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___________________________________________________________________________ 
Absract. Map algebra is a powerful tool to implement cartographic modeling. Map algebra is now well 
recognized and most of its functionalities are supported by most of major geographical information systems 
products.  Several extensions have been proposed to the original map algebra through the incorporation of 
new operators, the support of complex mathematical expressing and formulation, the support of other data 
types, the support of spatial dynamics modeling, the support of temporal dimension, and the support of 
visual modeling. On the other hand, spatial problems are inherently of multicriteria nature.  However, 
neither the original map algebra nor its different extensions are able to support multicriteria aspects of 
spatial problems. This is due essentially to the absence of convenient operators permitting to support 
multicriteria modeling. The objective of this paper is to propose a new algebra especially devoted to 
multicriteria spatial modeling. 
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___________________________________________________________________________ 
 
1. Introduction 
 
Map algebra is a powerful tool to implement cartographic modeling. It is introduced in the early 1980s 
by Tomlin (Tomlin, 1983) and then extended and refined in a book (Tomlin, 1990). The operands of 
map algebra are single-factor map layers. It uses spatial operators to generate new map layers as the 
result. Map algebra is originally raster data-oriented framework. However, several extensions have 
been proposed to the original map algebra. They concern the addition of new operators, the support of 
complex mathematical expressing and formulation, the support of other data types, the support of 
spatial dynamics modeling, the support of temporal dimension, and the support of visual modeling. 
Tomlin’s map algebra is now well recognized and most of its functionalities are now supported by 
most of major geographical information systems (e.g. Microstation raster module, Arc/Info-GRID, 
GRASS mapcalc, the the GRID Analyst of Integraph's Modular GIS Environment, Idrisi, etc.).  
On the other hand, spatial decision problems are inherently of multicriteria nature, where several, often 
conflicting, evaluation criteria should be taken into account for evaluating different potential 
alternatives. However, neither the original map algebra nor its different extensions are able to support 
multicriteria aspects of spatial problems. This is due essentially to the absence of convenient operators 
permitting to support multicriteria modeling. The objective of this paper is to propose a new algebra, 
called decision map algebra (or DMA), especially devoted to multicriteria spatial modeling. 
This paper goes as follows.  Section 2 briefly introduces Tomlin’s map algebra. Section 3 deals with 
multicriteria analysis and modeling. Section 4 introduces the concept of decision map, the central 
ingredient of our algebra. Section 5 details the proposed algebra. Section 6 presents the ongoing 
implementation of DMA. Section 7 concludes the paper. 
 
2. Map algebra 
 
Map algebra is convenient framework for spatial analysis and modeling. The structure of map algebra 
consists of a set of map layers, primitives operations on and between map layers, and sequences of 
these operations (Berry, 1993). A map layer is an element of a cartographic model, defined as a 

 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29589017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

ICA Workshop on Geospatial Analysis and Modeling 

8 July 2006, Vienna, Austria 

 
collection of map layers each of which represents the spatial distribution of a particular attribute over a 
common study area. The elementary unit of a map layer is the location, usually represented as a cell in 
a grid space. Each location on a map layer is associated with a numerical value representing the value 
of the corresponding attribute at that location.  
The map algebra operations are used to transform map layers, location by location, into new map 
layers in order to extract information useful to the user (Takeyama and Couclelis, 1997). Any complex 
manipulation of map layers is then represented as an algebraic composition of such operations. Thus, 
the structure of map algebra is similar to that traditional algebra in the sense that map layer are treated 
as if they where numbers in an equation (Berry, 1986). 
The operations are classified into (Tomlin, 1990; Takeyama and Couclelis, 1997): (i) Local operations 
that compute a new value for every location as a function of the values of one or more existing values 
with that location; (ii) Zonal operations that compute a new value for each location as function of the 
values from a specified layer that are associated not just with that location itself but with all locations 
that occur within its zone on another specified layer;  (iii) Incremental operations that characterize 
each location as an increment of one-, two- or three-dimensional cartographic form. The size and 
shape of these increments are inferred from the value(s) of each location relative to those of its 
adjacent neighbors on one or more specified layers; and (iv) Focal operations that compute each 
location's new value as a function of the existing values, distances, and/or directions of neighboring 
(but not necessarily adjacent) locations on a specified map layer.  
Recent implementations of map algebra in GIS include global (per-layer) operations (Menon et al., 
1992). These   global operations are used, among others, for the generation of Euclidean distance and 
weighted cost distances maps, shortest path maps, nearest neighbor allocation maps, for the grouping 
of zones into connected, etc. In these extensions as in the original map algebra, statements and 
operations are normally expressed in an English-like syntax stimulating. Consider for instance the 
LocalRating operator that is used to characterize locations in terms of values from two or more 
layers. The following example is used to generate  a new layer entitled OpenDevelopment on which 
Vegetation zones one, two and three (HardWoods, SoftWoods, and MixedWoods) are set to a value of 
six , while each location in zone zero (Open-Land) is set to that location’s value on the exiting 
Development layer  (Tomlin 1990, p. 73): 
 
OpenDevelopment = LocaRating  of Vegetation with Devlopment for 0 with 6 for 1…3 

 
Enhanced spatial modeling often needs a sequence of basic map algebra operations. This sequence of 
operations is called a procedure.  
While map algebra is a well organized and simple framework for cartographic modeling, it has several 
limitations (e.g. essentially raster-oriented framework, not adequate for dynamic modeling, does not 
support multicriteria spatial modeling). To overcome these limitations, several extensions have been 
proposed. They concern (i) the addition of new operators (e.g. Caldwell 2000); (ii) the support of 
complex mathematical expressing and formulation (e.g.  Takeyama and Couclelis, 1997); (iii) the 
support of other data types (e.g.  Armstrong and Densham, 1996; Lin, 1998; Corripio, 2003);   (iv) the 
support of spatial dynamics modeling (e.g. Takeyama and Couclelis, 1997); (v) the support of 
temporal dimension (e.g.  Mennis and Viger, 2005a, 2005b); (vi) the support of visual modeling (e.g. 
Egnhofer and Bruns, 1994; Pullar, 2004). However, all these extensions are not sufficient to support 
multicriteria spatial modeling. 
 
3. Multicriteria analysis and modeling 
 
Multicriteria analysis (see, for e.g., Roy, 1996; Belton and Stewart, 2002), is a family of OR/MS tools 
that have experienced very successful applications in different domains since the 1960s. It has been 
advised in spatial context to overcome the limitations of GIS in spatial analysis and modeling. Indeed, 
GIS is a powerful tool of acquisition, management and analysis of spatially-referenced data but it is a 
limited tool in analysis and modeling as it is remarked by several authors (e.g. Carver, 1991; Laaribi, 
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2000; Malczewski, 1999; Chakhar and Martel, 2003, 2004). This is due essentially to its lack in more 
powerful analytical tools enabling it to deal with spatial problems, where several parties, often with 
conflicting objectives, are involved in the decision-making process and different, often contradictory, 
evaluation criteria should be considered. Naturally, multicriteria analysis is the most adequate tool to 
fill this gap.  
It is generally assumed in multicriteria analysis that the decision maker (DM) has to choose among 
several possibilities, called alternatives. The set of alternatives, denoted A, is the collection of all 
alternatives. Selecting an alternative among this set depends on many characteristics, often 
contradictory, called criteria. Accordingly, the decision maker will generally have to be content with a 
compromising solution. 
The multicriteria problems are commonly categorized as continuous or discrete, depending on the 
domain of alternatives (Zanakis et al., 1998). Hwang and Yoon (1981) classify them as (i) multiple 
attribute decision-making (MADM), and (ii) multiple objective decision-making (MODM). According 
to Zanakis et al. (1998), the former deals with discrete, usually limited, number of pre-specified 
alternatives. The latter deals with variable decision values to be determined in a continuous or integer 
domain of infinite or large number of choices. In the rest of this paper, we focalize only on MADM 
methods.  
The general schema of MADM methods is shown in Figure 1. The first requirement of nearly all 
MADM techniques is a performance table containing the evaluations or criteria scores of a set of 
alternatives on the basis of a set of criteria.  
Criteria are factors on which alternatives are evaluated and compared. More formally, a criterion is a 
function gj, defined on A, taking its values in a totally ordered set, and representing the DM's 
preferences according to some points of view (Vincke, 1992). The evaluation of an alternative a 
according to criterion gj is written gj(a).    
Typically, in most of multicriteria problems, the DM considers that one   criterion is more important 
than another. This relative importance is usually expressed in the form of weights, denoted wj, which 
are assigned to different criteria. In addition to weights, criteria are often associated with different 
thresholds: 
  

• The indifference threshold, generally denoted q, represents the largest difference preserving an 
indifference between two alternatives a and b in respect to  a criterion gj.  

