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Abstract

Control systems where the control loops are closed through a communication

network are called Networked Control System (NCS). Research on NCS has

received increased attention in recent years due to the advancement of control,

computation and communication technologies. NCS makes the design and

implementation of control systems with reduced complexity due to simpler

installation and easy maintenance. But the insertion of the communication

network in the feedback control loop introduces delay from sensor to controller

and controller to actuator, that degrades the control system performance and

also causes system instability.

This thesis focuses on development of a networked DC Servo control sys-

tem using LabVIEW and Peripheral Component Interconnect (PCI) card.

The controller design for a NCS can be categorized into indirect and di-

rect approach. An indirect approach controller design considers first without

delay followed by design a suitable delay compensation technique. A PID

controller with a Smith predictor as a compensater is implemented in real-

time networked control of servo system. The above PID controller is tuned

using gain margin and phase margin specifications and Zigler-Nichols method

are implemented. A direct NCS design approach in the other hand consid-

ers the delay as well as packet loss characteristics with system dynamics at

one go.This approach gives more information about each instant of the sys-

tem.It uses Lyapunov approach to design of asymptomatic stabilization of

the system, the above stabilization uses a switched approach for NCS sta-

vi



bilization with packet loss and delay is proposed. The switched approach

divides the NCS as different subsystems considering both delay and packet

loss, then designing of controllers for each subsystem. According to packet

loss, the subsystems and controllers are switched to stabilize the NCS. In

this approach the feedback gains are calculated by solving Linear Matrix

Inequalities (LMIs).

Both direct and indirect controller design approach are simulated using

MATLAB and SIMULINK. Some Hardware in Loop simulations are also

performed on a Servo System. A real-time networked servo control system

has been developed using LabVIEW. Only indirect controller approach is

implemented in this environment to remotely control the servo system. The

results obtained by using PID controller and Smith predictor have been an-

alyzed and it is confirmed that these controller provide good performances.
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Chapter 1

INTRODUCTION

1.1 Introduction

Digital control of systems have been received continued interest since the in-

vention of computers. Such systems use computer as a component to quickly

modify or enhance the real-time requirement and are popularly used for su-

pervisory control of distributed processes. Direct Digital Control (DDC)is a

class of such computer controlled systems where the analog computational

instruments are replaced by a computer.

An architecture of centralized systems may use a central computer with

sensors and actuators respective for control signal calculation, sensing and

actuation required for closed loop control. Such a scheme is shown in Fig.1.1

and also called a Point-to-Point (P2P) control system. It requires huge wiring

connected from the sensors to computer and computer to actuators and more-

over becomes complicated on requirement of reconfiguring the physical setup

and functionality. Further, diagnosis and maintenance are also difficult in

such systems.

To overcome the afore mentioned difficulties posed by the centralized con-

trol, Networked Control System (NCS) has received considerable attention

with advances in control and communication technologies. In many practical

systems, the implementation is conveniently realizable if the physical plant,

its controller, sensors, and actuators are geographically distributed requiring

1
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Figure 1.1: Point to point control configuration

a data to be transmitted from one location to another. When sensor and

actuator data are transmitted over a network and the network nodes are

used to work in tandem for completion of the controlling task, then we call

such system an NCS. A typical NCS configuration is shown in Fig.1.2. As

described earlier the NCS uses a common bus for information exchange.

Use of common bus network in network control system has the following

advantages.

• Connecting the control system components via a network can effectively

reduce the cost.

• In NCS the data is shared so that, it is easy to use global information to

take intelligent decisions.

• Reconfigurations e.g., adding more sensors, actuators and controllers

with very little cost and without heavy structural changes to the whole

system are possible.

This thesis first considers developing a NCS servo setup using commonly

available networks and subsequently study some control techniques to achieve

effective control performance.
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Figure 1.2: General Configuration of Networked Control System

1.2 Networked Control System and Its Perspectives

NCS has evolved in the past decade through the advances in communication

technology. It has made centralized control possible with a wider range of

features and more flexibility than before.

1.2.1 Description of a Networked Control System

In general, NCSs are implemented using a network through which the feed-

back path is closed such that the sensors and actuators can communicate

with the controller.

1.2.2 Networks Used in NCS

In NCS a network is used to connect the system components and controller.

Broadly the networks used in NCS are classified as dedicated and non-

dedicated networks. A dedicated network is known as control network and

non-dedicated network as data network.A dedicated network is concerned

about the constant and frequent packets transmission among a relatively

large set of nodes. Non-dedicated networks use large data packets and rel-

atively infrequent transmission rates, with high data rates to support the

transmission of large data files. Some of the current control networks used

for design NCS are Ethernet, Device Net and Control Net [1]. Ethernet is of
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non-dedicated type while other two are dedicated networks. Ethernet is type

of local area networking solution widely used in the home, office. Ethernet

uses the Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

mechanism for resolving contention on the communication medium.Ethernet

is a nondeterministic protocol and does not support any message prioritiza-

tion. At high network loads, message collisions are a major problem because

they greatly affect data throughput and time delay which may be unbounded

Control Net are typical examples of token-passing bus or deterministic net-

works control networks. As in general token-passing buses, the node with the

token can only send data and provides excellent throughput and efficiency

at high network loads. Device Net/CAN is a serial communication protocol

developed mainly for applications in the automotive industry but also capa-

ble of offering good performance in other critical industrial applications. The

CAN protocol uses CSMA/Arbitration on Message Priority (CSMA/AMP)

medium access method.Thus the protocol is message oriented, and each mes-

sage has a specifc priority that is used to arbitrate access to the bus in case

of simultaneous transmission.CAN is a deterministic protocol optimized for

short messages and very slow data rate. Apart form these there are many

network architectures for distributed control like PROFIBUS, FIELDBUS[2].

1.2.3 Available NCS Configurations

According to network used in the NCS there are two types of configuration

of NCS namely level one and level two communication configuration. Fur-

ther the level one communication configuration is again classified as direct

structure and hierarchical structure. The NCS in the direct structure is the

mostly used which comprises of a controller and a system consists of sen-

sors and actuators are connected by a common sharing network to perform

remote closed-loop control as illustrated in Fig.1.3. The control signal and

the sensor measurement are encapsulated into data packets for transmission

across the network. As shown in Fig.1.3, a controller and a remote system
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Figure 1.3: Direct configuration of NCS

are in closed loop using a network. Here it shown a single sensor and actua-

tor where, there are many sensors and actuators may present in a practical

implementation with multiple controllers. The scope of this thesis is confined

within the control methodologies for NCS in the direct structure.

The hierarchical structure consists controller and a remote closed loop system

as shown in Fig.1.4. The only difference between a direct and hierarchical

structure is the controller. Here two controller are used namely main and

remote controller. The main controller computes and sends the reference

signal in a packet via a network to the remote system. The remote sys-

tem then processes the reference signal to perform local closed-loop control

and returns to the sensor measurement to the main controller for networked

closed-loop control. Similar to the direct structure, the main controller can

be implemented to handle multiple networked control loops for several re-

mote systems. This structure is widely used in several applications including

mobile robots and tele-operation. The use of either the direct structure or

the hierarchical structure is based on application requirements and designer’s

preferences.Control and analysis methodologies for the direct structure could

also be applied for the hierarchical structure by treating the remote closed

loop system as a pure plant.

A NCS in hierarchical structure is shown in Fig.1.4, a main controller and
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Figure 1.4: Hierarchical configuration of NCS

a remote system are connected by a network. Main controller calculates the

reference signal for the remote controller. The role of remote controller is to

look after the uncertainty of the system only.

A two-level communication model as its name suggests, it has two levels

are connected by communication channels as shown in Fig.1.5. Such a NCS

uses microcontrollers as intermediate communicator to communicate with the

both the channels. A system with which sensors and actuators, that are in

the closed loop with the plant through a communication network. A kind of

field bus dedicated to real-time control network used for communicating plant

to microcontroller. This communication known as level-1 communication. In

level-2 communication, the microcontrollers with a high-level computer sys-

tem through another communication network. This network is typically non

dedicated networks like local area network, wide area network (WAN), or pos-

sibly the Internet. As shown in Fig.1.5 microcontrollers communicate with

system components using a dedicated network in level-1 and with a high level

controller using a non dedicated network in level-2 communication.

1.2.4 Applications

Use of networks for connecting the control system components like sensors,

controllers, and actuators in any process can effectively reduce the complex-
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Figure 1.5: Level-2 Configuration of NCS

ity of systems, with nominal economical investments, eliminate unnecessary

wiring. It is easy to add more sensors, actuators and controllers with very

little cost and without heavy structural changes to the whole system. Poten-

tial applications of NCS [3], are including space explorations, terrestrial ex-

ploration, factory automation, remote diagnostics and troubleshooting, haz-

ardous environments, experimental facilities, domestic robots, automobiles,

aircraft, manufacturing plant monitoring, nursing homes or hospitals, tele-

robotics and tele-operation.

1.2.5 Control Issues

The issues involved in NCS are broadly classified into two categories namely

network issues due to use of network and control performance due to presence

of network in the system. Network issues deals with bandwidth allocation,

scheduling and network security where the control problem deals with stabil-

ity analysis and delay compensation.

Network Issues

As the network used is having limited bandwidth, optimizing the performance

of an NCS can be achieved by proper balancing of network sampling and

bandwidth allocation with the resulting network performance degradation.
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The maximum bound of the network sampling is called a maximum allowable

delay bound, within it stability of the system is guaranteed in spite of the

performance degradation. A network scheduling method is required to reduce

a basic sampling time within the maximum allowable delay bound, while

guaranteeing real-time transmission of sporadic and periodic data, and to

minimize network utilization for non-real time message. Network security is

an another problem in a NCS which is more concern on type of network used

and network administrator. there should be provisions andpoliciesadopted

by thenetwork administrator to prevent and monitorunauthorizedaccess of

thecomputer networkand network-accessible resources.

