
Master
in

Innovation and Research in
Informatics (MIRI)

Semantic IoT for Reasoning and Big Data Analytics

Candidate: Reinout Van Hille
Supervisor : Prof. Fatos Xhafa

Faculty of Informatics of Barcelona, UPC, Spain

June 28, 2018

Abstract

In recent years, the Internet of Things has been evolving and expanding as
a disruptive technology. What started out with the idea of tagging things
using RFID tags and connecting them to the Internet has now become the
common name for connecting anything and everything. With the IoT being
a main source of data generation due to very large number of devices and
their rather low cost, data processing in both online and offline modes, has
become a challenge due to size, data rate, variety, etc. In this context, the
semantic web technologies are sought to enrich the already Big Data with
even more data but facilitating processing and reasoning over the data. The
benefits of bringing the semantic web to the IoT are twofold. By adding a
common model to the data, the interoperability, i.e. the domain where it can
be used, is increased significantly. Furthermore, such enriched data streams
will allow machines to infer even more information and knowledge from it
that would otherwise not have been available.

However, such benefits are not obtained without paying a price. Enriching
the data requires additional processing steps and causes an explosion of the
already Big Data. Traditionally, dealing with Big Data is a problem that
has been tackled using Cloud computing. Voices are rising however, that
soon the idea of pushing all data to the Cloud will no longer be sustainable.
This is especially fortified by the upcoming 5G technologies, which brings
the capacity of generating even bigger data streams at devices. A possible
solution is to alleviate the Cloud by performing some computations at lower
levels. The question can be raised as to what exactly should be
processed and where, from IoT layer to Cloud layer. The tasks
performed in the Cloud are often of such high complexity that they cannot
be performed by any lower level infrastructure. It is thus necessary to identify
tasks that can be moved away from the Cloud and pushed towards the edges
of the Internet.

i

In this thesis the usage of the semantic web technologies in an event
processing, IoT streaming context is studied. Event processing is particularly
interesting, because it implies that only the data contained within the events
is data of interest. Thus, by attempting to filter the data to find these events
at an early level, a large amount of data can be discarded. This would
help in balancing the amount of data that is generated additionally by the
enrichment process. The use-case of this study is the real-time detection of
potholes in the road. This implies that the study is oriented towards the IoT
in non resource constrained environments. Such environments can also be
found in other places, such as manufacturing and smart cities.

The aim of the study was to answer the previously raised question of
the tasks that can be distributed towards the edge of the Internet, within
the context, and to propose an architecture model that uses these ideas effi-
ciently. The architecture model consists of multiple processing layers, namely
three layers, each manipulating the data in some way before passing it on
to the layer above it, until it finally reaches the client application. To assess
the feasibility of this model, a proof of concept application was designed im-
plementing this architecture. Furthermore, an API was developed in order
to manage the layers. This would allow the adaptation of the implemented
system for other projects. Various experiments are ran in order to assess
every layer’s performance and judge if the selected tasks could realistically
be performed by each layer and by the system as a whole.

The results of this study include promising results about the proposed
architecture model for decoupling IoT from the Cloud by introducing in-
termediate layers of processing at the edge of Internet, its feasibility and
real-time performance, despite of the limitations of the testing environment.
The study also reveals the benefits of using semantic data enrichment of IoT
data stream for reasoning purposes. As a future work, we point out the need
to deploy the envisioned architecture in a real computing infrastructure com-
prising all layers and thus to obtain more accurate information regarding its
real-time performance and layering benefits.

ii

Contents

1 Introduction 1

2 Problem statement: Offloading processing and reasoning to
edges of the Internet 6

3 Objectives and project scope 9

4 State of the art 12
4.1 Semantic data streams . 12

4.1.1 Basic concept . 12
4.1.2 Semantic Web . 13
4.1.3 IoT data streams . 14
4.1.4 RDF-Stream . 16
4.1.5 TripleWave . 17
4.1.6 Summative evaluation 18

4.2 Semantic stream processing 18
4.2.1 DSMS approaches . 20

4.2.1.1 C-SPARQL 20
4.2.1.2 SPARQLstream 21
4.2.1.3 CQELS . 22

4.2.2 CEP approaches . 23
4.2.2.1 EP-SPARQL and ETALIS 23
4.2.2.2 CQELS-EP 24

4.2.3 Summative evaluation 25
4.3 Reasoning . 26

4.3.1 Inference . 26
4.3.2 Production rules . 27

4.3.2.1 Drools . 28

iii

4.3.2.2 Jena . 28
4.3.2.3 Easy-Rules 29

4.3.3 Event-Condition-Action (ECA) rules 29
4.3.4 Summative evaluation 31

5 System architecture 32
5.1 Requirements . 32

5.1.1 Functional requirements 33
5.1.2 Non-functional requirements 34

5.2 Event processing model . 35
5.3 Architecture overview . 37

5.3.1 The Frontier between IoT and Edge Processing layers:
thin vs. fat IoT layer 40

5.4 Implementation . 41
5.4.1 Data sensing and Date rate 41
5.4.2 Data preprocessing . 43
5.4.3 Edge processing . 48
5.4.4 Data Analysis and Application 50

5.5 The API . 52
5.6 Implementation Language . 53

6 Experimental study 54
6.1 The experimental design . 54
6.2 Testing environment . 56
6.3 Performance and accuracy of the preprocessing 56

6.3.1 Considerations regarding the dataset 56
6.3.2 Result of the algorithm using differences 57
6.3.3 The simple statistical approach 58

6.4 Performance and data rates in the edge layer 60
6.4.1 Effect of output format 60
6.4.2 Output data rate . 62
6.4.3 Effects of the amount of statements 65

6.5 The system response time . 67
6.6 Scalability . 69

7 Conclusions and future work 72
7.1 Conclusions . 72
7.2 Future work . 73

iv

A Additional measurement results 84
A.1 Distribution of the processing times at full capacity. 84
A.2 Processing times as a function of statement count. 86

v

List of Figures

1.1 A pothole in a road. 4

4.1 Semantic Web stack . 13
4.2 TripleWave architecture . 17

5.1 Windowing in point in time data representations 36
5.2 Architecture model . 38
5.3 Standard CAN frame . 42
5.4 A sample of the dataset . 46
5.5 Occurrence of a pothole in rpm data. 47

6.1 Influence of window size on accuracy 58
6.2 Processing time as a function of window size in preprocessing. 59
6.3 Performance of various formats for RDF serialization. 61
6.4 File size for various formats of RDF serialization. 62
6.5 Processing times for RDF serialization formats. 64
6.6 Data rate for each RDF serialization format. 64
6.7 processing times as a function of statements for turtle 65
6.8 Standard deviations in the turtle measurements. 66
6.9 Response time of the system using difference algorithm. 68
6.10 Comparison of response times 69
6.11 Response time for increasing data rate 70
6.12 Comparison between individual measurements at the critical

generation rates. 70

A.1 Distribution of the processing times when running at full ca-
pacity. 85

A.2 Processing time as a function of amount of statements for each
format. 87

vi

List of Tables

5.1 An excerpt of the dataset . 52

6.1 The expected data rates at full running capacity for each format. 63

vii

List of Listings

4.1 StreamGraphPattern in CQELS 22
4.2 StreamGraphPattern in CQELS-EP 24
4.3 Class inference in OWL . 27
4.4 The ECAA rule pattern . 30
5.1 A sample of enriched data . 51

viii

Chapter 1

Introduction

In recent years, the Internet of Things (IoT) has become one of the most
prominent concepts in the IT environment. Due to the broad range of appli-
cations that are associated with IoT, a vast amount of different definitions
have been provided for it. Furthermore, the IoT has been observed to be
evolving throughout the years, from the tagged objects model to a full in-
terconnected web of things involving social objects.[1] A ”definition for the
Internet of things for 2020” is given:

”A conceptual framework that leverages on the availability of het-
erogeneous devices and interconnection solutions, as well as aug-
mented physical objects providing a shared information base on
global scale, to support the design of applications involving at the
same virtual level both people and representations of objects.”[1]

This indicates just how many concepts are associated with the IoT. A major
part of this being the aspect of interconnected devices and objects. The rapid
developments made in the low power industry have created the opportunity
to gather data in various environments using even the most tiny of devices.
Similarly, due to innovations in the processing industry and as predicted
by Moore’s law, the processing capabilities of micro-controllers has also in-
creased dramatically. The combination of these two factors has resulted in
an explosive growth in the industry of connected devices, with a stunning
estimated 20.35 billion for the past year of 2017[2].

These devices form the basis of the IoT, but as stated in the definition,
the IoT is not just about the devices, but also about enabling these devices

1

to be used for various applications. An associated paradigm is that of Big
Data, which is often described using the five ”V’s” of volume, variety, velocity,
value and veracity. In particular when dealing with the velocity component,
a change in processing paradigm from a batch to stream computing model
creates both new possibilities and challenges.

IoT event processing A possibility of interest in this thesis, which also
presents a challenge, is found in the event processing environments. In a
static context, events are limited to a particular data element of interest, or
a combination of multiple elements. In a dynamic context, i.e. when deal-
ing with data-streams, patterns in time and sequences of events can also be
considered. The detection of these patterns is a field emerging together with
the data-streams. In this field the machine learning techniques and neural
networks can be considered the highest level of processing, as they deal with
the analysis of patterns that are generally too hard to define otherwise. How-
ever, for patterns that are known, the approach of complex event processing
can be used. In this approach, complex events are considered as a tempo-
ral relation of possibly multiple atomic events. When all atomic events are
detected following the pattern description, a complex event has been found.

IoT and Cloud computing In recent years, the IoT has also increasingly
become associated with cloud computing environments[1]. Often the reason-
ing behind it is found in the fact that the operating circumstances of the
sensors is tied to resource constraints. Hence these devices do not support
doing computational work as their energy usage must be minimized. The
distributed architecture that these IoT systems bring with them however,
often does allow for edge computing. While a single local sensing node may
not be capable of doing any computations, the broker node that accumu-
lates the data from various sensing nodes can usually do this, because it is
not tied to such resource constraints. Furthermore not all IoT environments
are tied to these resource constrains. Making use of these nodes, which are
found at the edge of the network in an IoT environment, is exactly what
edge computing is about. By performing computations at the edge of the
network, various advantages become apparent. First off, the available com-
putational power is used more efficiently, since more nodes participate in the
computation process. Furthermore, by doing some computations in the edge
the network overhead can be lowered. Lastly, certain information regarding

2

a data element is more readily available closer to the source.

IoT and semantic technologies In regards to this knowledge, the seman-
tic technologies were created to maximize the amount of information available
from data. These technologies originated as an approach focused on data on
the web quite some time ago. The observation was made that, while having
massive amounts of data available, a clear model for describing data and its
relationships was not. Furthermore, even when a clear description of the
data was available, the information stored inside of is often incomplete. This
is because of the existence of implicit knowledge. This is the knowledge that
is realized through reasoning over relationships and descriptions that is often
forgotten, considered insignificant or obvious, or its presence is not even no-
ticed. It is precisely this, the ability for machines to be able to reason with
data in a way that allows them to find this implicit knowledge given explicit
descriptions, that is the target of the semantic technologies.

These semantic technologies have recently started to find their way into
the IoT. Amongst the developments there exists a tendency towards process-
ing these enriched data streams in the complex event context.

The combination of various paradigms such as IoT, Edge Computing,
Semantic Processing and the Cloud is making possible to leverage in almost
real time and reliably Internet of Medical Things for patient monitoring, and
eHealth systems, more broadly [3].

Use case In this thesis a car’s sensory data is processed in order to detect
potholes1 in roads (see, e.g., Fig. 1.1).

The detection of potholes in roads may be used to various ends. First
of all, by categorizing the potholes, the scheduling of the repairs may be
optimized. Evidently, the most dangerous potholes should be fixed first.
During winter periods repairs of smaller potholes may be given higher priority
from an economical point of view, as this may prevent frost damage to roads
that would otherwise still have been in good quality.

Secondly, the safety of road users may be improved by providing them
with warnings. Potholes are especially dangerous for motorcyclists and may
even cause accidents. Similarly, a car hitting a pothole without adapted speed
may also suffer damage. If the location of these holes are known, warnings

1A depression or hollow in a road surface caused by wear or subsidence.

3

Figure 1.1: A pothole in a road.

can be issued until the repairs are made, allowing traffic to regulate their
speed to the circumstances.

Lastly, an analysis of the historical data of these holes may provide more
insight regarding the expected lifetime of roads. The lifetime of a road is
estimated at its construction, but is greatly affected by its actual usage and
degradation rate. A historical analysis of potholes can improve the estimation
on both current and future degradation rate, allowing a better scheduling of
road traffic.

In this thesis an architecture for processing the car data in a semantic,
complex event context is proposed. The focus is set towards the adaptabil-
ity of the system to reuse it in other contexts, and towards the use of edge
computing to improve the system efficiency. The objective is to use these
concepts to detect potholes. The timely detection of potholes allows govern-
ments to tackle the issue early, thus preventing further damage both to the
roads and its users.

Thesis structure and reading

This thesis is structured as follows. In this introduction, the context of
the project, the use-case and the most important concepts have briefly been
touched. Next, in chapter 2, the problems are identified more specifically and
elaborated. The identification of the problems leads to the formulation of the
key research question in chapter 3. Using this research question, the project
scope and its objectives are determined. Before introducing the proposed
solution, it is necessary to elaborate the background knowledge and related
work in the field of the study, i.e. defining the state of the art. This is done

4

in chapter 4. For each section of the related work, an evaluation is made.
This evaluation helps to understand the architectural design choices. The
requirements set by the use-case, lessons learned from the related work and
the problems observed form the baseline for the proposed architecture model
in chapter 5. This chapter also includes the details on the implementation
of the model that serves as a proof of concept to evaluate if it meets the set
requirements and objectives. Various experiments and tests are run in order
to attempt to understand the strengths and weaknesses as much as possible
in chapter 6. Finally, an evaluation of the implemented model is made in
chapter 7. The results are analyzed in retrospect of the project objectives.
Considerations for future work are also formulated.

5

Chapter 2

Problem statement: Offloading
processing and reasoning to
edges of the Internet

As mentioned earlier in the introduction, the cloud computing paradigm is
currently highly favored in the IoT scene. Some of the important reasons
for this are its more centralized architecture model and the benefits gained
from economies of scale. Centralized models offer various advantages: the
implementation is less complicated as no decisions have to be made on the
delegation of tasks between various components, issues with regard to syn-
chronization of the system become simpler, there are no additional compli-
cations with regard to interfacing and communications, a thin client model
can be used resulting in easy deployment, etc. Furthermore its key disad-
vantages of the single point of failure and bottleneck problem are tackled
by the cloud infrastructure. Failure can readily be avoided by replicating
machines - possibly even at runtime and in different locations to assure data
availability. A bottleneck problem can simply be tackled by increasing the
computational power in the cloud, which in turn is not that expensive due to
the economies of scale. The advantages of a centralized cloud computing ap-
proach are numerous and justify the observed movement of the IoT towards
the cloud.

Yet there is some criticism to be found to this approach. By selecting
a thin client model and moving all computations towards the cloud, not all
available hardware is maximally exploited. In an event processing context
the possibilities lost are twofold. Not only is the available hardware not being

6

used optimally, but the first step in processing the data when attempting to
detect events evidently involves the filtering of the data, discarding irrelevant
content. Depending on the context, this may even be the vast majority of the
data. Regardless, the overhead on the data transport towards the cloud can
be lowered by performing these kinds of operations in the edge. This is crucial
as network transport costs for a dedicated link to the cloud are not negligible.
In an environment with high data rates this is even more prevalent. With the
aspect of 5G on the horizon this problem will become amplified even more,
and it is expected that cloud computing infrastructures will begin to struggle
to deal with the further increased network requirements [4]. Issues regarding
the network overhead and latency are amongst the concerns.

