
II International Conference on Particle-based Methods - Fundamentals and Applications
PARTICLES 2011

E. Oñate and D.R.J. Owen (Eds)

PARTICLE METHODS PARALLEL IMPLEMENTATIONS
BY GP-GPU STRATEGIES.

ANTÓN REY-VILLAVERDE∗, JOSE L. CERCÓS∗ , ANTONIO
SOUTO-IGLESIAS∗ AND LEO M. GONZÁLEZ∗

∗Canal de Ensayos Hidrodinmicos de la ETSI Navales (CEHINAV)
Universidad Politécnica de Madrid

Avda. de la Victoria s/n , 28040 Madrid, Spain
e-mail: leo.gonzalez@upm.es, http://canal.etsin.upm.es/

Key words: OpenCL, CUDA, GPU, speed-up

Abstract. This paper outlines the problems found in the parallelization of SPH (Smoothed
Particle Hydrodynamics) algorithms using Graphics Processing Units. Different results of
some parallel GPU implementations in terms of the speed-up and the scalability compared
to the CPU sequential codes are shown. The most problematic stage in the GPU-SPH al-
gorithms is the one responsible for locating neighboring particles and building the vectors
where this information is stored, since these specific algorithms raise many difficulties for
a data-level parallelization. Because of the fact that the neighbor location using linked
lists does not show enough data-level parallelism, two new approaches have been pro-
posed to minimize bank conflicts in the writing and subsequent reading of the neighbor
lists. The first strategy proposes an efficient coordination between CPU-GPU, using GPU
algorithms for those stages that allow a straight forward parallelization, and sequential
CPU algorithms for those instructions that involve some kind of vector reduction. This
coordination provides a relatively orderly reading of the neighbor lists in the interactions
stage, achieving a speed-up factor of x47 in this stage. However, since the construction
of the neighbor lists is quite expensive, it is achieved an overall speed-up of x41. The sec-
ond strategy seeks to maximize the use of the GPU in the neighbor’s location process by
executing a specific vector sorting algorithm that allows some data-level parallelism. Al-
though this strategy has succeeded in improving the speed-up on the stage of neighboring
location, the global speed-up on the interactions stage falls, due to inefficient reading of
the neighbor vectors. Some changes to these strategies are proposed, aimed at maximizing
the computational load of the GPU and using the GPU texture-units, in order to reach
the maximum speed-up for such codes. Different practical applications have been added
to the mentioned GPU codes. First, the classical dam-break problem is studied. Second,
the wave impact of the sloshing fluid contained in LNG vessel tanks is also simulated as
a practical example of particle methods.

1

172



Antón Rey-Villaverde, Jose L. Cercós, Antonio Souto-Iglesisas and Leo M. González

1 INTRODUCTION

The recent implantation of graphic process units (GPUs) in scientific computation has
increased drastically the speed processing in several applications. Not many years ago,
parallel computing was restricted to super-computing centers or large and expensive clus-
ters. Nowadays, thanks to the arrival of GPU multicore processors, originally designed for
graphic processing, massively parallel processing is becoming increasingly more accessible
and cheaper for the developer.

Increasing the efficiency of algorithms involved not only depends on the specific hard-
ware improvements, but also on the new approaches aimed at maximizing available re-
sources and minimizing costs. In the case of GPU processors, it is necessary to note that
the computational power computer lies in its specialization. The GPU multicore architec-
ture is designed for highly efficient graphic processing. This requires the implementation
of affine and projective orthogonal transformations (matrix operations) on a set of ele-
ments(vertices, fragments) between different spaces of the 3D graphic scene. Likewise,
the level of independence between these elements is perfect for parallel processing through
which it is possible to distribute among a large number of processors such arithmetic op-
erations on each of the vertices and fragments of the scene, commonly arranged as large
vectors.

In order to exploit this powerful calculation, the GP-GPU emerges as a discipline
where graphics shader functions are redesigned for processing data vectors, not necessarily
graphics, which might exhibit a high level of parallelism from the point of view of SIMD
(Single Instruction-Multiple Data) architectures.

To explore the degree of adaptability of the GPU technology to certain algorithms
which simulate large particle systems, first we analyze which steps of the SPH (Smoothed
Particle Hydrodynamics) code are more suitable to be parallelized, as well as different
strategies of parallelization of the main subroutines. This requires the evaluation of the
problematic aspects and the consequent speedup and scalability obtained.