Control Issues

Control issues involve various delays present in NCS and packet dropouts

in a network. In an NCS, various delays with variable length occur due

to sharing a common network medium[4].They are called network-induced

delays, controller processing delay and natural delay of plant. The natural

delay is the delay associated with the system itself known as transportation

lag of the system. Controller processing delay is the amount of time required

by the controller to calculate the control input. Generally these delays are

very less and mostly neglected. The delay of concern here is the network-

induced delays, it occurs when sensors, actuators, and controllers exchange

data packet across the communication network. Networked induced delay

arises from sensor to controller (backward channel delay) and controller to

actuator(forward channel delay). Packet dropouts in NCS occurs due to node

failures, improper network scheduling or data packet collisions. Due to this

Although In most network protocols a untransmitted packet only retransmit

for a limited time and after this time has expired, the packets are dropped.

Furthermore, for real-time feedback control data such as sensor measurements

and calculated control signals, it may be advantageous to discard the old

untransmitted message and transmit a new packet if it becomes available. In

this way, the controller always receives fresh data for control calculation.
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1.3 A Survey on NCS design Methodology

Research interests on NCS is growing as this is of interest to research inter-

est topic in multidisciplinary engineering. It includes the use of computer

network and control theory, with wide application in industrial automation.

Research areas of NCS are focused with networks used and classifications,

effects of network on the system and controller design for delay compensa-

tion and stabilization. Apart from above, NCS co-design is also topic of

interest for many researchers[5, 6]. A control system closed with a real-time

network in feedback form a NCS [7, 8, 9, 10]. As a large physical are re-

quires a large interconnect wiring among components, traditional centralized

point to point control system is no longer suitable to meet this challenge.

A common bus architecture like NCS can be useful in expanding physical

set-up and functionality because of wires connected between central control

computer with each sensor or actuator. In this section, a brief discussion on

focused topics of research on NCS is presented. Networks are the backbones

of a NCS, there are many literatures on communication networks used for

NCS [1]. Mostly ethernet, device net or control net [10] are used in a NCS.

Recent interest is to use wireless network in NCS [11]. Wireless sensor net-

works (WSN) have been extensively researched for over a decade, because

they provide appealing possibilities for distributed, flexible and ubiquitous

sensing applications, where each node in the network performs sensing, data

processing and communication functions. The highly distributed nature of

WSN makes them fault tolerant and adaptive to dynamically changing envi-

ronments [12]. Even though one node in the network experiences problems

and is shut down, networking protocols and both sensing and data processing

algorithms could adapt to the changed situation. Hence packets would not

be delivered through the faulty node, routes would be reestablished and data

processing would adapt to a missing source of measurements. Based on the

communication channels used in a NCS architecture, it is divided into class A
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and class [7]. A NCS using single communication channel is treated as a class

A and two level communication channel is known as class B. Further class A,

divided according to use of controller in the system like direct structure and

hierarchical structure [8]. More on this described in section 1.2. In both the

class there is a network and due to insertion of this communication network,

delays in control loop from controller to actuator and sensor to controller are

introduced along with controller processing delay and natural delay as shown

in Fig.1.2. Apart from delay there are issues like packet droputs, jitters [4]

are also present. A delay is the source of performance degradation and desta-

bilization [8] of a stable system by decreasing the system’s phase margin by

the amount of delay. For example, consider a second order system given by

Step Input

(Reference signal)
PLANT

num

den
Delay

CONTROLLER

PID

Figure 1.6: Closed loop Structure of PID controller with delay

Gp (s) =
5.928

s3 + 3.994s + 0.09181

and a PID (Proportional-Integral-Derivative) controller as,

Gc (s) = Kp(1 +
Ki

s
+ Kds)

and by using the SIMULINK’s Response Optimization Tool for PID con-

troller tuning, the tuned gains of PID found to be, Kd ,Ki and Kp as 1.5692,

0.5222, and 0.3799 respectively. The delays (sum of both networked induced

delays) are varied from 0 sec to 0.5 sec and the corresponding closed loop

step responses are shown in above Fig.1.7. It is observed that with increase

of delay the system’s overall performance gradually degrades. Time delay in

a system is modeled by transfer function e−τds. The delay causes a decreased

phase margin which implies a lower damping ratio and a more oscillatory
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response for the closed-loop system and hence deteriorate the system perfor-

mance and cause the system instability. Therefore, it is necessary to design a

controller which can compensate the effect of time delays, stabilize the system

and improve the control performance of the NCS.

Figure 1.7: Effects of delay in system’s performance in closed loop

System stability is of vital issue in the system analysis and control design.

Many results have appeared in the literature to analyze the closed-loop sta-

bility in the presence several NCS issues. In general, these approaches can be

classified into two types: indirect and direct . Controller design in indirect

approaches assume that there is no delay associated in the system, followed

by a suitable dead time compensator for delay compensation. A direct ap-

proach is quite simpler as it takes the delay in account at the time of controller

design. The PID controller is mostly used in indirect approach along with a

suitable dead time compensator like smith predictor.The objective of a PID

controller design only depends upon fine tuning of its parameter gains. The

concept of tunning method for PID controller was brought by Zigler-Nicols in

1942. They proposed a tuning method as step response and sustain oscilla-

tion method [13, 14]. The ZN tuning method is not a good choice for higher

order systems [15] so many advanced tuning methods like analytical tuning,
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prediction approach tuning[16], optimized tuning , auto-tuning[17] and tun-

ing based on system gain and phase margin specifications[18, 19, 20, 21] has

been developed. Phase margin and gain margin based PID controller tun-

ing makes the system robust by bounding the system margins in between

a predefined value. Manually tuning procedure is very tedious and time

consuming, and the resultant system performance mainly depends on the ex-

perience and the process knowledge the engineers. To avoid this the relay

feedback auto-tuning method proposed by Astrom and Hugglund. a method

which enables the controller to be tuned automatically on demand from an

operator or an external signal. A well defined survey is presented on [22].

To evaluate the stability of a PID controlled system with uncertainties, such

as varying time-delays, robust control techniques can be used. For example,

the robustness of different PID tuning methods for a case process with pa-

rameter uncertainties has been investigated in [23]. A PID controller itself is

not sufficient for NCS [24] , a delay compensator must be incorporated. A

detailed survey on deadtime compensators are presented in [25]. Smith pre-

dictor is the most commonly used dead time compensators used in industrial

applications [26, 24], the befit lies in that the structural simplicity and easy

implementation.

As the use of network, which is a source of delay and packet loss. There are

literatures, which are considered NCS as an application of time delayed sys-

tems and designed controller [27]. However the indirect method uses transfer

function method for control design and does not explain the internal system

behavior i.e. the states of the system in every instance of time. It deals with

the tracking control of the system, to follow a desired reference path given

by a reference input. But in contrast direct method indicates the system

behavior clearly and deals with stabilization of the system with delay and

packet losses in NCS.

The direct approach used to determine the controller gain to stabilize

the system or to find out the maximum delay bound for system, that can
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be tolerated to guarantee the stability using Lyapunov stability criterion

[28, 29, 30]. A stability condition in direct approach is formulated by linear

matrix inequalities (LMI). In [5] a survey of stability of NCS is described

which introduces many directions of stability analysis.

NCS analysis using switched system approach is described in [30, 29, 31].

A switch system divides the whole systems as several subsystems according

to delays in a transmission interval. Then, designing a suitable controller for

each subsystems, as a whole stabilize the systems. The controller may be in

designed by state feedback [31], output feedback [29] approach.

The NCS may consider as a sampled data system as a continuous plant

dynamics interacting with the discrete nature of the network. Designing of

digital controllers for a sampled data system is done by using lifting technique

[32, 33]. Lifting techniques provide a equivalent characterization of sampled

data system with delay. This technique also takes the inter sample behavior

into account as well as the effect of performance of the system by sampling

frequency [34].

A networked predictive control scheme is proposed by Liu et al. [35]. This

scheme having two main units: the control prediction generator, to generate

a set of future control predictions and the network delay compensator, used

to compensate the effect of unknown random network delay.

A optimal cost control of NCS with uncertainty is communicated in [36],

which provide an upper bound on a given performance index and thus de-

sign a controller so that, the system performance degradation occur by the

uncertainties is guaranteed to be less than this bound.

In [37],conditions of asymptotic stability for networked control system with

long time delay are presented. Modeling of delay and packet loss are described

in [30]. A discrete time model of NCS incorporating all network phenomenon

is presented in [38]. There are methods like sliding mode control and Kalman

filter [39]based estimator are also some topics of interest in NCS

Model-based networked control systems, an explicit model of the plant is
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used to produce an estimate of the plant state behavior between transmission

times. This control architecture has as its main objective the reduction of

the data packets transmitted over the network. In this way, the amount of

bandwidth necessary for feedback control to maintain certain stability and

performance criteria is minimized

The control and communication co-design [6, 40, 41]is a new and interest-

ing research. In the co-design approach, network issues such as time delay,

packet dropout, and bandwidth limitation will be considered simultaneously

with control system issues such as stability and control performance. Gener-

ally, the network scheduling in NCSs is to assign a transmission schedule to

each transmission entity (sensor, controller, actuator) based on a scheduling

algorithm

The NS-2 network simulator is a network simulation package developed at

the Information Sciences Institute at the University of Southern California

[42]. NS-2 provides many powerful objects to simulate different types of

networks and network architectures, as well as different types of nodes and

traffic patterns.

TrueTime is a MATLAB-SIMULINK based simulator facilitates co-simulation

of controller task execution in real-time kernels, network transmissions and

continuous plant dynamics for NCS [43]. The simulator software consists

of a SIMULINK block library . The various network blocks allow nodes to

communicate over simulated wired or wireless networks [11].

