4,760 research outputs found

    Decision map for spatial decision making in urban planning

    Get PDF
    In this paper, we introduce the concept of decision map and illustrate the way this new concept can be used effectively to support participation in spatial decision making and in urban planning. First, we start by introducing our spatial decision process which is composed of five, non-necessary sequential, phases: problem identification and formulation, analysis, negotiation, concertation, and evaluation and choice. Negotiation and concertation are two main phases in spatial decision making but most available frameworks do not provide tools to support them effectively. The solution proposed here is based on the concept of decision map which is defined as an advanced version of conventional geographic maps which is enriched with preferential information and especially designed to clarify decision making. It looks like a set of homogenous spatial units; each one is characterised with a global, often ordinal, evaluation that represents an aggregation of several partial evaluations relative to different criteria. The decision map is also enriched with different spatial data exploration tools. The procedure of the construction of a decision map contains four main steps: definition of the problem (i.e. generation of criteria maps), generation of an intermediate map, inference of preferential parameters, and generation of a final decision map. The concept of decision map as defined here is a generic tool that may be applied in different domains. This paper focuses on the role of the decision map in supporting participation in spatial decision making and urban planning. Indeed, the decision map is an efficient communication tool in the sense that it permits to the different groups implied in the spatial decision process to ‘think visually’ and to communicate better between each other.ou

    Environmental urbanization assessment using gis and multicriteria decision analysis: a case study for Denizli (Turkey) municipal area

    Get PDF
    In recent years, life quality of the urban areas is a growing interest of civil engineering. Environmental quality is essential to display the position of sustainable development and asserts the corresponding countermeasures to the protection of environment. Urban environmental quality involves multidisciplinary parameters and difficulties to be analyzed. The problem is not only complex but also involves many uncertainties, and decision-making on these issues is a challenging problem which contains many parameters and alternatives inherently. Multicriteria decision analysis (MCDA) is a very prepotent technique to solve that sort of problems, and it guides the users confidence by synthesizing that information. Environmental concerns frequently contain spatial information. Spatial multicriteria decision analysis (SMCDA) that includes Geographic Information System (GIS) is efficient to tackle that type of problems. This study has employed some geographic and urbanization parameters to assess the environmental urbanization quality used by those methods. The study area has been described in five categories: very favorable, favorable, moderate, unfavorable, and very unfavorable. The results are momentous to see the current situation, and they could help to mitigate the related concerns. The study proves that the SMCDA descriptions match the environmental quality perception in the city. © 2018 Erdal Akyol et al

    DMA:an algebra for multicriteria spatial modeling

    Get PDF

    Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh

    Get PDF
    Landslides are a common hazard in the highly urbanized hilly areas in Chittagong Metropolitan Area (CMA), Bangladesh. The main cause of the landslides is torrential rain in short period of time. This area experiences several landslides each year, resulting in casualties, property damage, and economic loss. Therefore, the primary objective of this research is to produce the Landslide Susceptibility Maps for CMA so that appropriate landslide disaster risk reduction strategies can be developed. In this research, three different Geographic Information System-based Multi-Criteria Decision Analysis methods—the Artificial Hierarchy Process (AHP), Weighted Linear Combination (WLC), and Ordered Weighted Average (OWA)—were applied to scientifically assess the landslide susceptible areas in CMA. Nine different thematic layers or landslide causative factors were considered. Then, seven different landslide susceptible scenarios were generated based on the three weighted overlay techniques. Later, the performances of the methods were validated using the area under the relative operating characteristic curves. The accuracies of the landslide susceptibility maps produced by the AHP, WLC_1, WLC_2, WLC_3, OWA_1, OWA_2, and OWA_3 methods were found as 89.80, 83.90, 91.10, 88.50, 90.40, 95.10, and 87.10 %, respectively. The verification results showed satisfactory agreement between the susceptibility maps produced and the existing data on the 20 historical landslide locations

    Geosimulation and Multicriteria Modelling of Residential Land Development in the City of Tehran: A Comparative Analysis of Global and Local Models

