239 research outputs found

    Comparison between Coherent and Noncoherent Receivers for UWB Communications

    Get PDF
    We present a comparison between coherent and noncoherent UWB receivers, under a realistic propagation environment, that takes into account also the effect of path-dependent pulse distortion. As far as coherent receivers are concerned, both maximal ratio combining (MRC) and equal gain combining (EGC) techniques are analyzed, considering a limited number of estimated paths. Furthermore, two classical noncoherent schemes, a differential detector, and a transmitted-reference receiver, together with two iterative solutions, recently proposed in the literature, are considered. Finally, we extend the multisymbol approach to the UWB case and we propose a decision-feedback receiver that reduces the complexity of the previous strategy, thus still maintaining good performance. While traditional noncoherent receivers exhibit performance loss, if compared to coherent detectors, the iterative and the decision-feedback ones are able to guarantee error probability close to the one obtained employing an ideal RAKE, without requiring channel estimation, in the presence of static indoor channel and limited multiuser interference

    A Belief Propagation Based Framework for Soft Multiple-Symbol Differential Detection

    Full text link
    Soft noncoherent detection, which relies on calculating the \textit{a posteriori} probabilities (APPs) of the bits transmitted with no channel estimation, is imperative for achieving excellent detection performance in high-dimensional wireless communications. In this paper, a high-performance belief propagation (BP)-based soft multiple-symbol differential detection (MSDD) framework, dubbed BP-MSDD, is proposed with its illustrative application in differential space-time block-code (DSTBC)-aided ultra-wideband impulse radio (UWB-IR) systems. Firstly, we revisit the signal sampling with the aid of a trellis structure and decompose the trellis into multiple subtrellises. Furthermore, we derive an APP calculation algorithm, in which the forward-and-backward message passing mechanism of BP operates on the subtrellises. The proposed BP-MSDD is capable of significantly outperforming the conventional hard-decision MSDDs. However, the computational complexity of the BP-MSDD increases exponentially with the number of MSDD trellis states. To circumvent this excessive complexity for practical implementations, we reformulate the BP-MSDD, and additionally propose a Viterbi algorithm (VA)-based hard-decision MSDD (VA-HMSDD) and a VA-based soft-decision MSDD (VA-SMSDD). Moreover, both the proposed BP-MSDD and VA-SMSDD can be exploited in conjunction with soft channel decoding to obtain powerful iterative detection and decoding based receivers. Simulation results demonstrate the effectiveness of the proposed algorithms in DSTBC-aided UWB-IR systems.Comment: 14 pages, 12 figures, 3 tables, accepted to appear on IEEE Transactions on Wireless Communications, Aug. 201

    IR-UWB for multiple-access with differential-detection receiver

    Get PDF
    Impulse-Radio Ultra-Wideband (IR-UWB) emerged as a new wireless technology because of its unique characteristics. Such characteristics are the ability to support rich-multimedia applications over short-ranges, the ability to share the available spectrum among multi-users, and the ability to design less complex transceivers for wireless communication systems functioning based on this technology. In this thesis a novel noncoherent IR-UWB receiver designed to support multiple-access is proposed. The transmitter of the proposed system employs the noncoherent bit-level differential phase-shift keying modulation combined with direct-sequence code division multiple-access. The system is investigated under the effect of the additive white Gaussian noise with multiple-access channel. The receiver implements bit-level differential-detection to recover information bits. Closed-form expression for the average probability of error in the proposed receiver while considering the channel effects is analytically derived. This receiver is compared against another existing coherent receiver in terms of bit error rate performance to confirm its practicality. The proposed receiver is characterized by its simple design requirements and its multiple-access efficiency

    A VHDL-AMS Simulation Environment for an UWB Impulse Radio Transceiver

    Get PDF
    Ultra-Wide-Band (UWB) communication based on the impulse radio paradigm is becoming increasingly popular. According to the IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a, UWB will play a major role in localization applications, due to the high time resolution of UWB signals which allow accurate indirect measurements of distance between transceivers. Key for the successful implementation of UWB transceivers is the level of integration that will be reached, for which a simulation environment that helps take appropriate design decisions is crucial. Owing to this motivation, in this paper we propose a multiresolution UWB simulation environment based on the VHDL-AMS hardware description language, along with a proper methodology which helps tackle the complexity of designing a mixed-signal UWB System-on-Chip. We applied the methodology and used the simulation environment for the specification and design of an UWB transceiver based on the energy detection principle. As a by-product, simulation results show the effectiveness of UWB in the so-called ranging application, that is the accurate evaluation of the distance between a couple of transceivers using the two-way-ranging metho

    Implementation Aspects of a Transmitted-Reference UWB Receiver

    Get PDF
    In this paper, we discuss the design issues of an ultra wide band (UWB) receiver targeting a single-chip CMOS implementation for low data-rate applications like ad hoc wireless sensor networks. A non-coherent transmitted reference (TR) receiver is chosen because of its small complexity compared to other architectures. After a brief recapitulation of the UWB fundamentals and a short discussion on the major differences between coherent and non-coherent receivers, we discuss issues, challenges and possible design solutions. Several simulation results obtained by means of a behavioral model are presented, together with an analysis of the trade-off between performance and complexity in an integrated circuit implementation

    Improved energy detector for random signals in Gaussian noise

    Get PDF
    New and improved energy detector for random signals in Gaussian noise is proposed by replacing the squaring operation of the signal amplitude in the conventional energy detector with an arbitrary positive power operation. Numerical results show that the best power operation depends on the probability of false alarm, the probability of detection, the average signal-to-noise ratio or the sample size. By choosing the optimum power operation according to different system settings, new energy detectors with better detection performances can be derived. These results give useful guidance on how to improve the performances of current wireless systems using the energy detector. It also confirms that the conventional energy detector based on the generalized likelihood ratio test using the generalized likelihood function is not optimum in terms of the detection performance
    corecore