23 research outputs found

    Comparison of Two Methods for Automatic Brain Morphometry Analysis

    Get PDF
    The methods of computational neuroanatomy are widely used; the data on their individual strengths and limitations from direct comparisons are, however, scarce. The aim of the present study was direct comparison of DBM based on high-resolution spatial transforms with widely used VBM analysis based on segmented high-resolution images. We performed DBM and VBM analyses on simulated volume changes in a set of 20 3-D MR images, compared to 30 MR images, where only random spatial transforms were introduced. The ability of the two methods to detect regions with the simulated volume changes was determined using overlay index together with the ground truth regions of the simulations; the precision of the detection in space was determined using the distance measures between the centers of detected and simulated regions. DBM was able to detect all the regions with simulated local volume changes with high spatial precision. On the other hand, VBM detected only changes in vicinity of the largest simulated change, with a poor overlap of the detected changes and the ground truth. Taken together we suggest that the analysis of high-resolution deformation fields is more convenient, sensitive, and precise than voxel-wise analysis of tissue-segmented images

    Variation within the Huntington's Disease Gene Influences Normal Brain Structure

    Get PDF
    Genetics of the variability of normal and diseased brain structure largely remains to be elucidated. Expansions of certain trinucleotide repeats cause neurodegenerative disorders of which Huntington's disease constitutes the most common example. Here, we test the hypothesis that variation within the IT15 gene on chromosome 4, whose expansion causes Huntington's disease, influences normal human brain structure. In 278 normal subjects, we determined CAG repeat length within the IT15 gene on chromosome 4 and analyzed high-resolution T1-weighted magnetic resonance images by the use of voxel-based morphometry. We found an increase of GM with increasing long CAG repeat and its interaction with age within the pallidum, which is involved in Huntington's disease. Our study demonstrates that a certain trinucleotide repeat influences normal brain structure in humans. This result may have important implications for the understanding of both the healthy and diseased brain

    Gray-matter volume, midbrain dopamine D2/D3 receptors and drug craving in methamphetamine users.

    Get PDF
    Dysfunction of the mesocorticolimbic system has a critical role in clinical features of addiction. Despite evidence suggesting that midbrain dopamine receptors influence amphetamine-induced dopamine release and that dopamine is involved in methamphetamine-induced neurotoxicity, associations between dopamine receptors and gray-matter volume have been unexplored in methamphetamine users. Here we used magnetic resonance imaging and [(18)F]fallypride positron emission tomography, respectively, to measure gray-matter volume (in 58 methamphetamine users) and dopamine D2/D3 receptor availability (binding potential relative to nondisplaceable uptake of the radiotracer, BPnd) (in 31 methamphetamine users and 37 control participants). Relationships between these measures and self-reported drug craving were examined. Although no difference in midbrain D2/D3 BPnd was detected between methamphetamine and control groups, midbrain D2/D3 BPnd was positively correlated with gray-matter volume in the striatum, prefrontal cortex, insula, hippocampus and temporal cortex in methamphetamine users, but not in control participants (group-by-midbrain D2/D3 BPnd interaction, P<0.05 corrected for multiple comparisons). Craving for methamphetamine was negatively associated with gray-matter volume in the insula, prefrontal cortex, amygdala, temporal cortex, occipital cortex, cerebellum and thalamus (P<0.05 corrected for multiple comparisons). A relationship between midbrain D2/D3 BPnd and methamphetamine craving was not detected. Lower midbrain D2/D3 BPnd may increase vulnerability to deficits in gray-matter volume in mesocorticolimbic circuitry in methamphetamine users, possibly reflecting greater dopamine-induced toxicity. Identifying factors that influence prefrontal and limbic volume, such as midbrain BPnd, may be important for understanding the basis of drug craving, a key factor in the maintenance of substance-use disorders

    The impact of aging on subregions of the hippocampal complex in healthy adults

    Get PDF
    The hippocampal complex, an anatomical composite of several subregions, is known to decrease in size with increasing age. However, studies investigating which subregions are particularly prone to age-related tissue loss revealed conflicting findings. Possible reasons for such inconsistencies may reflect differences between studies in terms of the cohorts examined or techniques applied to define and measure hippocampal subregions. In the present study, we enhanced conventional MR-based information with microscopically defined cytoarchitectonic probabilities to investigate aging effects on the hippocampal complex in a carefully selected sample of 96 healthy subjects (48 males/48 females) aged 18-69 years. We observed significant negative correlations between age and volumes of the cornu ammonis, fascia dentata, subiculum, and hippocampal-amygdaloid transition area, but not the entorhinal cortex. The estimated age-related annual atrophy rates were most pronounced in the left and right subiculum with -0.23% and -0.22%, respectively. These findings suggest age-related atrophy of the hippocampal complex overall, but with differential effects in its subregions. If confirmed in future studies, such region-specific information may prove useful for the assessment of diseases and disorders known to modulate age-related hippocampal volume loss.NC is funded by Australian Research Council Future fellowship number 120100227. EL is funded by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under award number R01HD081720 and further supported by the Cousins Center for Psychoneuroimmunology at the University of California, Los Angeles (UCLA)

    Atypical language organization following perinatal infarctions of the left hemisphere is associated with structural changes in right-hemispheric grey matter.

