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Abstract

Networked operation of a UAV using learning-based

model predictive control and delay compensation

Dohyun Jang

Department of Mechanical & Aerospace Engineering

The Graduate School

Seoul National University

This study addresses an operation of unmanned aerial vehicles (UAVs) in a network environment

where there is time-varying network delay. The network delay entails undesirable effects on the

stability of the UAV control system due to delayed state feedback and outdated control input. Al-

though several networked control algorithms have been proposed to deal with the network delay,

most existing studies have assumed that the plant dynamics is known and simple, or the network

delay is constant. These assumptions are improper to multirotor-type UAVs because of their non-

linearity and time-sensitive characteristics. To deal with these problems, we propose a networked

control system using model predictive control (MPC) designed under the consideration of mul-

tirotor characteristics. We also apply a Gaussian process (GP) to learn an unknown nonlinear

model, which increases accuracy of path planning and state estimation. Flight experiments show

that the proposed algorithm successfully compensates the network delay and Gaussian process

learning improves the UAV’s path tracking performance.

Keyword : Networked control systems (NCS), Gaussian process (GP), Model predictive control

(MPC), Delay compensation.

Student Number : 2017-21089
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1
Introduction

Unmanned aerial vehicles (UAVs) offer promising versatility and agility to achieve a wide range of

missions at low costs [1–4]. Many UAV applications can show more outstanding effectiveness if the

UAVs are controlled over longer distance [5]. However, long distance communication increases the

time delay in a network, and the irregular, long time delay may degrade the control performance

due to following reasons: 1) the observed UAV state in a remote side does not match the current

UAV state due to the delayed state feedback, 2) the UAV also receives the outdated control

input from the remote. Nevertheless, UAV research has often ignored the negative impact of

the communication delay and most experiments were performed in well-equipped communication

environments such as indoor laboratories.

Networked control system (NCS) approaches have been studied to overcome the problems

related to the delay. NCS is a control framework to integrate many sensors, controllers, and plants

at different geographical locations and to exchange signal over communication networks [6,7]. The

most striking difference between the NCS and the other control systems is that the NCS uses a

general-purpose network for various irrelevant yet concurrent applications [6], which means that

the perfect communication is no longer assured.

Nonetheless, the NCS has some of the advantages: 1) it can address the network delay induced

in a control loop, 2) various sensors, server, controller and plant can be connected simultaneously,

1



Cloud 
Network

Server 2Server 1

Figure 1.1: Remote controlled UAVs via cloud network

and 3) it is suitable for small plants such as the UAV because it requires less computing power,

small memory space by performing complicated control and utilizing a large amount of database

on the server side. This mechanism is called as local simple and remote complex (LSRC).

1.1 Literature review

There have been several researches that take advantage of the NCS in remote control. In [8–10],

predictive control approaches are taken to provide a local plant with a sequence of predicted

control inputs. Then, the local plant chooses a proper control input corresponding to the current

network condition. These papers assume that the plant dynamics is known and simple such as a

single servo motor. On the other hand, the multirotor dynamics that we are interested in is not

so simple and may not be precisely known especially in the NCS setting. A small difference in

the dynamics can cause an unexpected movement, or even crash in the worst case. In [11, 12],

they tried to learn the network delay itself and used it for the networked control. However, both

2



only learn the approximate tendency of network delay, thus cannot cope with the volatile delay.

In [13,14], the NCS problems for the UAV are addressed. However, both papers also assume that

the plant dynamics is known, and network delays are time-invariant.

To solve problems in a more realistic environment, this study aims at establishing the NCS

connecting SNU (South Korea) and KTH (Sweden) for a cooperative flight of the multirotor-type

UAVs. We build an internet-based networked control system and design a path planning algorithm

for the multirotor against a time-varying delay as shown in Fig. 1.1. Considering the characteristic

of the NCS, we assume that the exact plant physical properties are unknown.

1.2 Thesis contribution

The main contribution of this paper is to design the networked controller using model predictive

control (MPC) for the multirotor platforms. It can cope with not only the time-varying network

delay but also any type of delay due to calculation or transmission. A machine learning technique

is applied to improve the control performance by learning the multirotor dynamic models. It does

not learn the time delay itself but learns a multirotor’s unknown nonlinear model. Thus, we do

not need a precise dynamic model in advance.