Dealing with the lifetime of events is also a problem for a fully cloud cen-
tric model. As data moves further away from the source, determining when
exactly it originated and how long it is relevant becomes a more challenging
task. The network layer further complicates this task, as data from different
locations moves through the network at varying speeds. Furthermore even
the origin of data on the same link becomes more uncertain through network
jitter. Network jitter can be an especially strong factor to consider in the
IoT environment, as data is often not transmitted via wired connections and
over long distances. To avoid the influence of the network, the lifetime of
a data source is best determined as close to the source as possible (e.g. in
an ideal case this is the sensing node itself) and ensuring data locality and
locality of computation [?].

The aspect of when data originated is not the only interesting factor that
becomes harder to determine when moving further away from the data source.
Answering other questions such as what created this particular data element
and where was it created becomes a considerably daunting task when the
data has already moved away from its origin. A possible problem that could
occur is a faulty sensor providing the system with bad data. If the origin of
the data is known, the problem can be isolated and the sensor replaced. One
can imagine the difficulty of even detecting a faulty sensor when there is no
knowledge of what data was provided by each different sensor.

Another problem is the ad hoc implementation model many IoT appli-
cations maintain. The applications have a high coupling between the lowest
level of the infrastructure,i.e. the sensor data, and the higher level applica-
tion layer. This results in projects having a very limited lifespan. As the
IoT environment keeps changing rapidly, a system is required to be able to
adapt to these changes as well. With ad hoc implementations the necessary

7

changes are often too major, and the existing system has to be entirely dis-
carded when the environment changes. This statement also holds for the
usability of the generated data. By creating an ad hoc environment the data
is interpreted on a system level, without any considerable effort to annotate
it in such a way that it could be reused easily for other projects. In other
words, by skipping the step of data enrichment, it is also not possible to
make use of other existing systems in the application environment.

The above considerations lead to the problem that, in the long run, an
architecture model that is fully Cloud centric may become insupportable.
Hence there is a need to identify which parts of the processing and reasoning
that are present in the general IoT landscape can be pushed away from the
Cloud, closer to the data source. In addition to identifying these tasks,
it is also necessary to determine how this can be achieved architecturally.
Adaptations made to the processing chain need to be complementary to the
IoT environment.

Problem definition

In all, based on the above considerations, the problem can be defined, in
a general setting, how to offload part of the processing and reasoning from
Cloud platforms to lower levels of IoT, that is, to the edges of the Internet.

In a more technical language, the problem can be formulated as
that of specification, design and implementation of new layers in
the architectural stack from IoT layer to Cloud application layer,
where part of processing and reasoning over IoT data stream can
be reasonably distributed to avoid performance bottlenecks, i.e. to
achieve efficiency and scalability under real time requirements.

8

Chapter 3

Objectives and project scope

In the previous sections the application domain and context have been in-
troduced, as well as elaborating some of the problems. The attentive reader
will have noticed the huge difference in focus between the introduction sec-
tion and the following problem statement. The introduction motivates the
need to solve the issue of detecting potholes in a timely fashion, this can be
formulated more precisely as follows:

What design choices lead to an efficient system for on-
line reasoning over a car’s sensory data?

This question however, is a very niche scenario that holds little value in gen-
eral. The processing of a car’s sensory data to detect potholes can be regarded
as a more specific scenario of general event processing in the IoT. Hence, the
considerations made in the problem statement lead to the following:

How can the designed model be generalized to an effi-
cient architecture to perform real-time reasoning in an
IoT event processing context?

Which will, more than the specific case of processing a cars sensory data, be
the focus of this dissertation.

Guided by these research questions the project scope and objectives can
be accurately specified.

Efficiency In this case, by efficiency, the optimal usage of available hard-
ware is considered. It is not the aim to optimize processing algorithms nor

9

is it to lower the overall processor usage of each component in the system.
In this regard the previously mentioned edge computing paradigm is key to
further enable the usage of all system components.

Flexibility The designed system must offer a certain degree of flexibility,
in order to adapt to the possibility of a changing environment. Changes in
the environment often include a change in data source or type. Ideally, the
designed model has to be both capable to deal with such changes, as well as
being easily reusable in other scenarios.

Event-based system The focus of the project is that of event processing.
In addition, due to the flexibility objective, a common data model (i.e. the
semantic technologies) will be considered. Hence the system focuses on the
processing of the data in a semantic and event-based way. Furthermore the
assumption is made that it is clearly possible to define these events, so a
complex event processing approach can be used. The goal is not a project
based on machine learning techniques to find patterns that are unknown.

Real-time reasoning With reasoning in this scenario, the necessity to
generate some kind of new result from the data is imposed. The reason-
ing component is restricted to reasoning over streams in real-time. Batch
processing of data is not a part of the project scope.

Car sensory data The use-case and goal for this project is the processing
of a car’s sensory data in order to detect potholes in the road. This implies
some assumptions regarding both the data set and the environment of the
sensor node. The sensor node is not a resource constrained device, as a power
source is readily available in a car, however, this is not a limitation for the
study as any IoT event sensory data can be handled. The nature of the data
imposes a streaming context with heterogeneous data, as a car has a wide
variety of sensors.

Generality Although the solution in this thesis is exemplified for car sen-
sory data, the proposal is of generic purpose. Flexibility and generality partly
overlap, as attempting to create a solution that can be applied in different
scenarios already implies a certain degree of generality. In order to preserve

10

the generality of the architecture, the model must be applicable in the ma-
jority of IoT event stream processing cases. Hence considerations regarding
the expected properties of the various architecture components in the general
case, such as expected processing power, will be key for the assessment of
this generality.

Requirements beyond the scope of this thesis It should be noted that
there are also other requirements such as security, data privacy or energy-
aware computing, which are very important in the context of IoT data stream
processing but are beyond the scope of the thesis.

11

Chapter 4

State of the art

4.1 Semantic data streams

In this section, the concept of semantic data streams is introduced. In order
to do so, the semantic web technology basis is first elaborated. Then some
properties of the different IoT data streams are explained. Finally, the RDF-
Stream format is discussed as a means of representing semantic stream data,
with TripleWave as a possible means of generating these streams.

4.1.1 Basic concept

The first issue in the process of designing an independent, event driven IoT
architecture is the notion of meaning. At the edge of a system, raw data
is generated by sensor nodes. Due to its heterogeneous nature, problems
arise with relation to interoperability and interpretation. In order to be
able to define events, it is first necessary to have interpretable data. To
make data machine-interpretable, so called metadata is added. Metadata is
data that provides additional information about data, based on pre-existing
knowledge. This metadata is often described using markup languages, e.g.
XML and JSON. This is also referred to as semantic markup.

The addition of semantic markup allows the definition of attributes through
domain specific vocabulary tags. This improves the specification of what kind
of data is being passed, but still leaves a few issues. The vocabulary used
for the tags has to be agreed on, which results in many domain specific stan-
dards for the metadata. Furthermore, semantic markup only defines what

12

the data is about. It does not enable the description of how it is related
to other elements. The latter issue was already discovered and tackled in
the context of web technologies, and led to the establishment of the various
semantic web standards, set by the W3C.

New challenges were then introduced by the IoT age and adaptations
were made, hoping to reuse the advantages of the semantic web technologies
in data stream environments.

4.1.2 Semantic Web

The semantic web is an extension of the original web, with the twofold goal
of both linking as much data as possible and giving a well defined meaning
to the data, such that it is more suitable for both computers and people to
co-operate. This resulted in the creation of the semantic web stack.

Figure 4.1: The semantic web stack [5].

The basis of the stack shows that everything is built upon on the existence
of web-unique identifiers. The Resource Description Framework (RDF) uses
these identifiers to describe relationships between resources on the Internet.
This is done through statements in the form so called ”triples” that have a

13

subject-predicate-object structure. Originally RDF was suggested as a stan-
dard to be built upon the XML markup language, but later it was extended
towards other formats as well [6].

The basic RDF specification allows for the definition of relationships be-
tween objects, but it does not contain a distinct ontology for describing these
relationships. A basic ontology that’s focused on describing the structure of
data, i.e. the hierarchy, was added in the first extension called RDF-Schema
(RDF-S) [7]. A far more extensive ontology is included in the Web ontology
language (OWL). The OWL standard includes semantics for logical expres-
sions, e.g. equality, restrictions and cardinality [8]. Another key difference
between OWL and RDF-S, is that OWL also introduces the concept of in-
valid usage of the vocabulary. The extended vocabulary in OWL allows
contradictions to be detected. An ontology with contradictory definitions is
considered inconsistent [9].

The W3C acknowledged that no single one-fits-all rule language could
possibly satisfy the needs of different paradigms used in knowledge represen-
tation and business modeling[10]. Hence rather than developing a standard
for rule systems, the Rule Interchange Format (RIF) was designed to fa-
cilitate the interchange between different rule engines. The goal of RIF is
to enable rule sets to be communicated from one system to another, us-
ing a dialect they both support. This requires the rule engines to have a
semantics-preserving mapping to the RIF dialect[10].

Finally, SPARQL provides a means of querying RDF content. At the time
of writing, there’s no existing standard specifications for the trust, proof and
security layers in the semantic web stack. For security, the usage of a digital
signature is recommended.

4.1.3 IoT data streams

The IoT type (architecture, application domain requirements, etc.) greatly
influences the nature of the available data. This holds in particular in regard
to the data generation rate, its heterogeneity and the processing require-
ments. The challenges to tackle in IoT systems are numerous [11]. Some
of these challenges existed already within the scope of the web technologies,
but new challenges have emerged due to nature and characteristics of IoT
systems.

The semantic web technologies largely considered data in a static context.
However, the IoT environment often involves data streams. In order to fully

14

understand the difference in nature between static and stream data, the
definition of stream data can be considered as an unbound sequence of time-
varying data. Dissecting this definition reveals some of the important aspects.

Data variance The time-varying part of the definition actually reveals
multiple challenges. The first issue is the variance of the data. The assump-
tion of a static context no longer holds. In fact the data might vary at a very
high rate, which is indicated by the term velocity in the famous “5Vs” of big
data (velocity, variety, volume, value and veracity). The rapidly changing of
the data allows the data to be considered as a continuous flow, which was
not the case when the SPARQL standard was designed. Hence it does not
include any semantics for continuously querying data, nor is it optimized to
do so.

Time dimension Another issue is that the notion of time becomes very
important. Knowing when a certain data object originated greatly influences
reasoning. In many systems, data will have a limited lifespan where it is
useful or valid. For instance, for measurements of latency in a network, the
relevant value could be limited to the current measurement, while the values
of an entire month or year could be relevant for analyzing power grid usage.
Furthermore, due to sequential nature of the data, the detection of spatial
events is often desired, thus, the ordering of the data is of great importance.

Data generation rate Dealing with the velocity and spatial nature of the
data is a general issue in processing data streams, however IoT streams pose
additional requirements that are determined by their application domain.
For example, in environmental monitoring, devices are required to maximize
their battery lifetime. This results in a need for efficient processing and
low network overhead. The processing speed, however, is usually not as
important in these cases.

In a production environment, the power usage of the sensing devices and
processing is not a concern, as power is readily available and the usage is
marginal compared to the production line. The data rates in these kinds of
environments can be very high and there may be a need for instantaneous
processing. An error in the production line that is not detected within sec-
onds or even milliseconds may well have resulted in thousands of erroneous
products or worse.

15

Security, privacy and non-invasiveness The health-care domain im-
poses various requirements. The body sensor networks used to observe pa-
tients also must operate under low power conditions, while further imposing
a need for security (privacy) as well as a certain degree of near real time
processing. Furthermore, issues such as noisy data or loss of data must be
tackled, as crucial data may be lost. Dealing with security and data uncer-
tainty has proven to be a difficult task, and remains an open issue in the
semantic IoT.

4.1.4 RDF-Stream

The RDF Stream Processing (RSP) Community group was created to find
ways to define a common model for handling RDF Streams. Their research
resulted in the proposal of an extension to the RDF standard called RDF-
Stream, in particular in order to deal with the time related problems. At
the time of writing, it has not been accepted as an official W3C specification
and is marked as incomplete[12], even though it has been widely adapted.

In the RDF-Stream draft [12] a proposal is made to use time-annotations.
This can be done in two ways: using a description of data as a point in
time, or as existing within a specified interval. Three types of metadata are
recommended to use in this case:

• In case of a single point in time annotation, the use of either the pro-
duction time (time when the data element was produced, if possible)
or the receiving time (time the data element is made available to the
RSP) is recommended.

• In case of an interval, the annotations start time and end time can be
used to specify the validity of the data.

• A timestamp predicate should be used for a timestamp presence. The
use of prov:generatedAtTime or ssn:observationSamplingTime1 is sug-
gested.

It should be noted that in a lot of cases, this time specification does not
have to be an actual time value. Specifying the order of the elements in an

1This recommendation was made by the RSP at the time. In the newer version it is
now equivalent to sosa:phenomenonTime.

16

incremental way is sufficient to allow processing of the data. Furthermore,
the possibility of using the order of arrival at the RSP as an implicit times-
tamp is mentioned for RDF streams that do not have time annotations upon
generation[12].

An RDF-Stream should be identified with an internationalized resource
identifier (IRI). There are no further requirements set regarding this IRI.
There is no specific indicator that a IRI is an RDF stream.

As a final note, it is worth mentioning and RDF-Stream is nothing more
than a stream of RDF graphs that are required to have at least a time an-
notation. The timestamps are added using standard RDF triple definitions.
Hence RDF-Stream still is a subset of the original RDF standard and is fully
compliant with it.

4.1.5 TripleWave

Figure 4.2: The architecture of triple wave, for generating
RDF-Streams [13].

TripleWave is an open source tool created in collaboration by the Politcenico
di Milano and École polytechnique fédérale de Lauasannea. Its goal is to
provide a means of publicizing RDF streams on the web. It is provided as
a Javascript and can convert web-streams to RDF-streams. In order to do
so it uses the RDB to RDF Mapping Language (R2RML)[14]. It also pro-
vides support for replaying an RDF dataset, which can provide useful for

17

applications such as benchmarking, system evaluation, and simulation. Fur-
thermore, it is also possible to loop over these datasets in order to simulate
an infinite datastream.

It is important to notice that the TripleWave framework runs on top
of JSON formatted input and generates a JSON-LD RDF stream as output.
Due to this assumption, additional conversions may be needed to match input
data for the TripleWave processing, or output data for the stream processor.

4.1.6 Summative evaluation

The RDF model allows the description of how a resource is related to other
resources. This offers two key advantages. The first one being that well
known descriptions can be used to describe the relationships between re-
sources, which leads to an extensive, shared data model. The second one
being that by using unique identifiers for all resources on the web, the con-
tent of the data is greatly enhanced by linking. When creating a statement
that uses a referable identifier, the available information is greatly amplified,
similarly to a reference list for an academic paper.

However, in order to reuse this model for an IoT streaming context, some
of its characteristics may prove troublesome. The time dimension is one of
the problems that has been identified by the RSP group, but is not the only
property of IoT streams that proves troublesome. The RDF annotations
greatly expand the size of the data, which is amplified by the generation
rate of the IoT. Furthermore, identifying a stream element is problematic in
multiple ways, as the IoT is highly dynamic, so the descriptions may need to
be updated often. Additionally, the question can be raised if stream elements
should be referable at all, because it is not common for an IoT application
to make all of its data permanently available online.

4.2 Semantic stream processing

Stream processing systems have the goal of continuously evaluating incoming
data in order to find certain data of interest.This data of interest has to be
found real-time (generally within a few seconds) or near real time (within
a few minutes). This is in contrast to batch operations, where the data is
stored in a storage layer and then queried for processing at a later time. One
particular data pattern of interest is an event. The most primitive of events

18

are created by evaluating basic relational operators (equality, more or less
than, ...) over a single data attribute at a single point in time. Multiple of
these events can be combined to create composite or aggregate events.