• The preference threshold, generally denoted p, represents the smallest difference compatible 
with a preference in favor of a in respect to criterion gj.  

 
Figure 1. The MADM  general model 
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We remark that weights and thresholds are often called preference parameters. The next step consists 
in the aggregation of the different criteria scores using a specific aggregation procedure and taking 
into account the decision maker preferences. The aggregation of criteria scores permits the decision 
maker to make comparison between the different alternatives on the basis of these scores. Aggregation 
procedures are somehow the identities of the multicriteria methods. In MADM, they are usually 
categorized into two great families: (i) utility function-based family, and (ii) outranking relation-based 
family (see Vincke, 1992).   
The first family is essentially of Anglo-Saxon inspiration. Its basic principle is that the DM looks to 
maximize an utility function U(x)=U(g1(x),g2(x),…,gm(x)) that aggregate the partial evaluations 
(i.e. in respect to each criterion) of each alternative into a global one. It is important to mention that 
this family does not recognize the incomparability situations (i.e. the DM can compare any two 
alternatives) and that the indifference is transitive (i.e. if an alternative a  is equivalent to another 
alternative b and b is equivalent  to a third alternative c; than alternative a is necessarily equivalent to 
c). The weighted sum is an example of this family.  The second family, which recognizes the 
incomparability situations and does not exclude the intransitivity of preference relations, is usually 
considered as of European inspiration. In contrast with the first family, here the aggregation methods 
are said to be partial. Indeed, criteria are aggregated into partial binary relation S, such that aSb means 
that “a is at least as good as b”. The binary relation S is called outranking relation. The most known 
method in this family is ELECTRE (see Roy, 1996). 
The uncertainty and the fuzziness generally associated with any decision situation require a sensitivity 
analysis enabling the decision maker to test the consistency of a given decision or its variation in 
response to any modification in the input data and/or in the decision maker preferences. 
The aim of any decision model is to help the decision maker take decisions. The final recommendation 
in multicriteria analysis may take different forms, according to the manner in which a problem is 
stated. Roy (1996) identifies three types of results corresponding to three main ways for stating a 
problem: (i) choice: selecting a restricted set of alternatives; (ii) sorting: assigning alternatives to 
different pre-defined categories; and (iii) ranking: classifying alternatives from best to worst with 
eventually equal positions.  
Finally, we mention that in spatial context, alternatives and evaluation criteria are associated with 
geographical entities and relationships between entities and therefore can be represented in the form of 
maps.  Alternatives and criteria maps are generated using standard map algebra operations. In GIS-
based applications, criteria generation process is often modeled in terms of flowcharts, which are 
intuitive and simple modeling environment, especially for users with limited knowledge.  
 
4. Concept of decision map 
 
In this section, we introduce the concept of decision map, which is the central ingredient of our 
algebra. First, we note that a full description of the concept of decision map and its generation process 
and uses are detailed in Chakhar et al (2005).   Physically, a decision-map is a special kind of the map 
layer were the decision space is treated as a discrete surface composed of a finite number of polygonal 
homogenous spatial units obtained by applying a multicriteria sorting method.  More formally, a 
decision map M is defined as the set {(u, f(u)):u∈U}, where U is a set of homogenous spatial units 
and f is a function defined as follows: 
 
                        f: U  → E 

      u  → f(u)= Φ[g1(u),…gm(u)], 
 

where E is an ordinal (or cardinal) scale, Φ is a multicriteria sorting model and gj(u) is the 
performance of spatial unit u in respect to criterion gj. Accordingly, a decision map summarizes the 
preferential information of the decision maker relatively to a set of conflicting evaluation criteria into 
an ordinal or cardinal information.  
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The first step for the construction of the decision map consists in the generation of criteria maps. Each 
criterion map represents a specific theme and is composed of set of homogenous spatial units; each of 
which is associated with one evaluation, gj(u). Then, these criteria maps need to be superposed to 
obtain an intermediate map, which is composed of a new set of spatial units resulting from the 
intersection of the boundaries of the spatial units of the different criteria maps. Each spatial unit is 
characterized with a vector of m evaluation relative to the m criteria maps. Formally, to each spatial 
unit u, we associate the vector [g1(u),g2(u),…,gm(u)].  
Description of territory as a set of units is not new in land management (Joerin and Musy, 2000).  In 
classical cartographic modeling, these units are often defined through census tracts or administrative 
and political boundaries.  In this paper as in Joerin and Musy (2001), the initial subdivision of territory 
into homogenous units (Joerin  uses the term zone instead of unit) should respect the spatial natural 
(forest, body of water) and human (highways, parks, buildings) boundaries.    
To generate a final decision map, we should first use an aggregation mechanism to aggregate the 
vector associated with each spatial unit u in the intermediate map into one global evaluation. 
Mathematically, we write: g(u)=Φ[gj(u)]j∈F. F is the criteria family and Φ is defined as follows:  
 
                    Φ: Em → E 
                       [g1(u),g2(u),…,gm(u)] → g(u) 
 
The aggregation mechanism  Φ permits to assign each unit to one or several predefined categories on 
the scale E. In this paper, the multicriteria sorting model used is ELECTRE TRI (see Appendix B for 
an overview and Yu (1992) for a complete description of ELECTRE TRI method). 
The major merit of a decision map is that it permits to use outranking-based aggregation models in 
spatial modeling problems. In fact, most of multicriteria analysis based-GIS use methods based on 
utility function-like aggregation methods (e.g. Carver, 1991; Jankowski, 1995).  Theses aggregation 
models still dominate today and only few works (e.g. Martin et al., 2000; Joerin and Musy, 2000, 
2001) use outranking-based aggregation models (see Roy, 1996). However, these last ones are more 
suitable in spatial context since they permit “to consider both objective and subjective criteria and 
require fewer amount of information from the decision maker” (Malczewski, 1999). In addition, they 
do not impose the transitivity of indifference and tolerate the incomparability situations. But the major 
(technical) drawback of outranking methods is that they are not suitable for problems implying a great 
or infinite number of alternatives since they require pairewise comparison across all criteria (Chakhar 
et al., 2005). 
Subdividing the study area into homogenous spatial units permits to reduce significantly the number of 
potential alternatives to be evaluated and leads to “a manageable set of alternatives” (Hall et al, 1992; 
Wang, 1994; Joerin and Musy, 2001) and outranking methods can be applied quite easily. Indeed, in 
spatial multicriteria modeling, potential alternatives are represented through one of three atomic spatial 
entities, namely point, line or polygon (Malczewski, 1999; Chakhar and Mousseau 2004). Therefore, 
in a facility location problem, potential alternatives take the form of points representing different 
potential sites; in a linear infrastructure planning problem (e.g. highway construction), potential 
alternatives take the form of lines representing different possible routes; and in the problem of 
identification and planning of a new industrial zone, potential alternatives are assimilated to a set of 
polygons representing different candidate zones.  In raster-based GIS, these three alternatives are 
defined as a single pixel, collection of linearly adjacent pixels, and a set of contiguous pixels, 
respectively.  
By using the decision map concept, punctual, linear and polygonal decision alternatives can be 
defined, respectively, as an individual homogenous spatial unit, a collection of linear adjacent 
homogenous spatial units, and a collection of contiguous homogenous spatial units, respectively. 
These ways of modeling are illustrated in Table 1. 
It is important to remark that in many real-world applications, one may be called to represent 
alternatives with a combination of two or more atomic entities (Malczewski, 1999; Chakhar and 
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Mousseau 2003, 2004). In schools partitioning problem, for instance, decision alternatives can be 
assimilated to a combination of points and polygons where points represent schools and polygons 
represent zones to serve.  A set of "point-point" composed alternatives may represent potential paths in 
a shortest path identification problem. In this paper, we consider only atomic decision alternatives.  
We just mention that in Chakhar and Mousseau (2004) we have proposed several other examples of 
spatial problems implying composed alternatives. We have also introduced a solution that may used to 
handle some of these problems. 
 