We employ the Gaussian process (GP) to learn the multirotor dynamics. The GP is an algo-

rithm that has received much attention in recent years and has been widely used in applications

including the UAV control [15] and the model learning of the MPC [16, 17]. We utilize a spare

GP technique with the fully independent training conditional algorithm (FITC), which is less

computationally intensive than the general GP algorithm.

1.3 Thesis outline

The remainder of this paper is organized as follows. In Section 2, we propose the problem state-

ment which will be introduced. Section 3 explains the plant model learning with the GP. Section

4 introduces the design process of the MPC for networked UAV, and Section 5 details real-time

experiment results. The final Section discusses the results and the control performance improve-

ments.
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2
Problem statement

We present the proposed NCS configuration for a multirotor system to compensate the time-

varying network delay occurring in the networked control situation. The overall structure can be

divided into two parts, one on the server side and the other on the client side. In this study,

the remote side is the server, and the multirotor is the client. They communicate fixed-size data,

called packets, for the control loop. The uplink delay τu occurs when the packets are transmitted

from the server to the client. The downlink delay τd occurs in the opposite case. To configure the

NCS, we suggest a compensation method that consists of the following four parts.

• Part 1: GP-MPC for path planning (Section 2.1)

• Part 2: uplink delay compensation (Section 2.2)

• Part 3: UAV inner control loop

• Part 4: downlink delay compensation (Section 2.3)

Fig. 2.1 shows overall structure. The MPC path planner in the server solves an optimization

problem to predict a trajectory and results a control input set during H time steps. It puts the

predicted control horizon in the packet with the timestamp and sends it to the client, during

which the uplink time delay occurs. The uplink delay compensator calculates τu on the client

4
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Figure 2.1: The overall structure of the proposed algorithm: 1 GP-MPC path planner (in server) sends

control horizon U(k), 2 uplink delay compensator (in client) chooses proper control input u∗ in the delayed

control horizon U(k − τu) according to the current time, 3 UAV inner control loop (in client) performs

cascade control and sends full-state observation x(k) of the UAV, 4 downlink delay compensator (in server)

estimates the current state of UAV x̂(k) by compensating for downlink delay

side by comparing the timestamp when the packet was generated and the current time and sends

proper control input to the UAV according to τu. The UAV’s inner controller conducts a cascade

control with the received control input and sends out a full state feedback to the server. In the

server, the downlink delay compensator calculates τd and estimates the current state of the UAV

using a control input history. Estimated values are also used in the MPC path planner again.
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2.1 GP-MPC for path planning

Let us define the state variables of the UAV as x := [pT vT ]T := [x y ẋ ẏ]T ∈ IR4. It includes the

position p ∈ IR2 and the velocities v ∈ IR2 in the inertial frame. The proposed setting works in the

exactly same manner in 3-D, but we use 2-D notation for simplicity. xd := [xd yd ẋd ẏd]
T ∈ IR4 is

the desired position and velocities, u := [ux uy]
T ∈ IR2 is the control input vector. We assume that

the altitude and yaw angle of the UAV are well controlled. The reason why the state variables do

not include roll and pitch angle unlike the previous works [1] is because the attitude of the UAV

changes rapidly, either estimating or measuring the current roll and pitch angle in the network

environment with time delay is not reasonable.

The main objective of this research is to follow the desired trajectory with minimum deviation.

We use the MPC for path planning, which tries to minimize the trajectory deviation
∑H

i=1 ||x(k+

i)− xd(k + i)|| → 0 during the look-ahead horizon H. The multirotor dynamic model f(x,u) for

the MPC is set as

x(k + 1) = f(x(k),u(k))

= fn(x(k),u(k)) + g(x(k),u(k)).
(2.1)

fn(x,u) is the nominal known model which is derived in (3.1)−(3.4), g(x,u) is an unknown

nonlinear model, to be learned by the GP. Setting the multirotor dynamics as the sum of nominal

and data-driven model via the GP improves the prediction accuracy because these models are

complementary. In other words, the GP model can supplement the nominal model’s residual

dynamics, and the nominal model can mitigate the failure of the GP prediction because the GP

tends to result a zero output when the input of the sample is not around the domain of the

existing training data set [5]. Using these definitions, we obtain optimized control horizon U(k)

and prediction horizon X(k) as

U(k) = {u(k + i|k)}H−1
i=0 ∈ IR2×H ,

X(k) = {x(k + i|k)}Hi=1 ∈ IR4×H .
(2.2)

Typical MPC executes only the first input u(k|k). However, to make use of the network advantage

of the transmitting data packets, which can include large data sets in a single fixed-size package,

a set of serial control inputs are packed and transmitted through the network at time k [10].