The relationship between the description of these types of events and the
querying of a relational database is obvious. Imagining taking a snapshot of
a stream at a single point in time, one could save and perform a relational
database query upon the data to find these kinds of events. This approach
to reasoning with stream data is called data stream management systems
(DSMS) [15]. The shared characteristic of the systems designed using this
approach, is that they implement windows to determine which data elements
are relevant. These elements could be considered a part of the ”snapshot”.
Windows will either accept elements that have a time specification within a
certain interval, or count a specific amount of elements. The usage of these
windows encourages a single point in time annotation of the data.

The advantage of these type of implementations is that they can build on
the established knowledge regarding relational databases. The disadvantage
is that DSMS approach makes it hard to detect spatial events. These are
patterns in time, such as sequences, the repetition of a certain event or
element, or even the absence of such a pattern (anomaly detection). In
order to tackle these kinds of events, the complex event processing (CEP)
approach was created. These families of processors have distinct semantics for
defining complex events, given the idea of time annotated data and using the
principles of primitive and aggregate events. There are multiple approaches
to this processing paradigm:using composition operators, production rules,
timed finite state machines and logic languages [16]. The fire event is a
commonly used example, consisting of the detection of smoke followed by
the detection of a high temperature within a short time frame.

In the following sections a handful of the various engines that specifi-
cally implement these techniques for reasoning with semantic stream data
are provided. Starting with the DSMS based approaches, followed by the
CEP approaches. The basis for them is the SPARQL language used in the
semantic web.

19

4.2.1 DSMS approaches

4.2.1.1 C-SPARQL

Continuous-SPARQL (C-SPARQL) [17] is a language for continuous queries
over RDF data. It extends the SPARQL 1.1 standard, used for querying
RDF data in the semantic web. In order to achieve this, a register query
statement is added, that causes the registered query to be run at frequency
specified by a computed every clause. The register query also specifies the
format of the output - as a new RDF stream or as a query result, possibly
in the form of RDF graphs or tables of variable bindings. In case of an RDF
stream output, an additional construct statement must be added to specify
the generated triples. The timestamp of the generated RDF triples will match
that of the query execution time, regardless of what the timestamp of the
involved triples is. An RDF stream output can be reused for processing in
other queries.

In order to execute these stream operations, C-SPARQL assumes that
each RDF triple in the stream contains a timestamp that does not have to
be unique, but must be increasing. In case multiple timestamps have been
bound, the most recent timestamp of the bindings is taken. The absence of
a timestamp results in a type error. A time window is then used to query
the relevant data from the stream. C-SPARQL implements both a tumbling
window and a sliding window.

C-SPARQL does not implement specific operators for performing the de-
tection of temporal events, but does provide a function to query the times-
tamp of stream data elements. Hence it is still relatively simple to construct
queries for doing so by using this timestamp. In this way C-SPARQL sup-
ports the processing of complex events to a certain degree. A restriction in
this regard is the fact that all the relevant data for a temporal event has to
be contained within the same window of the query [18]. A bigger window
requires more memory, so the detection of temporal events that are spread
wide in time is troublesome.

The architecture of C-SPARQL uses a modular approach. In order to
handle the continuous queries, a query translator is used to integrate existing
technologies. A continuous engine (using both Esper and Jena) is used to
determine relevant triples from the stream. The outcome of this process
generates a snapshot of the data, that is processed by a regular SPARQL
engine.

20

4.2.1.2 SPARQLstream

Another approach based on the delegation of continuous queries to existing
engines is proposed in SPARKQLstream [19]. While similarities with C-
SPARQL are clear, it should be noted that SPARQLstream is in fact very
different in execution. C-SPARQL uses a delegated engine to execute the
window operators to create a snapshot of the relevant data, but the processor
still processes RDF data using a SPARQL engine. In the SPARQLstream
approach this is no longer the case. The complete processing of the data is
done using existing relational database stream engines.

In SPARQLstream the incoming RDF-streams are translated to relational
data using the R2RML language. In order to process querying of the data,
a morph-stream engine is used. The morph-stream engine transforms the
query in a two-step process. The first step of the process is to translate
the query into relational algebra expressions that have been extended with
window constructs. In the case of SPARQLstream, this window is exclusively
time based. This intermediate step brings two advantages:

• Logical optimizations can be applied (by applying join and union dis-
tribution, and pushing down projections and selections)

• More flexibility regarding the used relational stream engine, e.g. trans-
lations to SNEE and ESPER [20].

This algebraic form is then translated into the respective language of the
engine. This implies that the limitations of the target language have to be
taken into account as they may prevent a complete translation, e.g. in SNEE
statements for sequences and disjunction are not supported [21].

The final step in the process is to translate the resulting tuples into RDF
triples. When this inverse mapping happens, the resulting RDF-Stream is
marked as a virtual RDF-Stream. Its IRI is accordingly described in a virtual
stream element. This annotation is made since the stream is derived from
the data resource, unlike RDF-Streams that are created as a result of a query
upon RDF data in C-SPARQL.

While the SPARQLstream approach no longer relies on a SPARQL en-
gine, its query semantics still are based on an extension of the SPARQL1.1
standard.

21

4.2.1.3 CQELS

The Continuous Query Evaluation over Linked Streams (CQELS) language
attempted to answer possible performance issues that occur by using the
”black box” approach, which uses translations to existing processing engines
for dealing with stream processing [22]. In order to attempt to further im-
prove better query optimization, an engine was designed that implements the
necessary operations for dealing with streams. More precisely, the CEQLS
engine implements:

• window operators: Used for extracting triples from an RDF stream,
given a triple pattern and a time window.

• relational operators: Traditional relational database operators, e.g.
join and union.

• Stream operators: An operator needed to generate RDF streams from
the sets, that resulted from the relational operators.

Details on the semantics for these operators can be found in [22].
The resulting CQELS query language (CQELS-QL) thus extends the

SPARQL 1.1 language. A query pattern for applying window operations
on RDF streams is included in the StreamGraphPattern. The various key-

StreamGraphPattern ::== ’STREAM’[Window] VarOrIRIref {TriplesTemplate}
Window ::== Range | Triple | ’NOW’ | ’ALL’
Range ::== ’RANGE’ Duration(’SLIDE’ Duration)?
Triple ::== ’TRIPLES’ INTEGER

Duration ::== (INTEGER ’d’ | ’h’ | ’m’ | ’s’ | ’ms’ | ’ns’)

Listing 4.1: The StreamGraphPattern, in enquoted capitals key words that
are used in the query language [22].

words are used in the creation of different types of windows. For a time based
window, the range keyword must be used to specify its duration, which in
turn is specified by an integer value and a unit of time. Additionally, the slide
keyword can be used to specify how fast a sliding window moves, otherwise a
tumbling window is assumed. For a triple based window, the keyword triples
is used to specify the amount of triples that are kept within the window. The

22

keyword now specifies that only triples that have the current timestamp will
be kept. The keyword all causes all triples to be kept in the window.

4.2.2 CEP approaches

4.2.2.1 EP-SPARQL and ETALIS

EP-SPARQL (Event-Processing SPARQL) is a processing engine that uses
a CEP approach.In fact, it was designed with the issue in mind that the
other systems at the time all used a DSMS approach and hence struggled to
detected particular sequences in the data.

Like the previous implementations, EP-SPARQL is an extension of the
original SPARQL language. More specifically, it implements the logical oper-
ators SEQ, EQUALS, OPTIONALSEQ and EQUALSOPTIONAL[23]. The
syntax for defining temporal relations using these operators is the following:

• P1 SEQ P2 joins if P2 occurs after P1

• P1 EQUALS P2 join if P1 and P2 occur simultaneously.

The OPTIONALSEQ and EQUALSOPTIONAL operators are time-sensitive
variants of SPARQL’s OPTIONAL query syntax, which allows to make ad-
ditional queries that will not cause the overall query to fail if they cannot be
met.

EP-SPARQL does not implement a window based approach, but rather
assumes the interval based RDF-Stream model. In order to reason with these
intervals functions for obtaining the duration, start time and end time of the
data are implemented.

Another important aspect to note is that EP-SPARQL does not imple-
ment a specific approach to handle negations. In order to achieve negation,
i.e. the detection of the explicit absence of a certain triple pattern, the pat-
tern must first be queried in an optional construct with the result binding
to a specific variable, followed by a filter that states that the variable is not
bound. Hence the optional pattern has failed to find a match, and thus the
absence of a pattern has been detected.

The EP-SPARQL language was developed in order to enable the ETALIS
engine to be used in real time semantic web applications [24]. The ETALIS
engine is designed to be a pluggable environment for various prolog-rule based
systems. These prolog systems are then used to generate event streams, based

23

on prolog code that is generated by parsing the native ETALIS language for
events into binary rules and compiling the binary rules into specific prolog
code.

By extension this system can be used to process EP-SPARQL queries.
This simply includes more parsing steps, to transform the EP-SPARQL syn-
tax into the internal prolog format used in the ETALIS engine.

One of the advantages of this approach is that the background knowledge
included in the semantic annotations is also parsed to prolog code and hence
passed on to the prolog system. The prolog system may then be able to
use this to infer implicit information. Another advantage is created by the
pluggable nature of the environment. Certain prolog systems may be more
suitable depending on the nature of the queries. If it is known that a specific
type of query (e.g. aggregation process for environmental data) will be used
more often, an appropriate prolog system with better performance can be
selected for this.

4.2.2.2 CQELS-EP

An extension to the original CQELS engine has been made in [25]. While the
CQELS engine does implement a native, ”white box” approach to processing
semantic streams, it is incapable of temporal correlation of data. To this
end, the aforementioned StreamGraphPattern is modified, by replacing the
TriplesTemplate component with a triple sequence pattern. This consists of
multiple triple templates connected by temporal relations. Other adaptations

Listing 4.2: The new StreamGraphPattern in CQELS-EP. Various temporal
relations have been defined.

24

that are made are in regard to processing these complex events. CQELS
assumes a point-in-time data model, hence an event expires when it is no
longer part of the window. A correct window must be found, such that the
complex event is always detected. Furthermore CQELS has an incremental
implementation, which discards previous results even when they have not yet
expired. Such behavior is undesired, as previous results may be needed in
the processing. This leads to possible incorrect output or a need to reprocess
a query to re-obtain the previous result. To solve this, caching mechanisms
are implemented.

The implementation of the temporal logic is largely based off an earlier
adaptation [26, 25]. It appears to be the case that both implementations are
being made separately. At the time of writing, one of the two implementa-
tions [25] has not been made publicly available, while the other one [26] is
announced to be released on the CQELS github page, June 2018 [27]. This
adaptation promises support for CEP, persistent streams, RDFS/OWL rea-
soning and websockets, as well as supporting the syntax recommendations
made by the RSP group [12].

4.2.3 Summative evaluation

The various processors are designed to continuously query data from a stream
source, in order to find possible data of interest. More development will be
needed in order to achieve full fledged IoT semantic stream processing. The
processing engines are all stand alone models, which are suited for processing
on a single centralized device. Such a centralized, standalone approach does
not match with the need for clustering and cloud computing that exists for
dealing with the overhead generated by the Big Data associated with the
IoT. Although some have been extended towards this end [28], their code
base is not publicly available2 and there is still the problem regarding their
expressiveness.

Event processing in an IoT streaming context implies dealing with mul-
tivariate data and possibly highly complex patterns. Since the current ex-
pressiveness of these engines is mostly limited to simple relational database
calls that do not support temporal patterns, they will be insufficient for a
large amount of scenarios. The planned expansion for CQELS to support

2Although a distributed version of the ETALIS engine appears available, https://

github.com/sspider/etalis/tree/master/dEtalis, it is no longer being maintained.

25

https://github.com/sspider/etalis/tree/master/dEtalis
https://github.com/sspider/etalis/tree/master/dEtalis

temporal patterns such as sequences is an important step along the way for
semantic stream processing, especially considering a cloud implementation
for the original CQELS engine was made. The expressiveness of the added
CEP operators will greatly determine the usability of the systems, as its
scope is limited by the possibility to accurately specify the event of interest.

4.3 Reasoning

The detection of events involves a process of selecting data of interest from a
dataset or stream. Reasoning takes the next step. The goal is to produce new
results from original data. In this regard, a very important concept within
the semantic context is that of inference. Inference is the process of drawing
a conclusion from observations. Due to its importance in this context, it is
elaborated briefly in subsection 4.3.1.

The inference of new knowledge is just one of the possibilities for reasoning
over events. Another possibility involves the handling of events. When an
event occurs, certain actions may need to be taken. In this context two groups
of reasoning systems can be considered: production rules and ECA rules.
Production rules or business rules specify actions to be taken when a certain
event occurs in an on event do actions format. The name production rules
is related to the fact that a lot of these systems were created in a database
context. Hence the action to be taken is the production of a certain element
in the data base. ECA rules are similar to production rules, but include a
condition that has to be validated before the action is executed.

4.3.1 Inference

The semantic web expands the ”meaning” in the available data. The addition
of these semantics has the goal of enabling machines to process the data more
efficiently, but also more intelligently. One goal in particular is to expand the
general knowledge, by inferring implicit information from explicit data. The
inference process is often referred to as reasoning in the semantic context,
and the RDF and OWL standards help in doing so. However, because of the
extensiveness of OWL’s semantics, the inference of new information is often
a very computationally expensive process.

In some cases, the reasoning process can even become indecisive [18]. A
simple example taken from the W3C OWL reasoning examples [29] shows

26

how the inference process could work (see Listing 4.3).

Class(a:bus_driver complete intersectionOf(a:person

restriction(a:drives someValuesFrom (a:bus))))

Class(a:driver complete intersectionOf(a:person

restriction(a:drives someValuesFrom (a:vehicle))))

Class(a:bus partial a:vehicle)

Listing 4.3: An example of class inference possibilities in OWL

The OWL statements define a class bus driver to be someone who drives
a bus. Furthermore a driver is someone driving a vehicle and a bus is a
subclass of the vehicle class. Hence the engine will infer that a bus driver is
actually a subclass of the driver class.

In a similar way, the inference process can also be used to find inconsis-
tencies in the data. Such inconsistencies can be for example multiple class
definitions of the same object, or contradictory relations e.g. X is a child of
Y followed by a definition Y is a child of X.

While the concept of inference is in fact one of the important aspects
when discussing semantic technologies, the scope of this project is limited to
reactively handling events in a semantic context.

4.3.2 Production rules

Production rule systems are systems that use rules to solve a certain problem,
mimicking the reasoning process of a human expert. Hence they are also
known as production systems or expert systems. The basis of the system are
rules, which are composed in if-then statements. The if clause is called the
premise or condition, and the then part is called the consequent, conclusion
or action [30]. As can be derived from the various terms, rules can roughly
be used for two different purposes, one being the aforementioned inference
process.

The other is to aid in the decision making process of systems. A produc-
tion rule system can be used to perform various tasks such as classification,
monitoring and prediction [30]. Important in this regard is the size of the

27

rule set, which greatly influences the performance. Additionally, if more rules
apply to the same given fact, a conflict resolving strategy has to be applied.

4.3.2.1 Drools

JBoss Drools [31] is an open source business rule management system. It
provides an extensive framework for setting up rule based systems. It consists
of several major parts:

• Drools Workbench: A web user interface for managing, authoring and
testing rules.

• Drools Expert: The business rules engine.

• Drools Fusion: Adds complex event processing features to the system.

• jBPM: A modeling tool for managing work flows. It is meant to bridge
the gap between software developers and business analysts. By using
flow charts and domain specific representations, the process becomes
more easy to understand by business users. It also increases the systems
overall flexibility.

• Optaplanner: A constraint resolving engine for determining efficient
paths. It solves scheduling puzzles.

