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1. Introduction 

The study of wave fluid flows is now under special consideration in view of serious effects, 
caused by dams breaking and consequent formation of moving waves, their interaction with 
solids and structures, uprush on shore, etc. Thereby solving the problem of hydrodynamic 
loads estimation is important for designing the shape and stiffness of the structures, 
interacting with oncoming waves. Such problems, due to large deformations of free 
surfaces, are very complex, and meshless methods proved to be the most suitable for 
numerical simulation of them. 
Particle methods form the special class of meshless methods, which mainly based on the 
strong form of governing equations of gas dynamics and fluid dynamics. The peculiar 
representatives of particle methods are Smoothed Particle Hydrodynamics (SPH) (Lucy, 
1977; Gingold & Monaghan, 1977) and Incompressible SPH (ISPH) (Cummins & Rudman, 
1999; Shao & Lo, 2003; Lee et al., 2008). 
Large amount of papers, devoted to numerical simulations of free surface flows using SPH 
or ISPH, demonstrated a high degree of efficiency of both methods in obtaining the 
kinematic characteristics of flows, though it has been revealed, that ISPH shows a larger 
particle scattering at the stages, following the water impact, in comparison with the classic 
SPH, where particles are more ordered. However, dynamic characteristics of flows are still 
hard to compute, especially it concerns the classic SPH. 
The objective of the chapter is to analyze the capacity of the methods to compute pressure 
fields and hydrodynamic loads subsequently. 

2. Governing equations 

The governing equations of fluid dynamics, including the Navier-Stokes equations and the 
continuity equation, in the case of the Newtonian viscous compressible fluids, are of the 
following form: 

 
1 1

( );
a

a ab
a b

pdv
F T

dt x x 
 

  
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 (1) 
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where a b 1 2 3     – numerical indices of coordinates, av  – components of the velocity 
vector, aF  – components of the vector of volumetric forces density, ab  – Kronecker 
symbols, p  and   – pressure and density of the fluid, correspondingly. Here the Einstein 
summation convention is assumed. The viscous stress tensor components are calculated by 
the formula (   - dynamic viscosity):  

 2

3

a b c
ab ab

b a c

v v v
T

x x x
 
   

        
 (3) 

For enclosing the system (1)-(3) one should make some assumptions about fluid properties. 
The original SPH method assumes the fluid to be weakly compressible, and therefore is 
applied to the system (1)-(3)  with certain equation of state for enclosure. The most often used 
equation of state is the Theta form equation for barotropic processes (Monaghan et al., 1994): 

 p B
0

1





     
   

 (4) 

Selecting the coefficient of volume expansion B  one can obtain the effect of incompressible 
fluid. 
The ISPH method in contrast to the original SPH uses the model of incompressible fluid, 
what means d dt/ 0  . In that case the equation of state shouldn’t  be considered and the 
enclosed system of governing equations takes the following form: 
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3. Smoothed particle methods 

3.1 The basis of the methods 
The key idea of smoothed particle methods lies in discretization of the problem domain into 
a set of Lagrangian particles, which play the role of nodes in function approximation. For 
construction of approximation formulas in smoothed particle methods the exact integral 
representation with the Dirac  -function is used: 

 f f d( ) ( ) ( )




    r r r r r  (7) 

The Dirac  -function is changed here by a compactly supported function W , called the 
kernel function, what allows to obtain the integral formula about the bounded domain: 

 
D

f f W h d( ) ( ) ( )     r r r r r  (8) 

The value h  determines a size of support domain D  of the function W  and is called a 

smoothing length. Having a set of particles scattered about the problem domain   we 
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can estimate the value of the above integral with the quadrature (Lucy, 1977; Gingold & 
Monaghan, 1977):  

 
n

j
s i j i j

jj

m
f f W h

1

( ) ( ) ( )


   r r r r  (9) 

where n  is a number of particles, determined as “nearest neighbours” of the i -th particle 
within the support domain D . Two particles i  and j  are called neighbouring or 
interacting particles, if the distance between their centers does not exceed kh , where k  
depends on the type of kernel function and i jh h h( ) / 2  . j j jm  r  - radius-vector, mass 
and density of the j -th particle, correspondingly. A simple formula for the gradient of a 
function has the form:  

 
1

( ) ( ) ( )
n

j
s i j i j

jj

m
f f W h


    r r r r  (10) 

3.2 Kernel function 
As kernel function is a keystone of smoothed particle methods a great attention is paid to 
construction of new types of kernels. Till now a large amount of different types of kernel 
functions have been developed. All of them should satisfy the following basic conditions: 

- W h kh( ) 0       r r r r   

- W h d( ) 1


     r r r   

- 
0

lim ( ) ( ).
h

W h 


    r r r r   

Here for the problems, simulated with SPH, the original Monaghan’s cubic spline is utilized  
(Monaghan et al., 1994):  

  
q q q

W h qq
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r r  (11) 

where q
h



r r

.  