6



2.2 Uplink delay compensation

The client receives the packet including the control horizon and the timestamp. However, due to

the uplink delay τu, the client receives a packet at τu time later than the time it was created. τu

can be calculated by comparing the timestamp included in the data packet with the time when

the client receives the packet. During this delay, the UAV is following the previous trajectory so

that the current UAV state is expected to be at the predicted position x(k|k − τu) ∈ X(k − τu).

The uplink delay compensator chooses the proper control input u∗ in the delayed control horizon

U(k − τu) according to the current time,

u∗ = u(k|k − τu) ∈ U(k − τu). (2.3)

u∗ is given to the UAV velocity controller. Since we assumed the irregular and time-varying delay,

the delayed control horizon U(k− τu) may not arrive every time step. In this case, we use a most

recent received U(k − τu) with the recalculated uplink delay τu. Fig. 2.3 presents uplink delay

compensation process.

𝒖0 𝒖1 … … … … 𝒖𝐻−1

𝑈(𝑘 − 𝜏𝑢)

𝐻

Uplink 

delay 𝜏𝑢

time

𝒖0 𝒖1 … 𝒖𝜏𝑢 𝒖𝜏𝑢+1 … 𝒖𝐻−1

𝒖0 𝒖1 … 𝒖𝜏𝑢 𝒖𝜏𝑢+1 … 𝒖𝐻−1

Uplink 
delay

k

Uplink 
delay

: given to the controller

Figure 2.2: Visual discription of uplink delay compensation
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2.3 Downlink delay compensation

The downlink delay τd can be calculated by comparing the timestamp included in the data packet

with the time when the server receives the packet. First, we define the estimation function f{n}

with a recurrence relationship using the dynamic model f(x,u). The server stores the history

of past control inputs {u(k − j|k − j)}k−t0j=0 , and the estimation function f{n} to calculate the

estimated current position x̂(k) is given by

f{0}(x(k)) =∆ x(k)

f{1}(x(k)) =∆ f(f{0}(x(k)),u(k|k))

f{2}(x(k)) =∆ f(f{1}(x(k)),u(k + 1|k + 1))
...

...

f{n+1}(x(k)) =∆ f(f{n}(x(k)),u(k + n|k + n))

= x(k + n+ 1), (n = 0, 1, ...)

(2.4)

When the delayed observation x̂(k − τd) is given, x̂(k) is calculated by the following equation:

x̂(k) = f{τd}(x̂(k − τd)). (2.5)

8



2.4 Clock synchronization

To use the packet-based delay compensation, clock synchronization should be performed. If the

server and the client have a different clock, it is difficult to calculate the network delay τu and τd.

To overcome the clock difference between the server and the client, we design a clock synchronizer.

At first, the client sends a data packet containing a current timestamp tclient(t0) to the server.

When the server receives this packet, the server sends again to the client with a current timestamp

tserver(t1) measured by the server’s clock. The client can calculate the round-trip delay tround using

the timestamp tclient(t0) and current time tclient(t2) as follows,

tround = tclient(t2)− tclient(t0). (2.6)

If we assume that the τu and τd are same at each time, which is the common and rational

assumption, the one-way delay tone−way is a half of the tround. The new client time at t0, t′client(t0),

is tserver(t1)− tone−way. We can calculate the time offset for the client as follows:

toffset,client = t′client(t0)− tclient(t0). (2.7)

The time offset can be calculated in each client, should be added to the client timestamp.

Figure 2.3: clock synchronization
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3
Model learning using Gaussian process

In the previous section, we define the UAV’s dynamic model f(x,u) as the sum of the nominal

model fn(x,u) and the unknown model g(x,u). We use a linear model of the UAV for the nominal

model, which was derived from [18].

3.1 System dynamics for multirotor

We approximate the nominal model as a 1st order dynamics and set the control input u as a

desired velocity of the UAV’s velocity controller, which is more stable than setting the direct

control input such as a desired moment or attitude because the velocity controller is less time-

sensitive than both a motor thrust controller and attitude controller. If the UAV model can be

considered as a point mass model, the dynamics equation of the UAV is defined as

ẋ = Acx +Bcu, (3.1)

10



Ac =∆


0 0 1 0

0 0 0 1

0 0 −1/tx 0

0 0 0 −1/ty

 , (3.2)

Bc =∆


0 0

0 0

1/tx 0

0 1/ty

 . (3.3)

Time constants tx and ty in the 1st order dynamics of v can be determined experimentally [19].