Problem Representation in GIS Proposed modeling 
 
Location problems 

 
 
Point 

 
one spatial unit 

 
Linear infrastructure 
problems  
(e.g. highways)  

 
 
Line 

 
a series of linearly adjacent 
spatial units 
 

 
Land used and 
management problems 
 

 
 
Polygon 

one or several contiguous 
spatial units 
 

 ⋅

Table 1. Modeling spatial decision alternatives 
 
To conclude this section, we compare our decision map concept to maps generated through 
conventional cartographic modeling: 
 
• Cartographic modeling is essentially an automatic procedure with no or less (generally a priori) 

interaction with the decision maker. Our decision map generation process (see Chakhar et al 2005) is 
largely controlled by the decision maker; 

• Maps produced through cartographic modeling are essentially presentation-oriented ones and they 
are roughly used for an effective spatial decision-aid activity. Our decision maps are decision-oriented 
ones. In addition, decision map is a generic tool that may serve to the generation of potential 
alternatives and can be extended to support collaborative and communicative spatial decision making 
(as it is detailed in Chakhar et al., 2005); 

• Decision map permits to explicitly represent spatial preferences of the decision maker. In classic 
cartography modeling, preferences of the decision maker are often reduced to a tabular representation, 
often with no explicit relation to their spatial locations;  

• Aggregation is performed in early steps in the cartographic modeling process, which may lead to a 
substantially lost of the preferential information. In our approach, aggregation is performed in latter 
steps in the generation process;  

• Aggregation in our approach is based on outranking relations, which we think more appropriate to 
deal with spatial decision making. Especially, this permits the integration of both qualitative and 
qualitative criteria in problem modeling. 

5. Proposed decision map algebra 
 
To support multicriteria modeling, we introduce in this section a new algebra that we call decision 
map algebra (or DMA). It is important to note that DMA does not substitute Tomlin’s map algebra: 

 6



 

ICA Workshop on Geospatial Analysis and Modeling 

8 July 2006, Vienna, Austria 

 
DMA is an extension of Tomlin’s map algebra that is especially devoted to multicriteria spatial 
modeling. Further, we mention that in practice we need to combine both of them for a complete and 
efficient modeling. Moreover, several operators of DMA use the ones of map algebra.  
DMA contains three sorts of operands: (i) geographic objects; (ii) geographic maps; and (iii) some 
other operands required to multicriteria modeling.  In addition to the standard operators of map 
algebra, DMA contains several new ones devoted to multicriteria modeling.  
 
5.1 Primitives and definitions 
 
This section defines the terms used in the specification of DMA.  DMA contains several data types. 
The relationships among these data types are depicted in Figure 2. In this figure, the symbols  ‘s’ and  
‘agg’ signify  the specialization/generalization and the aggregation relationships, often used in object 
oriented modeling;  the double brakes symbol ‘{}’ means  ‘a collection of ’ ; the ‘xor’ is the XOR 
binary operator. Geographic objects and maps are represented by oval or rectangular shapes with a 
solid line. The other shapes (with a dashed line) represent descriptive attributes and multicriteria 
concepts that are introduced for the purpose of DMA.  
The basic data type in DMA (and also in most of map algebra-like languages) is map-layer. A map-
layer is the most elementary data that contains the map image and other documentary items for the 
map-layer including the global geographic reference system, rSystem; the map scale, mScale; etc. 
There are two types of map-layer data type: raster and vector. The map image of a raster map-
layer is composed of pixels. Each element of a aster map-layer is called gPixel. The map image 
of a vector map-layer is a collection of three types of geographical objects: 
 

• gPoint: is an individual, one-dimensional repressing a punctual entity  in real-world. 
• gLine: is a two-dimensional object  representing a linear entity in real-world. 
• gPolygon: is a three-dimensional object representing a polygonal entity in real-world. 

 
In DMA, a map-layer is either of raster or vector nature. This is ensured with the ‘xor’ symbol in 
Figure 2. For the purpose of DMA, a collection of gPixel, gPoint, gLine and gPolygon are 
denoted xSet, pSet, lSet and ySet, respectively. A gPixel can be associated with one value 
which may be any arbitrary data type representing a natural or an artificial attribute. A gPoint, 
gLine or gPolygon can be associated with several values representing a set of descriptive attributes 
that apply to these objects as a whole. 
The gPixel elements of a raster map-layer are fully identified with their XY coordinates on the map 
image. The gPoint, gLine and gPolygon associated with a vector-based map-layer need to be 
uniquely identified.  
We define three new subclasses of map-layer data type: alternative-map, criterion-map and   
decision-map (see Figure 2). An alternative-map is a special kind of map-layer which, in 
addition to the general information associated with any map-layer, contains a collection of specific 
objects called alternatives.  It is important to mention that alternatives are normally generated through 
decision-maps as explained in section 4.  But the alternative-map data type is included in 
DMA to deal with spatial problems for which the use of a decision-map is difficult or not possible. 
There are basically three types of alternatives:  pAlter, lAlter or yAlter representing punctual, 
linear or polygonal decision alternatives, respectively. A collection of pAlter, lAlter and yAlter 
are denoted pAlters, lAlters, and yAlters, respectively. When it is necessary, the generic terms 
anAlter and sAlters will be used to denote an alternative and a set of alternatives, regardless to 
their nature. Each alternative is characterized with a vector of values relative to a set of criteria or 
attributes and applies to these objects as a whole. It is important to mention that for a given spatial 
decision problem, each alternative-map contains only one kind of alternatives; each of which is 
uniquely identified.  
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A criterion-map is a specific, mono-valued, map-layer where each spatial object (i.e. gPixel, 
gPoint, gLine or gPolygon) is characterized by one value representing the evaluation of this 
element in respect to a given criterion. A criterion-map is different from a simple map-layer in 
the sense that it models some subjective information. That is, two persons may give different values 
for the same spatial object, along with their study perspectives. 
 

Figure 2.  Data types relationships 
 
In multicriteria analysis, each criterion is often associated with a weight, a direction of optimization 
and several preference parameters (see section 3). To take into account these information, we associate 
to each criterion-map the following data types: 
 

• cWeight: An importance degree reflecting the power of the criterion during the comparaison 
of alternatives. 

• cDirection: The optimization direction of the criterion which may be maximization or 
minimization. 

• qThreshold and pThreshold:  corresponding to the indifference and preference 
thresholds introduced in section 3;  

• vThreshold: represents the  smallest difference between the performance of two alternatives 
incompatible with the  outranking assertion as explained in Appendix B. 

  
 For coherence reasons, we need to have: 0 ≤ qThreshold ≤ pThreshold ≤ vThreshold. A 
collection of evaluation criterion-maps are called cFamily (for criteria family) in DMA.  
As mentioned earlier, a decision-map is a special kind of map-layer where the decision space is 
treated as a discrete surface composed of a finite number of polygonal homogenous spatial units. Each 

 8



 

ICA Workshop on Geospatial Analysis and Modeling 

8 July 2006, Vienna, Austria 

 
element of a decision-map is of type sUnit (for spatial unit). A collection of spatial units is denoted 
by sSet.  
As explained earlier, to operationalize a decision-map, we to need to assign all of its spatial units to 
a set of predefined categories through the multicriteria sorting method ELECTRE TRI. We denote by 
uClass the class to which a spatial unit is assigned. 
To support multicriteria modeling, we add a new data type, called sd-model (for spatial decision 
model).  The sd-model is an aggregation of one decision-maps (or an alternative-map) and at 
least two criterion-maps data types.   
Finally, we mention that several other data types (as decision table, aggregation operator, preference 
structure and choice function) are needed to formalize our algebra.  These additional data types are not 
included in Figure 2 but they will be introduced progressively hereafter. 
  