As it was pointed out (G.R. Liu & M.B. Liu, 2008)  the approximations of functions based on 
the kernels that haven’t smooth second derivative are too sensitive to particle scattering.  It 
plays a crucial role for the ISPH method as elliptic Poisson equation is solved for obtaining a 
pressure field. That is why in numerical simulations using ISPH the fourth-order spline has 
been used (Morris, 1996; Lee et al., 2008): 
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3.3 Approximation of governing equations 
For approximation of gradient terms in equations (1) or (5)  the original formula (10) may be 
applied. However, it is usually implemented for derivation of new forms of gradient 
approximations. In numerical simulations the following form is commonly used: 

 
n

ji
i j i i j

j i j

pp
p m W h

2 2
1

1
( , )

  

 
       
 
 

 r r  (13) 

This formula has an advantage of being symmetric in relation to interacting particles and 
thus conserves total momentum of a system of particles, representing the problem domain. 
Besides it gives more stable results of numerical simulations in comparison to (10). 
For a divergence of a velocity field in the continuity equation (2) the following expression is 
usually applied:  

 
1

1
( ) ( )

n

i j i j i i j
j

m W h

i 
       v v v r r  (14) 

The above form gives a zero-valued first derivatives for a constant field. 
Using (13) for approximation of gradient of a function one can obtain the following discrete 
representation for viscous term in equation (1): 
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Normal and tangent components of viscous stress tensor Ti  are defined by following 
expressions similar to (14) (G.R. Liu & M.B. Liu, 2008): 
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 (16) 

As it will be pointed out in section 3.4 the pressure Poisson equation need to be solved in the 
ISPH method. There are some ways to obtain the approximations of  second derivatives in 
smoothed particle methods. One way consists in directly deriving the formula in a similar 
manner as for first derivative (10). The idea of the other is in subsequent implementation of 
a gradient formula (13) and a divergence of vector field (14). However these ways proved to 
be too sensitive to inhomogeneous particle distribution and result in non-physical 
oscillations of pressure field.  So the approximation of the first derivative in terms of the 
SPH method and its finite difference analogue are usually applied together according to 
Brookshaw’s idea (Brookshaw, 1985). Based on it some different forms of Laplacian operator 
were derived (Cummins & Rudman, 1999; Shao & Lo, 2003; Lee et al., 2008). Here for 
numerical simulations the form of Lee (Lee et al., 2008) is used: 
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The approximation formulas for viscous forces in ISPH are obtained in a similar way and 
may take different forms (Cleary & Monaghan, 1999;  Shao & Lo, 2003). Here for 
numerical simulations the following viscous term by Morris (Morris et al., 1997) is 
utilized:  

  
n

i j i j i i j

j i j
i jji i j

W h
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( ) 
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  


r r r r
v v v

r r

 (18) 

3.4 Time integration 

In the original SPH method for time integration the "predictor-corrector" scheme is 
commonly used: 
"predictor":  

 

n n n
i i i

n n n
i i i

t d dt

t d dt
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 (19) 

"corrector":  

 

n n n
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n n n
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t d dt
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( )
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     

   
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
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 (20) 

The new radius-vectors of particles on ( 1)n  -th time step are calculated using the Euler 

integration scheme: 

 
n n n
i i it dt1 1 2( )      r r v  (21) 

For time integration of motion equations in the ISPH method the split step scheme is 
applied (Yanenko, 1960; Chorin, 1968). According to its idea time integration process is 
splitted into convection-diffusion and pressure contribution. So the first step of the scheme 
for preliminary velocity values takes the from: 

 n
i t




   
        
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v g vv  (22) 

Projecting the preliminary velocity values onto a null-divergence field one can obtain: 

 
n n
i i p t1 11

,


     v v  (23) 

provided the pressure field on n( 1) -th time step is calculated through the pressure 

Poisson equation (Lee et al., 2008): 
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where the velocity divergence at right hand side of above equation is calculated using 
formula (14). The radius-vectors of particles on n( 1) -th time step can be get out of the 
following formula according to Euler explicit integration scheme: 

 n n n
i i i t1 1   r r v  (25) 

The equation (24) is reduced to the system of linear algebraic equations with symmetric 
matrix. For solving this system the preconditioned generalized minimum residual method 
(PGMRES) is applied (Saad, 2003). 