1.4 Motivations

The insertion of the communication network in the feedback control loop

makes the analysis and design of a networked control system more complex

and induces some issues that degrade the control system’s performance and

even cause system instability. Some fundamental issues that influence per-

formance of an NCS respectively: network-induced delays, sampling period,

jitter, data packet dropout, network scheduling and stability. Above all the
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major issues raised in NCSs is the unreliable transmission paths because of

limited bandwidth and large amount of data packet transmitted over one line,

which may result in transmission delays and data packet dropout. Because

of the variability of network-induced time delays, NCSs may be time-varying

systems, making analysis and design more challenging.

This thesis presents a development framework for design of a real-time

networked servo control system for investigation of issues due to use of com-

munication channel.

1.5 Objectives

The salient objectives of the thesis are:

i. Development of a real-time networked control system using LABVIEW.

ii. Implementation of PID controller and Smith predictor for control and

delay compensation induced by the communication network.

iii. Discrete time analysis for controller design for stabilization of control

system in presence of networked delays and packet dropouts.

1.6 Thesis Organisation

The thesis is organized as follows.

• In chapter 2, description and modeling of the Servo setup is presented.

• Chapter 3 depicts PID controller design and its tuning algorithms. Stud-

ies on the Servo system using an artificial delay are also presented.

• In Chapter 4, Smith predictor compensation design and implementation

in Servo system are discussed.

• Chapter 5 presents development of a LabVIEW based real-time NCS

environment including implementation of PID controller and Smith pre-

dictor.
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• In chapter 6, a direct approach using discrete time system analysis for

controller design using Lyapunov stability criteria is described.

• Chapter 7 concludes the thesis. Extensions of the present work and

future scopes for further work are also discussed therein.



Chapter 2

SERVO SYSTEM AND ITS MODELING

2.1 The System under Study

A servo is an error feedback system used to achieve the desired speed or posi-

tion used in many industrial applications. Here, we consider a position servo

system based on DC motor. It is a laboratory based setup manufactured

by Feedback Instruments Ltd (Model No. 33-100). This servo motor have

two main parts one is mechanical unit and another one is digital unit, which

are shown in Fig.2.1 and Fig.2.2 respectively. The mechanical unit of servo

Figure 2.1: Servo motor mechanical unit

setup[44] consists of electro-mechanical components comprising of a DC mo-

tor, an analogue tachogenerator, analogue input and output potentiometers,

absolute and incremental digital encoders and magnetic brake and some sup-

17
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porting electronics comprises like power amplification, a low frequency sine,

square and triangle waveform generator for testing purposes, encoder reading

circuitry and Liquid Crystal Display (LCD) and Digital Volt Meter (DVM).

A separate power supplied unit is connected to this unit.

Figure 2.2: Servo motor digital unit

The digital unit[44] is the interface between the mechanical unit and a

computer(PC). It contains Analog to Digital Converter(ADC) and Digital to

Analog Converter (DAC) circuits for signal conversion, Pulse Width Modu-

lation (PWM) motor drive, input and output potentiometers or digital en-

coders. Connection to the mechanical unit is by way of a ribbon cable which

also supplies power to the unit.

2.2 Identification of the Servo Model

Mathematical Modeling of DC servo motor

DC motors are most widely used actuators in servo position, speed regulation

control systems. Basically DC motors are torque transducers, converting

electrical energy to rotational mechanical energy. For analysis of control

system we require a mathematical model of a system. Equivalent circuit of a

DC motor is shown in Fig.2.3. The control input of the motor is applied as

the input voltage ( va(t)) of the armature terminals.
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Table 2.1: Symbols used for the DC motor model

Ra Armature resistance (ohm)
La Armature inductance (H)
ia(t) Armature current (Ampere)
if (t) Field current (Ampere)
va(t) Applied Armature voltage (volts)
eb(t) Back emf (volts)
Tm(t) Torque developed by motor (Nm)
θm(t) Angular displacement of the motor shaft (rad)
jm Moment of inertia of motor shaft (kg −m2)
Bm Viscous friction of motor shaft ( Nm

rad/s)
ϕ Magnetic flux

Figure 2.3: A Schematic of DC motor

In servo applications, the DC motor are generally used in [13] linear range,

so we assume that the torque developed by motor (Tm(t)) proportional to the

flux (ϕ) and armature current (ia(t))

Tm(t) = km(t) ϕ ia(t) (2.1)

As the flux is constant, the above (2.1) can be written as

Tm(t) = kiia(t) (2.2)

The motor back emf is proportional to speed of the motor is described as

eb(t) = kb
dθm(t)

dt
(2.3)

where ki is motor torque constant and kb is the back emf constant. The
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differential equation for the DC motor circuit (no-load) is

La
dia(t)

dt
+ Raia(t) + eb(t = va(t) (2.4)

and the torque equation is using (2.4)

jm
d2θm(t)

dt2
+ Bm

dθm(t)

dt
= Tm = kiia(t) (2.5)

Laplace transformation of (2.3,2.4,2.5) with zero initial conditions we get

Eb(s) = Kisθ(s) (2.6a)

(Las + Ra)Ia(s) = Va(s)− Eb(s) (2.6b)

(jms2 + Bms)θ(s) = KiIa(s) (2.6c)

substituting the value of (2.6a) and (2.6b) in (2.6c), we get the transfer

function(input voltage Va(s) and output position θm(s)) of the DC motor as

a third order equation

θm(s)

Va(s)
=

Ki

(jms2 + Bms)(Las + Ra) + KiKbs
(2.7)

Assuming armature circuit inductance La to be very small, is usually neg-

ligible. So the above equitation becomes a second order transfer function

as
θm(s)

Va(s)
=

Ki

Rajms2 + RaBms + KiKbs
(2.8)

The servo motor is equipped with A/D, D/A converters, PWM convert-

ers and others (see chapter-3 Sec.5.2). So, identification of each individual

component is a bulky procedure. Hence we tried to identify the system as a

whole including all the components. For this we use the system identification

toolbox of MATLAB. Providing input voltage to the servo motor and obtain

the corresponding position as output, and by using these input and output

data model of the servo system is identified. The procedures for the system

identification using MATLAB are described in following section.
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System identification using MATLAB

System identification using system identification toolbox provides users to

calculate and observe the progress of process identification. A typical work-

flow in the System Identification Tool GUI includes the following steps:

• Running the system with some known input. The input and its corre-

sponding output are stored in MATLAB workspace.

• A new System Identification toolbox session can be obtained by typing

”ident” in MATLAB command window.

• Importing the input/output data from MATLAB workspace to System

Identification GUI.

• System Identification GUI consists of 4 different parts - Data Views,

Operations, Model Views and Validate data.

• Data View palette shows the data set on which the identification process

is to be carried out.

Figure 2.4: System Identification of Servo Motor
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• Operations palette is again sub divided into 3 parts as Preprocessors (fil-

tering),working data (current data used for identification) and Estimate

(to identify the type of model).

• After importing the data to operation palette, choose the process model

option under estimate menu.

• Choose the order and type of model you want to identify.

• After the above step, Go to Validate palette and choose the model out-

put option. This shows a graph between measured and simulate model

response with best fit in percentage. The maximum best fit percentage

will give better accuracy for model matching.

As shown in Fig.2.4, where P3(third order model response) has best fit per-

centage of 93.61 and P3(second order model response) has 91.49. So we

choose the model as a third order model. After performing the above identi-

fication procedure the transfer function of the servo system is given by.

θ(s)

V (s)
=

53.2718

s3 + 9.481s2 + 36.1855s + 0.8211
(2.9)

where θ(s)is the output angular position of the servo and V (s)is the applied

voltage to the servo system.

2.3 Chapter Summary

A simple way for system identification using MATLAB system identification

tool-box is presented. Although a Servo system can be modeled as DC motor,

but use of some digital circuits here makes the identification procedure very

complex so a simple procedure is carried out to perform the identification. A

third order model is identified as it matches with the original response of the

servo system.
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PID CONTROLLER DESIGN

3.1 Introduction

The Proportional-Integral-Derivative (PID) controller [45, 14]is the most

widely used controller structure in many industrial applications due to its

following advantages.

• structural simplicity and sufficient ability of solving many practical con-

trol problems

• reduced number of parameters to be tuned

• simple, robust and familiar to the field operator

3.1.1 Objectives

This chapter focus on some well known PID controller tuning formulas and

verification of these in simulation. The simulation are done with MAT-

LAB/SIMULINK. Real time experimentation shown in following chapter.

3.2 PID Controller Design Methodologies

PID controllers are used extensively in the industry and having longest his-

tory and most vigorous development[17, 18, 46]. The structure of a PID

23
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controller in time domain is

u(t) = Kp(e(t) +
1

Ti

t∫

0

e(t)dτ + Td
de(t)

dt
) (3.1)

where

u(t)=The Control Input

e(t)=The difference between reference signal yr(t) and output signal y(t)

The Complete structure of PID controller is shown in Fig.3.2

C(s) =
U(s)

E(s)
= Kp(1 +

1

sTi
+ sTd)E(s) = Kp +

Ki

s
+ Kd(s) (3.2)

whereTiis called the integral time constant or reset time andTdis called the

derivative time constant or rate time. The coefficients KpKiKd and Ti, Td

related by.

Proportional Gain =Kp

Integral Gain(Ki) =KP

Ti

Derivative Gain(Kd) = KpTd

The controller has three parameters to be tuned for the desired control re-

sponse. These parameters has different effects on system parameters as shown

in Table3.1.