5.2 Formal specification of DMA 
 
To specify our DMA, we adopt the algebraic specification method of Guttag and Horning (1978).  The 
algebraic specification methods are mainly used in software engineering to describe the behavior of 
complex systems. An algebraic specification consists of three parts (Guttag and Horning; 1978; 
Dorenbeck and Egenhofer, 1991): (i) a set of sets including the data type to define and the types 
needed to define its properties; (ii) a set of operations defined on the operands. Each operation is 
defined by its name, the Cartesian product of the inputs sorts and the sort of the result; and (iii) a set of 
axioms (or equations) that describe the behavior of operations. 
In the following, we discuss the formal specification of some data types. The specifications of the 
other data types are provided in Appendix A.  
 
5.2.1 Specification of sUnit data type 
 
The most elementary data type is the spatial unit, denoted sUnit. The formal specification of sUnit 
data type in shown in Figure 3. The first operator associated with sUnit is ASSIGN which permits to 
set the performance of a sUnit in respect to a given criterion provided as parameter. The ASSIGN is a 
hidden function (Chan and White, 1987), i.e. it is not part of the algebra and serves its purpose in the 
specification only. The operator ADJACENT tests if two spatial units are adjacent or not. GET-EDGES 
and GET-VERTICES permit to extract, respectively, the set of edges and vertices for a given spatial 
unit. The specifications of these three spatial manipulation operators are similar to the ones associated 
with gPolygon data type provided in Appendix A. The SCORE operator returns the performance of a 
spatial unit in respect to a given criterion. This operator is quite straightforward and its specification is 
not detailed in Figure 3. 
Data type sUnit is associated with a set of operators devoted to implement ELECTRE TRI model. The 
operators PCONCORDANCE, CONCORDANCE, PDISCORDANCE and DISCORDANCE implement Equations 
1, 2, 3 and 4 in Appendix B, respectively.  The PCONCORDANCE and PDISCORDANCE operators take in 
input two values and a criterion and generate a real that indicates the partial concordance and 
discordance indices, respectively. The two values correspond to the scores of the spatial unit and the 
profile to be compared in respective to the criterion under consideration.  
To implement the PCONCORDANCE and PDISCORDANCE operators, we need to define the concept of 
decision table, denoted dTable. A decision table is a method to specify formally the behavior of 
operations, particularly those which can be described by a series of rules. It consists of two parts 
(Dorenbeck and Egenhofer, 1991): (i) a set of conditions which have to be satisfied simultaneously; 
and (ii) the corresponding actions to be taken upon conditions.  Decision tables are most naturally 
presented in the form of a table with the set of conditions being put into the upper half of the table and 
the corresponding set of actions underneath. The specification of dTable is provided in Appendix A. 
Each dTable has two operators: CRETATE and ACTION. The specification of the CRETATE operator is 
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DEFFERED (Meyer, 1988; Dorenbeck and Egenhofer, 1991), because it depends upon the particular 
context. The general structure of decision tables associated with PCONCORDANCE and PDISCORDANCE 
are shown in Table 2 and Table 3, respectively.  
 

v1– v2 ≥ p ≤ q < p ∧ > q 
ACTION 0 1 [p - v1 + v2]/[p  - q] 

Table 2.  Decision table associated with PCONCORDANCE operator 
 
 

v2– v1 ≥ p ≤ v < v ∧ > p 
ACTION 0 1 [v - v1 + v2]/[v  - p] 

Table 3.  Decision table associated with PDISCORDANCE operator 
 
___________________________________________________________________________ 
Type: sUnit 
set: map-layer, aCriterion, cFamily, sUnit, aProfile, pSet, lSet, dTable, real, value,  
     Boolean 
 
Syntax: 
ASSIGN       sUnit x aCriterion x value → sUnit 
ADJACENT     sUnit x sUnit → boolean 
GET-VERTECES sUnit → pSet 
GET-EDGES    sUnit → lSet 
SCORE        sUnit x aCriterion → real 
PCONCORDANCE value x value x aCriterion → real 
CONCORDANCE  sUnit x aProfile x cFamily → real 
PDISCORDANCE value x value x aCriterion → real 
DISCORDANCE  sUnit x aProfile x cFamily → real 
SIGMA        sUnit x aProfile x cFamily → real 
OUTRANK      sUnit x aProfile x cFamily x value → boolean 
 
 
Axioms: 
u: sUnit; h:aProfile; f:cFamily; g:aCriterion; t1,t2,t3:dTable; v:value 
 
PCONCORDANCE(u,h,g) 
  =t1.action(SCORE(u,g),SCORE(h,g),g) 
 
CONCORDANCE(u,h,f) 
  =  [Σg ∈ f PDISCORDANCE(u,h,g) * g.cWeight] / 
     [Σg ∈ f g.cWeight] 
 
PDISCORDANCE(u,h,g) 
  =t2.action(SCORE(u,g), SCORE(h,g),g) 
 
DISCORDANCE(u,h,f) 
  = Πg∈f∧(PDISCORDANCE(u,h,g)>CONORDANCE(u,h,g)) 
     [1-PDISCORDANCE(u,h,g)]/[1-CONORDANCE(u,h,g)] 
 
SIGMA (u,h,f) 
 = CONCORDANCE(u,h,f)* DISCORDANCE(u,h,f) 
 
OUTRANK(u,h,f,v) 
  =t3.action(u,h,SIGMA(u,h,f),SIGMA(h,u,f),v) 
___________________________________________________________________________________ 

Figure 3. Formal specification of sUnit data type 
 
In Tables 2 and 3, the parameters q, p and v should be mapped to qThreshold, pThreshold, and 
vThreshold attributes;  and v1 and v2 correspond to SCORE(h,g) and SCORE(u,g), respectively. 
All of them are provided as parameters for ACTION operator. 
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The CONCORDANCE and DISCORDANCE operators take in input a spatial unit, a profile and a family of 
criteria; and generates a real value in [0,1] corresponding to the global concordance and discordance 
indices. The cWeight attribute used in the specification of CONCORDANCE operator correspond to 
criterion weight (see Figure 2).  The SIGMA operator permits to compute the credibility indices as in 
Equation 5 in Appendix B.  
The operator OUTRANK permits to get the preference situation. As mentioned in Appendix B, there are 
four disjunctive possible situations that hold when comparing a spatial unit u to a profile h:  aIh, aPh, 
hPa or aRh. The operator OUTRANK uses the concept of decision table.  The decision table associated 
with OUTRANK operator is shown in Table 4. Note that u and h in Table 4 correspond to the spatial unit 
and the profile to be compared, respectively; and the values v1 and v2 in Table 4 correspond to 
SIGMA(u,h,f) and SIGMA(h,u,f), respectively. It is easy to see the four preference situations 
mentioned in Appendix B in the underneath part of Table 4. In addition to u, h, SIGMA(u,h,f) and 
SIGMA(u,h), the ACTION operator takes the value of the cutting level λ (see Appendix B), and 
returns the corresponding decision.  
 

v1 ≥ λ ≥ λ < λ < λ 
v2 ≥ λ   < λ ≥ λ   < λ 
ACTION uIh uPh hPu uRh 

Table 4. Decision table associated with OUTRANK operator 

5.2.2 Specification of decision-map data type 
 
Figure 4 specifies the decision-map data type.  As it is shown in this figure, the syntax part of 
decision-map data type contains four operators. The MAKE operator creates a decision map as the 
intersection of a set of criterion-maps. The result of this intersection is an initial decision-map. 
Each spatial unit of this initial decision-map is associated with a set of values relative to different 
criteria. 
___________________________________________________________________________________ 
Type: decision-map 
set: map-layer, criterion-map, sUnit, cFamily, aOperator, aProfile, sProfiles 
Syntax: 
MAKE       criterion-map x…x criterion-map → decision-map 
CLASSIFY   desicion-map x cFamily x sProfiles → desicion-map 
GROUP      decision-map x cFamily x aOperator → decision-map 
MERGE      decision-map x cFamily x sUnit x…x sUnit x aOperator → decision-map 
 
Axioms: 
d: decision-map; c1,…,cm,g: criterion-map; f;cFamily; v: value; h:aProfile; b:sProfiles 
 
MAKE(c1,…,cm)  
  =INTERSECT(c1,…,cm) 
 
CLASSIFY(d,b,f) 
 = ∀(u) (u∈d) 
   [∀(h) (u∈b) 
    if OUTRANK(u,h,f,cLevel) then u.uClass ← h+1 
       ] 
 
