. A challenging

aspect of networked control is that we need to compensate
for the negative effects of the network constraints to retain
the stability and performance of the system. For this purpose,
one technique that has recently been proposed for NCSs is the
networked predictive control (NPC) approach, which has been
shown to be an effective approach to address this problem [9]–
[11]. The main idea is that a sequence of future control predic-
tions is generated at the controller node and transmitted to the
actuator node, and then, at the actuator, an algorithm is used
to choose the appropriate element from the received control
prediction sequence as the actual control input according to
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the measured network delay. Thus, the effect of the network
delay is compensated. The resulting closed-loop system is
transformed to a switched system. However, there are three
limitations on the work reported in the publications to date.
First, system stability has to be subject to arbitrary switching
of all subsystems due to the random network delay. Therefore,
existing papers are all based on a condition that all subsystems
have to possess a common Lyapunov function. This condition is
strict because sometimes some values of the network delay are
not admissible when considering the system stability of NPC
systems. Second, a fixed controller gain is used so that this re-
sults in a significant conservative design because the controller
gain does not reflect the range of possible delays in the network.
Third, the design of the controller gain was not considered.

In this brief, to overcome the first limitation, a novel delay-
compensation strategy for NPC systems is proposed by appro-
priately assigning the subsystem or designing the switching
signal. This strategy works, even if there exist unstable sub-
systems, because they can be omitted in the assigning process.
As for the remaining stable subsystems, it is not necessary
to have a common Lyapunov function, but the overall system
still may be stable under some suitable switching signals. The
average dwell-time method is an effective tool for finding
such switching signals [12]–[15]. To overcome the second and
third limitations, an improved predictive controller scheme is
designed in which the controller gain varies with the delay.
In contrast with some existing references, which are based
on the fixed controller gain approach, these varying feedback
controller gains can lead to less conservative results. Based on
the average dwell-time technique and this improved predictive
controller scheme, the corresponding closed-loop system is
exponentially stable with an H∞-norm bound. Moreover, an
iterative algorithm is presented to design the desired controllers
with a suboptimal minimum disturbance attenuation level.

II. PRELIMINARIES AND PROBLEM FORMULATION

The NPC system structure is shown in Fig. 1. It includes
two parts, namely, a control prediction generator (CPG) at the
controller side and a network delay compensator (NDC) at the
actuator side. The plant is modeled as follows:

xt+1 = Axt + But + Ewt yt = Cxt zt = Dxt (1)

where xt ∈ Rn, ut ∈ Rm, and yt ∈ Rl denote the state vec-
tor, control input, and control output, respectively; zt ∈ Rp is
the output to be regulated; wt ∈ Rq is the disturbance input
belonging to L2(0,+∞); and A, B, C, D, and E are known
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Fig. 1. NPC system structure.

constant matrices with appropriate dimensions. rt ∈ Rn is the
reference input. Without loss of generality, rt is assumed to
be zero throughout this brief. To measure the network delay,
a time-stamp signal is transmitted together with the control
predictions. In addition, the following assumptions are made.

Assumption 1: The upper bounds of the time-varying net-
work delays kt in the forward channel and the feedback channel
ft are not greater than N1 and N2, respectively, where N1 and
N2 are positive integers, i.e., kt∈{0, 1, . . . , N1} and ft∈{0, 1,
. . . , N2}, where t = 0, 1, 2, . . . denotes the sampling instant.

Assumption 2: The numbers of consecutive data dropouts in
the forward and feedback channels are less than L1 and L2,
respectively, both of which are positive integers. It is assumed
that the upper bound number of consecutive data dropouts and
network delay is equal to N = N1 + N2 + L1 + L2.

III. PREDICTIVE CONTROL STRATEGY

A. Prediction of the Future Control Sequence

Since the system states are normally unavailable, the follow-
ing state observer is designed:

x̂t+1 = Ax̂t + But + L(yt − Cx̂t) (2)

where x̂t ∈ Rn and ut ∈ Rm are the observed state and the
input of the observer, respectively, at time t, and L is the
observer gain to be designed later. Note that the above observer
is implemented at the plant side, as shown in Fig. 1. This is not
a question for the modern “smart” actuator or sensor, which has
the capacity to perform some not very complicated calculation,
such as the calculation in the NDC and the observer here.