Since the SPH methodology generally uses an explicit resolution scheme, their algo-
rithms are easily parallelized on its minimum units (particles, cells). However, there are
certain subroutines whose GPU parallelization is not immediate, in those cases differ-
ent strategies will be implemented. These strategies will be focused on the obtention
of the maximum parallelization implementation or the increase of the CPU versatility.
Although it is always possible to use the CPU in those subroutines whose parallelization
is problematic, this should be avoided due to the relatively high latencies associated with
data transfers between CPU and GPU and the consequent reductions in computational
performance.

2 GP-GPU: CUDA IMPLEMENTATION.

Traditionally, the GP-GPU has been developed using special languages (shaders) as
GLSL, CG, or HLSL incorporated as extensions of the OpenGL and Direct3D APIs.

2

173



Antón Rey-Villaverde, Jose L. Cercós, Antonio Souto-Iglesisas and Leo M. González

Figure 1: Basic architecture of a GPU card.

Learning GP-GPU programming not only required graphic programming as prerequisite,
but also requires a considerable expertise on APIs and graphic languages. Currently,
developing GP-GPU applications is done with the help of programming environments
specifically designed to develop this type of codes as the CUDA (Computing Unified
Device Architecture) or the OpenCL platforms.

2.1 Generalities.

Regarding GPU architecture, in Figure 1 a scheme of the distribution of the processors
on the graphic cards used is shown. Basically, the GPU distributed in a set of multipro-
cessors. Each multiprocessor hosts typically 8 scalar processors in NVIDIA architectures.
From the viewpoint of parallel codes, the first important concept to consider concerns the
kernel functions (analogous to the shaders in the graphic computing context). When a
kernel is called, throws a vector of N threads, each of which ends up being executed on
a processor. In turn, every thread executes the instructions found in the kernel function
sequentially. Once the kernel function is called, the N threads perform the instructions
in parallel. Threads are grouped into blocks of threads. The ones associated in a specific
block are executed in a common multiprocessor (8 single processors) where they can share
variables and make use of the shared memory space associated with each multiprocessor.

When a kernel is called, blocks of threads are listed and distributed in the multi-
processors available. The threads of a block are executed simultaneously on a single
multiprocessor, while multiple blocks could be executed concurrently in one multiproces-
sor. When all the threads of a block have finished, new blocks are launched in the vacant
multiprocessors.

One multiprocessor can execute hundreds of threads concurrently. To manage this
large number of threads, it uses a special architecture called SIMT (Single Instruction,
Multiple Thread). This amount of threads are grouped into 32 unit packs called warps.
In the SIMT architecture, the threads of a warp execute the same kernel instruction at
the same time. Each multiprocessor is constantly alternating between warps, which can

3

174



Antón Rey-Villaverde, Jose L. Cercós, Antonio Souto-Iglesisas and Leo M. González

decrease the latencies associated with the threads memory access and minimize the time
when processors are inactive.

In order to make a parallel implementation, it is crucial to understand the GPU memory
hierarchy to manage different memory spaces in order to achieve maximum transfer rates
and avoid bottlenecks.

• Registers: Is a set of quick access memory banks used by the multiprocessors for
local data allocation.

• Shared memory: Each multiprocessor has a shared reading and writing memory
space only visible by the processors. This type of memory could be as quick as
the registers, but the speed strongly depends on the way the code prevents access
conflicts between processors.

• Global memory: is the read/write memory space visible for all GPU processors.
This memory is relatively slow compared to reports the former ones. As the shared
memory type, the amount of flow data depends on the way threads access to it.

• Texture memory: is a read only memory and can improve noticeably the perfor-
mance if used properly.

2.2 High performance tips.

In [1] a series of essential strategies to obtain a maximum GPU performance are shown.
Although following these guidelines is desirable, the implementation on the some of them
depends on the nature of algorithm to parallelize.

• When consecutive half-warp threads read or write consecutive elements of a 32, 64
or 128 bytes memory segment of an array, the memory transfer of such items is
done on a transaction, reaching huge memory transfer rates. Coalescent access to
memory may occur either in the global memory or in the shared memory.

• Using shared memory to store those data that can be used by multiple threads of a
block instead of global memory could achieve transfer rates 100 to 150 times higher.