    Get PDF
    AIM To assess how atypical language organization after early left-hemispheric brain lesions affects grey matter in the contralesional hemisphere. METHOD This was a cross-sectional study with between-group comparisons of 14 patients (six female, 8-26 years) with perinatal left-hemispheric brain lesions (two arterial ischemic strokes, 11 periventricular haemorrhagic infarctions, one without classification) and 14 typically developing age-matched controls (TDC) with functional magnetic resonance imaging (fMRI) documented left-hemispheric language organization (six female, 8-28 years). MRI data were analysed with SPM12, CAT12, and custom scripts. Language lateralization indices were determined by fMRI within a prefrontal mask and right-hemispheric grey matter group differences by voxel-based morphometry (VBM). RESULTS FMRI revealed left-dominance in seven patients with typical language organization (TYP) and right-dominance in seven patients with atypical language organization (ATYP) of 14 patients. VBM analysis of all patients versus controls showed grey matter reductions in the middle temporal gyrus of patients. A comparison between the two patient subgroups revealed an increase of grey matter in the middle frontal gyrus in the ATYP group. Voxel-based regression analysis confirmed that grey matter increases in the middle frontal gyrus were correlated with atypical language organization. INTERPRETATION Compatible with a non-specific lesion effect, we found areas of grey matter reduction in patients as compared to TDC. The grey matter increase in the middle frontal gyrus seems to reflect a specific compensatory effect in patients with atypical language organization

    Low bone mineral density is associated with gray matter volume decrease in UK Biobank

    Get PDF
    ObjectivesPrevious research has found an association of low bone mineral density (BMD) and regional gray matter (GM) volume loss in Alzheimer’s disease (AD). We were interested whether BMD is associated with GM volume decrease in brains of a healthy elderly population from the UK Biobank.Materials and methodsT1-weighted images from 5,518 women (MAge = 70.20, SD = 3.54; age range: 65–82 years) and 7,595 men (MAge = 70.84, SD = 3.68; age range: 65–82 years) without neurological or psychiatric impairments were included in voxel-based morphometry (VBM) analysis in CAT12 with threshold-free-cluster-enhancement (TFCE) across the whole brain.ResultsWe found a significant decrease of GM volume in women in the superior frontal gyri, middle temporal gyri, fusiform gyri, temporal poles, cingulate gyri, precunei, right parahippocampal gyrus and right hippocampus, right ventral diencephalon, and right pre- and postcentral gyrus. Only small effects were found in men in subcallosal area, left basal forebrain and entorhinal area.ConclusionBMD is associated with low GM volume in women but less in men in regions afflicted in the early-stages of AD even in a sample without neurodegenerative diseases

    Structural and cognitive deficits in chronic carbon monoxide intoxication: a voxel-based morphometry study

    Get PDF
    BACKGROUND: Patients with carbon monoxide (CO) intoxication may develop ongoing neurological and psychiatric symptoms that ebb and flow, a condition often called delayed encephalopathy (DE). The association between morphologic changes in the brain and neuropsychological deficits in DE is poorly understood. METHODS: Magnetic resonance imaging and neuropsychological tests were conducted on 11 CO patients with DE, 11 patients without DE, and 15 age-, sex-, and education-matched healthy subjects. Differences in gray matter volume (GMV) between the subgroups were assessed and further correlated with diminished cognitive functioning. RESULTS: As a group, the patients had lower regional GMV compared to controls in the following regions: basal ganglia, left claustrum, right amygdala, left hippocampus, parietal lobes, and left frontal lobe. The reduced GMV in the bilateral basal ganglia, left post-central gyrus, and left hippocampus correlated with decreased perceptual organization and processing speed function. Those CO patients characterized by DE patients had a lower GMV in the left anterior cingulate and right amygdala, as well as lower levels of cognitive function, than the non-DE patients. CONCLUSIONS: Patients with CO intoxication in the chronic stage showed a worse cognitive and morphologic outcome, especially those with DE. This study provides additional evidence of gray matter structural abnormalities in the pathophysiology of DE in chronic CO intoxicated patients

    Neuroanatomical Circuitry Associated with Exploratory Eye Movement in Schizophrenia: A Voxel-Based Morphometric Study

