28 research outputs found

    Volumetric analysis of the cranial and nasal cavity from micro-computed tomography scans in the rabbit

    Get PDF
    Background: The aim of the study was to estimate the volume values of the cranial cavity and nasal cavity structures and to compare the efficiency of manual segmentation of three-dimensional reconstruction and Cavalieri’s principle (CP) methodologies. Materials and methods: Volume values of the cranial cavity, maxillary sinus (MS), dorsal conchal sinus (DCS), dorsal nasal meatus (DNM), middle nasal meatus (MNM), ventral nasal meatus (VNM), ventral nasal concha (VNC), middle nasal concha (MNC) and nasal vestibule (NV) were estimated with manual segmentation and CP from micro-computed tomography images in 5 male New Zealand white rabbits. Volume measurements and elapsed time were compared with each other. Three-dimensional reconstruction models of nasal and cranial cavity structures were created. Results: There was a statistically significant difference between methods of the MS, DCS, DNM, MNM, VNM, VNC, and MNC volume measurements. Additionally, there was a statistically significant difference between the volumetric analysis time period of the methods and CP was found much shorter than manual segmentation. Conclusions: Realistic results were achieved in a short time with the CP among the stereology methods. It is thought that these image and quantitative data results can be used for modelling, toxicology and pathology studies such as acute and chronić rhinitis or rhino sinusitis as well as a good understanding of the relationship of the anatomical structures in the nasal cavity

    Effect of skull type on the relative size of cerebral cortex and lateral ventricles in dogs

    Get PDF
    Volume measurements of the brain are of interest in the diagnosis of brain pathology. This is particularly so in the investigation hydrocephalus and canine cognitive dysfunction (CCD), both of which result in thinning of the cerebral cortex and enlarged ventricles. Volume assessment can be made using computed tomography or more usually magnetic resonance imaging (MRI). There is, however, some uncertainty in the interpretation of such volume data due to the great variation in skull size and shape seen in dog. In this retrospective study, we examined normal MRI images from 63 dogs <6 years of age. We used a continuous variable, the cranial index (CrI) to indicate skull shape and compared it with MRI volume measurements derived using Cavalieri’s principle. We found a negative correlation between CrI and the ratio of cortical to ventricular volume. Breeds with a high CrI (large laterolateral compared to rostrocaudal cranial cavity dimension) had a smaller ratio of cortical to ventricular volume (low C:V ratio) than breeds with lower CrI skull types. It is important to consider this effect of skull shape on the relative volume estimates of the cerebral cortex and ventricles when trying to establish if pathology is present

    Comparison of Three Methods for the Estimation of Pineal Gland Volume Using Magnetic Resonance Imaging

    Get PDF
    Pineal gland is a very important neuroendocrine organ with many physiological functions such as regulating circadian rhythm. Radiologically, the pineal gland volume is clinically important because it is usually difficult to distinguish small pineal tumors via magnetic resonance imaging (MRI). Although many studies have estimated the pineal gland volume using different techniques, to the best of our knowledge, there has so far been no stereological work done on this subject. The objective of the current paper was to determine the pineal gland volume using stereological methods and by the region of interest (ROI) on MRI. In this paper, the pineal gland volumes were calculated in a total of 62 subjects (36 females, 26 males) who were free of any pineal lesions or tumors. The mean ± SD pineal gland volumes of the point-counting, planimetry, and ROI groups were 99.55 ± 51.34, 102.69 ± 40.39, and 104.33 ± 40.45 mm3, respectively. No significant difference was found among the methods of calculating pineal gland volume (P > 0.05). From these results, it can be concluded that each technique is an unbiased, efficient, and reliable method, ideally suitable for in vivo examination of MRI data for pineal gland volume estimation

    Slice Thickness in the Assessment of Medial and Lateral Tibial Cartilage Volume and Accuracy for the Measurement of Change in a Longitudinal Study