• Minimize differences between threads of a warp is essential, because the SIMT ar-
chitecture requires that warp threads are implicitly synchronized.

• Each multiprocessor is designed to manage hundreds of thread blocks and hundreds
of thousands of threads simultaneously. As the number of processors is limited to
8, each multiprocessor is constantly alternating services among warps. When the
occupation is very high, processors should not inactive waiting some threads to
complete memory transactions, and they should give a temporary control to other
threads from other warps that are ready to execute instructions. This decreases the
latency associated to memory transfer efficiently.

4

175



Antón Rey-Villaverde, Jose L. Cercós, Antonio Souto-Iglesisas and Leo M. González

3 SPH Parallel codes.

3.1 Introduction.

Smoothed particle hydrodynamics (SPH) is a Lagrangian method, with no computa-
tional mesh and has been widely employed to study free-surface flows. Originally invented
for astrophysics during 1970s [7, 8], it has been applied to many different fields of the
fluid dynamics and solid mechanics during the last decades. Instead of using a mesh, the
SPH methods use a set of interpolation nodes placed arbitrarily within the fluid. This
gives several advantages in comparison to mesh-based methods when simulating nonlinear
flow phenomena. The method uses discrete approximations to interpolation integrals to
change partial differential equations of fluid dynamics into summations. More complete
reviews on standard SPH can be found at [9]. The SPH method is capable of dealing
with free-surface problems, deformable boundaries, moving interfaces, wave propagation
and solid simulation [2, 3]. In contrast, traditional numerical methods have difficulties to
compute large deformations on the computational domain and also require special treat-
ment (VOF, Level Set, etc...) to deal with free surface flows. Due to the large number of
interactions for each particle at each time step, when SPH codes are computed on a single
CPU they take a large computational time. When millions of particles are necessary to
compute accurately a physical process, only parallel computing can guarantee efficient
computational times. Graphics Processing Units (GPUs) thanks to their multi-threading
capability can treat large data flows efficiently. Due to the inexorable development of
the market of video games and multimedia, their computing power with streaming multi-
processor technology has increased much faster than of CPUs.Thus, GPUs appear as an
accessible alternative to accelerate SPH models using a powerful parallel programming
model where the graphics cards are used as the execution devices. Their performance can
be compared with large cluster machines. A huge advantage is the price and the easy
maintenance GPUs need in comparison with large multi-core systems.

The capability of GPUs to handle with SPH was shown by the pioneer work of Harada
[4], where they were able to simulate 60,000 particles in real time and they obtained
runs over 28 times faster using a GPU than a CPU with tests of 260,000 particles. The
method proposed was implemented using a GeForce 8800GTX GPU and developed before
the appearance of CUDA, which means that Haradas work supposed a significant advance
even when most of its limitations could be fixed using the advanced GPU programming
features introduced by CUDA. Recent works concerning SPH computing on GPU can be
found in [5].

3.2 Formulation.

In the SPH technique, the fluid domain is represented by a set of particles scattered
in space where different physical properties are known (mass, density, pressure, position,
velocity). These mesh-free particles move according to the governing fluid dynamics
(Navier-Stokes) equations. The properties can change throughout a simulation due to the

5

176



Antón Rey-Villaverde, Jose L. Cercós, Antonio Souto-Iglesisas and Leo M. González

interaction of neighboring points. Herein, the SPH formulation implemented on the GPU
architecture is described briefly.

3.3 Interpolation.

As mentioned in the introduction, our goal is to simulate newtonian and incompress-
ible viscous flow in laminar regime. These flows are well described in the continuous
formulation by the Navier-Stokes equations:

∇ · v = 0 (1)

ρ
dv

dt
= −∇P + µ∇2v (2)

in which P is the pressure, ρ the density, v the velocity and t stands for time.
Equation (1) and the pressure term in equation (2) play a combined role. The pres-

sure acts as a Lagrange multiplier that produces a zero divergence velocity field. If the
incompressibility condition is imposed, either a penalty formulation or a pressure Pois-
son equation must be solved to calculate the pressure values consequently increasing the
computational cost substantially. In the WCSPH context this hypothesis is relaxed by
assuming a weakly compressible fluid with a large sound speed, where the equation (1) is
replaced by

dρ

dt
= −ρ∇ · v (3)

and a stiff equation of state P = P (ρ) is added to the system.
Finally, assuming the Lagrangian description of the fluid, the fluid particles move

according to the kinematic law:
dr

dt
= v (4)

where r is the position vector.
The interpolation method in SPH is based on the following integral:

< f(r) >=

∫

V

f(r′)W (r − r′, h)d3r′ (5)

where the integral extends over the domain V , d3r′ is the element of volume dependant
on the dimensions of the problem, r and r′ are position vector and W (r − r′, h) is the
interpolation or kernel function. The parameter h determines the size of the kernel,
which means the distance of influence around r′. The integrals are replaced numerically
by summations of the contributions of nearby particles.

The complete SPH formulation [9] considered will be the following:

6

177



Antón Rey-Villaverde, Jose L. Cercós, Antonio Souto-Iglesisas and Leo M. González

dρa

dt
=

∑

b∈Na

mb vab ∇aWab (6)

dva

dt
= −

∑

b∈Na

mb

(

Pa

ρ2
a

+
Pb

ρ2
b

)

∇aWab + Πa (7)

P =
ρ0 c2

s

γ

((

ρ

ρ0

)γ

− 1

)

(8)

in which m is the mass, r is the position vector, and the subscripts a or b refers to the
particle that carries over the considered property.

The notation vab means vab = va − vb, ∇aWab is the gradient of the b-centered kernel
with respect to the coordinates of particle a and Πa is the viscous term at particle a [9],
Na is the index set of particle a neighbors, regarding the kernel support, ρ0 the reference
density, cs is the numerical sound speed and γ = 7.

The kernel used is a normalized Gaussian kernel, see [14], with a support of 3h and
h = 1.33 dx where h is the smoothing length and dx is the typical initial separation among
particles.

The integration in time has been performed using a Leap-frog second order scheme[12].
The selection of the time step has been based on the viscous diffusion, convective, acceler-
ation, and sound waves propagation terms[12]. The CFL factor used was 1/8 using h as a
reference length. Depending on the case a special initialization or stabilization technique
has been used.

Within SPH techniques, WCSPH is the usual way of modeling incompressible free
surface flows [10, 15]. It is easy to programme because the pressure is obtained from a
separate equation of state (8) that is chosen so that the speed of sound is large enough
to keep the relative density fluctuations small [9]. However, when dealing with highly
distorted flows the need for an explicit definition of a boundary at the free surface is a
major drawback.

4 THE DAM-BREAK PROBLEM

We implemented the weakly compressible SPH method to simulate a 2D dam break
problem with the geometric parameters shown in the figure 2. This geometric configura-
tion is based on [6].

The walls of the tank are three particles thick and are modeled with boundary static
particles, treated the same way as the fluid particles in the computation of the forces.
At t = 0 the fluid is completely still. The physical and numerical parameters were the
following: hfac = 1.33, smoothing length h = 2.69 ·10−2, initial distance between particles
dx = h/hfac, reference density ρref = 1000.0, γ = 7.0, numerical sound speed cs = 15.0,
α = 8, dynamic viscosity µ = 0.744, gravity g = 9.81 and Gaussian kernel type were used

7

178



Antón Rey-Villaverde, Jose L. Cercós, Antonio Souto-Iglesisas and Leo M. González

Figure 2: Initial configuration for the fluid and the tank. L/H = 2, D/H = 3, d/H = 5.366

N particles CPU GPU
k=1 k=5 k=10

7547 26.97 1.67 0.98 0.89
15047 57.19 3.10 1.78 1.61
25057 98.09 5.58 3.22 2.95
52559 227.75 10.55 6.07 5.51
90079 400.69 18.32 10.40 9.65
112550 494.37 23.95 13.60 12.38
137584 596.70 31.23 18.87 17.51

Table 1: CPU and GPU average time per step in milliseconds. Sequential executions were done on a
CPU Intel T8200 - 2.33GHz and parallel executions were done on one device of a GPU NVIDIA Tesla
C1060.

in the simulation. For each particle i, the initial pressure has an hydrostatic distribution
pi = ρref · gravf · (H − yi) and the initial density is calculated according to equation (8).