3.5 Free surface 
For identification of particles on the free surface, one can apply some different ways. One of 
such ways is using the geometrical Dilts algorithm (Dilts, 2000), based on the fact, that each 
particle has its size, commonly determined by the smoothing length. 
The other way is detection of particles, satisfying the inequality (Lee et al., 2008): 

  
1

( , ) 2
n

j
i j i i j

jj

m
W h 


    r r r r  (26) 

as free surface particles have less nearest neighbors in comparison with the inner ones. 

Here the Dilts algorithm is used for the original SPH method and the formula (26) for ISPH. 
For free surface particles the Dirichlet condition is imposed: p 0 . For the original SPH it 
means that free surface particles has the zero pressure, not the pressure obtained out of the 
equation of state as for inner fluid particles. As the pressure Poisson equation (PPE) is 
solved in the ISPH method for obtaining pressure field, the Dirichlet condition is embedded 
into the matrix of the system of linear algebraic equations (SLAE), which is the discrete 
representation of PPE. This procedure conserves the symmetry of matrix of SLAE. 

3.6 Solid boundary 
In smoothed particle methods the most commonly way of imposing conditions at solid 
boundaries is the virtual particle method, divided into two basic types. 
The first type – Monaghan virtual particles method (Monaghan et al., 1994). The virtual 
particles are located along the solid boundary in a single line, don’t change their characteristics 
in time, and effect on the fluid particles by means of a repulsive force, based on certain 
interaction potential. The most popular among researchers is the Lennard-Jones potential. 
The second type – Morris virtual particles (Morris et al., 1997). These particles are located 
along the solid boundary in several lines. The number of the lines depends on the smoothing 
length of particles of the fluid. This allows solving one of the main problems of the SPH 
method – asymmetry of the kernel function near the boundaries. The effect of the Morris 
particles on the fluid ones differs from the effect of Monaghan particles by the fact, that there is 
no need in using any interaction potential. Instead of this, values of the characteristics in the 
Morris particles are calculated on the basis of their values in particles of the fluid. Here for 
imposing solid boundary conditions on velocity the Morris virtual particles are used for both 
methods. In ISPH the Morris virtual particles are also implemented for imposition of 

Neumann boundary conditions on solid walls, that is / 0p n    (Koshizuka et al., 1998; Lee 

et al., 2008). The procedure of embedding these conditions into the matrix of SLAE breaks its 
symmetry. Therefore, as it was mentioned in section 3.4, the PGMRES solver is utilized. 
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3.7 Pressure field in the original SPH method 

In the SPH method barotropic condition for pressure p p( )  is supposed . For the first 
time Monaghan (Monaghan et al., 1994) applied equation for pressure in the Theta form: 

 p B
0

1





     
   

 (27) 

where B gH200 /   – gravitational constant,  - density, 0 - initial density, H – initial 
height of fluid, 7  . 
Monaghan applied this equation for free surface flow simulations, such as breaking dam 
problems. But research of the calculation of pressure by (27) shows that pressure field in 
fluid has a significant oscillations. 

To reduce pressure oscillations we smooth density field. For free surface problems in the 
case of the system being at rest under the action of gravity force at the initial time the 
hydrostatic pressure distribution is true: p g H y0 0 ( )  . Then we can define the corrected 
value for the initial density from equation of state (27): 

 
g H y

  
B

1

* 0
0 0

( )
1


 

    
 (28) 

Besides in time integration scheme for density computation the equation for density 

smoothing is added based on the formula (9) following Chen’s idea (Chen et al., 2001): 
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
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 (29) 

Using (27) and (29), we can obtain smoothed pressure field smooth smoothp p( ) . The pressure 
at solid boundary particles can be determined out of the following expression: 

 
1

( , )
n

j
i j i j

jj

m
p p W h


  r r  (30) 

Thus the pressure at solid boundary particles is calculated using the values of the pressure 
at neighbouring fluid particles by formula (9). 