Within the project scope it is most interesting that drools combines both the
idea of business management and event processing. The choice to combine
these two fields was made because of their similarities in requirements and
goals. From a business rule point of view, rules are often defined based on
the occurrence of certain events, effectively using them to perform a kind of
event processing. Furthermore, both events and business rules need to adapt
to rapidly changing environments [32].

Other similarities can be found both in regard to their functional and
non-functional requirements. Business rules often need to perform pattern
matching tasks and are often tied to processing time constraints [32].

4.3.2.2 Jena

Jena [33] is an open source framework specifically created for building se-
mantic web applications. The Jena framework allows for reading, writing,

28

querying and storage of RDF data. Furthermore it has components for set-
ting up a SPARQL end-point to expose data on the net.

While the Jena framework is not designed as a production rule system,
it does include various rule engines for inferencing over semantic web data.
Because of its specific field, it has to be considered as an option when dis-
cussing the possibilities for the rule based, stream processing of semantic
data events. In this regard, a study was done to compare the performance
and possibilities of Jena and Drools in an event processing context [34]. One
of the important conclusions is that Jena is unsuited for performing an infer-
ence task over stream data, due to the way the model works. Furthermore,
although the inferencing process itself outperforms that of Drools when using
semantic data, it is compensated by the time needed to insert the data into
the model. Hence Drools is better suited for stream reasoning, unless it is
necessary to be able to query the data or memory constraints apply [34].

4.3.2.3 Easy-Rules

Where Drools provides an extensive framework for creating a business rule
management system, Easy-Rules [35] is designed to provide a simple frame-
work for rule based processing in Java. The lightweight API allows users to
define rules in various ways: using annotations, in an expressive way, or even
using a rule descriptor in YAML format. Due to its simplicity, Easy-Rules
allows for fast design of a rule system, but it is not concerned with issues
such as conflict resolving, planning or process design which are integrated in
Drools. It does not offer support for processing data in a streaming fashion
either.

4.3.3 Event-Condition-Action (ECA) rules

ECA rules, originally proposed for active databases [36], are often used as a
basis for reactively handling changes in event based systems. An ECA rule
contains a specification of the event, which is a certain object, pattern or
signal of interest. When such an event occurs, the engine will evaluate the
condition specified. When the condition evaluates to true, the action that is
specified in the action part of the rule is executed. In a CEP environment,
these rules can be used to handle an occurrence of an event of interest. Such
an event could be e.g. the detection of a hole in the road, for which the
position has to be added to the database.

29

Various extensions to this model have been proposed depending on appli-
cation context. One of the possible extensions is the realization that often
when for an event certain conditions are not met, other actions may need
to be taken depending on further conditions. In this regard two extensions
were suggested [37], both combined resulting in an extended ECAA pattern.

Listing 4.4: The ECAA rule pattern [37].

The first extension is the suggestion to consider an entire list of possible
conditions for a certain event and actions that are associated with it. This
way there are less rules necessary to handle each event, making conflicts less
likely. The second extension then is the realization that often, when condi-
tions are not met, there is an action that should be taken exactly because an
event occurred and its conditions were not met. A simple example for this
case could be a web request without the necessary credentials. The server
does not execute the request, because the condition of having the credentials
is not met. However, it is still necessary to notify a user why his request was
denied. Combining these two ideas resulted in the extended ECAA, event
condition action alternative pattern. The specified alternative actions are to
be executed in case the condition does not evaluate to true.

Some other adaptations to tackle possible issues include the ideas of ECA-
P, ECAP and ECAS patterns [38]. In the ECA-P (ECA - Post condition)
pattern, post conditions are added in order to avoid conflicting rules. The
ECAP (ECA Parameters) pattern adds parameters to the ECA concept.
These parameters are then used in the action process. By doing so the
amount of data passed to the calculation engine can be lowered in object
driven environments. Lastly, in ECAS (ECA sequence), the idea of using
the sequence of previously taken actions in order to detect anomalies is in-
troduced. The common factor among all these adaptations is the need for
events to be handled instantaneously, and the usage of events as triggers to
start the actions.

30

4.3.4 Summative evaluation

While the aspect of inference is important in the semantic web context, more
efforts are needed to find ways to achieve inference over streaming data in
an IoT context, due to the computational expensiveness of the process.

Production rule systems and streaming contexts however, are greatly
complementary, especially for a task such as classification of data. Push-
based semantics are desirable in a streaming context where the reaction time
of the system is crucial. In this regard, the integration of complex event
processing and streaming features into the Drools rule management system
is most promising. In many cases however, there is no need for such an
extensive rule system.

The ECA pattern and its various adaptations all bring a similar, reactive
processing style. Rather than having extensive frameworks, the majority of
these ECA based systems are created using simple scripts that use declarative
programming languages. Such a design choice can be justified to a certain
degree, because in the majority of these examples the reasoning layer is the
both the final step in the processing chain, and performs a simple classifica-
tion task. This results in small scripts for performing these tasks, where the
expressiveness of the used declarative programming languages allows them
to be adapted relatively easily if needed.

31

Chapter 5

System architecture

In this chapter the adopted architecture model is elaborated. In order to
justify design choices a closer look at the use-case is needed in order to fully
understand the systems functional and non-functional requirements. This
is discussed in section 5.1. Next, in section 5.2, a more in depth look at
the processing model allows the identification of complementary architecture
models for event processing. The combination of the requirements and the
processing model then lead to the designed architecture in section 5.3.As the
proposed model considers multiple processing layers, it is important that the
system is manageable in order to adapt to changes in the environment, or
update processing tasks. To this end an API is developed and introduced in
section 5.5.

5.1 Requirements

In order to derive the system requirements accurately and unbiased, it is
necessary to take a step back from the project objectives and look more
specifically at the use-case environment. The use-case of processing a car’s
CAN data specifies a clear goal of the processing: detecting potholes. Fur-
thermore it provides information about the context: the challenges of big
data and the IoT will need to be faced.

32

5.1.1 Functional requirements

The use-case scenario is that of multiple cars used to gather information
about the road conditions such as holes. In order to gather this information,
a cars CAN data is analyzed. The scenario imposes an environment in which
processing done inside of the car is necessary, as the amount of generated
data is high, but the network transport has to be done over a relatively big
distance. This makes its cost considerable, especially when high throughput
is required. The network transport is an even bigger concern for roads in
remote areas, where 4G coverage may not yet have reached. In these cases
the network may even become a bottleneck. Furthermore, the presence of
a processing unit in the cars may not only be assumed, but is in fact a
requirement in order to extract the CAN data and transmit it.

In reality, a car’s CAN data is not accessible directly. This is because,
while standards for CAN buses do exist, car manufacturers hide the unique
configuration used for the bus in order to secure its data. In the project, the
reverse engineering of the CAN data in order to reveals its configuration is
considered to have been performed already, i.e. its configuration is considered
to be known. The reason for this will be made clear in section 5.4.1.

The CAN data consists of many different types of data, and has to be
filtered in order to extract data that is relevant to the pothole detection
process. The filtered data then has to be processed in order to perform the
actual detection of potholes. Finally, the detected potholes must be classified
in order to allow them to be handled adequately.

The functional requirements generated by the use-case can hence be de-
termined to be the following:

• The system must process a heterogeneous data stream.

• The system has to be capable of processing a big number of streams
concurrently.

• The system must be capable of processing the incoming data in order
to detect potholes.

• The detected potholes must be classified to allow the them to be han-
dled correctly.

• The throughput the system has to handle is up to a few Mb/s for each
car.

33

• The car’s CAN data has to be filtered inside of the car, to comply with
network restrictions.

Reconsidering the projects objectives, one more functional requirement can
be added to this list. This is the one in regard to the modeling of the data
in order to improve the flexibility:

• The system must add a common data model to the stream.

This requirement further stresses the need for filtering done at an early level,
as the enrichment of the data is an extension and thus further increases the
overhead.

5.1.2 Non-functional requirements

The majority of the non-functional requirements are related to the objectives
of the project. In order to guarantee flexibility in the system, low coupling
of each module of the system is needed. Furthermore the system should be
easy to manage, in order to allow it to be reused in different contexts. This
also requires that the coupling with the data source is low.

The system has to perform a data enrichment task in order to improve
the processing efficiency at later levels. The semantic web technologies are
an established standard in this field, and recently have started to find their
way into the IoT [1]. Hence the system is required to be able to adapt this
model.

As the project is focused on reactive reasoning with data, all processing
is required to be done at least in Near-Real-Time. From a use-case point of
view, it is hard to determine exactly how fast the reaction to sensory data
that indicates a pothole has to be made. In this situation, a delay of up to
a few minutes could even be considered acceptable.

Lastly, because this is an academic project, only open source modules
should be considered for usage in it. In this way it is guaranteed that the
used architecture may be reconstructed at later time if needed. Summarizing
each of the non-functional requirements:

• The system must perform all of its task in at least Near-Real-Time.

• Only open source modules can be used.

• The proposed system has to be reusable in other contexts, without
requiring major re-engineering.

34

• The semantic web technologies have to be integrated.

• The modules of the system must have low coupling with regard to each
other and the data source.

• It has to be possible to manage the tasks of the system at a higher
level.

It should be noted that there are also other non-functional requirements
such as security, data persistence and energy consumption, which are very
important in the context of IoT data stream processing but are beyond the
scope of the thesis.

5.2 Event processing model

The goal in an event processing system is to discover a certain pattern of
interest in a dataset. Depending on the complexity of the pattern, the ap-
proaches to do so vary.

The simplest type of event detection can be considered the detection
whether or not data is present. The complexity of the pattern is minimal.
Any data element available is an element of interest.

Going up in complexity the next level are the atomic events. These
are events that are created using relational and/or logical operators on a
single attribute of the data, in a single point in time. While the amount of
operators does increase the complexity of an atomic event, the restriction on
one attribute and a single moment in time determine its atomic nature.

A higher level of complexity is created in two different ways, that can
possibly be combined.

One way is to complicate the description of the pattern in time. Depend-
ing of the complexity of such a time based pattern, the distinction can be
made towards a complex event processing approach or a machine learning
approach. A CEP approach requires the pattern to be definable. This is con-
trasted by the machine learning approaches, which are used in cases where
patterns are too complex to be accurately specified. An interesting aspect
in this regard is that the two approaches may be used to complementary. In
some cases, describing the exact pattern may be too hard, but a more broad
description can first be used to narrow the data down using the CEP ap-
proach. This reduces the computational time needed by the clustering unit,

35

while the clustering unit can improve the accuracy of the processing done by
the CEP layer [39].

The second way to increase complexity is to compose events that consist
of multiple coexisting events. These composite events are particularly inter-
esting from an architectural point of view, as the detection process can be
split into multiple steps. First, each unique event can be detected separately,
and then the coexistence can be detected. Furthermore by doing so, the
various events composing such a composite event can be abstracted. By ab-
stracting the events, the different processing layers become more decoupled,
both from each other and from the data source.

While a hierarchical processing model with multiple layers appears to
be a logical approach, there’s one important issue to be tackled for this.
As apparent from the overview of current approaches to event processing in
a semantic context in section 4.2, the majority of approaches uses a point
in time based model for the data. Therefore, implicitly the data’s lifetime
is limited to the used time window length. An event processor using such
semantics, situated at a higher level in such a processing hierarchy, can only
consider the time window it uses itself, and the timestamps included in the
events provided to it. However, it does not have knowledge of the lifetime of
each specific event it receives, and thus may conclude invalid results.

Figure 5.1: An example for the issue of determining a window when using
point in time data representations. There is no single appropriate window

for containing both A and B without altering one of their lifespans.

In Fig. 5.1 a simplified example to such an issue is provided. The top node
should produce an event, when both event A and B occur at the same time.

36

However, event A and B have a different lifetime. If the window is chosen
to be that of event A, a detection may be made even though the event B
contained inside of the window has already expired. However, if the window
size of event B is selected, some events may fail to be detected as some events
of A are discarded prematurely. Furthermore, in an ideal scenario the top
node should not be aware of the processing layers underneath it, so it does
not even possess the knowledge of these windows.

5.3 Architecture overview

The architecture model adopted considers multiple processing layers in order
to create an efficient and scalable environment to deal event processing in
a semantic IoT context. In this section the general architectural model is
elaborated. A more specific implementation of the model is described in sec-
tion 5.4. A graphical representation of the architecture is shown in Fig. 5.2.
As can be seen, the architecture is structured into five main layers, starting
from the sensing layer at bottom to application layer, at top.
Hereafter each layer of the architecture is briefly introduced in terms of their
characteristics, computation requirements and functions/tasks to be allo-
cated at each of them.

Data sensing In any IoT architecture the lowest level is that of the data
sensing (also referred to as Data generation). In the application case
study considered in this thesis, the data is sensed / generated by a car’s
CAN bus and the on board GPS device. The generation layer is key in
determining the system’s throughput characteristics given that there is
a data generation rate at this layer, which has to be accommodated in
upper layers in order to ensure events are not lost.

Data preprocessing The preprocessing layer is situated in the first com-
putationally enabled device closest to the data source. Both its tasks
and the location of the layer may vary depending on where this device
can be found, and how powerful it is. For instance, there could be a
device with computational computing power to perform simple event
filtering, detecting event boundaries, etc. before transmitting the data
to its closest upper level. In general the possible tasks can considered
to be the following:

37

Figure 5.2: Overview of the general architecture model.

1. Filtering: A basic filtering process of the data. There are two
possible tasks to perform in this process. One task is the filtering
for data of interest, selecting the appropriate data attributes for
the given context in case of multivariate data streams. The other
task can be dealing with noise and erroneous data in uncertain
environments.

2. Event detection: Any event stream processing assumes that
some function can be implemented to detect the boundaries of
an atomic event, that is, determining when the event start and
when it finishes within the stream. It should be noted that this
is possible for most event-based streams, which are built by ap-
pending events at the end of the stream as they are generated by

38

the system.

3. Data enrichment: This process involves the labeling of the raw
data and attempting to add as much information as possible to it.
This improves the processing of the data later on. An important
task in this regard is adding the generation time to the data, for
ordering purposes.

4. Data analysis: If the system is powerful enough, options of even
performing more advanced computations such as CEP or machine
learning algorithms become available.

Edge processing The edge processing layer can be situated at the first node
where data is obtained from multiple sensory devices. If a preprocessing
layer is not available, its task are performed here. This will often be
the case in resource constrained environments. In the vast majority of
cases where preprocessing is possible, the device will not be powerful
enough to perform all of the aforementioned tasks, or it is not desirable
to stress the device as such. Hence, the preprocessing will often be
limited to filtering and simple event detection. Thus, the tasks of data
enrichment is often a core task of the edge nodes.

The main functions of the edge computing layer are aggregating data
and preparing it for further processing. Data enrichment is an impor-
tant concept in this regard. Another good way to prepare the data is
to intelligently group and segment streams. This way a high grade of
parallelization can be obtained. For example, consider an edge node
that receives data from multiple cars in the surroundings. The stream
data can be grouped to create a stream of information for each road,
which can then be computed in parallel. But, because this is an ag-
gregated stream, it would require higher computing performance. Yet
the job can be parallelized further by segmenting the stream into mul-
tiple time frames. Each segment can then be processed in parallel as
well. Such a high grade of parallelization is possible in an event pro-
cessing context, as events are independent of each other and can thus
be identified, extracted from the stream and processed.

Reasoning and intelligent data analysis This is where core system tasks
are performed. The architecture of this layer may vary depending on
the tasks that are needed to be performed but will in any case offer

39

a variety of reasoning and intelligent data processing (e.g. machine
learning) functionalities. Typically these will be cloud or cluster com-
puting environments, possibly linked to reasoning or machine learning
libraries.

Applications On top of this architecture various applications can be de-
veloped.