4.1 CPU vs. GPU implementations

The table 1 shows the computational timings of seven executions corresponding to dif-
ferent values of the scale parameter H and keeping constant the distance between particles
dx. The smallest value of the scale parameter was H = 0.6. Due to the relatively high
computational cost of the neighbor list construction stage in the parallel implementation,
different GPU executions were done varying the frequency of the execution of this stage,
so that the neighbor list construction is performed every k steps of the algorithm in the
GPU implementation.

In spite of the CPU sequential algorithm computes the neighbor list construction every
step, this stage represents approximately 1% of the total computational time of the whole
time step, consequently if the neighbor list construction were performed every k steps the
speed up factor would not be noticeably reduced in this implementation.

A maximum speed-up of x41.5 was obtained when 90079 particles were simulated. It
should be noticed that the GPU implementation lacks of certain scalability when the
algorithm deals with more than this amount of particles, possibly because in this GPU
approach the CUDA kernels involved in the neighbor list construction stage are memory
bounded.

8

179



Antón Rey-Villaverde, Jose L. Cercós, Antonio Souto-Iglesisas and Leo M. González

Figure 3: Average time and speed-up plots.

Figure 4: Tank geometry and position of the sensors. Units in mm. Rotation center at mid bottom.

5 SLOSHING FLUID CONTAINED IN LNG VESSEL TANKS

In order to provide a practical application case, the sloshing in a rectangular LNG
vessel tank has been simulated. Sloshing moment amplitudes in a rectangular tank for a
wide range of rolling frequencies have been investigated experimentally and numerically,
see [11] or [12].

5.1 Problem description

The experimental data were measured in a tank (62 mm thickness) similar to the one
shown in Figure 4, where only a lateral water impact has been considered.

Fixed particles (also refereed as dummy particles) have been used to impose the bound-
ary condition. This type of boundary condition has a simple implementation in a massive
parallel oriented code, but the consequences of this solution could be improved if more
sophisticated boundary conditions are implemented.

The physical time simulated was 3 seconds (First impact time scale) and the number
of particles N was around 100000. The computational time using a NVIDIA GeForce
GTX 295 was less than 2 hours. This device has 480 cores, but excepting Multi-GPU
implementation, only 240 cores can be used simultaneously.

To take into account the action of the engine that causes the tank movement, which

9

180



Antón Rey-Villaverde, Jose L. Cercós, Antonio Souto-Iglesisas and Leo M. González

Figure 5: Wave impact frame, pressure field at left, velocity field at right.

is not a pure sinusoidal signal, and include all this effects in the simulation, the moving
parameters of the tank (angle, angular velocity and angular acceleration) were directly
obtained from the benchmark. This methodology tries to include the initializing phase
caused by engine start in the fluid simulation.

5.2 Results

In figure 5, the pressure(left) and velocity (right) fields are represented in a zoomed
area where the pressure sensor measures the first wave impact. Although the velocity field
is nicely smoothed, the pressure field still has the typical noise effect present in weakly
compressible SPH simulations.

Looking at figure 5 two interesting effects can be observed, firstly, the distance between
particles is not kept constant and density instabilities are present at the free surface,
secondly the particles are unable to reach the wall boundary and an undesired gap appears
between the wall and the closest particles.

In Figure 4 the complete distribution of sensors in the tank is shown. In this work only
the sensor 1 has been used for the validation.

In order to improve the pressure measurement, Shepard correction [13] has been im-
plemented to improve the consistency of the interpolation, getting at least a 0th order
consistency.

During the simulation, two different parts can be distinguished, in the first one the
sensor 1 records the result of a nearly hydrostatic pressure distribution, in the second
part the violent impact is registered and the flow dynamics is extremely complex. Com-
paring the results obtained, see Figure 6, when fixed particles are taken into account in
sensor pressure interpolation the hydrostatic part of the simulation has a good agreement
with the experimental data. This fact contrasts with the second part where the impact
pressure measurement is better represented without fixed particles in the interpolation.
When no fixed particles are taken into account for the pressure interpolation, the error
in the maximum pressure impact value is around 870 Pa/m (24%). It was also noticed
that the maximum pressure impact simulated was delayed 0.06 seconds compared to the
experimental wave impact.

10

181



Antón Rey-Villaverde, Jose L. Cercós, Antonio Souto-Iglesisas and Leo M. González

Figure 6: Pressure comparison, using fix particles (left), without fix particles (right).

