76 research outputs found

    Demonstration of Semantic Web-based Medical Ontologies and Clinical Decision Support Systems

    Get PDF
    Master's thesis in Information- and communication technology IKT590 - University of Agder 2016Konfidensiell til / confidential until 01.01.202

    Semantic segmentation of real-time sensor data stream for complex activity recognition

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Data segmentation plays a critical role in performing human activity recognition in the ambient assistant living systems. It is particularly important for complex activity recognition when the events occur in short bursts with attributes of multiple sub-tasks. Although substantial efforts have been made in segmenting the real-time sensor data stream such as static/dynamic window sizing approaches, little has been explored to exploit object semantic for discerning sensor data into multiple threads of activity of daily living. This paper proposes a semantic-based approach for segmenting sensor data series using ontologies to perform terminology box and assertion box reasoning, along with logical rules to infer whether the incoming sensor event is related to a given sequences of the activity. The proposed approach is illustrated using a use-case scenario which conducts semantic segmentation of a real-time sensor data stream to recognise an elderly persons complex activities

    Towards computerizing intensive care sedation guidelines: design of a rule-based architecture for automated execution of clinical guidelines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computerized ICUs rely on software services to convey the medical condition of their patients as well as assisting the staff in taking treatment decisions. Such services are useful for following clinical guidelines quickly and accurately. However, the development of services is often time-consuming and error-prone. Consequently, many care-related activities are still conducted based on manually constructed guidelines. These are often ambiguous, which leads to unnecessary variations in treatments and costs.</p> <p>The goal of this paper is to present a semi-automatic verification and translation framework capable of turning manually constructed diagrams into ready-to-use programs. This framework combines the strengths of the manual and service-oriented approaches while decreasing their disadvantages. The aim is to close the gap in communication between the IT and the medical domain. This leads to a less time-consuming and error-prone development phase and a shorter clinical evaluation phase.</p> <p>Methods</p> <p>A framework is proposed that semi-automatically translates a clinical guideline, expressed as an XML-based flow chart, into a Drools Rule Flow by employing semantic technologies such as ontologies and SWRL. An overview of the architecture is given and all the technology choices are thoroughly motivated. Finally, it is shown how this framework can be integrated into a service-oriented architecture (SOA).</p> <p>Results</p> <p>The applicability of the Drools Rule language to express clinical guidelines is evaluated by translating an example guideline, namely the sedation protocol used for the anaesthetization of patients, to a Drools Rule Flow and executing and deploying this Rule-based application as a part of a SOA. The results show that the performance of Drools is comparable to other technologies such as Web Services and increases with the number of decision nodes present in the Rule Flow. Most delays are introduced by loading the Rule Flows.</p> <p>Conclusions</p> <p>The framework is an effective solution for computerizing clinical guidelines as it allows for quick development, evaluation and human-readable visualization of the Rules and has a good performance. By monitoring the parameters of the patient to automatically detect exceptional situations and problems and by notifying the medical staff of tasks that need to be performed, the computerized sedation guideline improves the execution of the guideline.</p

    Semantic IoT for reasoning and BigData analytics

    Get PDF
    Recent developments in the IoT industries have led to an increase in data availability that is starting to weight heavily on the traditional idea of pushing data to the Cloud. This study focuses on identifying tasks that can be pulled from the Cloud in a semantic stream processing context

    Dynamic service orchestration in heterogeneous internet of things environments

    Get PDF
    Internet of Things (IoT) presents a dynamic global revolution in the Internet where physical and virtual “things” will communicate and share information. As the number of devices increases, there is a need for a plug-and–interoperate approach of deploying “things” to the existing network with less or no human need for configuration. The plug-and-interoperate approach allows heterogeneous “things” to seamlessly interoperate, interact and exchange information and subsequently share services. Services are represented as functionalities that are offered by the “things”. Service orchestration provides an approach to integration and interoperability that decouples applications from each other, enhancing capabilities to centrally manage and monitor components. This work investigated requirements for semantic interoperability and exposed current challenges in IoT interoperability as a means of facilitating services orchestration in IoT. The research proposes a platform that allows heterogeneous devices to collaborate thereby enabling dynamic service orchestration. The platform provides a common framework for representing semantics allowing for a consistent information exchange format. The information is stored and presented in an ontology thereby preserving semantics and making the information comprehensible to machines allowing for automated addressing, tracking and discovery as well as information representation, storage, and exchange. Process mining techniques were used to discover service orchestrations. Process mining techniques enabled the analysis of runtime behavior of service orchestrations and the semantic breakdown of the service request and creation in real time. This enabled the research to draw observations that led to conclusions presented in this work. The research noted that the use of semantic technologies facilitates interoperability in heterogeneous devices and can be implemented as a means to bypass challenges presented by differences in IoT “things”