MERGE(d,u1,u2,op,f) 
  =u.make(d,[GET-VERTECES(u1) ∪ GET-VERTECES(u2)] \ 
            [GET-VERTECES(u1) ∩ GET-VERTECES(u2)]) 
   ∀(g)(g∈f)[ASSIGN(u,g,op.combine(SCORE(u1,g),SCORE(u2,g)))] 
  
GROUP(d,op) 
  = ∀(u1)∀(u2)(u1 ∈ d)(u2 ∈ d) ∧ (u1 <> u2)  
    [if ADJACENT(u1,u2) ∧ u1.uClass = u2.uClass then MERGE(d,u1,u2,op,f)] 
___________________________________________________________________________________ 

Figure 4. Formal specification of decision-map data type 

 11



 

ICA Workshop on Geospatial Analysis and Modeling 

8 July 2006, Vienna, Austria 

 
The operator CLASSIFY is the implementation of the pessimistic assignment procedure of ELECTRE 
TRI (see Appendix B). It permits to assign each spatial unit to a predefined set of categories defined in 
terms of their profiles. As it is shown in Appendix B, the pessimistic assignment procedure with 
ELECTRE TRI compares each alternative u (here alternatives are the spatial units) to all profiles 
starting from the best to the worst. The spatial unit u is assigned to first class for which u outranks its 
lower limit.  
The MERGE operator simply groups two or more adjacent spatial units. It uses the MAKE operator, 
inherited from gPolygon data type, to create a new spatial unit. The evaluations of the new spatial 
unit in respect to all criteria are obtained by aggregating, using the aOperator, the initial evaluations 
of original spatial units.  The specification of the MERGE operator is shown for two spatial units. The 
generalization to more than two spatial units is straightforward.  
The specification of the aOperator is defined in Appendix A. A aOperator must provide operation 
to combine a series of values. Since a large set of aggregation operators are available, the specification 
of its CRETATE operator is DEFFERED (Meyer, 1988; Dorenbeck and Egenhofer, 1991), because it 
depends upon the particular aggregation operator.  
The GROUP function takes a decision-map and an aggregation operator, aOperator; and generates 
a new decision-map by merging all adjacent spatial units that are assigned to the same class.  It is 
simply the generalization of the MERGE operator to the entire decision-map.  
 
5.2.3 Specification of criterion-map data type 
 
Data type criterion-map specified  in Figure 5 has two operators. The operator MAKE takes as input 
a predefined map algebra procedure, that is, a sequence of map algebra operations that takes in input 
one or more map-layers; and generates a criterion map.  
The operator SET permits to set a preference parameter.  The aParameter parameter may take the 
values of weight, direction, indifference, preference, or veto.  
Within the multicriteria methods based on utility-function aggregation operator, the term criterion is a 
generic one that includes objectives and attributes. An objective is a statement about the desired future 
which is made operational by assigning to it one or more attributes describing a geographical entity or 
the relationship between geographical entities (Malczewski, 1999). The specification of criterion-
map data type presented above of does not include these aspects of criteria modeling but they will be 
included in the future. This will enhance the applicability of DMA. 
__________________________________________________________________________________ 
 
Type:  criterion-map 
set:  map-layer, criterion-map, cWeight, cDirection, qThreshold, pThreshold, vThreshold,  
      aParameter, value, procedure 
 
Syntax: 
MAKE  procedure → criterion-map 
SET   criterion-map x aParameter x value → criterion-map 
 
Axioms: 
c: criterion-map;  a:aParameter; v: value 
 
SET(c,a,v) 
 = c.a ← v 
___________________________________________________________________________________ 

Figure 5. Formal specification of criterion-map data type 

 
5.2.4 Specification of sd-model data type 
 
As mentioned earlier, the sd-model data type is an aggregation of a decision-map and at least two 
criterion-maps.  It is important to reminder that the concept of decision-map may not apply for 
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some spatial problems. In this case, we may use an alternative-map. In the specification below, 
we suppose that a decision-map is in use.  The specification with an alternative-map is not 
included in this paper.  
The specification of sd-model data type is provided in Figure 6. It contains different multicriteria 
modeling operators. The P-ALTERNATIVE operator permits to generate a set of punctual alternatives. 
It takes a decision-map and returns a set of spatial units verifying the constraints ensured by the 
expression <aCriterion><bOperator><value>; where aCriterion represents an evaluation 
criterion and bOperator  is a binary operator.   
The L-ALTERNATIVE operator permits to generate a set of linear alternatives. It takes a decision-
map and two spatial units representing the start and the end points. It generates a set of corridors 
relating start and end spatial units.  
In multicriteria modeling, we may need to eliminate from consideration some alternatives that present 
some undesirable aspects.  These restrictions imposed, by the nature or by human beings, on 
alternatives are called constraints. Constraints may also be called admissibility criteria since they 
represent criteria that must be fully verified by any alternative; true criteria represent conditions that 
need to be satisfied at maximum (Laaribi, 2000).  The constraints dichotomize a set of alternatives 
under consideration into two categories:   acceptable (or feasible) and unacceptable (or unfeasible).  
The CONSTRAINT operator associated with the sd-model implements the concept of constraint. It 
takes a set of alternatives and a constraint similar to the one used with P-ALTERNATIVE  operator; and 
returns all the alternatives verifying the constrain. When several constraints are required, they may be 
modeled sequentially; each of which takes the result of the previous constraint as an input.  
The alternatives generated by L-ALTERNATIVE operator are composed of a set of spatial units, each of 
which is associated with a set of partial evaluations. The EVALUATE takes a linear alternative, a family 
of criteria and an aggregation operator, aOperator, and returns the new partial evaluations that apply 
to the alternative as a whole. We note that the spatial units u1,…,ur in the specification of EVALUATE 
operator are the individual spatial units composing the alternative. Intuitively, the EVALUATE operator 
is not needed for punctual alternatives (generated by the P-ALTERNATIVE operator).  
The SCORE operator is a hidden one. It takes an alternative and a criterion and returns the partial 
performance of that alternative in respect to the criterion. The P-VECTOR returns the performances of 
an alterative in respect to a family of criteria. The result is stored in a conventional ADT list. This 
function uses the INSERT operator associated with the ADT list (called aList  in Appendix A).  
The PAYOFF operator takes a set of alternatives and a family of criteria and returns the performance 
matrix. In the formal specification of this operator, the result matrix is defined as a list of performance 
vectors, i.e., each line is simply the performance vector of an alternative. 
The DOMINATE is an implementation of the dominance relation ∆ used in multicriteria modeling. The 
dominance relation is defined for two alternatives a and b; and a family of criteria F as follows: 

 
a∆b  ⇔ gj(a) ≥ gj(b); j ∈ F, 

 
with at least one strict inequality. Within DMA, DOMINATE operator takes a set of alternatives of the 
same type and returns all the non-dominated ones in respect to a family of criteria, cFamily.  
In real-world problems, criteria scores can be quantitative or qualitative and can be expressed 
according to different measurement scales (ordinal, interval, and ratio). However, several multicriteria 
problems require that all criteria evaluations are expressed on the same scale. The NORMALIZE 
operator is introduced to re-scale, when it is necessary, the different criteria scores between 0 and 1. It 
takes in input a set of alternatives of the same type, a family of criteria and a normalization procedure, 
denoted nProcedure. The specification of a nProcedure (see Appendix A) is similar to that of 
aOperator. Since different methods of normalization are available (see Table 5 for some examples), 
the CRETATE operator of a nProcedure is a DEFFERED one.  
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#   Rescaled value 

1    g(a) / maxii g(ai)    

2    [g(a) – mini g(ai)] /[maxii g(ai) – mini g(ai)] 

3    g(a) / ∑i g(ai)  

4    g(a) /√[∑i g(ai)2)] 

 
Table 5. Some normalization techniques (g(a) is the initial evaluation) 