5.3.1 The Frontier between IoT and Edge Processing
layers: thin vs. fat IoT layer

In IoT systems, the layers of data sensing and data processing are usually not
split on an architecture level. In general, there are two common cases to be
found. Either an IoT device is present that is simply capable of sensing and
transmitting data, or what can be referred to as a smart device is present,
that is capable of performing some computations. Hence, a distinction can
be made between computations performed inside the IoT Layer, grouping
IoT sensing and processing, and at the consecutive edge processing layer. A
decision needs to be made on the exact tasks to be performed in each of the
layers. A major factor in this decision making is the computing capacity
available at each level. If the IoT layer only has data sensing capacities, no
more processing tasks can be performed there. However, in the case of a
smart device, more tasks such as filtering, simple statistical analysis, error
detection, etc. can be performed here.

The main contrast between the two layers is to be found in the expected
computational power of the devices. While the presence and processing ca-
pacity of smart devices has been increasing, it is bound by limitations such as
available space and energy consumption. By contrast, in the edge a certain
computing capacity can be assumed (e.g. that of one or several Raspberry
Pi) and the layer can handle processing tasks such as semantic processing
and data aggregation. These are by nature the tasks of the edge computing
layer. Semantic annotation increases the size of the data, and is hence not
desirable at lower levels where data rates are more concerning. Aggregation
is the natural task, as the edge was described as the first layer obtaining data
from multiple sensory systems. Yet more preprocessing tasks can be added,
depending on how ”fat” the IoT layer is.

Deciding on a ”thin vs. fat” IoT layer should take into account some other
factors than just the available computational power. A thin layer minimizes

40

the used power resources at IoT level. It also simplifies the model and does
not set any hardware requirements. However, moving to a more fat IoT
layer allows more data to be filtered through analysis, lowering the necessary
network and computational specs at subsequent layers. Furthermore, certain
tasks may require a low response time, which is easier to obtain if they are
performed closely to the sensing layer, as network delays are eliminated.
These advantages come at the price of needing more computational power at
the IoT level, implying a higher power consumption. In the filtering process
the decision making becomes more complicated, because the accuracy of the
filtering has to be considered. A rough analysis implies the amount of data
passing the filter is either too much, requiring more network bandwidth, or
too little, losing some relevant data. A more accurate analysis, however,
again requires more processing power. This results in a three way trade-off
between system specs at later levels, computational overhead in the IoT layer
and processing accuracy of the overall system. A balance has to be found
between them depending on the specific system context.

5.4 Implementation

In this section we discuss the implementation of the architecture (see Fig. 5.2)
presented in section 5.3. Additionally, the created API for managing the
system is described.

5.4.1 Data sensing and Date rate

The data on a CAN bus is not publicly available as such. While the CAN
standard has been defined, companies are free to select the IDs they use, the
signedness of the signals, etc... As these are specific for each car, a generic
reverse engineering approach has been attempted [40]. Unfortunately, the de-
scribed hardware solution is currently still unavailable. Thus, obtaining real
measurements of a car’s sensory data while driving the road is not possible.
Simultaneously, an ongoing master’s project at the University of Antwerp is
studying the simulation of CAN data. The data generated from the simula-
tion project is used as the data source in this project.

In a real scenario, data is transmitted at various rates on the CAN bus,
up to 1 Mbit/s [40]. If all data would simply be transmitted to the edge
without filtering, this peak rate can be considered the necessary bandwidth

41

to avoid possible network congestion. This is the necessary upload speed, that
must be achieved real-time and over long distance. The primary candidates
for transmitting at high data rates consistently, while covering a large area,
would be the cellular network technologies. However, the upload speeds
available in 3G network environments would prove insufficient. A study
comparing Wi-Fi to 3G performed measurements driving a car at up to 30
MPH, and found an average data rate of 130 kbit/s for 3G [41]. Its successor
4G is capable of providing the necessary upload speeds [42] to transmit the
full CAN data. The lack of 4G coverage in certain areas still remains a
problem.

The data rate of the simulation can be determined more accurately. The
dataset consists of sensory data generated at a constant rate of 100Hz. For
each sensor, the transmitted data consists of a frame containing its ID, the
length and 8 bytes of data, creating a frame of 10 bytes total. The ID is
used to identify the content of the message. The length specifies how many
bytes of the data are actually used. All unused data bytes are set to zero. A
single message may contain content from multiple sensors, e.g. the rotation
speed of each wheel is grouped together in a single message. Considering
the throughput to be the required upload speed to upload all data, it can be
found as in Eq. 5.1.

T = 100Hz ∗ 10byte ∗ n (5.1)

where T represents the total throughput and n the amount of sensory sys-
tems. In case only a single sensory system is considered, this creates a
throughput of approximately 1KB/s. Even if multiple sensory systems are
considered, the data rate of 1 Mb/s seems to be far off. The differences

Figure 5.3: Structure of the standard CAN frame [43].

between the real and simulation data rate can be attributed to two factors:

• The constant generation rate of 100Hz is used to match the behavior
of the VBox used in the reverse engineering approach [40]. However, in
an actual CAN bus these generation rates are unique for each sensor.

42

• The protocol overhead in the simulation is considerably lower. As de-
picted in Fig. 5.3, a CAN frame has more mandatory fields than just
the ID and the length indicator (DLC, data length code). A total of 51
bit of mandatory header content is added for every 0-8 bytes of data,
whereas in the calculation for the simulated data an assumption of 2
bytes is made for ID and length field.

5.4.2 Data preprocessing

The data preprocessing is to be done inside the car. In the project, the
tasks performed by the preprocessing layer are limited to the filtering of the
multivariate data for its relevant attributes and anomaly detection. There
are two reasons for limiting the tasks at this point.

The first being that, while the actual reverse engineering process is con-
sidered to be transparent, it should still be taken into account that the full
computational power of the raspberry pi used in the car is unavailable. Sec-
ondly, a raspberry pi is an unusually powerful device to have this close to
the sensing layer. In most cases, this will either be a smart device or a less
powerful micro-controller. Leveraging the full power of a raspberry pi would
create an unrealistic processing model for the vast amount of IoT applica-
tions, losing the generality of the architecture.

Anomaly detection

Discovering potholes in the data can be considered a specific case of anomaly
detection. In the general case, anomalies are patterns in data that do not
exhibit the expected behavior. The problem of anomaly detection has been
studied extensively, because anomalies contain data of interest in a broad
range of applications. Consequently, a broad variety of approaches exist [44].
Some of these can be adapted for processing streaming data.

Statistical approaches The oldest approaches to anomaly detection are
the statistics based approaches. Assuming the dataset is generated by a sta-
tistical model, the chance that a particular data element is obtained from it
is known. Values that have a significantly low chance to occur are considered
outliers, which in turn can be considered anomalies. In the case of a Gaussian
model, a simple method is to use a box-plot, which equates to considering
any values that are not within 3σ from the mean to be anomalous. In a

43

data streaming context, these kinds of methods offer a low computational
complexity, but in many cases the data will not be generated following some
statistic distribution.

Similar to the statistical approach, are the regressive approaches. In these
approaches, a regression model is fitted to the data. The difference between
the actual data and the regression model, often called residual here, can then
be used to determine how anomalous the behavior is. Once again the main
issue is that data is often not generated following a clear model [44].

Nearest neighbor-based techniques build upon the idea that normal data
instances have close neighbors, while anomalies occur far away. These al-
gorithms use the distance to its k nearest neighbor, or compute the density
of the data around an instance. The local outlier factor technique [45] is
one of the major contributions in this field. It compares the local density of
an instance to that of his neighbors in order to detect anomalies. Nearest
neighbor techniques are computationally more expensive than the previous
methods, but can be applied more often in the general case.

Clustering techniques Clustering techniques can be considered similar
to density based techniques, in the regard that they often require a kind of
distance computation in order to do the clustering. The key difference is
that each instance is compared to the cluster it belongs to, rather than the
local neighborhood. In the case of clustering based techniques, an anomaly is
either not part of a cluster, part of a sparse cluster or should lie close to their
respective cluster centroid. One of the main concerns for clustering based
anomaly detection is the high computational complexity [44].

Hierarchical Temporal Memory (HTM) algorithm In recent work,
the Hierarchical Temporal Memory (HTM) algorithm has been adapted in
order to do online, unsupervised anomaly detection [46]. HTM is a machine
intelligence framework based on neuroscience. It models spatial and temporal
patterns in time sequences. The framework itself does not produce anomaly
values, but was adapted to do so by using some of its internal data. First, a
raw anomaly score is made using the prediction vector π(xt) and the actual
value a(xt). Both are binary vectors, which is the data representation used
internally in the HTM framework. The raw anomaly value is computed by
comparing the actual value with is prediction. This value is then used to
the compute the anomaly likelihood. In order to determine the anomaly

44

likelihood, a rolling window is used to calculate a normal distribution using
the past raw anomaly values. The mean ut and standard deviation σt, along
with a moving average computed over a smaller range ũt are then used in a
Gaussian tail function Q. The anomaly likelihood Lt thus can be determined
as in Eq. 5.2.

Lt = 1−Q(
ũt − ut
σt

) (5.2)

An anomaly is detected by applying a threshold to this value. Interesting
about this method is that it simply offers a means of comparing an anomaly
score given the recent history of anomaly scores. Hence, this part of the
detection method could be extended to other methods using anomaly scores
as well. It should be noted however that this algorithm is more complex and
require considerable work to tune it for achieving desirable accuracy. Like-
wise, it also requires more computing resources than, for instance, statistical
based methods.

Data filtering

The filtering of the data is a simple process of reading only the relevant
sensory data from the data file. In the use case of detecting potholes, the
data of interest is the rotational speed of the individual wheels. Each wheel
will be considered separate from the others. A smaller sample from the
dataset is given in figure 5.4.

Approach using differences There’s a clear difference in size between the
spikes of the detected holes and the spikes in the data that occur when the
speed of the car increases. A very simple idea is thus to try and measure the
difference between consecutive points, and apply a threshold to the distance
between them to determine if the cause of it was a hole in the road or not.
Essentially, the pattern that occurs when the car drives through a hole is
simplified to its peak to peak value this way. The result of the algorithm is
a simple classification - a hole is either detected or not.

Simple statistical approach Another approach implemented is based on
the concept of outliers in statistics. Although there is no clear presence of
a distribution, this approach uses the observation that, when there is no
pothole, the data is either stable or exhibits a step-like function (which is a

45

Figure 5.4: A sample of the dataset

result of the quantization levels of the sensor). When there is a pothole, the
values spike up and down for a short period as depicted in figure 5.5. The
lower values and higher values cancel each other when calculating the mean.
In the case of a spike, it can be expected to be more standard deviations
removed from the mean than a step.

• Center a window with N points around the point to calculate the
anomaly score for.

• Calculate the mean and standard deviation of the window.

• Calculate the amount of standard deviations the current value deviates
from the mean.

• Using the z-score, obtain the confidence interval associated with the
z-score. The anomaly score is the inverse of the confidence.

This leaves two parameters to decide: the size of the used window, and
the threshold for determining a value to be anomalous. These will later be
investigated when evaluating the algorithm in section 6.3.3. An advantage

46

of the used method is that the resulting anomaly value lies in a normalized
range by default.

Figure 5.5: Occurrence of a pothole at wheel A. The rotation speed of the
wheels fluctuates during a period of 0.15s.

Data communication

To communicate the data to the edge, the publish-subscribe based MQTT
(Message Queuing Telemetry Transport) is used. It is an established stan-
dard [47] for topic based communication in IoT environments. It is lightweight,
requiring little device resources. Furthermore, it has a low network over-
head, which is highly desired in this use-case. The MQTT standard also
provides options for delivery assurance (at most once, exactly once and at
least once mode) and data availability for bad network environments [48].
Lastly, implementations exist for various programming languages, increasing
the portability of the system. The topic based model itself simplifies the
aggregation of the data, and can also later be reused in the API to manage
all nodes that are located at the same level in the layered model.

47

5.4.3 Edge processing

Data enrichment

The first task of the edge processing node is data enrichment. The data
enrichment process involves transforming the data stream into a format for
semantic stream processing, as recommended by the RSP group [12]. How-
ever, a choice still has to be made regarding the used data descriptions.
In this regard, the semantic sensor network (SSN) ontology [49] originated
as a collaboration between the W3C and the OGC (Open Geospatial Con-
sortium). Its core component is the SOSA ontology for describing sensor
features, divided into four major sections: observation, sample, sensor and
actuator(hence the name SOSA). The SSN further compliments this with
vocabulary to elaborate the sensing systems details. Due to the collabo-
ration, the ontology is largely built upon the standards that were already
used by the OGC, namely SensorML [50] and Observations and Measure-
ments(O&M) [51]. As the proposition is currently pending to become an
official OGC standard [49] and is recommended by the W3C, it is highly
likely to be adopted widely in the IoT sensing layer for semantic applica-
tions. Hence it will be the ontology of choice for this project as well.

The SSN and its core SOSA ontology mainly focus on the interaction
between devices and systems. However, the ontology does not include a
data model for describing measurements themselves in terms of their unit
and value. The SOSA ontology includes two different ways of describing
measurement results: the simple hasSimpleResult predicate, which expects
a literal value, and the hasResult predicate, needing a resource of the class
Result. In order to clearly describe a measurement result in terms of value
and unit, it is necessary to use other ontologies.

Using the simple result, the suggested approach is to use the set of custom
data types [52]. It leverages the idea of the unified code for units of measure
(UCUM [53]), which provides a standard for writing scientific measurement
values and its unit similar to the style used when calculating equations on
paper. However, this implies that the data is outputted with the unit and
its measurement value grouped together in a single string, which seems a bit
unusual to do in object oriented programming.

Using hasResult, the unit and value can be split as individual properties of
the result instance using existing ontologies. The ontology of units of measure
and related concepts [54] and quantities, units, dimensions and data types

48

(QUDT) ontologies [55] are both possible options for doing so. The latter
focuses solely on units and the conversions between them, and has a more
extensive vocabulary in this regard.

In Fig. 5.1 a sample of the generated data for a single wheel is given,
serialized in the Turtle [56] format. One of the main advantages of this
serialization format in python’s rdflib is the automatic generation of names-
pace prefixes. The usage of relative IRI’s using a prefix is both beneficial
for the readability of the document, as well as its size when a namespace is
used multiple times. The various prefixes provide an overview of the used
vocabularies:

• qudt : Describing the unit and value of a measurement.

• sosa : Linking sensor, observation, feature of interest and its observed
property to each other.

• prov : An established ontology used to describe provenance of data. In
this case, only the generatedAtTime predicate is used to identify time
in stream data, as recommended by the RSP group.

• schema.org : An initiative founded by Google, Microsoft, Yahoo and
Yandex that aims to create shared vocabularies for structured data. In
this case, the PropertyValue pair is used to describe the anomaly score.

• ssn : To link feature of interest and observed property.

• rdf : The core RDF terms, for defining classes, types and properties.
Here also used to define the data generated as a Bag container. This
way all measurements are at least linked to the generation time of the
data graph.

• rdfs : Used for annotating the data with human readable information.

• xsd : The namespace for XML schema, used to define the data type
of literals. Note the definition of the type of the anomaly value and
the numeric value of the result are done implicitly. A Turtle parser will
interpret the former as an integer and the latter as a double, based on
the syntax.

49

In this example, the base directive causes all non absolute references
to be expanded as relatives using the base URL. All identifiers should be
unique in order to avoid IRI collision. The domain of example.org is reserved
for experimental purposes, but should not be used in real scenarios. In a
real life scenario, a public IP-address can be used to avoid IRI collision, or
the usage of universally unique identifiers (UUID) [57] can be considered.
For readability, the example domain has been used in this sample, using a
limited range of integers for the preprocessing and edge processing identifiers.
Both processing layers include the option of generating a unique identifier if
necessary.

Aggregation and communication

The aggregation of the data in the edge is a given due to its function as a
broker. As of this point, further data transmission using the MQTT proto-
col does not make much sense. The generated output is now a continuous
stream. When dealing with continuous streams, it makes sense to use a more
connection oriented protocol for the transmission of the data. Hence, the
data between the edge layer is transmitted using TCP sockets.