For the system without time delay, the controller is designed
using the state feedback control strategy, i.e.,

ut = K0x̂t (3)

where K0 ∈ Rm×n is the control gain matrix to be determined.
When there are time-varying delays and data dropout in the

feedback channel, the predictive controller from time t − ft +
1 to t is generated by

ut−ft+i|t−ft
= Kix̂t−ft

where i = 1, 2, . . . , ft, ft ∈ {0, 1, . . . , N2 + L2}.
When time-varying delays and data dropout happen in the

forward channel, the predictive controllers from t + 1 to t + kt

is constructed as

ut+j|t−ft
= Kft+j x̂t−ft

where j = 1, 2, . . . , kt, kt ∈ {0, 1, . . . , N1 + L1}.

Thus, the state feedback controllers can be given as

ut = ut|t−kt−ft
= Kft+kt

x̂t−kt−ft

ft + kt ∈ N̄ = {0, 1, . . . , N}. (4)

B. Assigning and Compensation of Network Delay

Assuming that the control sequence with network delay kt +
ft arrives at time t, then

Ut−kt−ft|t−kt−ft
=

⎡
⎢⎢⎢⎣

ut−kt−ft|t−kt−ft

ut−kt−ft+1|t−kt−ft

...
ut−kt−ft+N |t−kt−ft

⎤
⎥⎥⎥⎦ .

As aforementioned, if the element ut|t−kt−ft
is chosen as the

control input, the impact of the network delay kt + ft on the
system performance is compensated.

However, from the perspective of system stability, some val-
ues of kt and ft are not permissible. Therefore, in this situation,
it is necessary to modify the network delay. Examining the ele-
ments after ut|t−kt−ft

in the sequence Ut−kt−ft|t−kt−ft
enables

the control inputs at time t + i, i = 1, 2, . . . , N − kt − ft, re-
spectively, to be used. This property enables us to assign the
network delay we want. As for the elements before ut|t−kt−ft

,
they are just discarded.

Hence, all possible available control sequences (at least 1 and
at most N + 1) are

Ut−N |t−N , Ut−(N−1)|t−(N−1), . . . , Ut|t

and the corresponding control input candidates are

ut|t−N , ut|t−(N−1), . . . , ut|t (5)

which result in the network delay

kt + ft = N,N − 1, . . . , 0

respectively. The delay range is extended from 0 ∼ N1 + N2

to 0 ∼ N ; thus, it is called extended network delay. It is worth
noting that this delay assignment is not arbitrary because not all
N + 1 control input candidates are definitely available. Hence,
it is called “partly assigning.”

Remark 1: Notice that all candidates keep the same form as
(4); thus, any one of them can compensate the corresponding
network delay. It can be seen that the compensation strategy (4)
is a special case of the improved one (5).

IV. H∞ CONTROL USING A PREDICTIVE

CONTROLLER FOR NCSs

A. Stability and H∞ Performance Analysis

According to the controller (4), the observer (2) can be
written as

x̂t+1 = (A − LC)x̂t + BKix̂t−i + LCxt, i ∈ N̄ . (6)

Thus, the closed-loop form of system (1) can be written as

xt+1 = Axt + But + Ewt

= Axt + BKix̂t−i + Ewt, i ∈ N̄ . (7)
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The combination of (4), (6), and (7) gives the augmented
switched system

x̄t+1 = Āσ(t)x̄t + Ēwt yt = C̄x̄t zt = D̄x̄t (8)

where σ(t) is called a switching signal, and

x̄t =
[
xT

t , xT
t−1, . . . , x

T
t−i, x

T
t−i−1, . . . ,

xT
t−N , x̂T

t , x̂T
t−1, . . . , x̂

T
t−i, . . . , x̂

T
t−N

]T

Ē =
[

E
0(2N+1)n×q

]
C̄ = [C 0l×(2N+1)n ]

D̄ = [D 0p×(2N+1)n ] Āi =
[

Π Ξi

Φ Ωi

]

with

Π =
[

A 0n×Nn

INn 0Nn×n

]

Φ =
[

LC 0n×Nn

0Nn×n 0Nn×Nn

]

Ξi =
[

0n×in BKi 0n×(N−i)n

0(N+1)n×in 0(N+1)n×n 0(N+1)n×(N−i)n

]

Ωi =
[

A − LC 0n×(i−1)n BKi 0n×(N−i)n

In I(i−1)n I(N−i)n 0Nn×n

]
.

