61 research outputs found

    Particle methods parallel implementations by GP-GPU strategies

    Get PDF
    This paper outlines the problems found in the parallelization of SPH (Smoothed Particle Hydrodynamics) algorithms using Graphics Processing Units. Different results of some parallel GPU implementations in terms of the speed-up and the scalability compared to the CPU sequential codes are shown. The most problematic stage in the GPU-SPH algorithms is the one responsible for locating neighboring particles and building the vectors where this information is stored, since these specific algorithms raise many difficulties for a data-level parallelization. Because of the fact that the neighbor location using linked lists does not show enough data-level parallelism, two new approaches have been proposed to minimize bank conflicts in the writing and subsequent reading of the neighbor lists. The first strategy proposes an efficient coordination between CPU-GPU, using GPU algorithms for those stages that allow a straight forward parallelization, and sequential CPU algorithms for those instructions that involve some kind of vector reduction. This coordination provides a relatively orderly reading of the neighbor lists in the interactions stage, achieving a speed-up factor of x47 in this stage. However, since the construction of the neighbor lists is quite expensive, it is achieved an overall speed-up of x41. The second strategy seeks to maximize the use of the GPU in the neighbor’s location process by executing a specific vector sorting algorithm that allows some data-level parallelism. Although this strategy has succeeded in improving the speed-up on the stage of neighboring location, the global speed-up on the interactions stage falls, due to inefficient reading of the neighbor vectors. Some changes to these strategies are proposed, aimed at maximizing the computational load of the GPU and using the GPU texture-units, in order to reach the maximum speed-up for such codes. Different practical applications have been added to the mentioned GPU codes. First, the classical dam-break problem is studied. Second, the wave impact of the sloshing fluid contained in LNG vessel tanks is also simulated as a practical example of particle methods

    Particle contact laws and their properties for simulation of fluid-sediment interaction with coupled SPH-DEM model

    Get PDF
    The transport of sediment due to the interaction of fluid and solids is a prevalent geophysical process. The detailed modelling of the interaction between the fluid and the sediment particles is still a challenging task. In the present study we model the fluid phase by smoothed particle hydrodynamics (SPH) using the classical approach where the fluid is assumed to be weakly compressible. The sediment, in terms of solid spheres made of granite, is modelled by the discrete element method (DEM). Both of them are meshfree particle methods but SPH is a continuum approach and DEM describes the motion and interaction of discrete solid objects. The interaction between SPH and DEM particles is modelled as particle-to-particle contact in combination with a boundary condition at the solid interface. Therefore, a contact law is used to capture the collision process and to ensure balancing of collision forces. In doing so, two contact types have to be modelled, i.e. sediment-sediment and fluid-sediment. The approach and properties these contact types are presented in detail. Advantages and drawbacks of the approaches are discussed based on examples

    Investigating Effects of Vertical Baffles on Damping of Shallow Water Sloshing using a 3D Model

    Get PDF
    Liquid sloshing is a common phenomenon in the transporting of liquid tanks. A safe liquid transporting needs to control the entered fluctuating forces to the tank walls, before leading these forces to large forces and momentums. Using predesigned baffles is a simple method for solving this problem. Smoothed Particle Hydrodynamics is a Lagrangian method that has been widely used to model such phenomena. In the present study, a three-dimensional incompressible SPH model has been developed for simulating the liquid sloshing phenomenon. This model has been improved using the kernel gradient correction tensors, particle shifting algorithms, turbulence model, and free surface particle detectors. The results of the three-dimensional numerical model are compared with an experimental model, showing a very good accuracy of the three-dimensional numerical method used. This study aims to investigate vertical baffle effects on the control and damping of liquid sloshing. The results of the present investigation show that in this particular case, by using baffles, it is possible to reduce more than 50% of the maximum value of pressure fluctuations in the slashing phenomenon

    A New Interface Identification Technique Based on Absolute Density Gradient for Violent Flows

    Get PDF
    An identification technique for sharp interface and penetrated isolated particles is developed for simulating two-dimensional, incompressible and immiscible two-phase flows using meshless particle methods in this paper. This technique is based on the numerically computed density gradient of fluid particles and is suitable for capturing large interface deformation and even topological changes such as merging and breaking up of phases. A number of assumed particle configurations will be examined using the technique, including these with different level of randomness of particle distribution. The tests will show that the new technique can correctly identify almost all the interface and isolated particles, and also show that it is better than other existing popular methods tested

    Sensitivity Analysis of Weakly Compressible Moving Particle Semi-Implicit Method in a Dam-Break Flow Simulation

    Get PDF
    Lagrangian approaches such as the Moving Particle Semi-Implicit method and Smoothed particle Hydrodynamics are the latest techniques in Computational Fluids Dynamics and have attracted the attention of many researchers. Due to the Lagrangian nature of such practices, they can simulate various problems with large deformations and a variety of boundary conditions which has led to their application in many complex engineering problems. Therefore, the accuracy of the results obtained using these methods is substantial, while various parameters affect the accuracy of the simulation. In this paper, the sensitivity of a dam-break flow simulated by the Weakly Compressible Moving Particle Semi-Implicit method associated with the particle size and Courant number is analyzed. The analysis is performed in two circumstances. First, the Courant number is fixed, and the sensitivity relative to particle size is investigated. Then, sensitivity relative to the Courant number is studied in fixed particle size. In general, it can be concluded that the smaller the particle size and Courant number, the higher accuracy and computational cost

    Analysis of the incompressibility constraint in the Smoothed Particle Hydrodynamics method

    Full text link
    Smoothed particle hydrodynamics is a particle-based, fully Lagrangian, method for fluid-flow simulations. In this work, fundamental concepts of the method are first briefly recalled. Then, we present a thorough comparison of three different incompressibility treatments in SPH: the weakly compressible approach, where a suitably-chosen equation of state is used; and two truly incompressible methods, where the velocity field projection onto a divergence-free space is performed. A noteworthy aspect of the study is that, in each incompressibility treatment, the same boundary conditions are used (and further developed) which allows a direct comparison to be made. Problems associated with implementation are also discussed and an optimal choice of the computational parameters has been proposed and verified. Numerical results show that the present state-of-the-art truly incompressible method (based on a velocity correction) suffer from density accumulation errors. To address this issue, an algorithm, based on a correction for both particle velocities and positions, is presented. The usefulness of this density correction is examined and demonstrated in the last part of the paper

    Smoothed particle hydrodynamics (SPH) simulation of a tuned liquid damper(TLD) with angular motion.

    Get PDF
    The roll motion response of a single degree of freedom (SDOF) structural system to which a rigid rectangular partially filled liquid tank has been attached is considered. The SDOF structural system with the empty tank is first described with a mathematical model and this model is validated by performing decay experiments as well as experiments in which periodic excitations are applied to the system. The responses are accurately predicted by the model. The accuracy of these predictions allows us to study both experimentally and numerically, with weakly compressible SPH, the performance of the partially filled tank as a tuned liquid damper (TLD). The sloshing flows inside the tank comprise the onset of breaking waves which make the TLDs devices extremely difficult to model, especially for the potential flow multimodal approaches commonly used to simulate these sorts of coupled systems. In order to characterise the wave breaking effects on the response curves, tests have been performed with liquids of different viscosity, the increasing viscosity preventing the onset of breaking waves. The capabilities of SPH to treat this coupling problem are assessed and the results show that SPH is able to capture a substantial part of the physics involved in the addressed phenomena but further work remains still to be done relating to a more accurate treatment of the laminar viscosity and turbulence effects
    • …
    corecore