5.4.4 Data Analysis and Application

The goal of this study is to make a proof of concept for the desired architec-
ture in order to assess it’s feasibility. Unlike the previous layers, the tasks
needed to perform by the analysis and application layer may vary largely
depending on the application context. Hence the tasks performed here are
minimized to showing the idea of pushing the data through multiple layers of
processing, to finally arrive in the desired form at the client. Thus, the anal-
ysis and application layer are merged in this case. It processes the incoming
enriched data from the edge nodes, and generates human readable notifi-
cation messages regarding the detected holes. The notifications are made
available on a TCP socket as well.

50

@prefix ns1: <http://schema.org/> .

@prefix ns2: <http://www.w3.org/ns/sosa/> .

@prefix ns3: <http://qudt.org/schema/qudt#> .

@prefix ns4: <http://www.w3.org/ns/prov#> .

@prefix ns5: <http://www.w3.org/ns/ssn/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@base <http://example.org/data/>.

<edgeprocessor/45277/data/4> a rdf:Bag ;

rdf:li <car/15990/measurement/4/value/0> ;

ns4:generatedAtTime "2018-05-28T14:40:30.214794"^^xsd:datetime .

<car/15990/measurement/4/value/0> a ns2:Observation ;

rdf:Property [a ns1:PropertyValue ;

ns1:name "AnomalyValue" ;

ns1:value 8.7e-01] ;

ns4:generatedAtTime "2018-05-28T14:41:18.008286"^^xsd:datetime ;

ns2:hasFeatureOfInterest <car/15990/wheel/0> ;

ns2:hasResult [ns3:Unit <http://qudt.org/vocab/unit#RevolutionPerMinute> ;

ns3:numericValue 2.17e+02] ;

ns2:madeBySensor <car/15990/wheel/0/rpmsensor> ;

ns2:observedProperty <car/15990/wheel/0/speed> .

<car/15990/wheel/0> a ns2:FeatureOfInterest ;

rdfs:label "wheel 0 of car 15990" ;

ns5:hasProperty <car/15990/wheel/0/speed> .

<car/15990/wheel/0/rpmsensor> a ns2:Sensor ;

rdfs:label "a sensor observing the RPM of a cars wheel" .

<car/15990/wheel/0/speed> a ns2:ObservableProperty ;

rdfs:label "the rotation speed of wheel 0 of car 15990" .

Listing 5.1: A sample of the produced enriched data, serialized in Turtle
format.

51

5.5 The API

In order to adapt to changes in data of interest, its source and the knowledge
available about data, an API is needed to manage the system. The used
MQTT communication can be reused to manage an entire group of devices
based on their location in the layered architecture model. However, it should
not be necessary for a client to have insights into the structure of the sys-
tem in order to manage it. Hence a REST, JSON based API is created to
communicate with the various layers of the architectural model.

An advantage of having a single API server available that translates the
REST interface calls to MQTT messages for the processing layers, is that it
provides a point of consistency inside the system. When a new processing
node is started, it requests and loads these settings from the API server.

Defining the data

Internally, the assumption is made that data is inputted into the system
in a csv format. This is both a strong and weak assumption, as this is a
clear requirement for the data source. Without making a single assumption
however, little processing can be performed. Furthermore, the csv format is
highly common, thus the assumption is considered reasonable.

Table 5.1: A small extract taken from the dataset, from left to right:
message identifier, field length, 8 columns of data values, the timestamp

indicator, the identifier for the next message, it’s length and 3 more
columns of data.

0 8 38 38 38 38 38 0 0 0 0 49.99 246 8 38 38 38
0 8 38 38 38 38 38 0 0 0 0 50.00 246 8 38 38 38
0 8 38 38 38 41 38 0 0 0 0 50.01 246 8 38 38 41
0 8 38 38 38 41 38 0 0 0 0 50.02 246 8 38 38 41
0 8 38 38 38 41 38 0 0 0 0 50.03 246 8 38 38 38
0 8 38 38 38 36 38 0 0 0 0 50.04 246 8 38 38 36

The column is the primary indicator of the type of the data and thus its
needed associations. The given sample in Table 5.1 includes 16 out of the 67
columns of the csv dataset. Notice the default length for the CAN messages
is 8 bytes, but often not all values are used.

Settings that can be made affect how the processors process these columns.
Necessary features regarding the data include marking a column for anomaly

52

processing and deciding if its anomaly score should be outputted, linking the
column to possible timestamps in another column, updating the annotations
associated with a column, etc.

From a user point of view, the majority of these are straightforward and
require no expertise. The exception is found in the annotations that need to
be added to the data that are application specific. This is a byproduct of
the underlying data model. An RDF statement requires a predicate, object
and subject, and each of them needs to be identified. An API client may
provide abstractions for more well known predicates and subjects, but the
necessary application specific context cannot be predicted, so these ontologies
and objects will need to be provided to the system manually. In this system,
profiles are used, which automatically set a number of necessary associations
when elected. By using these, a balance can be found between automatic and
manual annotation of the data. As an example, the extract in Listing 5.1
can be regenerated setting the profile ’wheel speed’ on a given column, which
automatically sets the annotations.

Some more problems regarding the identifiers are tackled as well. In a
streaming context, some identifiers will need to be incremented, while others
do not need to be. For example each unique measurement made needs its own
unique identifier, but the sensor that made them is consistently the same,
so it does not. To tackle this problem, the identifiers inputted by users may
contain regex-like syntax to indicate the need for dynamic identifiers.

5.6 Implementation Language

The project was entirely developed using python. The main reason for this
choice is the need for rapid development, as the project had to be fully
completed within a short time frame.

53

Chapter 6

Experimental study

In this chapter, the goal is to assess the performance of the architecture
model proposed in chapter 5. This will be done by performing measure-
ments on the described implementation, and extrapolating these towards a
more general scenario. The analysis layer can reasonably be situated in a
Cloud or clustering environment. Because of this, there is no need for major
concerns regarding the needed resources at this level, as these can be in-
creased easily on demand. Furthermore, in this implementation the analysis
layer is a simple application. Hence, the focus will mostly be on the edge
and preprocessing layers.

6.1 The experimental design

Computational overhead

At the preprocessing level, both the computational overhead of the al-
gorithm as its accuracy have to be observed. The computational overhead
is observed using the processing time, which shall depend on the chosen al-
gorithm and the associated window size. In the experimentation context,
the window size shall always refer to the amount of points included in it.
The accuracy of the algorithm is determined by analyzing its false negative
and positive rate. It is of the utmost importance that an algorithm can be
found that yields both acceptable results and a reasonable computational
complexity, as in many IoT contexts the computational resources available
at this level will be minimal. An algorithm with too high complexity creates

54

an unfeasible solution, but an overly inaccurate algorithm is unacceptable as
valuable data could be lost.

Data generation rate

At the edge computing level, the influence of the data enrichment process
has to be measured. The main concern here consists of the generated data
rates, as well as the computation time needed to perform the data enrich-
ment process. The data rate is a key issue in any stream-based computing.
Indeed, as data arrives in a continuous mode, the system’s throughput is
conditioned by data rate in input. The larger the data rate, more stressful
the computing process will be. In other words, studying the variability of the
data rate in input should shed light on the computing requirement of the sys-
tem able to accommodate the data generation rate. Accordingly, the system
should be able to use a parallel mode of processing to accommodate higher
data generation streams, which for instance in our context, would result if
more cars are considered as contributors to the data stream generation.

Scalability

Additionally, the scalability of the system will be addressed. The main goal
is to assess if an edge node can serve a reasonable amount of preprocessors in
the enrichment process. While the edge layer does not have similar resource
constraints as the preprocessing layer, it does not boast the on demand re-
sources that exist in a Cloud environment. An occasional need to deploy
additional edge nodes in a growing region may be acceptable, but the edge
layer should not become a data center.

The methodology

The methodology of the experimental study is to first evaluate the above
mentioned performance indicators separately at each layer and for its mod-
ules and then provide performance results for the system as a whole, where
modules are chained from IoT layer to application layer. In this case, we
would be interested to see the response time from reception of events in
data stream to a final alert to users about events of interest. It should be
noted that the response time will serve as a measure of QoS of the system
and would therefore be tuned (by adding more computing resources through
horizontal or vertical scaling) to match a desired, a priory QoS level.

55

6.2 Testing environment

The ideal testing environment requires a full deployment of the envisioned
layered architecture model. This would require multiple microprocessors,
edge devices, etc. Due to the time limitations for this study, all tests will
be performed running the various components of the architecture model on
a single device, as separate processes. For completeness, the most important
processing specifications of the testing device are given:1

• Processor: Intel® Core™ i5-4210H, clock speed 2.90GHz up to 3.50GHz,
dual core, 3MB cache, maximum of 4 threads active.

• Memory: 8GB DDR3 RAM at 1600MHz.

• Storage: Seagate ST1000LM014 SSHD (hybrid). 5400rpm, 8GB SSD
cache.

Obviously, using a single computer simplifies the computing environment
and various assumptions on the model. This also implies that any commu-
nication between the different layers will be performed using the internal
network of the computer. Delays generated by network traffic can not be
measured. Nevertheless, separately the performance of every layer in our
model can be studied as well as the full system performance. The aim is
therefore to show the feasibility of the stream processing.

6.3 Performance and accuracy of the prepro-

cessing

6.3.1 Considerations regarding the dataset

As this section will assess the performance of the implemented algorithms, it
is necessary to consider the dataset used in the process. More specifically, it
is important to realize the effects of using simulation data that is both real-
istic, but still incomplete as it is an ongoing research process. The following
considerations were realized at a later stage, but heavily impact the results
of the system.

1Due to the age of the system and it having a number of specific tweaks, a web page
with the complete overview cannot be provided.

56

Quantization The output of the sensor is a byte, a digital value transmit-
ted on the CAN bus. This implies that an analog to digital conversion has
already happened, and the amount of quantization values is restricted to a
range of 255. Due to this, the generated output of the sensor can be con-
sidered to be a severely rounded version of the actual analog value, which is
unavailable. The result of this is a severe distinction between the detectable
holes. A small hole’s influence on the analog value simply gets filtered by
quantization, making it invisible in the digital data. Hence, only bigger holes
actually make their way through the quantization process. The quantization,
combined with the influence of noise on the measurements, is also what causes
the fluctuations over time that are visible when the car speeds up or slows
down (as could previously be seen in Fig 5.4).

Behavior In the dataset, the car is both speeding up and slowing down
over time. Other than this, there is the presence of holes while driving. In
reality, this actually already contains the majority of relevant events for the
experiment. There’s a number of distinct events that would normally be
hard to discern from a hole that are not yet included however. The main
consideration can be for example bumps of any kind, e.g. hitting a speed
bump or having to cross the sidewalk to enter the garage.

6.3.2 Result of the algorithm using differences

The algorithm using differences greatly benefits from the quantization previ-
ously described. Due to the data being discretized, an absolute threshold can
easily be determined for which the transitions in speeds are not measured,
but the holes are. The accuracy of the algorithm can be defined as follows.
From the observations, it is known that a hole causes fluctuations in the data
for a time of 0.15 seconds or 15 measurements. The labels in the dataset in-
dicate a flag for the occurrence of a hole at the start of this period. Hence a
hole is correctly detected, if a detection occurs and such a flag can be found
in the last 15 measurements. Using these settings, and setting the minimum
difference between consecutive points to 2 causes all holes in the set to be
detected, with no false positives or negatives. The resulting accuracy is thus
100%.

This accuracy however has to be seen in the context of the considerations
made, especially the behavioral. This algorithm will by no means be able

57

to discern between a speed bump and a hole in a real scenario, but could
possibly serve as a good preliminary filtering for possible data of interest.

As this only involves a single subtraction and the comparison to the
threshold value, execution time is in a range of O(1).

6.3.3 The simple statistical approach

When considering this approach, the assumption was made that a good bal-
ancing point could be found where the threshold for the amount of standard
deviations would clearly divide between the spikes of the holes in the set,
and the fluctuations generated by the transitions in speed. Testing how-
ever, quickly indicated that such an assumption is not to be made lightly.
Using identical definitions for the accuracy of the detector as the previous
experiment, a first set of measurements is made to observe the influence of
a changing window size, i.e. the number of points used in the calculation,
at a lower threshold level. In these results, the amount of false positives is
immense. In order to be able to display both the amount of false positives
and the amount of correct detections, the y-axis scale is logarithmic.

Figure 6.1: Window size (amount of points used in the calculation), along
with the number of correct and incorrect detections. Axis on a logarithmic
scale due to the high amount of false positives(red) to correct(blue) ratio.

58

Furthermore, even at a low threshold the algorithm fails to detect all
holes. However, a point of interest can be observed around a window size
of 28, where the graph suddenly drops. Hence for this value, the threshold
was gradually increased in an attempt to lower this false positive ratio. Al-
though the increasing threshold did improve the amount of false positives,
more of the correct measurements are lost as well. This reached a critical
value for a threshold of 0.85, for which any further increase of the threshold
caused all false positives to be eliminated, but only 5 out of 86 holes are
actually detected. At this critical threshold itself however, only 30 of the 86
holes are detected, with over 30 times as much false positives. The window
size of 97 yielded the highest amount of detections, so the same test was also
run for this size. Although not having a similar critical point, this test also
showed horrible results regarding accuracy. Due to the long running time of
these experiments and the clear indications that this algorithm is unsuited
for this problem, measurements regarding accuracy were concluded here.

The processing time to process the whole dataset, which implies very large
number (nearly 50000) of loops of the calculation process was also logged.
The processing time needed is expected to be linear to the window size, as
is observed from the processing times.

Figure 6.2: The elapsed time to process the full dataset, corresponding to
the amount of points included in the calculation.

59

6.4 Performance and data rates in the edge

layer

6.4.1 Effect of output format

The data enrichment process can roughly be divided in two steps. First,
the graph is built internally adding the triples from the list of associations
defined by the user. After this the graph is parsed into a serialized format
ready for transmission. In the python libraries used in this project, the
available options are: xml, n3, turtle, n-triples, pretty-xml, trig and json-ld.
While each have their own syntax, the following should be noted:

• The formats n3, trig and turtle are closely related. Turtle is compatible
with n3, and trig is an extension of turtle.

• The key difference between xml and pretty-xml is the use of some short-
hand notations introduced in RDF1.1 [6]. Pretty-xml is thus more
compact and readable, as its name indicates.

• As mentioned in the data enrichment section 5.4.3, one of the key ad-
vantages of the turtle family languages in the python library is the
automatic generation of prefixes. JSON-LD has the equivalent of con-
texts for this, but the automatic generation of these contexts is not
available.

For this test, the computational time needed for the full data enrichment
is measured. In this case, the edge processors broker was flooded with the
data at a high rate (500Hz). This causes the broker to act as a buffer, while
processing is running at full capacity. The annotations set used contain the
full expansion of the data for a wheel as seen in Fig. 5.1, for all four wheels.
This setup is representative for the desired application. The average of the
computation time is computed for a total of 2,000 expansions. The results of
this measurement are given in Fig. 6.3. Full histograms for each individual
measurement can be found in appendix A.1. Note the final value of the x-
axis indicates the maximum observed value, but its occurrence rate causes
the bin to be too small to be visible.

The performance time of the nt serialization is significantly better than
that of the other formats. There’s also a significant difference between the

60

Figure 6.3: Performance of various formats for RDF serialization.

regular xml serialization and the pretty version. In order to put these pro-
cessing times in perspective, there should be some considerations regarding
the generated output. The nt format may be the fastest in terms of pro-
cessing time, but it is close to raw outputting of the triples inserted into the
graph. This affects the readability, but more importantly the size of the gen-
erated data. The sizes of the generated enriched data for each format were
thus also measured. A chart similar to the processing times can be made for
the file sizes.

61

Figure 6.4: File size for various formats of RDF serialization.