Parameter Rise Time Overshoot Steady-State Error Settling Time
Proportional Gain Decrease Increase Decrease Small Change
Integral Gain Decrease Increase Remove Increase
Derivative Gain Increase Reduce No Effect Decrease

Table 3.1: Effects of PID parameters on a system parameters

The parameters of a PID controller can be tuned by various methods, such

as trial and error tuning, empirical tuning like the well-known ZieglerNichols

method[14], analytical tuning, prediction approach tuning[16], optimized tun-

ing and auto-tuning[17].
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3.2.1 Ziegler-Nichols PID Controller Design Methodology

The Ziegler-Nichols(Z-N) tuning methods can be carried out on open-loop

step response or closed-loop frequency response tests and according to Ta-

ble3.2 one can obtain the tuned parameters of P, P-I or P-I-D controller.

Open-Loop Step Response Method

The Ziegler-Nichols step response method is an experimental tuning method

for open-loop plants. Procedures for this method are follows :

• Apply a step signal on the open-loop system.

• The point on the step response curve with the maximum slope is (inflec-

tion point)determined and the tangent is drawn.

• Two terms A and L are determined graphically from the measurement

of the step response of the plant as illustrated in Fig:a of Fig.3.1.

• The intersection of the tangent with the vertical axis gives A, while the

intersection of the tangent with the horizontal axis gives L.

• Once L and L are determined, the PID controller parameters are then

given in terms of L and L by the formulas shown in Table3.2

Closed Loop Frequency Response Method

In the frequency response method the loop is closed and a pure gain controller

is used.In this method, the two parameters to be calculated are the ultimate

gain Kuand the ultimate period Tuwhich can be calculated experimentally in

the following way:

• The gain is increased to the ultimate gain Ku when the system exhibits

a sustain oscillation.

• The oscillation period is measured Tu.

The sustain oscillatory response is shown in Fig:b of Fig.3.1 and the PID tun-

ing is calculated from the Z-N tuning Table3.2. P,P-I and P-I-d controllers
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have separate tuning rules.

Tuning Method/Parameter KP Ti Td

Ziegler-Nichols Step Response
(Proportional-Integral-Derivative) 1.2

A
0.6
AL

0.6L
A

Ziegler-Nichols Frequency Response
(Proportional-Integral) 0.6Ku

0.5
Tu

0.125Tu

(Proportional-Integral-Derivative) 0.45Ku
0.833
Tu

∗
(Proportional) 0.5Ku ∗ ∗

Table 3.2: Ziegler-Nichols tuning table for PID controller.

The Z-N tuning is usually for first order systems. For higher order systems

some modifications needed in Z-N method to improve the performance[15].

Figure 3.1: Graphical determination of parameters in Ziegler-Nichols tuning step response test
(Fig:a) and frequency response test(Fig:b)

3.2.2 A Robust PID Controller Design Methodology

The delay in NCS causes a decreased phase margin which implies a lower

damping ratio and a more oscillatory response for the closed-loop system

performance. In this section a robust PID controller design scheme is illus-

trated by using Gain and Phase margin method.

The objective of this PID tuning is to keep the phase and gain margin of

a delayed system fixed at a certain value so that change in delay variation

couldn’t change this parameters hence the system will be stable in presence

of delay. This method of PID tunning [20, 19, 18] is known as frequency
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domain/parameter plane tuning method.Consider a servo system which con-

tains a time delay element, its transfer function is shown as follows.

Gp(s) =
53.2718

s3 + 9.481s2 + 36.18s + 0.8211
e−τs (3.3)

where ”τ” is the delay time of the system. Using a second-order approxima-

tion, the time domain and frequency domain specifications are approximately

converted into interval gain margins and phase margins. Fig.3.2 shows the

Refereence
Input

R(s)

Plant

Gp (s)

Distrubance D(s)

Controller

Gc (s)

Figure 3.2: Block diagram of a typical PID controler

block diagram of the considered system where the transfer functions of the

process and the controller are denoted as Gp(s) and Gc(s), respectively.D(s)is

the external disturbance. An error actuated PID controller has the transfer

function.

Gc(s) = Kp +
Ki

s
+ Kds (3.4)

The forward open-loop transfer function of the control system shown in Fig.

3.2 is,

GO (s) = GC (S) GP (S) =
N (S)

D (S)
(3.5)

i.e.

G0 (s)− 1

D (s)
N (s) = 0 (3.6)

By letting s = jω, and Re [G0 (jω)]and Im [G0 (jω)]be the real part and

imaginary part of the G0 (jω), respectively, one has

GO (jω) = |GO (jω) |ejφ (3.7)

where

|GO (jω) | =
√

Re [GO (jω)]2 + Im[GO (jω)]2 (3.8)
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and

φ = ∠GO (jω) = tan−1tan−1{Im[GO (jω)

Re[GO (jω)
} (3.9)

Assuming A = 1
GO(jω) and θ = ϕ + 180, as when θ = 0, A is the gain margin

of the system, and when A = 1, θ is the corresponding phase margin. In

view of the above, a gain-phase margin tester function may be defined as.

F (jω) = D(jω) + Ae−jωN(jω) (3.10)

It can be seen thatF (jω) = 0,∀ω. The open loop transfer function can be

rewritten using the controller structure(3.4) as,

(
kps + ki + kds

2

s
)× (

53.2718

s3 + 9.481s2 + 36.18s + 0.8211
e−Ts) (3.11)

puttings = jω, and Ae−jθ = Acosθ − jAsinθ, the numerator of (3.11) will

be.

Figure 3.3: A Control system structure with a Gain-Phase Margin tester.

N (jω) =
(
kpjω+ ki + kd(jω)2

)
× 53.27× e−T jω

= 53.27 (cosωT− jsinωT)× (
jkpω + ki − kdω

2)

= 53.27[cos cosωT
(
ki − kdω

2) + sinωT (kpω) + j{cos{cosωT (kpω)

− sin sinωT
(
ki − kdω

2)} (3.12)

Let us define

XN = cos cosωT
(
ki − kdω

2
)

+ sinωT (kpω) and YN = cos cosωT (kpω) −
sin sinωT

(
ki − kdω

2
)

AejθN (jω) = (A cosθ − j A sinθ) (53.27XN + j53.27YN)
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= 53.27 [(AcosθXN + AsinθYN) + j (AcosθYN − AsinθXN)] (3.13)

and the denominator of (3.11) will be.

D (jω) = jω
(
(jω)3 + 9.481(jω)2 + 36.18jω + 0.8211

)

= ω4 − j36.18ω4 − j
(
9.481ω3 − 0.8211ω

)
(3.14)

Let us define

XD =
(
ω4 − 36.18ω2) andYD =

(
9.481ω3 − 0.8211ω

)
(3.15)

Combining real parts of (3.14) and (3.13)

(
ω4 − 36.18ω2) + 53.27A cos cos θ

{
cos cosωT

(
ki − kdω

2) + sinωT (kpω)
}

+53.27A sin sin θ
{
cos ωT (kpω)− sinωT

(
ki − kdω

2)}

Define

B1 = (53.27Acosθ × sinωT× ω) + (53.27Asinθ × cosωT× ω) (3.16)

C1 = (53.27(Acosθ × cosωT)− (53.27Asinθ × sinωT) (3.17)

D1 = ω4 − 36.18ω2 − 53.27Aω2kdcos (θ + ωT ) (3.18)

Then from (3.16),(3.17),(3.18) we have,

kpB1 + kiC1 + D1 = 0 (3.19)

The imaginary parts are,

(
9.481ω3 − 0.8211ω

)
+53.27(Acosθ

[
cos cos ωT (kpω)− sin sin ωT

(
ki − kdω

2)]

− (
Asinθ

[
cos cos ωT

(
ki − kdω

2) + sin sin ωT (kpω)
])

Defining,

B2 = (53.27A cos θ × cos ωt× ω)− (53.27A sin θ × sin ωt× ω)

= 53.27Aω cos(θ + ωt) (3.20)
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C2 = −53.27(A cos θ×sin ωt)−(53.27A sin θ×cos ωt) = 53.27A sin(θ+sin ωt)

(3.21)

D2 = (−9.481ω3 + 0.8211) + 53.27A cos θ × sin ωT × ω2kd + 53.27A cos ω2kd

(3.22)

Then we can write from (3.20),(3.21),(3.22)

kpB2 + kiC2 + D2 = 0 (3.23)

Solving the equations(3.19) and (3.23) we can find

kp =
C1 ×D2 −D1 × C2

B1 × C2 − C1 ×B2
(3.24)

and

ki =
B2 ×D1 −B1 ×D2

B1 × C2 − C1 ×B2
(3.25)

Parameter plane analysis

As discussed above, if A = 1 and θ=0 then setting Kd to a constant, for

different values of ω, a locus representing the stability boundary of the system

without the gain-phase margin tester can be plotted in the Kp-Ki plane. By

choosing A as a constant value and θ=0, the locus in the plane is a boundary

of the constant gain margin. By setting A=1, and θ is assumed equal to a

constant value, then the locus in the plane is a boundary of constant phase

margin. By varying one of the parameters, A, θ and ω, and fixing the others,

it suffices to plot the constant gain margin boundary and the constant phase

margin boundary in the parameter plane. The boundary obtained shows a

useful relationship between the three parameters, Kp-Ki and Kd of the PID

controller.

A = 10(GainM arg in
20 ) and assuming the delay time of the system is fixed at

τ = 0.50. Keeping Kd = 0.02, the constant phase margin boundaries for

θ = 30and 60◦ can be plotted as in Fig.3.4. Similarly, for A = 5 and 10dB,

the constant gain margin boundaries can also be plotted.
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Figure 3.4: User specified parameter region in parameter plane analysis

3.3 Simulation Studies

In this section, we presented some simulation results with MATLAB/ SIMULINK.

As NCS uses a shared network which is the source of delay using artificial

delay blocks of SIMULINK and assuming that as to be a network.

3.3.1 Simulation Using Artificial Delay

An artificial delay block refers to transport delay block in SIMULINK. We

started with a basic simulation of a closed loop system as shown in Fig.3.2.