Lemma 1: Given γ0 > 0, if there exists a positive definite
matrix P such that[

ĀT
i PĀi − P + D̄T D̄ Āi

T
PĒ

∗ ĒT PĒ − γ2
0I

]
< 0 ∀i ∈ N̄

(9)

hold, then system (8) satisfies H∞ control under arbitrary
switching.

Proof: Choose a common Lyapunov function as

Vt = x̄tP
T x̄t (10)

where P is a positive definite matrix satisfying matrix inequal-
ities (9). Along the trajectory of system (8), calculating the
difference of Lyapunov function candidate (10), it is easy to
establish the above result. �

Definition 2 [15]: For α > 0 and γ0 > 0, system (8) is said
to satisfy weighted H∞ control, if under a zero initial condition,
it holds that

+∞∑
t=0

e−αtzT
t zt ≤ γ2

0

+∞∑
t=0

wT
t wt. (11)

Assumption 3: Given γ0 > 0, we can design the con-
troller gains KN1+N2 , . . . ,KN to make subsystems {ĀN1+N2 ,
ĀN1+N2+1, . . . , ĀN} have a common Lyapunov function so
that H∞ control is satisfied for every subsystem. Namely, the
matrix inequalities[

ĀT
i PĀi − P + D̄T D̄ ĀT

i PĒ
∗ ĒT PĒ − γ2

0I

]
< 0,

∀i ∈ {N1 + N2, . . . , N}
have solution P > 0.

We can classify all subsystems of (8) into the following four
categories:
Ψ1: {ĀN1+N2 , ĀN1+N2+1, . . . , ĀN};
Ψ2: Part of {Ā0, Ā1, . . . , ĀN1+N2−1} that can be stabilized and

have a common Lyapunov function with Ψ1;

Ψ3: Part of {Ā0, Ā1, . . . , ĀN1+N2−1} that can be stabilized but
have no common Lyapunov function with Ψ1;

Ψ4: Part of {Ā0, Ā1, . . . , ĀN1+N2−1} that cannot be stabilized.
We use ψ1, ψ2, ψ3, and ψ4 to denote the subscript sets

to which the subsystems correspond to Ψ1, Ψ2, Ψ3 and Ψ4,
respectively.

We are now in the position to give the main result.
Theorem 1: Given α > 0, γ0 > 0, if there exist matrices

P̄i > 0 such that

Π =
[

ĀT
i P̄iĀi − e−αP̄i + D̄T D̄ ĀT

i P̄iĒ
∗ ĒT P̄iĒ − γ2

0I

]
> 0

(12)

hold ∀i ∈ M = ψ1 ∪ ψ2 ∪ ψ3, then system (8) satisfies H∞
control for any switching signal σ(t) : [0,+∞) → M satisfy-
ing the average dwell time

τa ≥ τ ∗
a =

ln μ

α
(13)

where

P̄i =
{

PN1+N2 , i ∈ ψ1 ∪ ψ2

Pi, i ∈ ψ3

and μ ≥ 1 satisfies

P̄i ≤ μP̄j ∀i, j ∈ M. (14)

Proof: Choose a Lyapunov function candidate as

Vt = x̄T
t P̄σ(t)x̄t (15)

where σ(t) ∈ M , P̄i are positive definite matrices satisfying
matrix inequalities (12).

Along the trajectory of system (8), for a Lyapunov function
candidate (15), we have

Vt+1 − e−αVt + Γt = [ x̄T
t wT

t ] Π
[

x̄t

wt

]

which then leads to the following based on (12):

Vt+1 ≤ e−α(t+1)V0 −
t∑

l=0

e−α(t−l)Γl

where Γt = zT
t zt − γ2

0ωT
t ωt.

For any time interval [0, t), let 0 = t0 < t1 < · · · < tq =
tNσ(t) denote the switching time instants of σ(t). Thus

Vt ≤ e−α(t−tq)Vtq
−

t−1∑
l=tq

e−α(t−l−1)Γl.