 
The operator AGGREGATE uses a multicriteria aggregation procedure to aggregate all the partial 
evaluations into a global one. The aggregation procedures are denoted aProcedure (see Appendix 
A for the specification of aProcedure data type). 
The CHOICE, SORT and RANGE operators correspond to the three types of recommendations in 
multicriteria analysis that have mentioned in Section 3.  The definition of these three operators needs 
the introduction of a new concept: preference structure. A preference structure pStructure permits 
to the decision maker to articulate his/her preferences when comparing two alternatives. In 
multicriteria analysis, a pStructure is often operationalized through a criteria function.  Thus, a 
pStructure may be associated with several thresholds. Here, we adopt the most general way that 
considers the presence of two preference thresholds: an indifference threshold, called qThreshold, 
and a preference threshold, called pThreshold. A such pStructure permits to model three 
situations when comparing two alternatives a and b:  

 
aPb  ⇔  g(a) > g(b) + pThreshold    
aQb  ⇔  g(b) + pThreshold ≥ g(a)] > g(g) + qThreshold         
aIb  ⇔  g(b) + Threshold  ≥  g(a) and g(a) + qThreshold  ≥ g(b)  

 
The P, Q and I symbols are the binary relations of strict preference, weak preference and indifference, 
often used in preference modeling. Any pStructure can be fully characterized in terms of its 
characteristic function.  For example, we may associate to the preference structure above a 
characteristic function S defined as: 
 

aSb   ⇔ aPb ∨  aQb ∨  aIb 
 
The formal specification of pStructure data type is provided in Appendix A.  It includes three 
operators, P, Q, and I, implementing the three situations mentioned above; and an operator, S, 
implementing the characteristic function.  
The CHOICE operator may be implemented in terms of a choice function defined on a pStructure. A 
choice function C is a function that associates to a set B a subset C(B) of B. For example, we may 
associate to pStructure defined above, the following choice function: 

 
C(B)={ a ∈ B: aSb, ∀ b ∈ B}. 

 
Note that other functions may also apply as for example: C(B)={ a∈ B: ¬∃b ∈ B : bPa}. As it is 
shown in Figure 6, the CHOICE operator is defined in terms of the above choice function.  It takes in 
input a set of alternatives, a preference structure and a family of criteria; and returns the alternatives 
that verify the choice function S associated with the preference structure.  
The RANGE and SORT operators are defined by using the CHOICE operator. The RANGE operator 
establishes a partial pre-order on the set of alternatives A.  A pre-order consists of (i) a set of 
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equivalence classes and (ii) an order relation upon these classes.  Thus, it can be implanted as a series 
of CHOICE operators; each is of the following form:   

 

C(B)={ a∈ B: aPb ∨ aIb, ∀ b ∈ B}. 
 

In each step i, RANGE returns the most preferred alternatives from the set Bi where Bi=B\Bi-1; and 
B1=B.  In the first step, the choice function is applied to all the alternatives in the set B. The next steps 
use the set generated in the previous step minus the selected alternatives as input. As it is shown in 
Figure 6, the result of the RANGE operator is a list of ordered set of equivalence classes. The INSERT 
and GET operators are those of aList data type. They are used to insert and to get the alternatives for 
a given equivalence classe (identified by its position i in the list). 
Compared to CHOICE and RANGE operators, the SORT operator has an important characteristic: the two 
first ones compare each alternative to all the other ones while the third one compares each alternative 
to a set of p profiles defining a set of  p+1 predefined categories.  The implementation of the SORT 
operator is similar to operator CLASSIFY associated with decision-map data type. The only difference 
is related to the fact that CLASSIFY uses the preference structure associated with ELETCTRE TRI 
method and works on decision-map, while SORT is a more general one and can be used to 
implement other multicriteria sorting methods.  
 
______________________________________________________________________________________________ 
Type: sd-model 
set: map-layer, decision-map, criterion-map, sUnit, uSet, cFamily, aAlter, pAlters, lAlters, 
sAlters, aProcedure,  nProcedure, aOperator  
 
Syntax: 
P-ALTERNATIVE   decision-map x aCriterion x bOperator x value → pAlters 
L-ALTERNATIVE   desicion-map x sUnit x sUnit  → lAlters 
EVALUATE        aAlter x cFamily x aOperator → aAlter 
SCORE           aAlter x aCriterion → real 
P-VECTOR        aAlter x cFamily → aList 
PAYOFF          aSet x cFamily →  pTable 
CONSTRAINT      sAlters x aCriterion x bOperator x value → sAlters 
DOMINATE        sAlters x cFamily → uSet 
NORMALIZE       sAlters x cFamily x nProcedure → decision-map 
AGGREGATE       decision-map x cFamily x aProcedure → decision-map 
CHOICE          aSet x pStructure x cFunction → aSet 
SORT            aSet x sCatogries x sProfiles → aSet 
RANGE           aSet x rdirection → aSet  
 
Axioms: 
m,r: decisision-map; u:sUnit;  f: cFamily; a: aProcedure; n: nProcedure; s:aSet; b:pStructure; 
c:cFunction; x: aAlter; y:sAlters; v,l,m:aList 
 
P-ALTERNATIVE(d, g, op, v) 
  ={u : u ∈ d ∧ SCORES(u,g) op v } 
 
L-ALTERNATIVE (d,s,e) 
  ={ui : ui ∈ d ∧ u1 = s ∧ un = e ∧ ADJACENT(ui,ui+1)} 
 
CONSTRAINT(y, g, op, v) 
  ={x : x ∈ y ∧ SCORES(x,g) op v } 
  
EVALUATE(x,f, op) 
  =∀(g)(g∈f)[ASSIGN(u,g,op.combine(SCORE(u1,g),…,SCORE(ur,g)))] 
    
P-VECTOR(x,f) 
  = i ←1 
     ∀(g)(g∈f) 
     [insert(v,SCORE(x,g),i) 
      i ← i+1 
     ] 
______________________________________________________________________________________________ 

Figure 6. Formal specification of sd-model data type (continued in the next page) 
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______________________________________________________________________________________________ 
 
PAYOFF(s,f) 
  =∀(a) (a∈s) m.insert(P-VECTOR(a,f)) 
 
DOMINATE(y,f) 
  = {x:  x ∈ y ∧ ∀(x’)(x’∈y) 
         [∀(g)(g∈f) SCORE(x,g)  ≥  SCORE(x’,g)] ∧ 
         [∃(g')(g'∈f) SCORE(x’,g') > SCORE(x,g')]  
     }  
   
NORMALIZE(y,f,n) 
  = ∀(x)∀(g) (x ∈ y) (g ∈ f)  
      SCORE(x,g) ← n.combine(SCORE(x1,g),…,SCORE(xr,g)) 
 
AGGREGATE(x,f,o) 
  = o.combine(P-VECTOR(x,f)) 
 
CHOICE(s,p,f) 
  = {a ∈ s : p.S(a,b,g) ∀ b ∈ s ∀ g ∈ f} 
  
RANGE(s,p,f) 
 = i ←1 
   While s<>φ  
     [insert(l,CHOICE(s,p,f),i) 
      i ← i+1 
      s ← s\GET(i-1,l) 
     ] 
 
SORT(s,b,p,f) 
 = ∀(x) (x∈s) 
   [∀(h) (u∈b) 
    if p.S(a,h,g) then insert(l,x,h+1) 
       ] 
______________________________________________________________________________________________ 
 
Figure 6. Formal specification of sd-model data type (continued) 
 
6.  Implementing DMA 
 
The implementation of DMA is ongoing. DMA is being implementing through C++ on ArcGIS 9.1. 
Each data type in DMA is defined as a class and the operations associated with it are defined as 
methods for these classes. Figure 7 illustrates the generic definition some data types. The other data 
types are defined in similar way.  
Each of these classes contains, in addition to the methods corresponding to the operations of the data 
type that they implement, two specific methods representing the constructor and destructor of the 
class.  These two methods are not shown. 
Figure 7 shows also the implementation of DISTANCE and SET operators with gPoint and 
criterion-map data types. 
The piece of code in Figure 8 shows a didactic example illustrating the use of some data types from 
DMA. The objective of this example is to select a corridor for some linear infrastructures. This 
example may apply in problems like the construction of highways, pipelines, etc. As mentioned 
earlier, within a decision-map, a corridor is modeled as a sequence of linearly adjacent spatial units 
linking two spatial units representing the start and end points. They are denoted s and e in Figure 8.  
First, the example generates an initial decision-map, called r, by intersecting three criterion-
maps c1, c2 and c3; which we suppose that they have been already created. Then, the example 
uses the CLASSIFY operator to generate a final decision-map. To apply this operator and for the 
purpose of this example, cFamily and sProfiles are simply defined as one-dimensional and two-
dimensional array, respectively. 
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______________________________________________________________________________________________ 
 
class gPoint{ 
//... 
public: 
    gPoint MAKE(double, double);  
    boolean ISEQUAL(gPoint, gPoint);   
    double DISTANCE(gPoint, gPoint);   
    double X(gPoint); 
    double Y(gPoint); 
/
}; 
/... 