Using (3.1), the difference equation for discrete system can be derived as

x(k + 1) = Adx(k) +Bdu(k)

= fn(x(k),u(k)),
(3.4)

where Ad and Bd in the discrete domain correspond to Ac and Bc in the continuous version,

respectively.

3.2 Gaussian process to improve dynamic model

However, using an approximated dynamic model can cause inaccurate prediction horizon X(k).

Erroneous prediction horizon is more harmful in the NCS because both uplink and downlink delay

compensators assume that the UAV follows the prediction horizon. To generate more accurate

prediction horizon, the GP learns the unknown UAV model g(x,u) with state x and control input

u. The main downside of the GP is a computational burden. To overcome this drawback, the sparse

GP was developed. The sparse GP makes it possible to reduce the runtime by making assumptions

about a prior distribution. In this paper, we use the sparse GP with the fully independent training

conditional algorithm (FITC), which is introduced in [20].

To learn such an unknown model g(x,u) using the GP modelling techniques, we define the

state control tuple x̃(k) and the residual model z(k) as follows:

11



x̃(k) = [v(k)Tu(k)T ]T ∈ IR4,

z(k) = g(x(k),u(k)) + ε

= x(k + 1)− fn(x(k),u(k)) + ε ∈ IR4.

(3.5)

x̃(k) does not include p(k) because it does not affect the residual model z(k). We assume that

the output of the function g(x(k),u(k)) is corrupted by white noise ε with variance σn. x̃∗ is a

GP test input data and z∗ is a GP test target data. To predict the GP test target data, we first

acquire the GP training input data X̃ = {x̃(i)}Ni=1 and the training target data Z = {z(i)}Ni=1.

Then, we assume that the prior distribution of Z and z∗ have a joint Gaussian distribution with

zero-mean written as Z

z∗

 ∼ N

 0,

k(X̃, X̃) + σnI k(X̃, x̃∗)

k(x̃∗, X̃) k(x̃∗, x̃∗)

 
= N

 0,

Kzz + σnI Kz∗

K∗z K∗∗

  ,

(3.6)

In this paper, the squared-exponential kernel function k is used, which is defined as

k(x̃, x̃∗) = σ2
s(−

1

2
(x̃− x̃∗)TΣ−1(x̃− x̃∗)), (3.7)

where σ2
s is the variance of the function g(x,u) and Σ is the length scale that determines how fast

the correlation between data points decreases. The hyper parameters represent the smoothness

of the function estimated by the GP. Typically, the hyper parameters can be learned by evidence

maximization [21]. The posteriori distribution of z∗ is derived as follows:

p(z∗|X̃, x̃∗) ∼ N (µ∗,Σ∗)

µ∗ = K∗z(Kzz + σnI)−1Z

= g(x,u)

Σ∗ = K∗∗ −K∗z(Kzz + σnI)−1Kz∗

(3.8)

We use the sparse GP to reduce the computational complexity. The sparse GP starts with the

generation of the inducing input data x̃c and corresponding target data zc. With the sparse GP al-

gorithm and inducing GP data, the probability of z∗ can be calculated with a lower computational

cost compared with that of nominal GP model [22].

12



As a result, we learn the unknown model g(x,u) and obtain the total dynamic equation

f(x,u). It is used for MPC path planning in section 2.1, and downlink delay compensation in

section 2.3.

13



4
Model predictive control for networked UAV

We apply model predictive control (MPC) for the multirotor platforms in networked control

systems. It can cope with the time-varying network delay. The GP model obtained previous

chapter is applied to improve the control performance by learning the multirotor dynamic models.

4.1 MPC formulation

In the previous chapter, we introduced the nominal model fn(x,u) and the GP model g(x,u).

We use a total dynamic model of the UAV f(x,u) as the model constraint in the following MPC

setup:

min
u(k+i|k),0≤i<H Jk = ||x(k +H)− xd(k +H)||2P

+
H−1∑
i=0

(||x(k + i)− xd(k + i)||2Q+||u(k + i|k)||2R)
(4.1)

subject to

14



x(k + i+ 1) = f(x(k + i),u(k + i|k))

|u(k + i|k)| ≤ umax

i = 0, · · · , H − 1

x̂(k) = f{τd}(x̂(k − τd))

x(k) = x̂(k).

