582 research outputs found

    SwarmTouch: Tactile Interaction of Human with Impedance Controlled Swarm of Nano-Quadrotors

    Full text link
    We propose a novel interaction strategy for a human-swarm communication when a human operator guides a formation of quadrotors with impedance control and receives vibrotactile feedback. The presented approach takes into account the human hand velocity and changes the formation shape and dynamics accordingly using impedance interlinks simulated between quadrotors, which helps to achieve a life-like swarm behavior. Experimental results with Crazyflie 2.0 quadrotor platform validate the proposed control algorithm. The tactile patterns representing dynamics of the swarm (extension or contraction) are proposed. The user feels the state of the swarm at his fingertips and receives valuable information to improve the controllability of the complex life-like formation. The user study revealed the patterns with high recognition rates. Subjects stated that tactile sensation improves the ability to guide the drone formation and makes the human-swarm communication much more interactive. The proposed technology can potentially have a strong impact on the human-swarm interaction, providing a new level of intuitiveness and immersion into the swarm navigation.Comment: \c{opyright} 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. arXiv admin note: substantial text overlap with arXiv:1909.0229

    The use of modern tools for modelling and simulation of UAV with Haptic

    Get PDF
    Unmanned Aerial Vehicle (UAV) is a research field in robotics which is in high demand in recent years, although there still exist many unanswered questions. In contrast, to the human operated aerial vehicles, it is still far less used to the fact that people are dubious about flying in or flying an unmanned vehicle. It is all about giving the control right to the computer (which is the Artificial Intelligence) for making decisions based on the situation like human do but this has not been easy to make people understand that it’s safe and to continue the enhancement on it. These days there are many types of UAVs available in the market for consumer use, for applications like photography to play games, to map routes, to monitor buildings, for security purposes and much more. Plus, these UAVs are also being widely used by the military for surveillance and for security reasons. One of the most commonly used consumer product is a quadcopter or quadrotor. The research carried out used modern tools (i.e., SolidWorks, Java Net Beans and MATLAB/Simulink) to model controls system for Quadcopter UAV with haptic control system to control the quadcopter in a virtual simulation environment and in real time environment. A mathematical model for the controlling the quadcopter in simulations and real time environments were introduced. Where, the design methodology for the quadcopter was defined. This methodology was then enhanced to develop a virtual simulation and real time environments for simulations and experiments. Furthermore, the haptic control was then implemented with designed control system to control the quadcopter in virtual simulation and real time experiments. By using the mathematical model of quadcopter, PID & PD control techniques were used to model the control setup for the quadcopter altitude and motion controls as work progressed. Firstly, the dynamic model is developed using a simple set of equations which evolves further by using complex control & mathematical model with precise function of actuators and aerodynamic coefficients Figure5-7. The presented results are satisfying and shows that flight experiments and simulations of the quadcopter control using haptics is a novel area of research which helps perform operations more successfully and give more control to the operator when operating in difficult environments. By using haptic accidents can be minimised and the functional performance of the operator and the UAV will be significantly enhanced. This concept and area of research of haptic control can be further developed accordingly to the needs of specific applications

    The use of modern tools for modelling and simulation of UAV with Haptic

    Get PDF
    Unmanned Aerial Vehicle (UAV) is a research field in robotics which is in high demand in recent years, although there still exist many unanswered questions. In contrast, to the human operated aerial vehicles, it is still far less used to the fact that people are dubious about flying in or flying an unmanned vehicle. It is all about giving the control right to the computer (which is the Artificial Intelligence) for making decisions based on the situation like human do but this has not been easy to make people understand that it’s safe and to continue the enhancement on it. These days there are many types of UAVs available in the market for consumer use, for applications like photography to play games, to map routes, to monitor buildings, for security purposes and much more. Plus, these UAVs are also being widely used by the military for surveillance and for security reasons. One of the most commonly used consumer product is a quadcopter or quadrotor. The research carried out used modern tools (i.e., SolidWorks, Java Net Beans and MATLAB/Simulink) to model controls system for Quadcopter UAV with haptic control system to control the quadcopter in a virtual simulation environment and in real time environment. A mathematical model for the controlling the quadcopter in simulations and real time environments were introduced. Where, the design methodology for the quadcopter was defined. This methodology was then enhanced to develop a virtual simulation and real time environments for simulations and experiments. Furthermore, the haptic control was then implemented with designed control system to control the quadcopter in virtual simulation and real time experiments. By using the mathematical model of quadcopter, PID & PD control techniques were used to model the control setup for the quadcopter altitude and motion controls as work progressed. Firstly, the dynamic model is developed using a simple set of equations which evolves further by using complex control & mathematical model with precise function of actuators and aerodynamic coefficients Figure5-7. The presented results are satisfying and shows that flight experiments and simulations of the quadcopter control using haptics is a novel area of research which helps perform operations more successfully and give more control to the operator when operating in difficult environments. By using haptic accidents can be minimised and the functional performance of the operator and the UAV will be significantly enhanced. This concept and area of research of haptic control can be further developed accordingly to the needs of specific applications