 
double gPoint::DISTANCE(gPoint p, gPoint q){ 
 return sqrt(((p.X – q.X) * (p.X – q.X)) + ((p.Y – q.Y) * (p.Y – q.Y))); 
}; 
 
class map_layer{ 
private: 
     string rSystem; 
     double mScale; 
//… 
public: 
     map-layer MAKE(string name); 
     gPoint PUT_P(map_layer, double,  double); 
     gLine  PUT_L(map_layer, gPoint,  gPoint); 
     gPolygon PUT_Y(map_layer, pSet); 
     map_layer INTERSECT(map_layer, map_layer); 
//… 
} 
 
class criterion_map{ 
private: 
    float cWeight; 
    float qThreshold; 
    float pThreshold; 
    float vThreshold; 
//... 
public: 
    criterion_map SET(char, float);  
/
}; 
/... 

  
criterion_map criterion_map::SET(char type, float value){ 
   if (type='q') this->qThreshold=value; 
   if (type='p') this->pThreshold=value; 
   if (type='v') this->vThreshold=value; 
}; 
______________________________________________________________________________________________ 

Figure 7. Generic definitions of some data types in C++  
 
______________________________________________________________________________________________ 
//… 
main() 
{ 
 decision_map r; 
 criterion_map c1, c2, c3; 
 r.intersect(c1,c2,c3); 
 string cFamily[3];  
 cFamily =(c1,c2,c3}; 
 double sProfiles[4][3]; 
 //… 
 r.classify(r,b,f); 
 sUnit s, e; 
 //… 
 uSet corridors; 
 corrirods=r.L-ALTERNATIVE(r,s,e); 
} 
______________________________________________________________________________________________ 

Figure 8. A didactic example illustrating some operations from DMA 
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7. Conclusion 
 
Map algebra is a powerful tool to implement cartographic modeling.  Several extensions to the 
original map algebra are available in literature. However, neither the original map algebra nor its 
different extensions are able to support multicriteria aspects of spatial problems. This is due 
essentially to the absence of convenient operators permitting to support multicriteria modeling.  
In this paper, we have proposed a new algebra, called DMA, especially devoted to multicriteria 
spatial modeling.  As other map algebras, the proposed DMA has several merits: (i) it is a rigorous 
mathematical modeling framework, (ii) well adapted to object-oriented implementation, which is a 
natural way to deal with geographic objects and phenomena; and (iii) its independent from the way 
data are internally stored. Additionally, our DMA works for both vector and raster data representation 
(most of proposed algebra works only on raster data representation). More importantly, DMA is a 
powerful environment for multicriteria spatial modeling. In addition, using DMA needs a limited 
knowledge of multicriteria modeling.  
Currently, the implementation of DMA is ongoing. DMA is being implemented on ArcGIS 9.1 of 
ESRI using Visual C++.   
A part some common operators, the major part of DMA operators are especially devoted to 
outranking-based multicriteria modeling methods.  The addition of other operators devoted to utility 
function-based multicriteria modeling methods is under study.  In future time, we envisage the 
development of visual and script-based versions of DMA. 
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Appendix A: DMA data types specifications 

 
In this Appendix we provide the description of DMA data types. To make the paper short, the axiom part is 
provided for only some operators. 
___________________ 
Type: gPoint 
set: gPoint, real, boolean 
 
Syntax: 
 MAKE      real x real → gPoint 
 ISEQUAL   gPoint x gPoint → boolean 
 DISTANCE  gPoint x gPoint → real 
 X         gpoint → real 
 Y         gpoint → real 
 
Axioms: 
  i,j: real; p, q: gPoint 
   
   X(MAKE (i, j))  
       = i 
   Y(MAKE (i,j))  
      = j 
___________________________________________________________________________ 
Figure A.1. Formal specification of gPoint data type 
 
___________________ 
Type: gLine 
set: gPoint, gLine, real 
 
Syntax: 
 MAKE     gPoint x gPoint → gPoint 
 START    gLine →gPoint 
 END      gLine →gPoint 
 LENGTH   gLine →real 
 
Axioms: 
  p, q: gPoint 
  
  START (MAKE (p, q))  
    = p 
  END (MAKE (p, q))  
    = q 
___________________________________________________________________________ 
Figure A.2. Formal specification of gLine data type 
 
___________________ 
Type: gPolygon 
set: gPoint, gLine, gPolygon, real, boolean 
 
Syntax: 
 MAKE        gPoint x … x gPoint → gPolygon 
 AREA        gPolygon  → real 
 CENTROID    gPolygon  →  gPoint 
 CONTAINS    gPolygon  x gPoint → boolean 
 INTERSECTS  gPolygon  x gLine→ boolean 
Axioms: 
  p1,…, pn, x, r: gPoint; l:gLine; v: real 
  
  AREA(MAKE(p1,…,pn))  
     =  _area 
  CENTROID(MAKE(p1,…,pn))  
     = _gPoint 
  CONTAINS(MAKE(p1,…,pn), r) 
   =if (∀(p) in (p1,…, pn) X(r) ≤ X(p) and Y(r) ≤ Y(p)) then T    
 
  INTERSECTS(MAKE (p1,…,pn),l) 
    = CONTAINS( MAKE(p1,…,pn), SART(l))      or  
        CONTAINS( MAKE(p1,…,pn), END(l)) 
___________________________________________________________________________ 
Figure A.3. Formal specification of gPolygon data type 
 

 21



 

ICA Workshop on Geospatial Analysis and Modeling 

8 July 2006, Vienna, Austria 

 
___________________ 
Type: map-layer 
set: map-layer, gPoint, gLine, gPolygon, rSystem, mScale, real 
 
Syntax: 
MAKE      name → map-layer 
PUT       map-layer x real x real → gPoint 
PUT       map-layer x gPoint x gPoint → gLine 
PUT       map-layer x gPoint x … x gPoint → gPolygon 
INTERSECT map-layer x … x map-layer → map-layer 
 
Axioms: 
m: map-layer; p,p1,p2, q1,…,qn:gPoint; l: gLine; y: gPolygon; v1, v2: real 
 
PUT(m,v1,v2) 
  = p.MAKE(v1,v2) 
 
 
PUT(m,p1,p2) 
  = l.MAKE(p1,p2) 
 
PUT(m,v1,v2) 
  = p.MAKE(v1,v2) 
 
PUT(m,q1,…,qn) 
  = y.MAKE(q1,…,qn) 
___________________________________________________________________________ 
Figure A.4. Formal specification of map-layer data type 
 
___________________ 
Type: aOperator  
set: aOperator, value 
 
Syntax: 
CREATE DEFERRED → aOperator 
COMBINE    value x value x٠٠٠x value → value 
___________________________________________________________________________ 
Figure A.5. Formal specification of aOperator  data type 
 
___________________ 
Type: aProcedure 
set: aProcedure, value 
 
Syntax: 
CREATE DEFERRED → aProcedure 
COMBINE    value x value x٠٠٠x value → value 
___________________________________________________________________________ 
Figure A.6. Formal specification of aProcdure data type 
 
___________________ 
Type: nProcedure 
set: nProcedure, value 
 
Syntax: 
CREATE DEFERRED → nProcedure 
COMBINE    value x value x٠٠٠x value → value 
___________________________________________________________________________ 
Figure A.7. Formal specification of nProcedure data type 
 
___________________ 
Type: dTable 
set: dTable, bRelation, value 
 
Syntax: 
CREATE DEFERRED → dTable 
ACTION value x value x value → bRelation 
___________________________________________________________________________ 
Figure A.8. Formal specification of dTable data type 
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___________________ 
Type: aList 
set: aList, value, aPosition 
 