There is a clear price to be paid for the processing speed gained using
the nt format. The generated output files are more than twice the size of
the turtle format. As the turtle format provides the best trade-off between
performance and size for the application context, it will be the format of
choice in later experiments.

As a last note to this small comparison between the serialization formats,
it should be noted that the JSON-LD serialization is both favored and pun-
ished by the lack of the ability to generate the contexts. This lowered its
processing time in the first experiment, but results in the observed explosion
of the data.

6.4.2 Output data rate

To determine the expected output data rate, a calculation can be made.
None of the preprocessors will output continuous data rate, as data is only
outputted when an anomaly is detected. However, it can be assumed that for
each output format, a balance point can be approximately reached where the
buffer is filled at the same rate as it is processed. The processing time needed
at this point is equal to that of the previous experiment in this scenario, as
the processor is running at full capacity. Using the data obtained by the
previous experiment, the data rate r can thus be determined as the product

62

of the processing time t and the file size s.

r = 1/t ∗ s (6.1)

Using Eq. (6.1), the maximum, minimum and average expected data rates are
found. Times are given in seconds, rates in bytes per second (see Table 6.1).
For visual representations of the data, see Figs 6.5 and 6.6.

Table 6.1: The expected data rates at full running capacity for each format.

Format min max avg min max avg
time time time rate rate rate

n3 0.0109 0.0536 0.0127 79,340 388,260 334,220
Turtle 0.0100 0.0555 0.0107 76,497 424,900 398,090
trig 0.0099 0.0555 0.0113 82,633 460,750 405,060
pretty-xml 0.0114 0.0551 0.0129 125,559 604,517 537,916
json-ld 0.0077 0.0232 0.0081 419,686 1,263,778 1,119,001
xml 0.0054 0.035 0.0057 235,818 1,511,316 1,427,567
nt 0.0036 0.0382 0.0039 240,281 2,492,199 2,312,840

The highest data rate is found for nt, which boasts the highest processing
speed, while also having a reasonably big file size (as seen before in Figs 6.3
and 6.4). Yet there is still no need for major concerns of the network layer
becoming a bottleneck, as a worst case speed requirement of approximately
2.5MB/s is still acceptable. There are two key side notes to make to this
observation:

• Due to the implementation choice of using python, multithreaded pro-
cesses are virtualized. Actual parallel processing can only be obtained
by using multiprocessing. Such an implementation has been made, but
the high amount of shared variables between the enrichment processes
causes the performance to drop to a point where it is worse than the
virtualized multithreading. Hence only a single core is actually lever-
aged. The amount of data generated could thus be a number of factors
higher depending on the number of available cores in the edge system.

• This performance table is an analysis for the desired application system.
The influence of the number of statements that need to be expanded
on the output file size and processing time has to be observed.

63

Figure 6.5: Minimum, maximum and average processing time per RDF
serialization format.

Figure 6.6: Resulting data rates for each format.

64

6.4.3 Effects of the amount of statements

The time needed to perform the enrichment process is related to the amount
of triples that need to be added to the data. In the previous sections the focus
was on the performance time and data rate given the context application.
The amount of statements needed in this case equals 82. In this section,
the effects of increasing amounts of statements on the processing time is
observed. Observing the impact on the file size is more difficult, as the size
of the generated output is related to the length of the identifiers used in the
graph. Furthermore when identifiers reoccur, the relative expansion using
prefixes can be used, which lowers the output size. The worst case scenario
for a given triple increases the file size by the sum of the lengths of the
identifiers in the triple and the additional overhead generated by the output
format.

For this test, an increasing amount of statements is added to a single
column. For each amount of statements, the average of the computation
time is calculated 30 times. The reason the amount of expansions is lower
for this experiment mainly involves the running time. In this test, the amount
of statements is increased 200 times starting from 3 with a step of exactly
one additional statement. The result for turtle is displayed in Fig. 6.7.

Figure 6.7: The processing time as a function of the number of statements
using turtle serialization.

A full overview of the resulting measurements can be found in appendix A.2.

65

As the amount of triples increases, the pattern of the resulting means
becomes more and more unstable. The linear trend remains visible, but the
regression is clearly affected by the influence of the spikes. These spikes can
be related to outliers that occur during the measurement, which appear to
be occurring more often for higher numbers of triples. This can also be seen
if the standard deviation of the measurements is plotted along the graph of
the means Fig. 6.8. Further increasing of the amount of measurements for
each amount of statement is thus likely to smoothen the graph, but would
increase the running time of the experiment to overly high levels.

Figure 6.8: The same measurement result as Fig. 6.7, with the standard
deviations plotted. The spikes in the mean and the standard deviation

show clear correlations, indicating the influence of outliers.

Regardless, it can be observed that the processing time increases in a linear
fashion in regard to the amount of triples used for reasonable amounts of
triples.

66

6.5 The system response time

The response time of the system can be theoretically determined as the sum
of:

• The processing time needed at each level.

• Time lost to access the network I/O interface.

• The time lost by the network latency.

• Latency incurred by the algorithm.

Since the testing is done internally, the latter can not be observed. La-
tencies introduced by algorithms exist for all algorithms that need later mea-
surement samples in order to calculate the result for the current. It can easily
be determined by the amount of later samples needed and the sample fre-
quency. The time lost to obtain data from the I/O buffer, however is harder
to measure. In the previous tests the focus was solely on the processing time
caused by the algorithm itself, excluding time elapsed to read the I/O buffer.
In order to get an accurate overview of the total response time, the time
elapsed between the availability of the data to the system and it’s arrival at
the client is measured. This is done by adding the original generation time as
the time stamp of the data that is used in the stream processing. This test
uses the application context, with turtle serialization format and anomaly
detection.

Difference-based algorithm

Using the difference based algorithm the result yielded an average of 0.0287s
to obtain the alert message at the client. As with previous measurements,
the distribution of the results is right skewed. The obtained results over a
total of 3000 measurements are given in Fig. 6.9.
Naturally, the results of this algorithm can be assumed to be a best case sce-
nario as it has no inherent latencies and a minimal computational overhead.
Hence, the previously implemented statistical algorithm’s running time is
also observed as a more reasonable reference, despite it’s inaccuracy.

67

Figure 6.9: The system response times when using the difference algorithm.
On average a message reaches the user within 0.0287s, network latencies

excluded.

Statistical approach

The running time of the statistical approach has a natural latency of half the
window size due to the centering applied. In a problem where the dataset
actually following a statistical distribution, this would be an unnecessary
step. As a point of reference, the previous experiment was repeated using a
window size of 50 points. The average response time for this observation was
0.0406s (excluding the additional latency introduced by the centering of the
window).
The influence of the additional processing time needed is clearly visible (Fig 6.10).
This influence can be expected to be higher in the case of a preprocessing
device, which can normally has less computation power. Having a worst case
scenario of a processing time in a range of 0.3s seems acceptable for this
application.

As previously described the delay generated by the need for further sam-
ples can increase this further. If this increase was considered in this experi-

68

(a) Response time of the statistical
approach using a window of 50 points.

(b) The response time of both
methods compared.

Figure 6.10: Comparison of response times

ment, the resulting delay t could thus have been calculated by Eq. (6.2).

t = W/2 ∗ f (6.2)

With W being the window size and f the frequency. In this case, the ad-
ditional latency is equal to 0.25s. The consequences of the need for later
samples is more concerning in environments with low frequencies.

6.6 Scalability

In order to further understand the behavior of the system and its scalability,
the response time is observed at varying circumstances. In order to simu-
late these, a set number of 20 preprocessors is setup to produce data at a
consistent frequency. A test is run increasing the generation rate of each of
the preprocessors in steps of 1/20 Hz for all preprocessors. Thus, the total
generation rate of the data is increased in steps of 1Hz. For each rate, the
response time of 400 messages is measured. A visual representation of the
means for each generation frequency is given in Fig. 6.11.

The measurements were ended at these frequencies, because it can be
observed that in fact the system has already reached its saturation point.
Comparing the individual measurements reveals a distinct difference between
the result that is obtained at a generation rate of 53Hz and that of 54Hz.
At the former rate, the response time fluctuates a lot, but appears to be

69

Figure 6.11: The response time for increasing data rates using multiple
clients. For higher frequencies, the response time clearly increases.

somewhat stable. The latter however, displays a clear increasing trend as
the time goes on.

(a) The observed response times at
53Hz.

(b) The observed response times at
54Hz.

Figure 6.12: Comparison between individual measurements at the critical
generation rates.

70

Another interesting observation can be made regarding the measurement
itself. Recalling the histograms of the measurements performed using only a
single processor Fig. 6.10, the distribution displays a clear peak of a response
time that reoccurs far more than the others. Such a thing is not apparent
in the time graph in Fig. 6.12a. Furthermore, the mean of the observed
value appears higher than the observed value in the experiment as well.
What causes this is the buffering of the messages in the MQTT broker.
In the previous experiment, a single processor was running and the time
difference between two samples is never smaller than the processing time
needed by the edge processor. However, this is not the case when running
a number of preprocessors simultaneously. If two of the processors happen
to be transmitting messages at times very close to each other, one of the
messages will get buffered until the edge processor has finished processing
the first. In this experiment, the preprocessors were started one at a time at
random time intervals from each other, so there is a reasonable chance this
occurs. This creates the highly unstable pattern in the response time and
the increased average.

One of the big questions remains: how many cars corresponds to the
saturation frequency? This question is hard to answer and could span an
entire study by itself. To answer this question one would have to know the
generation rate of events for a real car. If the used algorithm is considered to
be the difference based approach, it’ll detect speed bumps and other things
as well. So the question can be reformulated as: how much % of the time
is a car driving flat road? If the occurrence rate of the set is considered
representative, it is about 0.17%. In this case, an edge node could possibly
serve up to a total of approximately 29000 cars! While this may seem like
an awfully low percentage, at a measurement frequency of 100Hz it means
a car is likely to introduce an event approximately every 6 seconds. While
this does not seem overly unreasonable, a careless statement on this cannot
be made without further information.

71

Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis the problem of determining tasks that can be moved away from
the classic Cloud processing and pushed towards the edges of the Internet in a
semantic, IoT stream processing context was studied. In this case, the option
of performing early event detection and data enrichment was considered.

The problem is important from an architectural point of view, because
the simple solution of pushing all data straight towards the Cloud may not
be sustainable anymore in the foreseeable future. Furthermore, the available
processing power both in the edge and sensing layer of the IoT keeps growing,
yet remains unused. From an application point of view, it is even more im-
portant to perform such early filtering of the data, because of the possibility
of a bottleneck occurring at the network level and the possible cost incurred
by transmitting a high data rate source over a large distance.

To answer this, the layered architecture model consisting of a total of five
layers (IoT layer –the lowest layer–, three intermediate key processing layers
and a final application layer) was created. The tasks identified to push to-
wards the edges were the anomaly detection, the filtering of multivariate data
for its relevant components and the enrichment of the data. The anomaly
detection was pushed the closest to the source, with the reasoning being that
it should be avoided as much as possible to process data that will eventu-
ally end up getting discarded. Furthermore, if the enrichment were to be
performed at a more early level, the generated data rates would be immense.

The created architecture was validated using simulated data. This choice

72

is mainly made because actual deployment is not straightforward as it would
require cars equipped preprocessing devices. First an assessment is made
regarding the accuracy of the algorithms used in the preprocessing layer and
their processing time. Both needed to be capable of being at an acceptable
level in order to possibly run in the preprocessing layer in a real scenario.
Next, the processing time needed to perform the enrichment process was
observed for various output formats. Finally, the response time was used as
a metric to describe the quality of service and scalability of the system.

The reasoning and accuracy of detecting the event of interest depends
on the specific environment of the desired application, as well as the used
algorithm. Due to the high amount of different approaches for detecting
anomalies, some insight in the behavior of the data and knowledge regarding
the algorithm is needed. If the behavior of the data is well known, simple
algorithms can often be implemented efficiently to detect anomalous events.
For example, using the statistical approach for data that is know to occur
following a certain distribution, or a regression based approach if the data is
know to have a certain trend. If the computational power available allows it,
more complex algorithms such as the HTM (Hierarchical Temporal Memory)
algorithm can be considered.

The results of the study show the feasibility of the proposed architecture,
that is, the computing tasks for processing an IoT data stream can be dis-
tributed along layers of the architecture. This way the Cloud is offloaded,
which enables a faster and more reliable response time.

In conclusion, it is believed that the thesis has achieved the initially pro-
posed objectives by presenting a full cycle study from problem definition,
specification and requirements to final testing and validation. It can be
stated that the proof of concept architecture fulfills the main requirements
and objectives that had been set.

7.2 Future work

The created implementation is merely a proof of concept and can be im-
proved in various ways. The most principle work that must be done first
is the full deployment of the architecture in a real scenario. This was not
possible within the time limits of the project as well as lack of infrastruc-

73

ture to support all layers (certainly the RDLab of Computer Science1 can
support upper layers of reasoning and application layers, the preprocessing
layer remains an issue as mentioned earlier), but would allow for a better as-
sessment of the architecture model. Specifically, the available preprocessing
power and the network latencies in the system can be observed and data rate
processing can be more realistically evaluated. Because the architecture is
application independent, various applications sharing the output can be de-
veloped as well, given that they fit in the context of less resource constrained
IoT processing.

In particular, a mobile application for drivers, that could be used to
warn drivers about potholes in their region, save car from damages, avoid
potential accidents, etc. would be interesting. In a much further future work
that is far beyond the reach of this project, the output of processing the data
stream could be included in the traffic info of GPS systems. Such additional
information would be most beneficial to avoid accidents caused by these holes.

Finally, another aspect of interest would be to make the enriched data
persistent for more deep analysis. Specifically, a historical analysis of the
data would be interesting. This is something that cannot be performed
online, and is best done in batch operations or offline. In time, historical
analysis may be able to generate information regarding where potholes are
likely to be found, before detection. A reanalysis of the data of the system
may also be applied using more complex algorithms, in order to obtain more
accurate information regarding the the detected holes.

1RDLab: https://rdlab.cs.upc.edu/

74

https://rdlab.cs.upc.edu/

Acronyms

API Application Programming Interface.

C-SPARQL Continuous-SPARQL.

CAN bus Controller Area Network: a robust vehicle bus standard designed
to allow micro-controllers and devices to communicate with each other
in applications without a host computer.

CEP Complex Event Processing.

CQELS Continuous Query Evaluation over Linked Stream.

CQELS-QL CQELS Query Language.

CSV Comma Separated Value.

DSMS Data Stream Management System.

ECA Event Condition Action.

EP-SPARQL Event-Processing SPARQL.

HTM Hierarchical Temporal Memory.

IoT Internet of Things.

IRI International Resource Identifier.

MQTT Message Queue Telemetry Transport.

OGC Open Geospatial Consortium.

75

OWL Web Ontology Language.

Pothole A depression or hollow in a road surface caused by wear or subsi-
dence.

RDF Resource Description Framework.

RDF-S Resource Description Framework Schema.

RIF Rule Interchange Format.

RSP RDF Stream Processing.

SOSA Sensor, Observation, Sample and Actuator.

SPARQL Spark Processing And RDF query Language.

SSN Semantic Sensor Network.

W3C World Wide Web Consortium.

76

Bibliography

[1] L. Atzori, A. Iera, and G. Morabito, “Understanding the internet
of things: definition, potentials, and societal role of a fast evolving
paradigm,” Ad Hoc Networks, vol. 56, pp. 122 – 140, 2017, http:
//www.sciencedirect.com/science/article/pii/S1570870516303316.

[2] Statista. Last visited on 18-06-2018. [On-
line]. Available: https://www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide/

[3] P. Ritrovato, F. Xhafa, and A. Giordano, “Edge and cluster comput-
ing as enabling infrastructure for internet of medical things,” in 2018
IEEE 32nd International Conference on Advanced Information Network-
ing and Applications (AINA-2018). IEEE 2018, 2018, pp. 717–723.

