24 research outputs found

    Radiomics signature for prediction of lateral lymph node metastasis in conventional papillary thyroid carcinoma

    Get PDF
    PURPOSE: Preoperative neck ultrasound (US) for lateral cervical lymph nodes is recommended for all patients undergoing thyroidectomy for thyroid malignancy, but it is operator dependent. We aimed to develop a radiomics signature using US images of the primary tumor to preoperatively predict lateral lymph node metastasis (LNM) in patients with conventional papillary thyroid carcinoma (cPTC). METHODS: Four hundred consecutive cPTC patients from January 2004 to February 2006 were enrolled as the training cohort, and 368 consecutive cPTC patients from March 2006 to February 2007 served as the validation cohort. A radiomics signature, which consisted of 14 selected features, was generated by the least absolute shrinkage and selection operator (LASSO) regression model in the training cohort. The discriminating performance of the radiomics signature was assessed in the validation cohort with the area under the receiver operating characteristic curve (AUC). RESULTS: The radiomics signature was significantly associated with lateral cervical lymph node status (p < 0.001). The AUC of its performance in discriminating metastatic and non-metastatic lateral cervical lymph nodes was 0.710 (95% CI: 0.649-0.770) in the training cohort and was 0.621 (95% CI: 0.560-0.682) in the validation cohort. CONCLUSIONS: The present study showed that US radiomic features of the primary tumor were associated with lateral cervical lymph node status. Although their discriminatory performance was slightly lower in the validation cohort, our study shows that US radiomic features of the primary tumor alone have the potential to predict lateral LNM.ope

    Ultrasound radiomics models based on multimodal imaging feature fusion of papillary thyroid carcinoma for predicting central lymph node metastasis

    Get PDF
    ObjectiveThis retrospective study aimed to establish ultrasound radiomics models to predict central lymph node metastasis (CLNM) based on preoperative multimodal ultrasound imaging features fusion of primary papillary thyroid carcinoma (PTC).MethodsIn total, 498 cases of unifocal PTC were randomly divided into two sets which comprised 348 cases (training set) and 150 cases (validition set). In addition, the testing set contained 120 cases of PTC at different times. Post-operative histopathology was the gold standard for CLNM. The following steps were used to build models: the regions of interest were segmented in PTC ultrasound images, multimodal ultrasound image features were then extracted by the deep learning residual neural network with 50-layer network, followed by feature selection and fusion; subsequently, classification was performed using three classical classifiers—adaptive boosting (AB), linear discriminant analysis (LDA), and support vector machine (SVM). The performances of the unimodal models (Unimodal-AB, Unimodal-LDA, and Unimodal-SVM) and the multimodal models (Multimodal-AB, Multimodal-LDA, and Multimodal-SVM) were evaluated and compared.ResultsThe Multimodal-SVM model achieved the best predictive performance than the other models (P &lt; 0.05). For the Multimodal-SVM model validation and testing sets, the areas under the receiver operating characteristic curves (AUCs) were 0.910 (95% CI, 0.894-0.926) and 0.851 (95% CI, 0.833-0.869), respectively. The AUCs of the Multimodal-SVM model were 0.920 (95% CI, 0.881-0.959) in the cN0 subgroup-1 cases and 0.828 (95% CI, 0.769-0.887) in the cN0 subgroup-2 cases.ConclusionThe ultrasound radiomics model only based on the PTC multimodal ultrasound image have high clinical value in predicting CLNM and can provide a reference for treatment decisions

    Artificial intelligence - based ultrasound elastography for disease evaluation - a narrative review

    Get PDF
    Ultrasound elastography (USE) provides complementary information of tissue stiffness and elasticity to conventional ultrasound imaging. It is noninvasive and free of radiation, and has become a valuable tool to improve diagnostic performance with conventional ultrasound imaging. However, the diagnostic accuracy will be reduced due to high operator-dependence and intra- and inter-observer variability in visual observations of radiologists. Artificial intelligence (AI) has great potential to perform automatic medical image analysis tasks to provide a more objective, accurate and intelligent diagnosis. More recently, the enhanced diagnostic performance of AI applied to USE have been demonstrated for various disease evaluations. This review provides an overview of the basic concepts of USE and AI techniques for clinical radiologists and then introduces the applications of AI in USE imaging that focus on the following anatomical sites: liver, breast, thyroid and other organs for lesion detection and segmentation, machine learning (ML) - assisted classification and prognosis prediction. In addition, the existing challenges and future trends of AI in USE are also discussed

    Ultrasound radiomics nomogram for predicting large-number cervical lymph node metastasis in papillary thyroid carcinoma

    Get PDF
    PurposeTo evaluate the value of preoperative ultrasound (US) radiomics nomogram of primary papillary thyroid carcinoma (PTC) for predicting large-number cervical lymph node metastasis (CLNM).Materials and methodsA retrospective study was conducted to collect the clinical and ultrasonic data of primary PTC. 645 patients were randomly divided into training and testing datasets according to the proportion of 7:3. Minimum redundancy-maximum relevance (mRMR) and least absolution shrinkage and selection operator (LASSO) were used to select features and establish radiomics signature. Multivariate logistic regression was used to establish a US radiomics nomogram containing radiomics signature and selected clinical characteristics. The efficiency of the nomogram was evaluated by the receiver operating characteristic (ROC) curve and calibration curve, and the clinical application value was assessed by decision curve analysis (DCA). Testing dataset was used to validate the model.ResultsTG level, tumor size, aspect ratio, and radiomics signature were significantly correlated with large-number CLNM (all P&lt; 0.05). The ROC curve and calibration curve of the US radiomics nomogram showed good predictive efficiency. In the training dataset, the AUC, accuracy, sensitivity, and specificity were 0.935, 0.897, 0.956, and 0.837, respectively, and in the testing dataset, the AUC, accuracy, sensitivity, and specificity were 0.782, 0.910, 0.533 and 0.943 respectively. DCA showed that the nomogram had some clinical benefits in predicting large-number CLNM.ConclusionWe have developed an easy-to-use and non-invasive US radiomics nomogram for predicting large-number CLNM with PTC, which combines radiomics signature and clinical risk factors. The nomogram has good predictive efficiency and potential clinical application value

    Risk Stratification of Thyroid Nodule: From Ultrasound Features to TIRADS

    Get PDF
    Since the 1990s, ultrasound (US) has played a major role in the assessment of thyroid nodules and their risk of malignancy. Over the last decade, the most eminent international societies have published US-based systems for the risk stratification of thyroid lesions, namely, Thyroid Imaging Reporting And Data Systems (TIRADSs). The introduction of TIRADSs into clinical practice has significantly increased the diagnostic power of US to a level approaching that of fine-needle aspiration cytology (FNAC). At present, we are probably approaching a new era in which US could be the primary tool to diagnose thyroid cancer. However, before using US in this new dominant role, we need further proof. This Special Issue, which includes reviews and original articles, aims to pave the way for the future in the field of thyroid US. Highly experienced thyroidologists focused on US are asked to contribute to achieve this goal

    Advances in the Diagnosis and Treatment of Thyroid Carcinoma

    Get PDF
    This reprint is related to the latest research in the field of thyroid surgery, including molecular and imaging diagnosis, surgical treatment, and the treatment of recurrent disease and advanced thyroid carcinoma

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    Infective/inflammatory disorders

    Get PDF
    corecore