    Get PDF
    Conventional models for simulating land-use patterns are insufficient in addressing complex dynamics of urban systems. A new generation of urban models, inspired by research on cellular automata and multi-agent systems, has been proposed to address the drawbacks of conventional modelling. This new generation of urban models is called geosimulation. Geosimulation attempts to model macro-scale patterns using micro-scale urban entities such as vehicles, homeowners, and households. The urban entities are represented by agents in the geosimulation modelling. Each type of agents has different preferences and priorities and shows different behaviours. In the land-use modelling context, the behaviour of agents is their ability to evaluate the suitability of parcels of land using a number of factors (criteria and constraints), and choose the best land(s) for a specific purpose. Multicriteria analysis provides a set of methods and procedures that can be used in the geosimulation modelling to describe the behaviours of agents. There are three main objectives of this research. First, a framework for integrating multicriteria models into geosimulation procedures is developed to simulate residential development in the City of Tehran. Specifically, the local form of multicriteria models is used as a method for modelling agents’ behaviours. Second, the framework is tested in the context of residential land development in Tehran between 1996 and 2006. The empirical research is focused on identifying the spatial patterns of land suitability for residential development taking into account the preferences of three groups of actors (agents): households, developers, and local authorities. Third, a comparative analysis of the results of the geosimulation-multicriteria models is performed. A number of global and local geosimulation-multicriteria models (scenarios) of residential development in Tehran are defined and then the results obtained by the scenarios are evaluated and examined. The output of each geosimulation-multicriteria model is compared to the results of other models and to the actual pattern of land-use in Tehran. The analysis is focused on comparing the results of the local and global geosimulation-multicriteria models. Accuracy measures and spatial metrics are used in the comparative analysis. The results suggest that, in general, the local geosimulation-multicriteria models perform better than the global methods

    GIS-based methodology for evaluating the wind-energy potential of territories: A case study from Andalusia (Spain)

    Get PDF
    In recent years, Spain, in an effort to meet European Union (E.U.) targets, has been developing different strategies to promote the installation of renewable energy plants. In this regard, evaluating territories to assess their potential and thus identify optimum sites for the installation of energy-generating facilities is a crucial task. This paper presents a comprehensive geographic information system (GIS)-based site-selection methodology for wind-power plants in the province of Córdoba, which has hitherto been regarded as unsuitable for this sort of facility owing to the lack of wind resources. Three scenarios have been set out, each of which presents a different set of restrictions. Scenario 2 applies the most stringent restrictions in the specialized literature, and finds no suitable areas for the installation of wind-energy plants. However, Scenario 1, which applies the least stringent restrictions, and Scenario 3, which applies the same restrictions currently in force for other wind turbines already in operation in Andalusia, have led to the identification of several areas that could a priori be considered suitable and now need more detailed analysis. The results illustrate the convenience of undertaking multiscenario analyses

    GIS-based multicriteria analysis as decision support in flood risk management

    Get PDF
    In this report we develop a GIS-based multicriteria flood risk assessment and mapping approach. This approach has the ability a) to consider also flood risks which are not measured in monetary terms, b) to show the spatial distribution of these multiple risks and c) to deal with uncertainties in criteria values and to show their influence on the overall assessment. It can furthermore be used to show the spatial distribution of the effects of risk reduction measures. The approach is tested for a pilot study at the River Mulde in Saxony, Germany. Therefore, a GISdataset of economic as well as social and environmental risk criteria is built up. Two multicriteria decision rules, a disjunctive approach and an additive weighting approach are used to come to an overall assessment and mapping of flood risk in the area. Both the risk calculation and mapping of single criteria as well as the multicriteria analysis are supported by a software tool (FloodCalc) which was developed for this task. --

    Recreation Potential Assessment at Tamarix Forest Reserves: A Method Based on Multicriteria Evaluation Approach and Landscape Metrics

    Get PDF
    The purpose of this study was to develop new methods to describe outdoor recreation potential based on landscape indicators and systemic multicriteria evolution in the Tamarix forest reserves of Varamin city, a part of Iranian–Turanian forests of the Tehran province in Iran. First, in conducting a multicriteria evaluation, ecological factors that included slope, aspect, elevation, vegetation density, precipitation, temperature, and soil texture were mapped, classified, and coded according to the degree of desirability for outdoor recreation. All these maps were then intersected and the final map of recreational potential for three regions of the forest reserves was prepared. Results showed that the Shokrabad region had more recreation potential than the other two regions (Fakhrabad and Dolatabad) in terms of the sum of ecological factors potentially affecting tourism potential. Second, in conducting a landscape-based method, six of the most important indicators of the landscape that are effective in outdoor recreational potential were developed for each region. The combination of these landscape features determined the value of a place for recreational activities from a landscape perspective. The results showed that a large part of the Shokrabad region and a smaller number of places in the Fakhrabad and Dolatabad regions have high outdoor recreational potential. The area suitable for recreation in the output of the multicriteria evaluation method turned out to be greater than the area suggested by the landscape method, as more factors were examined in the multicriteria evaluation method. Of the set investigated, the topography and soil factors played an important role in the evaluation
    corecore