(4.2)

Here ||k||2A is a quadratic form of vector k with a positive semi-definite weighting matrix A. Jk

is the cost function and x̂(k) is the estimated state obtained in the downlink delay compensator

described in section 2.3. The MPC calculates the state transition up to the look-ahead horizon

of H steps. The positive semi-definite matrices P , Q, and R are weights for the final state error,

ith state error, and control input, respectively. The vector umax denotes the constraint of control

input. The results of the MPC are signals defined in (2.2).

To solve for the optimal control problem in real time, a stable and fast optimal control solver

is required. We use a Sequential Linear Quadratic (SLQ) solver whose speed and performance

were previously demonstrated in agile flight experiments [23]. The detailed algorithm of SLQ for

the MPC is shown in [24].

4.2 MPC formulation for networked control systems

In section 2.3, the downlink delay compensator uses u(k− i|k− i) to transfer x(k− i) to the next

step x(k− i+ 1) in each k− i time step. However, u(k− i|k− i− τu) ∈ U(k− i− τu) was used as

an output of the uplink delay compensator, and the downlink delay compensator does not know

τu because it varies every moment. The best strategy is to make u(k + i|k) and u(k + i|k − 1) as

close as possible. As a result, the server can choose the (k−i)-th step control input with minimum

difference from the actual control input used. To consider this changes to the MPC constraints,

we redefine the cost function of (4.1) as follows:

min
u(k+i|k),0≤i<H Jk = ||x(k +H)− xd(k +H)||2P

+
H−1∑
i=0

(||x(k + i)− xd(k + i)||2Q+||u(k + i|k)||2R)

+
H−2∑
i=0

(||u(k + i|k)− u(k + i|k − 1)||2S)

(4.3)
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Even though the inclusion of the last term decreases the optimal performance, it increases stability

which is a more critical factor in networked control systems.
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5
Flight experiment

The proposed algorithms are validated with the micro multirotor through experiments. At first,

we briefly introduce the result of delay analysis in case of our experimental setup. Then, we present

the experimental setup and results of tracking control experiments with a single multirotor and

two multirotors. The discussion of results follows.

5.1 Delay analysis

This subsection shows the result of the network delay characteristics analysis between Korea

and Sweden. It was confirmed that the network communication between Korea and Sweden is on

average 20 nodes. The delays that occur at each node can be seen to follow the Poisson distribution.

Thus, we can assume that the round-trip network delay which is a sum of each node delay follows

the normal distribution according to the central limit theorem even though they have different

parameters. Fig. 5.1 supports that our assumptions. For a fair comparison with each experiment,

we set the artificial delays τu and τd to follow the normal distribution N (0.5, 0.1) with a random

seed.

17
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Figure 5.1: Delay analysis between SNU (South Korea) and KTH (Sweden) (a) round-trip delay for 600

seconds (b) histogram of the round-trip delay

5.2 Experimental setup

We validated the effectiveness of the proposed framework through actual flight experiments. The

experimental setup is illustrated in Fig. 5.2. We use the Crazyflie 2.0 multirotor developed by

Bitcraze [25], whose weight is approximately 32 g and maximum takeoff weight is 42 g. Position

of the multirotor is measured by a VICON motion capture system operating at 100 Hz and all

the other states are estimated using Kalman filter from the position information. We use a server

computer with Intel i7 6700K 4.0GHz CPU and Robot Operating System (ROS). The server

computer solves the MPC and sends the predicted control horizon to the multirotor. The MPC

look-ahead horizon H is set to 20, and the MPC sampling time is 0.1 seconds. The constraint on

18



the control input is given by umax = [0.6 0.6]T .

1

UAV1 
trajectory

VICON

Crazyflie

UAV2 
trajectory

Figure 5.2: A snapshot of the experimental setup of the trajectory tracking control with NCS configuration
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5.3 Experiment 1: circular flight with network delays

In this experiment, we conducted the path tracking control experiment in the presence of both

uplink delay and downlink delay. We give a circular desired path with period 10 seconds, radius

0.5 meters.