4. Hydrodynamic loads 

Hydrodynamic loads onto the solid boundary   is the integral characteristic of the wave 
pressure. Here the following formula is used (Afanasiev & Berezin, 2004):  

  sP p T p d( ) (0)


    (31) 

where p(0)  is initial pressure and p T( )  is the pressure at any other moment T .  
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In the numerical computations the value of the integral (31) is estimated by the formula:  

 
B

s j j
j P

P p T p( ) (0)


    (32) 

where bP  is a set of solid boundary particles. 

5. Nearest neighbour search 

In numerical simulations using the smoothed particle methods it is necessary to determine 
for every particle j  its interacting particles, as all physical characteristics of the fluid are 
estimated over the values at neighbouring particles according to the formula (9). For each 
fluid particle j  its smoothing length jh  is set, determining the radius of interaction with 
neighbours. As it is clear from section 3.1 in smoothed particle methods if particle i  
interacts with particle j  then particle j  interacts with particle i  too, so forming the 
interacting pair. Thus it is necessary to solve a geometrical problem of determination of 
points which are in the circle of radius kh  with the center at the point j  (fig. 1 a). 
 
 

       
a)     b) 

Fig. 1. Nearest neighbour search: a) search area, b) cells for search 

Direct search algorithm has time complexity about O N2( )  operations for procedure of 

determination of all interacting pairs, where N  is the total number of particles in problem 

domain. Here the efficient algorithm, based on rectangular grid construction is 
implemented. 
The idea of the method consists in construction of a grid on each time step which fully 
covers the problem domain. The linear size of grid cells is constant and equals  to: 

 l kh(1 )   (33) 

where 0   and 1  . At next step for each particle its belonging to one of the cells of a 
grid is defined. Then nearest neighbours for particle j  are determined using direct search 
algorithm but only within the adjacent cells (fig. 1 b). 
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In fig. 2 the results of testing the speed of both algorithms are presented (X-axis corresponds 
to total number of particles and Y-axis corresponds to full time search procedure). 
Test calculations were carried out on uniprocessor system: AMD Athlon 2000+, 512 Mb 
RAM. Time of nearest neighbour particle search depending on number of particles for 1000 
time steps was measured. It can be noted that grid algorithm is very efficient and, for 
example, calculations with 8000 fluid particles gives acceleration of about 100. 
 

   
a)     b) 

Fig. 2. Search time for: a) direct search, b) grid algorithm 

For the grid algorithm it is shown that its analytic time complexity is about O N( ) operations 

(Afanasiev et al., 2008)  that agrees well with obtained numerical data (see fig. 2 b).  

6. Testing the methods 

6.1 Poiseuille flow 

This problem is one of the classical tests for viscous fluid flows, because of well-known 
analytical solution for velocity profile. Here two-dimensional non-stationary viscous fluid 
flow between two parallel solid walls is considered. Initially the fluid in the infinite channel, 
bounded with solid walls Г2  and Г4 , is at rest. Motion of fluid particles occurs in 
rectangular domain  , representing the infinite channel, due to difference of pressure at 
opposite open boundaries Г1  and Г3  (fig. 3). On horizontal solid walls Г2  and Г4  the slip 
condition is set (the zero-valued velocity vector).  
 

 

Fig. 3. Problem domain for Poiseuille flow 

Within the problem domain   the fluid motion is described with the simplified momentum 
equation: 
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out inP Pdv d v

dt L dy

2

2


 


    (34) 

where in outP  P,  - the pressure at Г1  and Г3  accordingly; , L,   are the density, dynamic 
viscosity and the channel length, H  is the height of the channel. The infinity of the channel 
is simulated by cyclic returning of particles, passed through the right open boundary Г3 , on 
left boundary Г1  with the obtained physical characteristics. Pressure difference is simulated 
by the horizontal volumetric force F, directed from Г1  to Г3 : 

 

2

2

dv d v
F

dt dy




   (35) 

The analytical solution of above ordinary differential equation with slip boundary 
conditions takes the form (Leonardo et al., 2003): 
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
  (36) 

where d H / 2  is the half-height of the channel, /    is the kinematic viscosity and 
the first term in the right hand side is the stationary velocity in the channel when t  . 
For simulations the following values of parameters have been used: 
L H d  d  m42 , 5 10    , the fluid density 3kg/m1000  , the kinematic viscosity 

2 m /s610   (that corresponds to the real viscosity of water 310  kg/(m s)   ) and 
external horizontal force 2F  m/s410 . 
As the velocity profiles for Poisseuille flow obtained with the original SPH method and 
ISPH are very similar, the results are presented only for the original SPH method. In fig. 4 
the velocity profiles for two moments of time are given, where line describes the analytic 
solution (36) and the points show the results by SPH for 2500 fluid particles. Approximately 
at t  s0.6 (fig. 4 b) flow within the channel becomes stationary. In table 1 the numerical 
errors by SPH and ISPH are compared.  
 