6 CONCLUSIONS

A CPU-GPU solver has been developed to deal with 2D free surface flow problems
requiring high computational cost. This code can be run as either a CPU code or a GPU
code depending on the availability of hardware. The model has been demonstrated to
be both accurate and efficient when dealing with a gravity-dominated flow problem. The
code was tested in two different problems: first, the classical dam-break problem and
also, the wave impact of the sloshing fluid contained in LNG vessel tanks as a practical
example of particle methods. Simulations carried out for different resolutions showed a
close agreement between numerical and experimental results. In addition, the numerical
results were observed to converge to the experimental ones when increasing the resolution
(the number of particles), both for free-surface elevations and pressures. In terms of
efficiency, we have demonstrated that simulations with a large number of particles can
be simulated on a personal computer equipped with a CUDA-enabled GPU card taking
advantage of the performance and memory space provided by the new GPU technology.
This means that research can be conducted with available cheap technology for problems
that previously required high-performance computing (HPC). The speedups obtained in
this work reveal the possibility to study real-life engineering problems at a reasonable
computational cost. For the validation case chosen here, the GPU parallel computing can
accelerate serial SPH codes by almost two orders of magnitude. Experience has shown that
the speedup varies from one test to another with even greater speedup achievable than
found here. The achieved performance can be compared to the large cluster machines,
which are expensive and hard to maintain. Finally, for simulations requiring several
million particles the immediate future for GPU computing should focus upon multi GPU
implementations, since the memory requirements are still a limitation for a single GPU.

REFERENCES

[1] NVIDIA Corporation. NVIDIA CUDA Best Practices Guide. Version 3.0

[2] Libersky LD, Petschek AG, Carny TC, Hipp JR and 623 Allahdady FA (1993) High-

11

182



Antón Rey-Villaverde, Jose L. Cercós, Antonio Souto-Iglesisas and Leo M. González

strain Lagrangian hydrodynamics a three-dimensional (SPH) code for dynamic ma-
terial response. J Comput Phys. 109: 67-75.

[3] Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: Some recent
improvements and applications. Comput Meth Appl Mech Engrg 138: 375-408.

[4] Harada T. and Koshizuka S. and Kawaguchi Y. Smotthed Particle Hydrodynamics
on GPUs. Proc of Comp Graph Inter (2007), 63–70.

[5] Herault A. and Bilotta G. and Dalrymple R.A. (2010) SPH on GPU with CUDA.
Journal of Hydraulic Research, 48 Extra Issue: 74-79, doi:10.3826/jhr.2010.0005

[6] Colagrossi A. and Landrini M.. Numerical simulation of interfacial flows by smoothed
particle hydrodynamics. Journal of Computational Physics, (2003), pp. 454.

[7] Lucy, L.B. . A numerical approach to the testing of the fission hypothesis. Astron. J.
(1977) 82(12): 1013–1024.

[8] Gingold RA and Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and
application to non- spherical stars. Mon Not R Astr Soc 181: 375–389.

[9] Monaghan, JJ. (2005) Smoothed Particle Hydrodynamics. Rep Prog Phys 68: 1703–
1759.

[10] Monaghan, JJ. (1994) Simulating free surface flows with SPH. Journal of Computa-
tional Physics 110(2): 399-406.

[11] Souto-Iglesias A, Pérez-Rojas L, Zamora-Rodŕıguez R. Simulation of anti-roll tanks
and sloshing type problems with smoothed particle hydrodynamics. Ocean Engineering
(2004)31::1169.

[12] Souto-Iglesias A, Delorme L, Pérez Rojas L, Abril S. Liquid moment amplitude as-
sessment in sloshing type problems with SPH. Ocean Engineering (2006)33::1112.

[13] Xu F, Kikuchi M. The Shepard Correction of Kernel Function in SPH Method. Con-
ference on Computational Engineering and Science (2004)3::123.

[14] Molteni D. and Colagrossi A. A simple procedure to improve the pressure evaluation
in hydrodynamic context using the SPH. Computer Physics Communications (2009)
180:861872.

[15] Lee E.S. and Moulinec C. and Xu R. and Violeau D. and Laurence D. and Stansby P.
Comparisons of weakly compressible and truly incompressible algorithms for the SPH
mesh free particle method. Journal of Computational Physics (2008) 227(18):8417-
8436.

12

183