    Water utility decision support through the semantic web of things

    Get PDF
    Urban environments are urgently required to become smarter. However, building advanced applications on the Internet of Things requires seamless interoperability. This paper proposes a water knowledge management platform which extends the Internet of Things towards a Semantic Web of Things, by leveraging the semantic web to address the heterogeneity of web resources. Proof of concept is demonstrated through a decision support tool which leverages both the data-driven and knowledge-based programming interfaces of the platform. The solution is grounded in a comprehensive ontology and rule base developed with industry experts. This is instantiated from GIS, sensor, and EPANET data for a Welsh pilot. The web service provides discoverability, context, and meaning for the sensor readings stored in a scalable database. An interface displays sensor data and fault inference notifications, leveraging the complementary nature of serving coherent lower and higher-order knowledge

    Process control and configuration of a reconfigurable production system using a multi-agent software system

    Get PDF
    Thesis (M. Tech. (Information Technology)) -- Central University of technology, Free State, 2011Traditional designs for component-handling platforms are rigidly linked to the product being produced. Control and monitoring methods for these platforms consist of various proprietary hardware controllers containing the control logic for the production process. Should the configuration of the component handling platform change, the controllers need to be taken offline and reprogrammed to take the changes into account. The current thinking in component-handling system design is the notion of re-configurability. Reconfigurability means that with minimum or no downtime the system can be adapted to produce another product type or overcome a device failure. The re-configurable component handling platform is built-up from groups of independent devices. These groups or cells are each responsible for some aspect of the overall production process. By moving or swopping different versions of these cells within the component-handling platform, re-configurability is achieved. Such a dynamic system requires a flexible communications platform and high-level software control architecture to accommodate the reconfigurable nature of the system. This work represents the design and testing of the core of a re-configurable production control software platform. Multiple software components work together to control and monitor a re-configurable component handling platform. The design and implementation of a production database, production ontology, communications architecture and the core multi-agent control application linking all these components together is presented

    The Train Benchmark: cross-technology performance evaluation of continuous model queries

    Get PDF
    In model-driven development of safety-critical systems (like automotive, avionics or railways), well- formedness of models is repeatedly validated in order to detect design flaws as early as possible. In many indus- trial tools, validation rules are still often implemented by a large amount of imperative model traversal code which makes those rule implementations complicated and hard to maintain. Additionally, as models are rapidly increas- ing in size and complexity, efficient execution of validation rules is challenging for the currently available tools. Checking well-formedness constraints can be captured by declarative queries over graph models, while model update operations can be specified as model transformations. This paper presents a benchmark for systematically assessing the scalability of validating and revalidating well-formedness constraints over large graph models. The benchmark defines well-formedness validation scenarios in the railway domain: a metamodel, an instance model generator and a set of well- formedness constraints captured by queries, fault injection and repair operations (imitating the work of systems engi- neers by model transformations). The benchmark focuses on the performance of query evaluation, i.e. its execution time and memory consumption, with a particular empha- sis on reevaluation. We demonstrate that the benchmark can be adopted to various technologies and query engines, including modeling tools; relational, graph and semantic databases. The Train Benchmark is available as an open- source project with continuous builds from https://github. com/FTSRG/trainbenchmark

    Semantic web system for differential diagnosis recommendations

    Get PDF
    There is a growing realization that healthcare is a knowledge-intensive field. The ability to capture and leverage semantics via inference or query processing is crucial for supporting the various required processes in both primary (e.g. disease diagnosis) and long term care (e.g. predictive and preventive diagnosis). Given the wide canvas and the relatively frequent knowledge changes that occur in this area, we need to take advantage of the new trends in Semantic Web technologies. In particular, the power of ontologies allows us to share medical research and provide suitable support to physician's practices. There is also a need to integrate these technologies within the currently used healthcare practices. In particular the use of semantic web technologies is highly demanded within the clinicians' differential diagnosis process and the clinical pathways disease management procedures as well as to aid the predictive/preventative measures used by healthcare professionals
    • …
    corecore