[4] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the internet of things,” IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[5] S. Bratt. (2007) Semantic web, and other technologies to watch.
W3C. Last visited on 18-06-2018. [Online]. Available: https:
//www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)

[6] Y. Raimond and G. Schreiber, “RDF 1.1 primer,” W3C,
W3C Note, Jun. 2014, http://www.w3.org/TR/2014/
NOTE-rdf11-primer-20140624/.

[7] D. Brickley and R. Guha, “RDF schema 1.1,” W3C, W3C
Recommendation, Feb. 2014, http://www.w3.org/TR/2014/
REC-rdf-schema-20140225/.

77

http://www.sciencedirect.com/science/article/pii/S1570870516303316
http://www.sciencedirect.com/science/article/pii/S1570870516303316
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)
https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/

[8] B. Parsia, P. Hitzler, P. Patel-Schneider, M. Krötzsch, and
S. Rudolph, “OWL 2 web ontology language primer (second edi-
tion),” W3C, Tech. Rep., Dec. 2012, http://www.w3.org/TR/2012/
REC-owl2-primer-20121211/.

[9] B. Parsia, B. Motik, and P. Patel-Schneider, “OWL 2 web ontology lan-
guage structural specification and functional-style syntax (second edi-
tion),” W3C, W3C Recommendation, Dec. 2012, http://www.w3.org/
TR/2012/REC-owl2-syntax-20121211/.

[10] H. Boley and M. Kifer, “RIF overview (second edition),”
W3C, W3C Note, Feb. 2013, http://www.w3.org/TR/2013/
NOTE-rif-overview-20130205/.

[11] L. Farhan, S. T. Shukur, A. E. Alissa, M. Alrweg, U. Raza, and
R. Kharel, “A survey on the challenges and opportunities of the in-
ternet of things (iot),” in 2017 Eleventh International Conference on
Sensing Technology (ICST), Dec 2017, pp. 1–5.

[12] D. Anicic et al. (2016) RDF stream processing: requirements and
design principles. RDF Stream Processing Community Group. Last
visited on 18-06-2018. [Online]. Available: http://streamreasoning.
github.io/RSP-QL/RSP Requirements Design Document/

[13] A. Mauri, J.-P. Calbimonte, D. Dell’Aglio, M. Balduini, M. Brambilla,
E. Della Valle, and K. Aberer, “Triplewave: Spreading rdf streams on
the web,” in The Semantic Web – ISWC 2016, P. Groth, E. Simperl,
A. Gray, M. Sabou, M. Krötzsch, F. Lecue, F. Flöck, and Y. Gil, Eds.
Cham: Springer International Publishing, 2016, pp. 140–149.

[14] S. Sundara, S. Das, and R. Cyganiak, “R2RML: RDB to RDF mapping
language,” W3C, W3C Recommendation, Sep. 2012, http://www.w3.
org/TR/2012/REC-r2rml-20120927/.

[15] G. Cugola and A. Margara, “Processing flows of information: From
data stream to complex event processing,” ACM Computing Surveys
(CSUR), vol. 44, no. 3, p. 15, 2012.

[16] S. Helmer, A. Poulovassilis, and F. Xhafa, Reasoning in event-based
distributed systems. Springer, 2011, vol. 347, pp. 51–64.

78

http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2013/NOTE-rif-overview-20130205/
http://www.w3.org/TR/2013/NOTE-rif-overview-20130205/
http://streamreasoning.github.io/RSP-QL/RSP_Requirements_Design_Document/
http://streamreasoning.github.io/RSP-QL/RSP_Requirements_Design_Document/
http://www.w3.org/TR/2012/REC-r2rml-20120927/
http://www.w3.org/TR/2012/REC-r2rml-20120927/

[17] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus,
“Querying rdf streams with c-sparql,” ACM SIGMOD Record, vol. 39,
no. 1, pp. 20–26, 2010.

[18] A. Margara, J. Urbani, F. van Harmelen, and H. Bal, “Streaming the
web: Reasoning over dynamic data,” Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 25, pp. 24 – 44, 2014, http:
//www.sciencedirect.com/science/article/pii/S1570826814000067.

[19] J.-P. Calbimonte, O. Corcho, and A. J. G. Gray, “Enabling ontology-
based access to streaming data sources,” in The Semantic Web – ISWC
2010, P. F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J. Z.
Pan, I. Horrocks, and B. Glimm, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 96–111.

[20] J.-P. Calbimonte, H. Y. Jeung, O. Corcho, and K. Aberer, “Enabling
query technologies for the semantic sensor web,” International Journal
on Semantic Web and Information Systems, vol. 8, no. 1, pp. 21. 43–63,
2012.

[21] RDF Stream processing community group. Last visited on 18-06-
2018. [Online]. Available: https://www.w3.org/community/rsp/wiki/
RDF Stream Processors Implementation

[22] D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth, “A native
and adaptive approach for unified processing of linked streams and linked
data,” in International Semantic Web Conference. Springer, 2011, pp.
370–388.

[23] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic, “Ep-sparql: A
unified language for event processing and stream reasoning,” in Pro-
ceedings of the 20th International Conference on World Wide Web,
ser. WWW ’11. New York, NY, USA: ACM, 2011, pp. 635–644,
”http://doi.acm.org/10.1145/1963405.1963495”.

[24] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, “Stream reasoning
and complex event processing in etalis,” Semantic Web, vol. 3, no. 4,
pp. 397–407, 2012.

79

http://www.sciencedirect.com/science/article/pii/S1570826814000067
http://www.sciencedirect.com/science/article/pii/S1570826814000067
https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation
https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation
http://doi.acm.org/10.1145/1963405.1963495

[25] J. Chu, H. Fu, F. Gao, and D. Zhao, “Towards complex event processing
in linked data stream,” in 2017 12th IEEE Conference on Industrial
Electronics and Applications (ICIEA), June 2017, pp. 1016–1021.

[26] M. Dao-Tran and D. Le Phuoc, “Towards enriching cqels with complex
event processing and path navigation.” in HiDeSt@ KI, 2015, pp. 2–14.

[27] D. Lephuoc. Official java implementation of the cqels excecution
framework. Last visited on 18-06-2018. [Online]. Available: https:
//github.com/cqels/CQELS4J

[28] J. Hoeksema and S. Kotoulas, “High-performance distributed stream
reasoning using s4,” in Ordring Workshop at ISWC, 2011.

[29] S. Bechhofer. Owl reasoning examples. Last visited on 18-06-2018.
[Online]. Available: http://owl.man.ac.uk/2003/why/latest

[30] C. Grosan and A. Abraham, Rule-Based Expert Systems. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2011, pp. 149–185, https://doi.org/
10.1007/978-3-642-21004-4 7.

[31] Official drools website. Red Hat Inc. Last visited on 18-06-2018.
[Online]. Available: https://www.drools.org/

[32] Drools fusion documentation. Red Hat Inc. Last visited on 18-06-2018.
[Online]. Available: https://docs.jboss.org/drools/release/6.2.0.CR3/
drools-docs/html/DroolsComplexEventProcessingChapter.html

[33] Apache jena. The Apache Software Foundation. Last visited on
18-06-2018. [Online]. Available: https://jena.apache.org/

[34] A. Fobel and N. Subramanian, “Comparison of the performance of drools
and jena rule-based systems for event processing on the semantic web,”
in 2016 IEEE 14th International Conference on Software Engineering
Research, Management and Applications (SERA), June 2016, pp. 24–
30.

[35] M. B. Hassine. Easy-rules github page. Last visited on 18-06-2018.
[Online]. Available: https://github.com/j-easy/easy-rules

80

https://github.com/cqels/CQELS4J
https://github.com/cqels/CQELS4J
http://owl.man.ac.uk/2003/why/latest
https://doi.org/10.1007/978-3-642-21004-4_7
https://doi.org/10.1007/978-3-642-21004-4_7
https://www.drools.org/
https://docs.jboss.org/drools/release/6.2.0.CR3/drools-docs/html/DroolsComplexEventProcessingChapter.html
https://docs.jboss.org/drools/release/6.2.0.CR3/drools-docs/html/DroolsComplexEventProcessingChapter.html
https://jena.apache.org/
https://github.com/j-easy/easy-rules

[36] D. McCarthy and U. Dayal, “The architecture of an active database
management system,” SIGMOD Rec., vol. 18, no. 2, pp. 215–224, Jun.
1989, http://doi.acm.org/10.1145/66926.66946.

[37] R. Adaikkalavan and S. Chakravarthy, Generalization of Events
and Rules to Support Advanced Applications. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 173–193, https://doi.org/10.1007/
978-3-642-19724-6 8.

[38] S. Hu, M. Huang, W. Feng, and Y. Zhang, “A smart health service
model for elders based on eca-s rules,” in 2017 IEEE 15th International
Conference on Software Engineering Research, Management and Appli-
cations (SERA), June 2017, pp. 93–97.

[39] H. M. C. Chandrathilake, H. T. S. Hewawitharana, R. S. Jayawardana,
A. D. D. Viduranga, H. M. N. D. Bandara, S. Marru, and S. Perera, “Re-
ducing computational time of closed-loop weather monitoring: A com-
plex event processing and machine learning based approach,” in 2016
Moratuwa Engineering Research Conference (MERCon), April 2016, pp.
78–83.

[40] T. Huybrechts, Y. Vanommeslaeghe, D. Blontrock, G. Van Barel, and
P. Hellinckx, “Automatic reverse engineering of can bus data using ma-
chine learning techniques,” in Advances on P2P, Parallel, Grid, Cloud
and Internet Computing, F. Xhafa, S. Caballé, and L. Barolli, Eds.
Cham: Springer International Publishing, 2018, pp. 751–761.

[41] R. Gass and C. Diot, “An experimental performance comparison of 3g
and wi-fi,” in Passive and Active Measurement, A. Krishnamurthy and
B. Plattner, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 71–80.

[42] J. Budomo, I. Ahmad, D. Habibi, and E. Dines, “4g lte-a systems at
vehicular speeds: Performance evaluation,” in 2017 International Con-
ference on Information Networking (ICOIN), Jan 2017, pp. 321–326.

[43] S. Corrigan, “Introduction to the controller area network(CAN)(rev.
b),” http://www.ti.com/lit/an/sloa101b/sloa101b.pdf, Texas Instru-
ments, Incorporated, Jun 2016.

81

http://doi.acm.org/10.1145/66926.66946
https://doi.org/10.1007/978-3-642-19724-6_8
https://doi.org/10.1007/978-3-642-19724-6_8
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf

[44] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A sur-
vey,” ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[45] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identify-
ing density-based local outliers,” in ACM sigmod record, vol. 29, no. 2.
ACM, 2000, pp. 93–104.

[46] S. Ahmad and S. Purdy, “Real-time anomaly detection for streaming
analytics,” arXiv preprint arXiv:1607.02480, 2016.

[47] “Information technology – message queuing telemetry trans-
port(ISO/IEC 20922),” International Organization for Stan-
dardization, ISO standard, 2016. [Online]. Available: https:
//www.iso.org/standard/69466.html

[48] (2014) Official MQTT documentation. Organization for the Advance-
ment of Structured Information Standards. Last visited on 18-06-2018.
[Online]. Available: http://mqtt.org/documentation

[49] A. Haller, M. Lefrançois, K. Janowicz, S. Cox, D. L. Phuoc, and K. Tay-
lor, “Semantic sensor network ontology,” W3C, W3C Recommendation,
Oct. 2017, https://www.w3.org/TR/2017/REC-vocab-ssn-20171019/.

[50] “OGC sensorML: Model and XML encoding standard,” Open
Geospatial Consortium, OGC standard, 2014, last visited on 18-06-
2018. [Online]. Available: http://www.opengeospatial.org/standards/
sensorml

[51] “Geographic information — observations and measurements (ISO/DIS
19156),” International Organization for Standardization, ISO standard,
2011. [Online]. Available: https://www.iso.org/standard/32574.html

[52] M. Lefrançois and A. Zimmermann. Custom datatypes: Towards
a web of linked datatypes. École Nationale Supérieure des Mines
de Saint-Étienne. Last visited on 18-06-2018. [Online]. Available:
https://ci.mines-stetienne.fr/lindt/v2/custom datatypes.html

[53] G. Shadow and C. J. McDonald, “The unified code for units of mea-
sure,” http://unitsofmeasure.org/ucum.html, UCUM Organization and
Regenstrief Institute, Inc., 11 2017.

82

https://www.iso.org/standard/69466.html
https://www.iso.org/standard/69466.html
http://mqtt.org/documentation
https://www.w3.org/TR/2017/REC-vocab-ssn-20171019/
http://www.opengeospatial.org/standards/sensorml
http://www.opengeospatial.org/standards/sensorml
https://www.iso.org/standard/32574.html
https://ci.mines-stetienne.fr/lindt/v2/custom_datatypes.html
http://unitsofmeasure.org/ucum.html

[54] H. Rijgersberg, M. van Assem, and J. Top, “Ontology of units of measure
and related concepts,” Semantic Web, vol. 4, pp. 3–13, 01 2013.

[55] R. Hodgson, P. J. Keller, J. Hodges, and J. Spivak. (2014, March) Qudt
- quantities, units, dimensions and data types ontologies. [Online].
Available: http://www.qudt.org/

[56] G. Carothers and E. Prud’hommeaux, “RDF 1.1 turtle,” W3C,
W3C Recommendation, Feb. 2014. [Online]. Available: http:
//www.w3.org/TR/2014/REC-turtle-20140225/

[57] P. J. Leach, M. Mealling, and R. Salz, “A universally unique identifier
(uuid) urn namespace,” 2005.

83

http://www.qudt.org/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/

Appendix A

Additional measurement results

A.1 Distribution of the processing times at

full capacity.

(a) Observed processing times of trig. (b) Observed processing times of n3.

84

(c) Observed processing times of
turtle.

(d) Observed processing times of nt.

(e) Observed processing times of xml.
(f) Observed processing times of

pretty-xml.

(g) Observed processing times of
JSON-LD.

Figure A.1: Distribution of the processing times when running at full
capacity.

85

A.2 Processing times as a function of state-

ment count.

(a) Processing times for n3 format. (b) Processing times for trig format.

(c) Processing times for xml format.
(d) Processing times for the pretty xml

format.

86

(e) Processing times for nt format. (f) Processing times for json-ld format.

Figure A.2: Processing time as a function of amount of statements for each
format.

87

	Introduction
	Problem statement: Offloading processing and reasoning to edges of the Internet
	Objectives and project scope
	State of the art
	Semantic data streams
	Basic concept
	Semantic Web
	IoT data streams
	RDF-Stream
	TripleWave
	Summative evaluation

	Semantic stream processing
	DSMS approaches
	C-SPARQL
	SPARQLstream
	CQELS

	CEP approaches
	EP-SPARQL and ETALIS
	CQELS-EP

	Summative evaluation

	Reasoning
	Inference
	Production rules
	Drools
	Jena
	Easy-Rules

	Event-Condition-Action (ECA) rules
	Summative evaluation

	System architecture
	Requirements
	Functional requirements
	Non-functional requirements

	Event processing model
	Architecture overview
	The Frontier between IoT and Edge Processing layers: thin vs. fat IoT layer

	Implementation
	Data sensing and Date rate
	Data preprocessing
	Edge processing
	Data Analysis and Application

	The API
	Implementation Language

	Experimental study
	The experimental design
	Testing environment
	Performance and accuracy of the preprocessing
	Considerations regarding the dataset
	Result of the algorithm using differences
	The simple statistical approach

	Performance and data rates in the edge layer
	Effect of output format
	Output data rate
	Effects of the amount of statements

	The system response time
	Scalability

	Conclusions and future work
	Conclusions
	Future work

	Additional measurement results
	Distribution of the processing times at full capacity.
	Processing times as a function of statement count.

