467 research outputs found

    Comparison of Distances for Supervised Segmentation of White Matter Tractography

    Full text link
    Tractograms are mathematical representations of the main paths of axons within the white matter of the brain, from diffusion MRI data. Such representations are in the form of polylines, called streamlines, and one streamline approximates the common path of tens of thousands of axons. The analysis of tractograms is a task of interest in multiple fields, like neurosurgery and neurology. A basic building block of many pipelines of analysis is the definition of a distance function between streamlines. Multiple distance functions have been proposed in the literature, and different authors use different distances, usually without a specific reason other than invoking the "common practice". To this end, in this work we want to test such common practices, in order to obtain factual reasons for choosing one distance over another. For these reasons, in this work we compare many streamline distance functions available in the literature. We focus on the common task of automatic bundle segmentation and we adopt the recent approach of supervised segmentation from expert-based examples. Using the HCP dataset, we compare several distances obtaining guidelines on the choice of which distance function one should use for supervised bundle segmentation

    Automated multi-subject fiber clustering of mouse brain using dominant sets

    Get PDF
    Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools. Indeed, manual identification of specific neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone to operator-induced bias. Here we propose an automatic multi-subject fiber clustering method that enables retrieval of group-wise WM fiber bundles. In order to account for variance across subjects, we developed a multi-subject approach based on a method known as Dominant Sets algorithm, via an intra- and cross-subject clustering. The intra-subject step allows us to reduce the complexity of the raw tractography data, thus obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The cross-subject step, characterized by a proper space-invariant metric in the original diffusion space, enables the identification of the same WM bundles across multiple subjects without any prior neuroanatomical knowledge. Quantitative analysis was conducted comparing our algorithm with spectral clustering and affinity propagation methods on synthetic dataset. We also performed qualitative analysis on mouse brain tractography retrieving significant WM structures. The approach serves the final goal of detecting WM bundles at a population level, thus paving the way to the study of the WM organization across groups.Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools. Indeed, manual identification of specific neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone to operator-induced bias. Here we propose an automatic multi-subject fiber clustering method that enables retrieval of group-wise WM fiber bundles. In order to account for variance across subjects, we developed a multi-subject approach based on a method known as Dominant Sets algorithm, via an intra-and cross-subject clustering. The intra-subject step allows us to reduce the complexity of the raw tractography data, thus obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The cross-subject step, characterized by a proper space-invariant metric in the original diffusion space, enables the identification of the same WM bundles across multiple subjects without any prior neuroanatomical knowledge. Quantitative analysis was conducted comparing our algorithm with spectral clustering and affinity propagation methods on synthetic dataset. We also performed qualitative analysis on mouse brain tractography retrieving significant WM structures. The approach serves the final goal of detecting WM bundles at a population level, thus paving the way to the study of the WM organization across groups

    Representation Learning With Convolutional Neural Networks

    Get PDF
    Deep learning methods have achieved great success in the areas of Computer Vision and Natural Language Processing. Recently, the rapidly developing field of deep learning is concerned with questions surrounding how we can learn meaningful and effective representations of data. This is because the performance of machine learning approaches is heavily dependent on the choice and quality of data representation, and different kinds of representation entangle and hide the different explanatory factors of variation behind the data. In this dissertation, we focus on representation learning with deep neural networks for different data formats including text, 3D polygon shapes, and brain fiber tracts. First, we propose a topic-based word representation learning approach for text classification. The proposed approach takes global semantic relationship between words over the whole corpus into consideration and encodes the relationships into distributed vector representations with continuous Skip-gram model. The learned representations which capture a large number of precise syntactic and semantic word relationships are taken as input of Convolution Neural Networks for classification. Our experimental results show the effectiveness of the proposed method on indexing of biomedical articles, behavior code annotation of clinical text fragments, and classification of news groups. Second, we present a 3D polygon shape representation learning framework for shape segmentation. We propose Directionally Convolutional Network (DCN) that extends convolution operations from images to the polygon mesh surface with rotation-invariant property. Based on the proposed DCN, we learn effective shape representations from raw geometric features and then classify each face of a given polygon into predefined semantic parts. Through extensive experiments, we demonstrate that our framework outperforms the current state-of-the-arts. Third, we propose to learn effective and meaningful representations for brain fiber tracts using deep learning frameworks. We handle the highly unbalanced dataset by introducing asymmetrical loss function for easily classified samples and hard classified ones. The training loss avoids to be dominated by the easy samples and the training step is more efficient. In addition, we learn more effective and meaningful representations by introducing deeper network and metric learning approaches. Furthermore, we propose to improve the interpretability of our framework by inducing attention mechanism. Our experimental results show that our proposed framework outperforms current golden standard significantly on the real-world dataset