Since Vti
≤ μV −

ti
holds for every switching time instant ti from

(14), we obtain by induction that

Vt ≤ e−αt+Nσ(0,t) ln μV0 −
t−1∑
l=0

μNσ(l+1,t)e−α(t−l−1)Γl. (16)

When w = 0, we get from (16), under the condition Nσ(0, t) ≤
(t/τa), that Vt ≤ e−(α−(ln μ/τa))tV0. Exponential stability di-
rectly follows from this inequality.

In the following, we show that the closed-loop system satis-
fies the H∞ performance bound. Under zero initial conditions,
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multiplying μ−Nσ(0,t) on both sides of (16) yields

0 ≤ −
t∑

l=1

μ−Nσ(0,l)e−α(t−l)Γl−1. (17)

Then, similar to the proof of Theorem 2 in [14], the result is
easily obtained. The proof is completed. �

Remark 2: When μ = 1, P̄i = P̄j holds for any i, j ∈ M ,
which means a common Lyapunov function exists for all sub-
systems. For this case, from (17), the normal L2-gain directly
follows.

B. Design of an H∞ Controller

In this section, we extend Theorem 1 to design the H∞
controller gains Ki for system (8).

Define matrices

B1 =
[

B
0(2N+1)n×m

]
B2 =

⎡
⎣ 0(N+1)n×m

B
0Nn×m

⎤
⎦

Ĩ =

⎡
⎣ 0(N+1)n×n

In

0Nn×n

⎤
⎦ C̃ = [C 0p×Nn −C 0p×Nn ]

I0 = [ 0n×(N+1)n In 0n×Nn ]
I1 = [ 0n×(N+2)n In 0n×(N−1)n ]

· · ·
Ii = [ 0n×(N+i+1)n In 0n×(N−i)n ]

Ãi =
[

Π 0(N+1)n×(N+1)n

0(N+1)n×(N+1)n Π

]

where Π is defined in Theorem 1.
Then, Āi can be written as

Āi = Ã + B1KiIi + ĨLC̃ + B2KiIi. (18)

From (18), inequalities (12) are equivalent to the following
matrix inequalities:⎡
⎣−e−αP̄i + D̄T D̄ 0 ĀT

i

∗ −γ2
0I ĒT

∗ ∗ −P̄−1
i

⎤
⎦ < 0, i ∈ M. (19)

In view of the above discussion, we can now obtain the
following theorem.

Theorem 2: If there exist positive definite matrices P̄i > 0,
i ∈ M , such that ∀i, j ∈ M matrix inequalities (19) hold, then
system (8) with the controllers (4) is exponentially stable with
the H∞-norm bound γ0.

Remark 3: The conditions for the H∞ controller analysis
problem in Theorem 1 are difficult to solve because Āi contain
Ki and L. In Theorem 2, we separate Ki and L from Āi to
obtain the controller gain Ki and L by solving a set of LMIs.

It is noted that the conditions in Theorem 2 do not meet the
LMI conditions because of the terms P̄i and P̄−1

i . The problem
can be solved based on the method proposed in [16]

By replacing the term P̄−1
i in (19) by Wi, we get⎡

⎣−e−αP̄i + D̄T D̄ 0 ĀT
i

∗ −γ2
0I ĒT

∗ ∗ −Wi

⎤
⎦ < 0, i ∈ M. (20)

Then, the minimization problem involving the LMI con-
straints can be formulated as follows:

minimize trace(P̄iWi)

subject to (20),[
P̄i I
I Wi

]
≥ 0, i ∈ M. (21)

C. Algorithm

The following iterative algorithm is presented, where (19)
is a stopping criterion, since it is numerically very difficult
in practice to obtain the optimal solution, and thus, only the
suboptimal disturbance attenuation level γ0 can be obtained
within a specified number of iterations.

1) Choose a sufficiently large initial γ0 such that there exists
a feasible solution to the LMI conditions in (20) and (21).

2) Find a feasible set (P̄i,Wi,Ki, L (i ∈ M)) satisfying
LMIs in (20) and (21). Set k = 0.