Figs. 5.3 to 5.5 show the results of our first experiment, which compares three cases: (a) track-

ing control without any delay compensation, (b) the proposed delay compensation algorithm

without the GP model learning, (c) the proposed delay compensation algorithm with the GP

model learning. Even though the prior information of the time delay is not given to the delay

compensator, tracking control performances of (b) and (c) are satisfactory because of the robust-

ness of the proposed algorithm. Especially the learned GP model enhances the control performance

because of more accurate prediction horizon and downlink delay compensation. Table 5.1 shows

the comparison of tracking performance.
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Figure 5.3: Experiment 1-(a): circular flight with network delays - without delay compensation
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Figure 5.4: Experiment 1-(b): circular flight with network delays - with delay compensation, without GP

learning
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Figure 5.5: Experiment 1-(c): circular flight with network delays - with delay compensation, with GP

learning
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Table 5.1: RMSE corresponding to given trajectory

Exp 1-(a) Exp 1-(b) Exp 1-(c)

X-RMSE 0.1048 0.0807 0.0507

Y-RMSE 0.0861 0.0495 0.0350

XY-RMSE 0.1352 0.0946 0.0616

5.4 Experiment 2: two UAVs control with different network delays

In this experiment, we conducted the cooperative path tracking control with two multirotors.

We assume a scenario where each multirotor is manipulated in different locations. Thus, we set

the both artificial delays τu and τd to follow the normal distribution N (0.5, 0.1) and N (0.3, 0.05)

for each multirotor. We give a circular desired path with period 10 seconds, radius 0.5 meters.

The two multirotors fly a half meter apart in x-axis. Figs. 5.6 and 5.7 show the results of our

second experiment, which compares two cases: (a) cooperative tracking control without any delay

compensation, (b) cooperative tracking control with the proposed delay compensation algorithm

and the GP model learning. Even though the network delays of each multirotor are different, the

proposed algorithm maintained the given distance compared to the result without compensation

algorithm.
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Figure 5.6: Experiment 2-(a): Two UAVs control with different network delays - without delay compensation
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Figure 5.7: Experiment 2-(b): Two UAVs control with different network delays - with delay compensation,

with GP learning
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6
Conclusion

This paper presented a configuration of NCS for the UAV to compensate the time-varying network

delay. The NCS structure proposed in this paper consists of 4 parts: GP-MPC path planner, uplink

delay compensator, UAV inner-loop controller, and downlink delay compensator. This structure

was configured to compensate the network delay and control the multirotor efficiently. We also used

the GP model learning to improve the delay compensation performance and MPC path planning

accuracy. The first experiment on tracking control of the multirotor UAV confirms that the control

performance was improved. The second experiment on cooperative path tracking control of the

two multirotors shows that the proposed algorithm can cope with unknown network delays.
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국 문 초 록

본연구는시간에따라변화하는네트워크지연이존재하는네트워크환경에서의무인항공기 (UAV)

의 제어 기법에 대하여 소개한다. 네트워크 지연은 주로 상태 피드백과 제어 입력의 지연을 야기시키

고, 이로 인해 UAV 제어 시스템의 안정성에 악영향을 미친다. 이와 같은 네트워크 지연에 대처하기

위하여 몇 가지 네트워크 제어 알고리즘이 제안되었지만 대부분의 기존 연구에서는 플랜트 동역학이

매우 단순하거나 정확히 알고 있다고 가정하였고, 일정한 네트워크 지연이 발생하는 상황에서만 수

행되었다. 하지만 이러한 가정은 비선형 모델 및 시간에 민감한 제어 특성을 가지는 멀티로터 형태의

UAV에 적합하지 않다. 이러한 문제를 해결하기 위하여 멀티로터의 특성을 고려하여 설계된 모델

예측 제어 (MPC)를 이용한 네트워크 제어 시스템을 제안한다. 또한 경로 계획 및 상태 추정의 정확

도를 높이고자 가우시안 프로세스 (GP) 기법을 적용하여, 멀티로터 동역학에 고려되지 않은 미지의

모델을 학습하도록 한다. 실내 비행 실험을 통하여 제안 된 알고리즘이 네트워크 지연을 효과적으로

보상하고 가우시안 프로세스 학습이 UAV의 경로 추적 성능을 향상 시킨다는 것을 보여준다.

주요어 : 네트워크 제어 시스템, 가우시안 프로세스, 모델 예측 제어, 네트워크 지연 보상.

학번 : 2017-21089
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