    Unsupervised deep learning of human brain diffusion magnetic resonance imaging tractography data

    Get PDF
    L'imagerie par résonance magnétique de diffusion est une technique non invasive permettant de connaître la microstructure organisationnelle des tissus biologiques. Les méthodes computationnelles qui exploitent la préférence orientationnelle de la diffusion dans des structures restreintes pour révéler les voies axonales de la matière blanche du cerveau sont appelées tractographie. Ces dernières années, diverses méthodes de tractographie ont été utilisées avec succès pour découvrir l'architecture de la matière blanche du cerveau. Pourtant, ces techniques de reconstruction souffrent d'un certain nombre de défauts dérivés d'ambiguïtés fondamentales liées à l'information orientationnelle. Cela a des conséquences dramatiques, puisque les cartes de connectivité de la matière blanche basées sur la tractographie sont dominées par des faux positifs. Ainsi, la grande proportion de voies invalides récupérées demeure un des principaux défis à résoudre par la tractographie pour obtenir une description anatomique fiable de la matière blanche. Des approches méthodologiques innovantes sont nécessaires pour aider à résoudre ces questions. Les progrès récents en termes de puissance de calcul et de disponibilité des données ont rendu possible l'application réussie des approches modernes d'apprentissage automatique à une variété de problèmes, y compris les tâches de vision par ordinateur et d'analyse d'images. Ces méthodes modélisent et trouvent les motifs sous-jacents dans les données, et permettent de faire des prédictions sur de nouvelles données. De même, elles peuvent permettre d'obtenir des représentations compactes des caractéristiques intrinsèques des données d'intérêt. Les approches modernes basées sur les données, regroupées sous la famille des méthodes d'apprentissage profond, sont adoptées pour résoudre des tâches d'analyse de données d'imagerie médicale, y compris la tractographie. Dans ce contexte, les méthodes deviennent moins dépendantes des contraintes imposées par les approches classiques utilisées en tractographie. Par conséquent, les méthodes inspirées de l'apprentissage profond conviennent au changement de paradigme requis, et peuvent ouvrir de nouvelles possibilités de modélisation, en améliorant ainsi l'état de l'art en tractographie. Dans cette thèse, un nouveau paradigme basé sur les techniques d'apprentissage de représentation est proposé pour générer et analyser des données de tractographie. En exploitant les architectures d'autoencodeurs, ce travail tente d'explorer leur capacité à trouver un code optimal pour représenter les caractéristiques des fibres de la matière blanche. Les contributions proposées exploitent ces représentations pour une variété de tâches liées à la tractographie, y compris (i) le filtrage et (ii) le regroupement efficace sur les résultats générés par d'autres méthodes, ainsi que (iii) la reconstruction proprement dite des fibres de la matière blanche en utilisant une méthode générative. Ainsi, les méthodes issues de cette thèse ont été nommées (i) FINTA (Filtering in Tractography using Autoencoders), (ii) CINTA (Clustering in Tractography using Autoencoders), et (iii) GESTA (Generative Sampling in Bundle Tractography using Autoencoders), respectivement. Les performances des méthodes proposées sont évaluées par rapport aux méthodes de l'état de l'art sur des données de diffusion synthétiques et des données de cerveaux humains chez l'adulte sain in vivo. Les résultats montrent que (i) la méthode de filtrage proposée offre une sensibilité et spécificité supérieures par rapport à d'autres méthodes de l'état de l'art; (ii) le regroupement des tractes dans des faisceaux est fait de manière consistante; et (iii) l'approche générative échantillonnant des tractes comble mieux l'espace de la matière blanche dans des régions difficiles à reconstruire. Enfin, cette thèse révèle les possibilités des autoencodeurs pour l'analyse des données des fibres de la matière blanche, et ouvre la voie à fournir des données de tractographie plus fiables.Abstract : Diffusion magnetic resonance imaging is a non-invasive technique providing insights into the organizational microstructure of biological tissues. The computational methods that exploit the orientational preference of the diffusion in restricted structures to reveal the brain's white matter axonal pathways are called tractography. In recent years, a variety of tractography methods have been successfully used to uncover the brain's white matter architecture. Yet, these reconstruction techniques suffer from a number of shortcomings derived from fundamental ambiguities inherent to the orientation information. This has dramatic consequences, since current tractography-based white matter connectivity maps are dominated by false positive connections. Thus, the large proportion of invalid pathways recovered remains one of the main challenges to be solved by tractography to obtain a reliable anatomical description of the white matter. Methodological innovative approaches are required to help solving these questions. Recent advances in computational power and data availability have made it possible to successfully apply modern machine learning approaches to a variety of problems, including computer vision and image analysis tasks. These methods model and learn the underlying patterns in the data, and allow making accurate predictions on new data. Similarly, they may enable to obtain compact representations of the intrinsic features of the data of interest. Modern data-driven approaches, grouped under the family of deep learning methods, are being adopted to solve medical imaging data analysis tasks, including tractography. In this context, the proposed methods are less dependent on the constraints imposed by current tractography approaches. Hence, deep learning-inspired methods are suit for the required paradigm shift, may open new modeling possibilities, and thus improve the state of the art in tractography. In this thesis, a new paradigm based on representation learning techniques is proposed to generate and to analyze tractography data. By harnessing autoencoder architectures, this work explores their ability to find an optimal code to represent the features of the white matter fiber pathways. The contributions exploit such representations for a variety of tractography-related tasks, including efficient (i) filtering and (ii) clustering on results generated by other methods, and (iii) the white matter pathway reconstruction itself using a generative method. The methods issued from this thesis have been named (i) FINTA (Filtering in Tractography using Autoencoders), (ii) CINTA (Clustering in Tractography using Autoencoders), and (iii) GESTA (Generative Sampling in Bundle Tractography using Autoencoders), respectively. The proposed methods' performance is assessed against current state-of-the-art methods on synthetic data and healthy adult human brain in vivo data. Results show that the (i) introduced filtering method has superior sensitivity and specificity over other state-of-the-art methods; (ii) the clustering method groups streamlines into anatomically coherent bundles with a high degree of consistency; and (iii) the generative streamline sampling technique successfully improves the white matter coverage in hard-to-track bundles. In summary, this thesis unlocks the potential of deep autoencoder-based models for white matter data analysis, and paves the way towards delivering more reliable tractography data