 

             
a)     b) 

Fig. 4. Velocity profile for Poiseuille flow: a) t  s0.02 , b) t  s0.6  
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N 225 400 625 900 1600 2500 3600 

Numerical 
error by 
SPH (%) 

12.9 6.9 5.0 3.3 1.4 0.85 0.71 

Numerical 
error by 
ISPH (%) 

2.12 1.67 1.38 1.01 0.86 0.7 0.62 

Table 1. Numerical errors by SPH and ISPH  for different sets of particles 

6.2 Laminar fluid flow along the infinite inclined plane 

The problem is of special interest because it is one of few problems for viscous free surface 
flows, that have an analytic solution. The problem domain is shown in fig. 5 a. The fluid 
flow takes place in a rectangular infinite region  , bounded with solid wall Г1  inclined at 
an angle   to the horizontal surface. Г2  is free surface and initially fluid flow is at rest. 
Fluid flow occurs under gravity force, directed vertically to the horizontal surface. On solid 
boundary Г1  the slip condition is set. 
The formulation can be simplified by performing rotation of the coordinate axes by angle   
so that the X -axis coincides with the horizontal surface.  Considering that the velocity of 
the fluid depends only on the vertical coordinate y : xv v y( ) , the action of gravity can be 
replaced by volumetric horizontal force F , which is the projection of gravity onto X -axis. 
Thus, the problem domain is changed to shown in fig. 5 b. 
For numerical simulations the problem domain has a finite length L  along the X -axis and 

finite height H  along the Y -axis. 
 
 

       
a)     b) 

Fig. 5. Problem domain: a) initial, b) simplified 

The infinity of the channel is modeled by the algorithm described for Poiseuille flow in 
section 6.1. Provided xF gsin , equation of motion with slip boundary conditions is 
written as: 

 
v

g
y

2

2
0 sin 
 


 (37) 
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 Гv
1

| 0  (38) 

As was mentioned above the problem has stationary analytic solution, that has the 
following form (Slezkin, 1995): 

 
y

v y g H y
sin

( ) ( )
2




   (39) 

In simulations by the smoothed particle methods the non-stationary equations were used 
and the convergence of the non-stationary solutions obtained by SPH and ISPH methods to 
the stationary analytic solution (39) are considered. Parameters used in numerical 
simulations: L H  m310  , density of the fluid 3kg/m1000  , kinematic viscosity 

2 m /s610  , volumetric horizontal force 2
xF  m/s410 . As for previous problem the 

velocity profiles are provided only for the original SPH method (see fig. 6) , where line 
represents the analytic solution and points by SPH for 2500 fluid particles. As it can be seen 
from fig. 6 b the flow becomes stationary approximately at t  s4 . The comparison of 
numerical errors given by SPH and ISPH is presented in table 2 for t  s4 . 
 
 

   
a)     b) 

Fig. 6. Velocity profiles for laminar flow along the incline plane: a) t  s0.075 , b) t  s4  

 
 

N 225 400 625 900 1600 2500 3600 

Numerical error by 
SPH (%) 

11.45 6.28 4.34 2.08 1.11 0.82 0.75 

Numerical error by 
ISPH (%) 

6.89 5.73 4.46 3.62 2.76 2.12 1.79 

Table 2. Numerical errors by SPH and ISPH  for different sets of particles 

6.3 Droplet problem 

At initial moment of time the problem domain   is a circle of incompressible fluid with 
radius r 1  and with center located at the origin of the coordinates (Ovsyannikov, 1967). 
Deformation of a circle into ellipse with semi-axes a t( )  (along y 0 ) and b t( )  (along x 0 ) 
is initiated by the non-zero velocity field:  
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 u t a t a t x v t a t a t y( ) ( ) ( ) ( ) ( ) ( )           x x  (40) 

Incompressibility is provided by constancy of ellipse’s square for any moment of time, that 
is a t b t( ) ( ) 1  . So at any moment of time the form of ellipse is described with the following 
equation: 

 
x

a t y
a t

2
2 2

2
( ) 1

( )
    (41) 

where a t( )  is taking from the system of ordinary differential equations: 

 
a c

c c a a2 52 ( )