3) Solve the following LMI problem for the variables
P̄i, Wi:

minimize trace
∑

(P̄ k
i Wi + P̄iWi

k), i ∈ M.

subject to LMIs in (20) and (21).

4) If condition (19) is satisfied, then return to Step 2 after
decreasing γ0 to some extent. If conditions (20) and
(21) are not satisfied within a specified number of iter-
ations, then exit. Otherwise, set k = k + 1, P̄ k+1

i = P̄i,
Wi

k+1 = Wi, and go to Step 3.
Remark 4: It is also noticed that the use of the cone-

complementary algorithm has some disadvantages; for exam-
ple, it requires more computing time and is memory consuming.
Therefore, other alternative methods to solve the nonlinear
matrix inequalities are worth exploring further, for instance, the
method in [17].

V. SIMULATION

Consider NPC system (1) with the following system
matrices:

A=

⎡
⎣ 1.01 0.2710 −0.4880

0.4820 0.1 0.24
0.0020 0.3681 0.7070

⎤
⎦ B=

⎡
⎣ 5 5

3 −2
5 4

⎤
⎦

C =
[

1 2 3
4 3 1

]
D=

[
0.02 0 0.03
0.04 0.01 0.01

]
E =0.01I

and the disturbance input, i.e.,

wt =
{

[ 1 1 1 ]T , 0 < t ≤ 2
0, t > 2

.

This example is similar to the one in [11], where the distur-
bance effect is not considered.

It is assumed that the upper bounds of the network delays kt

in the forward channel and the feedback channel ft are all not
greater than 1, and the numbers of consecutive data dropouts
in the forward and feedback channels are all not greater than 1.
That is to say, N = 4.
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Fig. 2. Control inputs of system (1).

Fig. 3. Outputs of system (1).

Choosing α = 0.1 and μ = 1.05, in all subsystems, Ā2, Ā3,
and Ā4 have common P ; and Ā0 or Ā1 has no common P
with Ā2, Ā3, and Ā4 and satisfy (19). Thus, σ(t) : [0,+∞) →
M = {0, 1, 2}. From (13), we get τa = 0.5 ≥ τ ∗

a = 0.4879. By
applying the algorithm to this example, the maximum itera-
tion number is chosen to be 100. By applying the proposed
algorithm in Section IV-C to this example, where the iteration
number is chosen to be 100 and MATLAB/LMI Toolbox is used
to solve the LMI problem, we obtain

K0 =
[

0.0054 −0.0099 −0.0520
−0.0202 −0.0070 0.0448

]

K1 =
[

0.0007 −0.0146 −0.0333
−0.0202 0.0054 0.0340

]

K2 =
[
−0.0056 −0.0122 −0.0228
−0.0144 0.0052 0.0290

]

K3 =
[
−0.0097 −0.0105 −0.0158
−0.0104 0.0057 0.0259

]

K4 =
[
−0.0125 −0.0098 −0.0116
−0.0078 0.0071 0.0267

]

L =

[−0.2477 0.2676
−0.0055 0.0829
0.2157 −0.0534

]

and the H∞ performance bound γ0 = 0.02.
The control input and output trajectory of the system are

shown in Figs. 2 and 3, respectively. It is easy to see that the
system is stable and has acceptable performance.

Compared with our previous paper [11], the approach in
this brief is a significant improvement for the following three
reasons: First, the varying controller gains are easy to design,

whereas the fixed controller gain in [11] needs to be selected
in advance. Second, the proposed approach can solve the four-
step delay and higher delay problem, whereas employing the
method in [11] can address only the three-step delay problem.
Third, by using the method in this brief, it only takes 6 s to
reach a stable response, whereas in [11], it takes approximately
100 s to reach a stable response.

VI. CONCLUSION

The problem of H∞ control for a class of NPC systems has
been studied in this brief. An improved compensation strategy
based on the average dwell-time method was combined with
a novel controller design approach to make the corresponding
closed-loop system exponentially stable with the H∞ perfor-
mance bound. In contrast with some existing methods, which
are based on the fixed controller gain and common Lyapunov
function, these varying feedback controller gains and multi-
ple Lyapunov function matrices can lead to less conservative
results.
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