    A Kernel-based Approach to Diffusion Tensor and Fiber Clustering in the Human Skeletal Muscle

    Get PDF
    In this report, we present a kernel-based approach to the clustering of diffusion tensors in images of the human skeletal muscle. Based on the physical intuition of tensors as a means to represent the uncertainty of the position of water protons in the tissues, we propose a Mercer (i.e. positive definite) kernel over the tensor space where both spatial and diffusion information are taken into account. This kernel highlights implicitly the connectivity along fiber tracts. We show that using this kernel in a kernel-PCA setting compounded with a landmark-Isomap embedding and k-means clustering provides a tractable framework for tensor clustering. We extend this kernel to deal with fiber tracts as input using the multi-instance kernel by considering the fiber as set of tensors centered in the sampled points of the tract. The obtained kernel reflects not only interactions between points along fiber tracts, but also the interactions between diffusion tensors. We give an interpretation of the obtained kernel as a comparison of soft fiber representations and show that it amounts to a generalization of the Gaussian kernel Correlation. As in the tensor case, we use the kernel-PCA setting and k-means for grouping of fiber tracts. This unsupervised method is further extended by way of an atlas-based registration of diffusion-free images, followed by a classification of fibers based on non-linear kernel Support Vector Machines (SVMs) and kernel diffusion. The experimental results on a dataset of diffusion tensor images of the calf muscle of 25 patients (of which 5 affected by myopathies, i.e. neuromuscular diseases) show the potential of our method in segmenting the calf in anatomically relevant regions both at the tensor and fiber level

    A Comparison of Metrics and Algorithms for Fiber Clustering

    Get PDF
    International audienceDiffusion-weighted Magnetic Resonance Imaging (dMRI) can unveil the microstructure of the brain white matter. The analysis of the anisotropy observed in the dMRI contrast with tractography methods can help to understand the pattern of connections between brain regions and characterize neurological diseases. Because of the amount of information produced by such analyses and the errors carried by the reconstruction step, it is necessary to simplify this output. Clustering algorithms can be used to group samples that are similar according to a given metric. We propose to explore the well-known clustering algorithm k-means and a recently available one, QuickBundles [1]. We propose an efficient procedure to associate k-means with Point Density Model, a recently proposed metric to analyze geometric structures. We analyze the performance and usability of these algorithms on manually labeled data and a database a 10 subjects
    • …
    corecore