Below in Fig.3.5 represents the SIMULINK model of a basic closed loop

control system and Fig.3.7 shows the networked control system (presence of

a artificial delay block).

Responses of Fig.3.5 and Fig.3.7 are shown in Fig.3.6 and Fig.3.8 respec-

tively. It can be concluded that in the absence of delay in system Fig.3.5 ,

PID controller tuned by Z-N method shows a satisfactory response with high

overshoot, good rise time and settling time where in the gain margin/phase

margin tuning method the response is better that Z-N tuned PID controler



CHAPTER 3. PID CONTROLLER DESIGN 32

Figure 3.5: Closed loop control system with a PID controller

Figure 3.6: Closed loop control system response without delay

shown in Fig.3.6. Considering 0.03sec delay in both channels as shown in

Fig.3.7 , the reposes of systems under different tuned PID controller is shown

in Fig.3.8. The Z-N tuned PID controller could not incorporate the delay as

the response shows very high oscillation drives the systems to become unsta-

ble where in gain margin/phase margin tuning method, as we consider the

delay at the time of design it shows a better time response with good rise

time, less oscillation result as compared to Z-N tuned PID controller.
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Figure 3.7: Closed loop networked control system with artificial delay

Figure 3.8: System response of Z-N tuned and robust PID controller with delay

3.4 Chapter Summary

A detailed description of PID controller tuning using Zigler-Nichols and a

Robust PID tuning method using gain margin and phase margin specification

is presented. Some simulation studies is also carried out with artificial delay

in the loop with the servo system model. It has found that the PID controller

tuned by gain margin and phase margin specification makes the system robust

with delay.



Chapter 4

SMITH PREDICTOR BASED

COMPENSATING CONTROL FOR NCS

As discussed, PID controller alone is not a good choice for NCS, there should

be a suitable delay compensation techniques associated with for efficient con-

trol. A Smith predictor[26] has been known as an effective controller to

overcome dead time.It creates a virtual environment using the plant model

and estimated delay which are used to compensate the effect of delay.More

details is described in below Section.4.1.

4.1 Smith Predictor Based Compensation

Probably the simplest dead time compensator used in industrial application

is the Smith predictor [26]. Developed in 1950 by O.J Smith to compensate

process time delay as so named as Smith Predictor. The Smith predictor

structure shown below in Fig.4.1 contains model of the actual process to

be controlled and an estimated delay of the actual control loop. It creates

a virtual environment where the plant model and estimated delay used to

compensate the effect of delay in the loop. There are two loops working in

a Smith predictor. The outer loop is the actual feedback loop of the process

which is always affected by delays and an inner loop is a virtual loop that

consists of process model series with estimated delay. The outputs of inner

34
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and outer loop are subtracted in order to cancel the delay effect in the control

loop.

Figure 4.1: Block diagram representation of Smith predictor

Consider a process model described by G(s) = G0(s)e
−τs,where G0(s) is

the delay free part of the system, and C(s)is the controller for this, then the

close loop transfer function H(s) will be

H(s) =
C(s)G0(s)

1 + C(s)G0(s)
(4.1)

Again consider the delayed plant G(s)and a controller Cdelay(s) , then the

close loop transfer function Hdelay(s) will be

Hdelay(s) =
Cdelay(s)G(s)

1 + Cdelay(s)G(s)
(4.2)

As the (4.1) is having no delay(τ),so the response of close loop H(s) is satis-

factory under proper design of controller. The objective of Smith predictor is

to eliminate the delay effects in (4.2) by designing a suitable controller Cdelay.

It can be stated as

Hdelay(s) = e−τsH(s)

then
Cdelay(s)G(s)

1 + Cdelay(s)G(s)
= e−τs C(s)G0(s)

1 + C(s)G0(s)
(4.3)
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In above (4.3), it is not possible to use the actual plant(G(s)) and delay

in the actual closed loop (τ) ,so replacing it with a model as (G̃(s)) of actual

plant and estimated closed loop delay as (τ̃). Then (4.3) becomes

Cdelay(s)G(s)

1 + Cdelay(s)G(s)
= e−τ̃ s C(s)G̃0(s)

1 + C(s)G̃0(s)
(4.4)

Solving(4.4), one can find the value of Cdelay which is shown in the inner loop

of Fig.4.1.

Cdelay(s) =
C(s)

1 + C(s)− C(s)G̃0(s)e−τ̃ s

Simulink diagram of Smith predictor is shown Fig.4.2 and the correspond-

ing response is shown in Fig.4.3.

Figure 4.2: Simulink representation of Smith Predictor

4.1.1 TrueTime Based Simulation

Co-design in NCS [40, 41]is necessary for utilization of system resources, to

achieve the optimized system performance and for better understanding of

the system. TrueTime is a MATLAB/SIMULINK-based simulator [43] for

networked and embedded control systems that has been developed at Lund

University since 1999 which facilitates co-simulation of networked system.
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Figure 4.3: Smith Predictor response with artificial delay in Simulink

Figure 4.4: Networked PID controller in TrueTime Network Simulator

TrueTime Network is used as a communication channel between controller

and plant.A networked architecture using TrueTime Network is shown in

Fig.4.4 and Fig.4.6 with PID controller and smith predictor respectively and

the corresponding response is shown in Fig.4.5 and Fig.4.7.
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Figure 4.5: Robust PID controller response in TrueTime Network Simulator

Figure 4.6: Networked Smith Predictor structure in TrueTime Simulator

4.2 Study on DC Servo Motor Setup

For experimental purpose we use a laboratory based DC servo motor setup. A

rapid control prototyping process is developed with this where, PID controller

and Smith predictor structure is verified.

4.2.1 Delay Estimation

As discussed in section.4.1, Smith predictor requires exact model of the sys-

tem to be control and the estimated delay in closed loop.For Delay estimation,
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Figure 4.7: Response of Smith predictor with robust PID controller in TrueTime Simulator

we used two PC’s named as PC-1 and PC-2 are connected with a Local Area

Network(LAN). The process starts with sending a sinusoidal signal from PC-

1 to PC-2 then receiving the same from PC-2 to PC-1 as shown in Fig.4.8.

Difference of time between the amplitude of signal sent from PC-1 to PC-1

(reference) and received by PC-1 from PC-2 (delayed) will give the amount

of delay. We used UDP communication blocks of XPC target in Simulink

Figure 4.8: Block diagram representation of delay estimation in a LAN

library for this experiment and Fig.4.9 shows the configuration of PC-1 and

PC-2. Fig.4.10 shows the reference signal and delayed signal. Performing

the delay estimation procedure, the estimated delay found to be 0.06sec.
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Figure 4.9: Simulink blocks for delay estimation using UDP communication

Figure 4.10: Estimated delay between two computers connected in a LAN

4.2.2 Simulation of DC servo Motor Using Artificial Delay

Simulink models for rapid control prototyping with servo motor is shown in

Fig.4.12,Fig.4.13 and Fig.4.14. The responses of these models are shown in

Fig.4.15. The servo setup has two parts a mechanical and digital part. Digital

part is the intermediate between computer algorithm and mechanical part.

Fig4.11 shows the rapid control prototyping structure with DC servo system.

The ADC converts the real physical measurements to digital data so that a

software(MATLAB) based controller can utilize to generate a control signal

to DAC and this analog signal drives the servo system again to generate a

physical measurement. Details of the servo system is explained in chapter 3.
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Figure 4.11: Rapid control prototyping with servo setup

Figure 4.12: PID controller without delay with servo setup

A rapid control prototyping structure with the servo system and a PID

controller without delay in control loops is shown in Fig.4.12, a PID controller

with consideration of delay in both channels is shown in Fig.4.13 and in

Fig.4.14, it shows Smith predictor structure. Delays considered here are

artificial delay block of SIMULINK.
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Figure 4.13: PID controller with delay with servo setup

Figure 4.14: Smith predictor without delay with servo setup
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Figure 4.15: Results of Rapid control prototyping with Servo Motor

Fig.4.15 shows the responses of Rapid control prototyping with Servo Mo-

tor with an input of square wave (amplitude =30v and frequency=0.001

hz). The response of PID controller shown in (Fig.a) of Fig.4.15 is good

with less oscillation and overshoot when there is no delay but as we increase

the delay the response deteriorates and tends to unstable (Fig.b and Fig.c)

of Fig.4.15. The Smith Predictor response with delay=0.06sec is shown in

(Fig.d) of Fig.4.15which compensates the delay effects like as Fig.a.

4.3 Chapter Summary

Smith Predictor method to compensate time delay systems has been analyzed

with different PID controllers and compared. We have found that the smith

predictor method gives better results than the PID Controllers. An simple

experimental delay measurement is presented and used in Smith predictor .It

can be concluded that Smith predictor gives the best result in presence of

delay.



Chapter 5

DEVELOPMENT OF A LABVIEW

BASED REAL-TIME NCS SETUP

5.1 Introduction

In this chapter, we demonstrate a networked servo position control sys-

tem using National Instrument’s (NI) data acquisition (DAQ) card (Model

PCI 6221), LabVIEW software package, and DAQ signal accessory(SCB 68)

board. LabVIEW is a graphical programming environment based on the

concept of data flow programming[47],[48] . It is widely used for data ac-

quisition[49],[50] and instrumentation based control. It also facilitates devel-

opment of automated instrumentation systems using the PC plug-in Data

Acquisition (DAQ) interfaces.

In view of the above, we attempt to develop a LabVIEW based networked

servo control system for studying

1. How to develop such a network control system.

2. The effects of involvement of networks in a closed loop control system

and,

3. To observe the performance of the PID controller designed in the last

chapter.

44
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This chapter describes the different hardware used for the development

and how the whole set up can be brought into reality by using discretely

available components.