    Get PDF
    P e r s o n a l n o n -c o m m e r c i a l u s e o n l y . T h e J o u r n a l o f R h e u m a t o l o g y . C o p y r i g h t © 2 0 0 4 . A l l r i g h t s r e s e r v e d ABSTRACT. Objective. The optimal magnetic resonance image (MRI) slice thickness required to assess cartilage volume accurately and efficiently in cross-sectional and longitudinal studies is unknown. We compared cartilage volume measured from MRI of the knees using different slice thicknesses (1.5 to 7.5 mm) and assessed longitudinal change. Methods. A total of 123 subjects with osteoarthritis had baseline and followup MRI on their symptomatic knee at 2 years. Medial and lateral tibial cartilage volumes were calculated using increasing slice thickness by extracting each second, third, fourth, or fifth slice area to calculate total volume, which was compared to the &quot;gold standard&quot; volume calculated from the original 1.5 mm slices. Results. There was little difference in the average medial and lateral tibial cartilage volume observed as the slice thickness increased from 1.5 to 7.5 mm; medial tibial cartilage volume ranged from 1750 µl to 1787 µl and lateral tibial cartilage volume ranged from 1949 µl to 2007 µl. There was also little absolute difference in the average change in medial and lateral tibial cartilage volume measured over 2 years. However, with increasing slice thickness, there was a decreased correlation between the tibial cartilage volume change calculated from the increased slice thickness, with the lowest correlation being 0.77 (p &lt; 0.001) when the lateral cartilage volume calculated from the 7.5 mm slice was compared to the 1.5 mm slices. Conclusion. Increasing slice thickness may provide sufficiently accurate measurement of tibial cartilage volume and change over time in some studies. This would result in reduction in MRI scanning and postimaging processing time, which has the potential of increasing the feasibility of this technique. (J Rheumatol 2004;31:2444-8

    A Comparative Analysis between Ultrasonometry and Computer-Aided Tomography to Evaluate Bone Healing

    Get PDF
    An ultrasonometric and computed-tomographic study of bone healing was undertaken using a model of a transverse mid-shaft osteotomy of sheep tibiae fixed with a semi-flexible external fixator. Fourteen sheep were operated and divided into two groups of seven according to osteotomy type, either regular or by segmental resection. The animals were killed on the 90th postoperative day and the tibiae resected for the in vitro direct contact transverse and axial measurement of ultrasound propagation velocity (UV) followed by quantitative computer-aided tomography (callus density and volume) through the osteotomy site. The intact left tibiae were used for control, being examined in a symmetrical diaphyseal segment. Regular osteotomies healed with a smaller and more mature callus than resection osteotomies. Axial UV was consistently and significantly higher (p?=?0.01) than transverse UV and both transverse and axial UV were significantly higher for the regular than for the segmental resection osteotomy. Transverse UV did not differ significantly between the intact and operated tibiae (p?=?0.20 for regular osteotomy; p?=?0.02 for resection osteotomy), but axial UV was significantly higher for the intact tibiae. Tomographic callus density was significantly higher for the regular than for the resection osteotomy and higher than both for the intact tibiae, presenting a strong positive correlation with UV. Callus volume presented an opposite behavior, with a negative correlation with UV. We conclude that UV is at least as precise as quantitative tomography for providing information about the healing state of both regular and resection osteotomy. (C) 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:10761082, 2012Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (The State of Sao Paulo Research Foundation) [2007/56422-0, 2008/55342-5]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (The State of Sao Paulo Research Foundation

    Variation in Brain Morphology of Intertidal Gobies: A Comparison of Methodologies Used to Quantitatively Assess Brain Volumes in Fish

    Get PDF
    When correlating brain size and structure with behavioural and environmental characteristics, a range of techniques can be utilised. This study used gobiid fishes to quantitatively compare brain volumes obtained via three different methods; these included the commonly used techniques of histology and approximating brain volume to an idealised ellipsoid, and the recently established technique of X-ray micro-computed tomography (micro-CT). It was found that all three methods differed significantly from one another in their volume estimates for most brain lobes. The ellipsoid method was prone to over- or under-estimation of lobe size, histology caused shrinkage in the telencephalon, and although micro-CT methods generated the most reliable results, they were also the most expensive. Despite these differences, all methods depicted quantitatively similar relationships among the four different species for each brain lobe. Thus, all methods support the same conclusions that fishes inhabiting rock pool and sandy habitats have different patterns of brain organisation. In particular, fishes from spatially complex rock pool habitats were found to have larger telencephalons, while those from simple homogenous sandy shores had a larger optic tectum. Where possible we recommend that micro-CT be used in brain volume analyses, as it allows for measurements without destruction of the brain and fast identification and quantification of individual brain lobes, and minimises many of the biases resulting from the histology and ellipsoid methods

    Non-destructive whole-brain monitoring using nanorobots : neural electrical data rate requirements

    Get PDF
    Neuronanorobotics, a promising future medical technology, may provide the ultimate tool for achieving comprehensive non-destructive real-time in vivo monitoring of the many information channels in the human brain. This paper focuses on the electrical information channel and employs a novel electrophysiological approach to estimate the data rate requirements, calculated to be (5.52 ± 1.13) x 1016 bits/sec in an entire living human brain, for acquiring, transmitting, and storing singleneuron electrical information using medical nanorobots, corresponding to an estimated synapticprocessed spike rate of (4.31 ± 0.86) x 1015 spikes/sec.Centro de Matemática da Universidade do Minho (CMAT). The principal author (NRBM) thanks the Fundação para a Ciência e Tecnologia (FCT) for their financial support of this work (grant SFRH/BD/69660/2010)
    corecore