Syntax: 
aList 
INSERT   aList x value x aPosition → aList 
LOCALIZE value x aList → aPosition  
GET      aPosition x aList → value 
FIRST    aList → aPosition 
RAZ      aList  → aList 
REMOVE   aPosition x aList → aList 
NEXT     aPosition x aList → aPosition 
BEFORE   aPosition x aList → aPosition 
___________________________________________________________________________ 
Figure A.9. Formal specification of aList data type 
 
___________________ 
Type: pStructure 
set: pStructure, aAlter, sAlter, aCriterion, bRelation, value 
 
syntax: 
P  aAlter x aAlter x aCriterion → bRelation 
I  aAlter x aAlter x aCriterion → bRelation 
R  aAlter x aAlter x aCriterion → bRelation 
S  aAlter x aAlter x aCriterion → bRelation  
 
Axioms: 
a,b: aAlter; g: aCriterion; p: pStructure, s: sAlter 
 
P(a,b,g) 
  = if SCORE(a,g) > SCORE(b,g) + g.pThreshold then aPb else ¬(aPb)  
 
Q(a,b,g) 
  = if [SCORE(b,g) + g.pThreshold ≥ SCORE(a,g)] ∧  
       [SCORE(a,g) > SCORE(b,g) + g.qThreshold]  then aQb else ¬(aQb) 
 
I(a,b,g) 
  = if [SCORE(b,g) + g.qThreshold  ≥  SCORE(a,g)] ∧  
       [SCORE(a,g) + g.qThreshold  ≥ SCORE(b,g)] then aIb else ¬(aIb) 
 
S(a,b,g) 
  = if (P(a,b,g) ∨ I(a,b,g)) then aSb else ¬(aSb) 
___________________________________________________________________________ 
Figure .10. Formal specification of pStructure data type 
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Appendix B: Overview of ELECTRE TRI method 

 
We give here a very brief overview of the ELECTRE TRI method. First, we mention that this overview is 
reproduced from Mousseau (2005). A complete description can be found in Roy and Bouyssou (1993).  
ELECTRE TRI is a multicriteria sorting method used to assign alternatives to predefined ordered categories. The 
assignment of an alternative a results from the comparison of a with the profiles defining the limits of the 
categories. Let A denote the set of alternatives to be assigned and let K={1,2,…,n} be the set of indices of the 
alternatives. Let F denote the set of the indices of the criteria g1,g2,…,gm (F={1,2,…,m}), kj the importance 
coefficient of the criterion gj, B the set of indices of the profiles defining p+1 categories (B={1,2,…,p}), bh 
being the upper limit of category Ch and the lower limit of category Ch+1, h=1,2,…,p. Each profile bh is 
characterized by its performances gj(bh) and its thresholds  pj(bh) (preference thresholds), qj(bh) 
(indifference thresholds) and vj(bh) (veto thresholds). In what follows, we will assume, without any loss of 
generality, that preferences increase with the value on each criterion and that ∑j∈F kj =1. 
Further on, we use a→Ch to denote that the alternative a is assigned to the category Ch. ELECTRE TRI builds a 
fuzzy outranking relation S whose meaning is "at least as good as". Preferences on each criterion are defined 
through pseudo-criteria (see Roy and Vincke (1984) for details on this double thresholds preference 
representation).  The threshold qj(bh) represents the largest difference gj(a)-gj(bh) preserving an 
indifference between a and bh in respect to criterion gj. The threshold pj(bh) represents  the smallest 
difference gj(a)-gj(bh) compatible with a preference in favor of a in respect to criterion gj. Thus, the limits 
of categories are defined in terms of profiles bh, h∈B; each one is delimited by two imprecision zones (See 
Figure B.1). 

 
Figure B.1. Defining of categories in terms of profiles 

 
To validate the proposition aSbh (bhSa, resp.), two conditions must hold: 
 
i) Concordance: An outranking aSbh (bhSa, resp.) is accepted only if a "sufficient" majority of criteria are in 
favor of this proposition. 
 
ii) Non-discordance:  When the concordance holds, none of the minority of criteria shows an "important" 
opposition to aSbh (bhSa, resp.). 
 
Beside the intra-criterion preferential information, represented by the indifference and preference thresholds, 
qj(bh) and pj(bh), the construction of S also makes use of two types of inter-criterion preferential 
information: 
 
i) the set of weight-importance coefficients ({kj, j∈F}) is used in the concordance test when computing the 
relative importance of the coalitions of criteria being in favor of the assertion aSbh (bhSa, resp.) 
 
ii) the set of veto thresholds ({vj(bh), j∈F, h∈B}) is used in the discordance test; vj(bh) represents the  
smallest difference gj(bh)-gj(a) incompatible with the  assertion aSbh (bhSa, resp.). 
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As the assignment of alternatives to categories does not result directly from the relation S, an exploitation phase 
is necessary; it requires the relation S to be "defuzzyfied" using a so-called λ-cut: the assertion aSbh (bhSa, 
resp.) is considered to be valid if the credibility index of the fuzzy outranking relation is greater than a "cutting 
level" λ such that λ ∈ [0.5,1]. This λ-cut determines the preference situation between a and bh. 
ELECTRE TRI constructs an indices σ(a,bh)∈[0,1] (σ(a,bh), resp.) representing the credibility of the 
proposition aSbh (bhSa, respectively), ∀ a∈A, ∀ h∈B. The proposition aSbh (bhSa, resp.)  holds if  
σ(a,bh)≥λ (σ(b,a)≥λ, resp.). The indices σ(a,bh) is defined as follows (the values of σ(a,bh) is 
defined in similar way): 
 
1. Compute partial concordance indices Sj(a,bh), ∀j∈F:             

             
0,  if  gj(bh) – gj(a) ≥ pj(bh) 

 

Sj(a,bh)  = 1,  if  gj(bh) – gj(a) ≤ qj(bh) (1) 
 

{
[pj(bh)–gj(bh)+gj(a)]/[pj(bh)-qj(bh)], otherwise  

2. Compute global concordance indice S(a,bh): 
            
S(a,bh) = ∑ j∈F  kj Sj(a,bh)                                   (2) 
   

3. Compute partial discordance indices NDj(a,bh), ∀j ∈F:             
             

0,  if   g
1,  if  g

j(a)  ≤ gj(bh) +  pj(bh) 
 

NDj(a,bh) = j h h(a) > gj(b ) + vj(b )                  (3) 
 {[vj(bh)–gj(a)+gj(bh)]/[vj(bh)-pj(bh)], otherwise  

4. Compute the global discordance indice ND(a,bh): 
   
ND(a,bh) = Πj∈F’([1-NDj(a,bh)]/[1-S(a,bh)]) (4) 
   

   With F’={j∈F : NDj(a,bh)>S(a,bh)} 
5. Compute credibility indice σ(a,bh): 

             

σ(a,bh)) = S(a,bh)* ND(a,bh)                        (5) 
   

The values of  σ(a,bh), σ(bh,a) and λ determine the situation of preference concerning a and bh: 
 
- σ(a,bh) ≥ λ and  σ( bh,a) ≥ λ  ⇒ aSbh  and bhSa ⇒ aIbh 
- σ(a,bh) ≥ λ and σ( bh,a) < λ  ⇒ aSbh  and ¬(bhSa) ⇒ aPbh 
- σ(a,bh) < λ and σ( bh,a) ≥ λ  ⇒ ¬(aSbh) and bhSa ⇒ bhPa 
- σ(a,bh) < λ and σ( bh,a) < λ  ⇒ ¬(aSbh) and ¬(bhSa) ⇒ aRbh 
 
Two assignment procedures are available: optimistic and pessimistic. Their role being to analyze the way in 
which an alternative a compares to the profiles so as to determine the category to which a should be assigned. 
The result of these two assignment procedures differs when the alternative a is incomparable with at least one 
profile bh 
 
i) Pessimistic procedure: 
    a) Compare a successively to bi; i=p,p-1,…0. 
    b) Let bh the first profile such that aSbh, then assign a to category Ch+1 (a → Ch+1). 
 
ii) Optimistic procedure: 
 
    a) Compare a successively to bi; i=1,2,…p. 
    b) Let bh the first profile such that bhSa, then assign a to category Ch (a → Ch) 