  

    

 (42) 

with appropriate initial conditions:  

 t ta t c t0 0( ) 1 ( ) 1        (43) 

In simulations using the ISPH method parameter   (in free surface detecting algorithm, see 
section 3.5) and parameter h dx  were varied. The best results were obtained for h dx 1 1    
and 0 75   . The results are provided for these values of mentioned parameters.  
Fourth-order Runge-Kutta method was used for obtaining sample results. The results of 
numerical simulations are provided only for the ISPH method as the results of the original 
SPH are very similar (Afanasiev et al., 2006). The comparison with solution by Runge-Kutta 
is presented on fig. 7. Thin points represent the result by ISPH, thick points – by Runge-
Kutta method. Table 3 shows the comparison of numerical errors by the original SPH 

method and by ISPH for t  s0.8  with different numbers of fluid particles, which 

corresponds to the moment of time for the relation of semi-axes of ellipse 1:2. 
 
 

  
                                           a)                   b) 
 

  
                                           c)                   d) 

Fig. 7. Droplet problem: a) t  s0 43  , b) t  s0 8  , c) t  s1.16 , t  s1.51  
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N 721 1261 2791 4921 7651 

Numerical error by 
SPH (%) 

1.56 0.69 0.21 0.17 0.15 

Numerical error by 
ISPH (%) 

0.56 0.42 0.3 0.22 0.17 

 

Table 3. Numerical errors by SPH and ISPH for different sets of particles 

7. Dam breaking problem 

Dam breaking problem is a classical test for benchmarking the meshless methods. The 
equations (1)-(2) or (5)-(6) are solved depending on the method. The formulation of the 
problem is following (see fig. 8). 
 
 
 
 

 
 

Fig. 8. The problem domain for dam breaking 

At the initial moment of time viscous fluid column gets broken under gravity force and 
starts its motion towards the opposite solid wall of the basin. When the fluid flow reaches 
the wall the wave is forming at the backoff and at a certain moment of time it breaks. For 
numerical simulation of the problem the following values of physical characteristics were 
used: 3 kg/m1000   – the fluid density, 6 210  m /s   – the kinematic viscosity. Fig. 9 
presents flow charts, colored by pressure field and obtained using SPH (a, c, e) and ISPH (b, 
d, f) at different moments of time: t  s0.195  (a, b), t  s0.278  (c, d) and t  s0.593  (e, f). 
The obtained smooth pressure field allows to estimate the hydrodynamic loads on the left 
and right solid walls of the basin, the time charts of which are shown in fig. 10. In the 
simulations by the ISPH method the turbulent viscous forces were taken into account. As it 
is pointed out by Lee (Lee et al., 2008), the additional turbulent viscosity makes pressure 
field smoother. Here the Boussinesq assumption for enclosure Reynolds-averaged Navier-
Stokes equations was used along with mixing length model of Prandtl for the turbulent 
viscosity coefficient (Lee et al., 2008). Stability of calculations by the original SPH method 
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are provided by the additional artificial viscosity. Smooth pressure field is a result of 
utilizing the special techniques, proposed in section 3.7. The difference between the time 
charts of hydrodynamic loads obtained by SPH and ISPH may be explained probably by the 
effect of turbulence in the ISPH method. However this is the subject for future work. 
 
 
 
 
 
 

   
a)      b) 

 

   
c)     d) 

 

    
e)     f) 

 
 
 

Fig. 9. Flow charts colored by pressure field: a, c, e) by SPH; b, d, f) by ISPH 
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a)     b) 

 

   
c)     d) 

 

   
e)     f) 

Fig. 10. Time charts of hydrodynamic loads: a, c, e) on the left wall; b, d, f) on the right wall 

8. Conclusion 

As it follows from the results of simulation of dam breaking problem using SPH and ISPH, 
the both methods demonstrate good results in pressure field calculation. The time charts of 
hydrodynamic loads on the solid walls of the basin show good agreement, what proves 
their correctness. It can be concluded that the smoothed particle methods allow obtaining 
correct hydrodynamic loads in the case of large deformations of free surface and can be used 
for problems of that type. As some differences between hydrodynamic loads obtained on 
one side by SPH and on the other side by the ISPH method is observed, explanation of this 
fact becomes a subject for future work. It is also planned to analyse the influence of 
turbulent forces onto the hydrodynamic loads. 
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