    System Development of an Unmanned Ground Vehicle and Implementation of an Autonomous Navigation Module in a Mine Environment

    Get PDF
    There are numerous benefits to the insights gained from the exploration and exploitation of underground mines. There are also great risks and challenges involved, such as accidents that have claimed many lives. To avoid these accidents, inspections of the large mines were carried out by the miners, which is not always economically feasible and puts the safety of the inspectors at risk. Despite the progress in the development of robotic systems, autonomous navigation, localization and mapping algorithms, these environments remain particularly demanding for these systems. The successful implementation of the autonomous unmanned system will allow mine workers to autonomously determine the structural integrity of the roof and pillars through the generation of high-fidelity 3D maps. The generation of the maps will allow the miners to rapidly respond to any increasing hazards with proactive measures such as: sending workers to build/rebuild support structure to prevent accidents. The objective of this research is the development, implementation and testing of a robust unmanned ground vehicle (UGV) that will operate in mine environments for extended periods of time. To achieve this, a custom skid-steer four-wheeled UGV is designed to operate in these challenging underground mine environments. To autonomously navigate these environments, the UGV employs the use of a Light Detection and Ranging (LiDAR) and tactical grade inertial measurement unit (IMU) for the localization and mapping through a tightly-coupled LiDAR Inertial Odometry via Smoothing and Mapping framework (LIO-SAM). The autonomous navigation module was implemented based upon the Fast likelihood-based collision avoidance with an extension to human-guided navigation and a terrain traversability analysis framework. In order to successfully operate and generate high-fidelity 3D maps, the system was rigorously tested in different environments and terrain to verify its robustness. To assess the capabilities, several localization, mapping and autonomous navigation missions were carried out in a coal mine environment. These tests allowed for the verification and tuning of the system to be able to successfully autonomously navigate and generate high-fidelity maps

    Autonomous Collision avoidance for Unmanned aerial systems

    Get PDF
    Unmanned Aerial System (UAS) applications are growing day by day and this will lead Unmanned Aerial Vehicle (UAV) in the close future to share the same airspace of manned aircraft.This implies the need for UAS to define precise safety standards compatible with operations standards for manned aviation. Among these standards the need for a Sense And Avoid (S&A) system to support and, when necessary, sub¬stitute the pilot in the detection and avoidance of hazardous situations (e.g. midair collision, controlled flight into terrain, flight path obstacles, and clouds). This thesis presents the work come out in the development of a S&A system taking into account collision risks scenarios with multiple moving and fixed threats. The conflict prediction is based on a straight projection of the threats state in the future. The approximations introduced by this approach have the advantage of high update frequency (1 Hz) of the estimated conflict geometry. This solution allows the algorithm to capture the trajectory changes of the threat or ownship. The resolution manoeuvre evaluation is based on a optimisation approach considering step command applied to the heading and altitude autopilots. The optimisation problem takes into account the UAV performances and aims to keep a predefined minimum separation distance between UAV and threats during the resolution manouvre. The Human-Machine Interface (HMI) of this algorithm is then embedded in a partial Ground Control Station (GCS) mock-up with some original concepts for the indication of the flight condition parameters and the indication of the resolution manoeuvre constraints. Simulations of the S&A algorithm in different critical scenarios are moreover in-cluded to show the algorithm capabilities. Finally, methodology and results of the tests and interviews with pilots regarding the proposed GCS partial layout are covered

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems

    Mobiles Robots - Past Present and Future

    Get PDF

    An Innovative Human Machine Interface for UAS Flight Management System

    Get PDF
    The thesis is relative to the development of an innovative Human Machine Interface for UAS Flight Management System. In particular, touchscreena have been selected as data entry interface. The thesis has been done together at Alenia Aermacch

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA
    corecore