5.1.1 Objective

A networked based position control system is A laboratory based servo setup

is used for this purpose to develop a networked based position control system.

A networked platform is being developed in remote and host architecture

where a remote PC equipped with a Feedback servo motor to be controlled

by a host PC using PI controller. At remote the VI reads the current motor

position of the motor and send to host via LAN using UDP Communication.

The host generates a control input using the received measurement and send

it again to remote via the same network thus creating a closed loop networked

system. Reading the motor position and sending voltage to the motor circuit

are accomplished via the DAQ’s input and output ports respectively.

5.2 LabVIEW Based Communication Interfacing

The PC-Based data acquisition and control[51],[52] is now increasingly recog-

nized as an open and powerful hardware platform, which can provide effective

and reliable control, with no requirement for additional processors or com-

plex hardware additions. Data Acquisition Systems (abbreviated with the

acronym DAS or DAQ) is a process of acquisition of real world analog signal,

conditioning it into a suitable such as voltage or current. The elements of a

PC based data acquisition system are of follows

1. Physical Components

Data acquisition begins with the physical system to be measured. This

physical phenomenon could be the room temperature,the position of

servo motor, the intensity of a light source, the pressure inside a cham-

ber, the force applied to an object, or many other things. A transducer

or sensor is a device that converts a physical phenomenon into a mea-
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surable electrical signal, such as voltage or current. The servo system

described in chapter2 is used as the physical component here.

2. Signal Handling and Noise Reduction

Sometimes transducers generate signals too difficult or too dangerous

to measure directly with a data acquisition device. For instance, when

working with high voltages, noisy environments, or extreme high and low

signals, signal conditioning is essential for an effective data acquisition

system. Signal conditioning maximizes the accuracy of a system, gives

sensors the ability to operate properly, and guarantees safety. The dig-

ital unit of the servo setup along with SCB 68 (I/O connector) acts as

the Signal conditioning element. The SCB(Shielded Desktop Connector

Block)-68 is a noise rejecting, shielded I/O connector block as shown in

Fig.5.1. It is the actual interface between the servo digital unit and a

PC. It contains the analog input, analog output, and digital input/output

terminals ports by which it sends a software generated analog signals,

acquires signals to and from the servo setup along with PC.

Figure 5.1: 68-pin Shielded Desktop Connector Block (SCB-68)

3. Data Acquisition Hardware

Data acquisition hardware(PCI-6221) acts as the interface between the

computer and the outside world. It primarily functions as a device that
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digitizes incoming analog signals so the computer can interpret them.

Other data acquisition hardware functionality includes analog output,

digital I/O, counter/timers, and triggering and synchronization circuitry.

Figure 5.2: Data Acquistion Hardware (PCI-6221)

4. Driver and Application Software

Software transforms the PC and data acquisition hardware into a com-

plete data acquisition, analysis, and data visualization tool. There are

two layers of software in a data acquisition system: driver software and

application software. Driver software is the communication layer be-

tween the application software and the hardware. The application layer

can be either a development environment in which you build a custom

application that meets specific criteria or a configuration-based program

with preset functionality. Application software adds analysis and visu-

alization capabilities to driver software.

Complete structure of a data acquisition is shown in Fig.5.3 where the me-

chanical unit acts a the physical process to be control, the digital unit and

SCB 68 both acts as signal condition element for noise reduction and better

signal processing, PCI 6221 is the data acquisition hardware and NI DAQmx

and LabVIEW are the driver and application software receptively .The DAQ

process starts with providing some analog input(reference input) to the motor
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input terminal and acquire the corresponding response from the tachometer

output terminal using LabVIEW DAQ Assistant, both at digital unit.Here

the objective is to match the input and servo response.

Figure 5.3: General Configuration of a Data Acquisition System

5.3 NCS Setup

In this section we’ll discuss about the use LabVIEW application software for

development of NCS setup. LabVIEW is a virtual instrumentation platform

for developing sophisticated measurement, test, and control systems using

intuitive graphical icons and wires. It has two Windows namely Block Di-

agram window and Front Panel Window. Block Diagram window is meant

for graphical programming where the Front Panel window shows the out-

put. There are three types of choice namely control, constant and indicator.

Control and Constant used for input and indicator for output. We are using

LabVIEW 8.2 provided by National Institute of Technology, Rourkela.

5.3.1 Signal Generation and Acquisition Using LabVIEW

Data Acquisition using LabVIEW an be done by two different ways - one

using DAQmx programming in Measurement I/O palette and another is using

DAQ Assistant in Express VI palette. DAQmx is a graphical programming



CHAPTER 5. DEVELOPMENT OF A LABVIEW BASED NCS SETUP 49

way for data acquisition where DAQ Assistant is a configuration wizard type

set up.A DAQmx based programming for signal acquistion is shown in Fig.5.4

DAQmx programming includes the following steps.

Figure 5.4: DAQmx Programming for reading the real world signal

• Go to Measurement I/O palette under Function palette and choose DAQmx

icon.

• Drag and drop DAQmx Create Virtual Channel to Block Diagram win-

dow

– Create control/constant for a physical channel. Choosing a physical

channel activates an analog or digital port in data acquisition hard-

ware, through which signal can generated to and acquired from the

physical component to DAQ hardware.

– Create control/constant for a maximum and minimum value. It

makes the hardware to generate and acquire the measured signal

between a maximum and minimum value. Every DAQ hardware

has a predefined maximum and minimum value e.g. PCI 6221 can

generate and acquire ± 10 volt

• Choose DAQmx Timming to block diagram window. The NI-DAQmx

Timing function configures the timing for hardware-timed data acqui-

sition operations. This includes specifying whether the operation will

be continuous or finite, selecting the number of samples to acquire or

generate for finite operations, and creating a buffer when needed.
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• Choose DAQmx start task to block diagram window.The NI-DAQmx

Start Task function explicitly transitions a task to the running state

• Choose DAQmx read/write to block diagram window.The NI-DAQmx

Read/Write function reads/writes samples from the specified acquisition

task. The different instances of the function allow for the type of acqui-

sition (analog, digital, or counter), the number of virtual channels, the

number of samples, and the data type to be selected.

• Choose DAQmx clear Task to block diagram window.The NI-DAQmx

Clear Task function clears the specified task. If the task is currently

running, the function first stops the task and then releases all of its

resources. Once a task has been cleared, it cannot be used unless it is

recreated

Another way for data acquisition is to use of DAQ Assistant function which is

a easier method than DAQmx Programming.It is wizard based configuration

described in Appendix-A. A complete block diagram of signal generation and

acquisition is shown in Fig.5.5.

Figure 5.5: Signal generation and acquisition using DAQ Assistant

5.3.2 UDP Communication Protocol in LabVIEW

Internet Protocol (IP), User Datagram Protocol (UDP), and Transmission

Control Protocol (TCP) are the basic tools for network communication.UDP

is a minimal message-oriented transport layer that uses ports to provide
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packet application-to-application communication over a network.UDP pro-

tocol does not have much in the way of communication control, no explicit

connection to the other side of communication is necessary in order to send

or receive data. A client must simply listen on a specified UDP port, and

send any data to that port of that client is received.

Reasons for choosing UDP over TCP

• UDP is faster than TCP is because there is no form of flow control or

error correction. Which will behave like a time driven sensor and will

send the last received data to plant as actuator.

• It provides a best-effort datagram service to an end system (IP host).

• The simplicity of UDP, however, reduces the overhead from using the

protocol and the services therefore are adequate in many cases.

• UDP is only concerned with speed so it is better to use UDP in an

application sending data from a fast acquisition

• A computer may send UDP packets without first establishing a connec-

tion to the recipient.

UDP Communication in LabVIEW

UDP communication provides a simple user interface that conceals the com-

plexities of ensuring faster network communications. There are two PCs

named receiver and sender required for UDP communication. The sender who

sends the signal and receiver who receives the same. To use the UDP protocol

in LabVIEW go to Functions =⇒ Data Communications =⇒ Protocol =⇒
UDP palette for UDP communication in LabVIEW . UDP communication

can be utilized in every applications in LabVIEW with a standard process

which involves opening the connection, reading and writing the information,

and closing the connection see Fig.5.6.



CHAPTER 5. DEVELOPMENT OF A LABVIEW BASED NCS SETUP 52

Figure 5.6: UDP palette for UDP communication in LabVIEW

Basic Steps for Developing UDP Communication Applications

• The UDP open vi opens a UDP socket on the specified port. Create

a control for port and IP address of the another computer. The post

number sould be a local port where the IP address is of another PC with

which you want to create a UDP application.

• UDP Read vi/UDP Write vi used for reading/ writing data from the

server or to the host.UDP Read vi has two attributes, max size is the

maximum number of bytes to read and Time out is the maximum time

limit for a byte transmission above the limit it returns an error.UDP

Write vi has two important attributes IP Address and Port Address.

IP address is same as UDP open. Port Address is the port of another

computer to which you want to write/send some data.

• UDP Close vi Closes a UDP socket.

Each blocks of UDP palette are interconnected with a Connection ID wire

from UDP open vi to UDP close vi that uniquely identifies about the UDP

socket.A complete UDP palette for UDP communication in LabVIEW is

shown in Fig.5.6.

Description of a Open loop UDP communication using LabVIEW

• A ”UDP open vi” for opening a UDP task in a specified port of the

computer.
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• A ”simulate signal vi” (see Fig.5.8) that will generate the required signal

to be transmitted.

• A ”UDP write vi” (see Fig.5.8) and ”UDP read vi” (see Fig.5.7) inside a

while loop for continuously sending and reading the signal respectively.

• A ”UDP close vi” for stop a UDP task.

Figure 5.7: Receiving signal from sender

Figure 5.8: Writing data to the server from client

Fig.5.7 and Fig.5.8 are the receiver and sender respectively in open loop

UDP communication. Fig.5.7 consists of a UDP read vi which reads the

signal that is sent by Fig.5.8 using UDP write vi.
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Description of a Closed loop UDP communication using LabVIEW

Fig.5.7 and Fig.5.8 show one way transmission of signal from host to server.

A complete networked behavior is presented in Fig.5.9 and Fig.5.10 where

there is a closed loop between host hand server.In Fig.5.9 and Fig.5.10 there

is a parallel structure of UDP read and UDP write inside a while loop for

continuous generation and acquisition of signals at the both end in a closed

loop manner. The steps are described as follows.

Figure 5.9: Closed loop signal sending unit

Figure 5.10: Closed loop signal receiving unit
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• Select a simulate signal vi, which generates the signal to be sent.

• Connect the output of the simulate signal vi to the UDP write vi, (see

Fig.5.9)with which will send the generated signal to the receiver.

• This signal received at receiver by a read vi and again send back to

sender unit using (see Fig.5.9) write vi.

5.3.3 Description of the Developed NCS Setup

A networked control system architecture consists of two attributes namely a

plant that is to be controlled by a controller as shown in Fig.5.11.

Figure 5.11: Networked Control Architecture

Developing Networked Plant Block Diagram

Server part is also can be named as process where there is at least a physical

process to be controlled. As shown in Fig.5.11, a servo is the server which acts

as a physical process here. Actuator and Sensor are other elements except

the plant at server. Basic functions to perform by a server are (a)Actuator to
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receive the control input and drive the process, (b)Sensor to sense the process

parameters and send to controller or host. The Plant side configuration is

shown in Fig.5.12 and the procedure is described below.

• Setup a data acquisition VI as described in Appendix-A, for closed loop

data acquisition and generation using LABVIEW DAQ Assistant VI.

• Connect the UDP read to the input of DAQ Assistant VI as controller

input. The DAQ Assistant VI here will act as an actuator.

• The servo position is acquired by using another DAQ Assistant which

acts as a sensor which is connected to UDP write. So the measurement

signal will transmitted to controller unit. The plant unit will remain

same for any controller used.

Figure 5.12: Networked Plant/Process configuration

Developing Networked Block Diagram for Controller

Controller unit where a operator will visualize the plant response. The basic

function at controller is to receives the sensor measurement and calculate the

control input which is again sent to actuator.
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Figure 5.13: Networked PID controller configuration

Configuration of Networked PID controller

• A PID controller for networked application is shown in Fig.5.13 which

can be obtained from Fig.5.10, with some modification.

• Inserting a ”PID controller vi” in it and connecting the output of ”UDP

read vi” and simulate signal as measurement and reference signal of PID

controller respectively .

• The output of ”PID controller vi” is connected to ”UDP write vi”, for

sending control signal to plant.

Configuration of Networked Smith predictor

• Insert a Simulation Loop present in Control design and Simulation palette

of LabVIEW. Insert a transfer function, transport delay PID controller

VI and a summing point into this simulation loop.

• In the transfer function enter the numerator and denominator as per

plant transfer function. This will act as model of the servo plant.

• The summing point has three inputs, reference input, the original servo

response from UDP read and the response of the model plant.
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Figure 5.14: Networked Smith predictor configuration

• The response of actual plant and model plant is subtracted to eliminate

the delay effect and added with output of Simulate signal

• The resultant signal is input to the PID controller.

A networked Smith predictor structure is shown in Fig.5.14

5.4 Experimental Results

A Rapid Prototyping Control (RPC) process involves developing simula-

tion models or generate application code, then using some interfacing device

(DAQ) to run and test this software in real time on a PC connected to the

physical hardware.The benefits of rapid prototyping are.

• It decrease development time.

• It decrease costly mistakes.

• It minimize sustaining engineering changes.

A complete diagram for RCP for networked servo system, is shown in Fig.5.15,

which includes two steps, sigal Generation and Acquistion using DAQ As-

sistant in closed loop and UDP communication between two PC. The Front
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panel of the closed loop data acquisition is shown in Fig.5.16 whose block

diagram is shown in Fig.5.5.

Figure 5.15: Schematic diagram networked servo control

As shown in Fig.5.16, A square wave (6V amplitude and 1.5 Hz) is gener-

ated using LabVIEW and fed to the servo motor. Corresponding position of

the servo is acquired and shown in below of the figure.

The front panel of the UDP communication between two PC is shown

in Fig.5.17. A sine wave (5V amplitude and 0.1 Hz frequency) is sent and

received at the sender side.

In this experiment we used a laboratory based servo motor setup as a real

process and a remote PID controller designed in LabVIEW. A PID controller

is used for the purpose of controlling position of the servo system, whose

response is shown in Fig.5.18 and having a response of high overshoots, whose

block diagram is shown in Fig.5.13.

Fig.5.14 shows the LabVIEW block diagram of the smith predictor and the

response is shown in Fig.5.19. This is clear from that the response in Fig.5.19,

that the overshoots present in PID controller response are eliminated.
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Figure 5.16: Front panel of Generation and Acquistion of Sigal using DAQ Assiatant

Figure 5.17: Front Panel of Signal Sending and Receiving Using UDP Protocol
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Figure 5.18: Front Panel of Networked PID controller

Figure 5.19: Front Panel of Networked Smith predictor



CHAPTER 5. DEVELOPMENT OF A LABVIEW BASED NCS SETUP 62

5.5 Chapter Summary

In this chapter, a real time networked servo control platform is developed by

using LabVIEW. A remote Servo Setup connected by a PC is controlled by

a PID controller using another PC connected by a LAN. A Smith predictor

is also used to compensate the delay in the loop.



Chapter 6

DIRECT APPROACH FOR

STABILIZATION OF NCS

6.1 Introduction

Approaches to delay compensation discussed in earlier are indirect, as they

involve two step controller design. As communication is in discrete, so anal-

ysis in continuous is difficult. So a discrete domain approach where the NCS

is stabilized with a feedback controller is discussed in this chapter. The

discrete approach divides the whole system in number of subsystems and

a feedback stabilization involves to finding appropriate switching signals as

well as state/output feedback controllers [29] to make the closed-loop sys-

tems (asymptotically) stable. Once the feedback controllers are given, the

closed loop systems are force free, and the switching signal design can then

be carried out using the packet loss in the network channel.

There are difficulties to deal with the modeling, analysis and synthesis

for the NCSs with both delay and packet dropout and is more difficult for

modeling, especially, when the controlled plant is continuous one. So, the

discrete switched system model [31, 28] are introduced.
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Figure 6.1: Illustration of packet loss, transmission interval in NCS

6.2 Concept of Transmission Situation

Direct approach for controller design uses the concept of packet transmission.

It models the whole system in terms of packet loss and delay in the control

loop and design a suitable feedback controller for stabilization of the system.

In a NCS there is equally possible cases of packet loss and delay. Delays

arise in two situations, one when there is signal is transmitting from sensor

to controller, another from controller to actuator. A transmission situation

includes the many transmission intervals, a transmission interval is defined

as the time period between two consecutive successful transmissions. A suc-

cessful transmission in NCS refers to no packet loss and no delay, in between

generation of data packets at sensor and reception of the same at actuator

through a communication channel.

A typical transmission situation is shown Fig.6.1.The state information

at the sensor end are sampled with constant time-interval although due to

information losses in the sensor-to-controller communication all these state

information does not reach the controller. Similarly, there are further infor-
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mation losses in the controller-to-actuator channel and the control input at

the actuator end is updated whenever new control information is received

therein. Dark bars at sensor as shown in Fig.6.1 represents the packet gener-

ation. Dark bars at controller end represents the received packets and dotted

bars are the lost packets so the same at the actuator. Consecutive dark bars

at sensor, controller and actuator will considered as a successful transmis-

sion. The time period between two consecutive successful transmission is

the transmission interval, and which will provide the information about the

packet loss and delay. Each arbitrary packet loss condition will be treated

as a subsystem. A switch system approach consider each subsystem for con-

troller design. The direct approach for controller design includes the following

process. (a) Modelling of NCS into different subsystems according to trans-

mission interval. (b) Formulation of Linear matrix inequalities (LMI) for

designing a controller for each subsystem.

6.3 Modeling According to Transmission Interval

A discrete-time plant sampled with constant time-period may be represented

at kth time-instant as:

x(k + 1) = Ax(k) + Bu(k) (6.1)

where x(k) ∈ Rnis the states and u(k) ∈ Rmthe plant input; A, B are known

matrices. The objective is to stabilize the system using feedback closed via

a communication network. Considering the static feedback-gain controller

the control input can be written as: u(k) = Kx(k − l) : l ∈ [1, 2, ...L],

where K is an appropriate dimensional matrix required to be suitably de-

signed so as the system is stabilized even if there are arbitrary information

losses in the feedback channel represented by the arbitrarily delayed state

x(k − l). Transmission interval (tk) refers to the time duration between two

successful transmissions of data packets from sensor to actuator via com-

munication channel and controller.It means at a time-instant when a packet
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generated from sensor it should reach at actuator through controller at the

same time-instant and the difference between two such transmission is termed

as a transmission interval as illustrated in Fig.6.1. Successive transmission

intervals are denoted as {0, t1, ...tk, tk+1, tk+2...} ∈ N .

Considering a transmission interval from tk to tk+1, and assuming the

initial condition (x(m) ) is transmitted successfully then.

x(m + 1) = Ax(m) + BKx(m) (6.2)

For the next time instant, for successful transmission the above (6.2) becomes

x(m + 1) = Ax(m + 1) + BKx(m + 1) (6.3)

Otherwise,

x(m + 2) = A2x(m) + ABKx(m) + BKx(m) (6.4)

If there are consecutive L1 packet loss, in-between these interval tk+1 and tk,

assuming the final state is(x(n) ) then,(6.4) becomes.

x(n) = (An−m +
∑(n−m)−1

l=0
Al1BK)x(m)) (6.5)

This can be written as.

x(tk+1) = (A(tk+1−tk) +
∑L1−1

l1=0
Al1BK)x(tk)) = (AL1 +

∑L1−1

l1=0
Al1BK)x(tk))

(6.6)

Eq.(6.6), gives the system model incorporating the packet loss information

of the system.

6.4 Stability Criteria and Controller Design

Lemma-1

Given the symmetric matrixS =

[
S11 S12

ST
12 S22

]
where S11 is r × rthen

the following three statements are true [29].

Statement 1:S < 0;

Statement 2:S11 < 0; S22 − S12
TS11

−1S12 < 0

Statement 3:S22 < 0; S11 − S12S22
−1S12

T < 0;
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Here the time interval between tkand tk+1 is referred as one transmission

interval and tk+1 − tk = L1 is the maximum packet loss in that transmission

interval. Assuming

AK 1
= (AL1 +

∑L1−1

l=1
AlBK)

, (6.6) can be written as.

x(tk+1) = Ak1x(tk) (6.7)

Defining a switched function that will consists of all the packet loss infor-

mation up to a successful transmission. z(0) = x(0),z(1) = x(t1), ...z(k) =

x(tk), ..., Then (6.7) can be written as.

z(k + 1) = Ak1
z(k) (6.8)

The discrete NCS described in (6.1) with packet loss will be stabilized, if (6.8).

is stable. For stabilization adopting a Lyapunov function for the switched

system as.

V (k, z(k)) = zT (k)Pz(k) (6.9)

where P is the parameter to be designed such that the system will be

asymptotically stable. The difference of (6.9) along the switched system is.

∆V (z(k)) = zT (k + 1)Pz(k + 1)− zT (k)Pz(k)

= zT (k)[AL1 +
∑L1−1

l1=0
Al1BK]

T

P [AL1 +
∑L1−1

l1=0
Al1BK]z(k)− zT (k)Pz(k)

The stability condition will be

[AL1 +
∑L1−1

l1=0
Al1BK]

T

PP−1P [AL1 +
∑L1−1

l1=0
Al1BK]− P < 0

and using lemma-1 can be written as.
[

−P [AL1 +
∑L1−1

l1=0 Al1BK]
T
P

P [AL1 +
∑L1−1

l1=0 Al1BK] −P

]
< 0 (6.10)
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Post and pre-multiplying the above (6.10) by diag P−1, P−1, and assuming (

P−1 = X) the final LMI formulated as -
[
−X X[AL1 +

∑L1−1
l1=0 Al1BK]

T

∗ −X

]
< 0 (6.11)

Eq.(6.11), is the desired LMI for controller design. This LMI will give the

controller gain after solving for asymptomatically stabilization.

6.5 Simulation Studies

Simulation studies of NCS is performed in TrueTime co-design tool and real

time using UDP protocol in SIMULINK.

6.5.1 TrueTime Simulations

CONTROLLER

TRUETIME NETWORK

Schedule1

TRIGGER

SENSOR

Data

Trigger
1: 1

SEND

Data

Trigger
1: 1

RECEIVE

Data

Trigger
1: 1

PLANY DYNAMICS 
IN DISCRETE TIME

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

PACKET LOSS 
SWITCH

In1 Out1

K

ACTUATOR

Data

Trigger
1: 1

Figure 6.2: TtueTime/SIMULINK block for virtual NCS configuration

Fig.6.2, shows the TrueTime virtual NCS environment for controller im-

plementation. A discrete time statespace block in SIMULINK acts as a model

of plant. TrueTime Network acts as network and TrueTime send block and

TrueTime receive block at plant side acts as sensor and actuator respectively.

A packet loss switch will generate random packet loss for the system. The

response of the controller design for consecutive 7 packet loss is shown in
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Figure 6.3: Response of state feedback controller in TrueTime virtual network

Fig.6.3, which stabilize the system as the states of the system (X1,X2,X3)

are approaching towards the equilibrium point.

6.5.2 UDP Simulations

ACTUATOR

SENSOR

PLANT CONFIGURATION

Unpack

Unpack

SEND

SYSTEM DYANMICS IN 

DISCRETE STATE-SPACE

y(n)=Cx(n)+Du(n)

x(n+1)=Ax(n)+Bu(n)

SEND TO 

CONTROLLER

UDP

Send

Binary

RECEIVE FROM 

CONTROLLER

UDP

Receive

Binary

Pack

Pack

PACKET LOSS 

GENERATOR

In1Out1

CLRCV

Figure 6.4: SIMULINK UDP communication-sender/plant configuration

UDP protocol requires a sender and a receiver, here two PCs named as

plant and controller will act as sender(shown in Fig.6.4) and receiver(shown

in Fig.6.5,) respectively. These PCs are separated, but connected to a shar-
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ing network. Plant with sensor and actuator communicating with controller

with this network. The controller response in UDP communication is shown

in Fig.6.6.It is clear that the controller successfully stabilize the system in

presence of real-time uncertainties and packet losses as the states are ap-

proaching to equilibrium point.
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RCV

SEND TO PLANT

UDP
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FROM PLANT

UDP
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Figure 6.5: SIMULINK UDP communication-receiver/controller configuration
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Figure 6.6: Response of state feedback controller in UDP network in SIMULINK
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6.6 Chapter Summary

A direct approach for NCS stabilization using state feedback controller design

based on packet loss information modeling and Lyapunov stability criteria is

presented. Stabilization criteria is carried out by use of LMI. As this is

a discrete domain and state space approach it describes the each state of

the system unlike form the indirect method. The designed controller for

maximum 7 consecutive packet loss in a single transmission is examined in

NCS co-design and real-time environment using TrueTime and MATLAB

respectively.



Chapter 7

CONCLUSIONS AND SCOPE FOR

FUTURE WORK

NCS are distributed control systems that uses communication networks in

implementing feedback control strategies. Use of such networks induces delay

and packet loss in the closed loop. This thesis deals with development of

a real-time networked servo system using LabVIEW for understanding the

concept of NCS. PID controller and Smith predictor are implemented for the

NCS. The discrete approach for stabilization of the NCS also discussed.

7.1 Contributions of the Thesis

The following are the salient contributions of the thesis.

• An identification of the Servo system using system identification tool box

of MATLAB is described.

• A real-time networked servo platform for studying NCS characteristics

is developed. This uses LabVIEW as application software, PCI 6221 as

DAQ card, SCB-68 as a connector cable between PC and PCI 6221 with

the driver software.

• PID controller using Z-N tuning and Gain margin phase margin specifi-

cation based tuning is performed and implemented in real-time for servo

72



CHAPTER 7. CONCLUSIONS AND SCOPE FOR FUTURE WORK 73

position control. Smith predictor used for delay compensation in the

feedback loop.

• The packet dropouts in NCS occurs during data transmission from one

network component to the other. A discrete time approach is discussed

to match with the discrete nature of the network and the PC-based

control system. A Lyapunov stability criteria of NCS is derived and

studies on the design have been made using TrueTime virtual network

and SIMULINK.

7.2 Future Scope of Work

• Controller used here are not adaptive to match with the stochastic be-

havior of network characteristics, an adaptive or predictive controller

implementation may be the next work.

• The networked servo control system developed here is confined to a LAN.

This may be extended to, Internet based servo control system.
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Appendix A

Configuration wizard of DAQ Assistant

VI

A brief introduction to LabVIEW and LabVIEW based VI is described in

Sec.5.1 and Sec.5.2. This Appendix-A describes about the modern way to

communicate with real world instruments using LabVIEW DAQ Assistant.

DAQ Assistant can be found by left click in block diagram window then

Function =⇒ Express palette =⇒ Input =⇒ DAQ Assistant VI as shown

in Fig.A.1.For data acquisition the DAQ Assistant wizard involves two basic

Express Tasks,these are signal generation and signal acquisition. The basic

requirement for a DAQ Assistant is that you have installed National Instru-

ments DAQ hardware device (PCI 6221) and a latest version of DAQmx

Device Driver software.

A.0.1 Steps for Signal Acquisition

1. Place the DAQ Assistant VI on the block diagram window.A pop up

window will appear as Fig.A.2 allowing you to configure your Express

Task.

2. Choose the required task (Acquire or Generate Signals) and also the type

of signal that you want to perform. Here we choose the an voltage type

analog input as in Fig.A.3
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Figure A.1: DAQ Assistant in Function palette at Block Diagram Window

3. Once you completed the Step-2 ,you’ll have the option to select from

which device(if there are more than one hardware device are installed)

and physical channels (depending upon the DAQ hardware device) you

want to acquire from see FigA.4.

4. After completing the Step-3,click the Finish button.This will bring up

the analog input task configuration page where you can set up your task

like The Signal Input Range, Acquisition Mode, Samples to read Rate

to acquire data exactly the way you want as shown in Fig.A.5

5. Click the OK button after completing Step-1 to 4.All the settings are

stored in DAQ Assistant VI,and the data will be available on the data

output. Wiring this output to an analysis VI, file I/O VI, directly to an

indicator for analysis and visualize.
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Figure A.2: DAQ Assistant Configuration window for choosing the Express Task

Figure A.3: DAQ Assistant Configuration of the Express Task for acquisition of voltage type analog
input

A.0.2 Steps for Signal Generation

1. The procedure for Signal Generation is same as Signal Acquisition, if

we choose Signal Generation instead of Signal Acquisition at Step-1 of

above procedure in Sec.A.0.1, which is shown in Fig.A.2
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Figure A.4: DAQ Assistant Configuration of the Express Task for Selecting the Hardware Device
and Physical Channels

Figure A.5: Task configuration page of DAQ Assistant
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