    Get PDF
    Schizophrenic patients present abnormalities in a variety of eye movement tasks. Exploratory eye movement (EEM) dysfunction appears to be particularly specific to schizophrenia. However, the underlying mechanisms of EEM dysfunction in schizophrenia are not clearly understood. To assess the potential neuroanatomical substrates of EEM, we recorded EEM performance and conducted a voxel-based morphometric analysis of gray matter in 33 schizophrenic patients and 29 well matched healthy controls. In schizophrenic patients, decreased responsive search score (RSS) and widespread gray matter density (GMD) reductions were observed. Moreover, the RSS was positively correlated with GMD in distributed brain regions in schizophrenic patients. Furthermore, in schizophrenic patients, some brain regions with neuroanatomical deficits overlapped with some ones associated with RSS. These brain regions constituted an occipito-tempro-frontal circuitry involved in visual information processing and eye movement control, including the left calcarine cortex [Brodmann area (BA) 17], the left cuneus (BA 18), the left superior occipital cortex (BA 18/19), the left superior frontal gyrus (BA 6), the left cerebellum, the right lingual cortex (BA 17/18), the right middle occipital cortex (BA19), the right inferior temporal cortex (BA 37), the right dorsolateral prefrontal cortex (BA 46) and bilateral precentral gyri (BA 6) extending to the frontal eye fields (FEF, BA 8). To our knowledge, we firstly reported empirical evidence that gray matter loss in the occipito-tempro-frontal neuroanatomical circuitry of visual processing system was associated with EEM performance in schizophrenia, which may be helpful for the future effort to reveal the underlying neural mechanisms for EEM disturbances in schizophrenia

    Bariatric surgery and brain health: A longitudinal observational study investigating the effect of surgery on cognitive function and gray matter volume

    Get PDF
    Dietary modifications leading to weight loss have been suggested as a means to improve brain health. In morbid obesity, bariatric surgery (BARS)—including different procedures, such as vertical sleeve gastrectomy (VSG), gastric banding (GB), or Roux-en-Y gastric bypass (RYGB) surgery—is performed to induce rapid weight loss. Combining reduced food intake and malabsorption of nutrients, RYGB might be most effective, but requires life-long follow-up treatment. Here, we tested 40 patients before and six months after surgery (BARS group) using a neuropsychological test battery and compared them with a waiting list control group. Subsamples of both groups underwent structural MRI and were examined for differences between surgical procedures. No substantial differences between BARS and control group emerged with regard to cognition. However, larger gray matter volume in fronto-temporal brain areas accompanied by smaller volume in the ventral striatum was seen in the BARS group compared to controls. RYGB patients compared to patients with restrictive treatment alone (VSG/GB) had higher weight loss, but did not benefit more in cognitive outcomes. In sum, the data of our study suggest that BARS might lead to brain structure reorganization at long-term follow-up, while the type of surgical procedure does not differentially modulate cognitive performance

    Gray Matter Volumes in Obsessive-Compulsive Disorder Before and After Fluoxetine or Cognitive-Behavior Therapy: A Randomized Clinical Trial

    Get PDF
    Serotonin reuptake inhibitors and cognitive-behavior therapy (CBT) are considered first-line treatments for obsessive-compulsive disorder (OCD). However, little is known about their modulatory effects on regional brain morphology in OCD patients. We sought to document structural brain abnormalities in treatment-naive OCD patients and to determine the effects of pharmacological and cognitive-behavioral treatments on regional brain volumes. Treatment-naive patients with OCD (n = 38) underwent structural magnetic resonance imaging scan before and after a 12-week randomized clinical trial with either fluoxetine or group CBT. Matched-healthy controls (n = 36) were also scanned at baseline. Voxel-based morphometry was used to compare regional gray matter (GM) volumes of regions of interest (ROIs) placed in the orbitofrontal, anterior cingulate and temporolimbic cortices, striatum, and thalamus. Treatment-naive OCD patients presented smaller GM volume in the left putamen, bilateral medial orbitofrontal, and left anterior cingulate cortices than did controls (p<0.05, corrected for multiple comparisons). After treatment with either fluoxetine or CBT (n = 26), GM volume abnormalities in the left putamen were no longer detectable relative to controls. ROI-based within-group comparisons revealed that GM volume in the left putamen significantly increased (p<0.012) in fluoxetine-treated patients (n = 13), whereas no significant GM volume changes were observed in CBT-treated patients (n = 13). This study supports the involvement of orbitofronto/cingulo-striatal loops in the pathophysiology of OCD and suggests that fluoxetine and CBT may have distinct neurobiological mechanisms of action. Neuropsychopharmacology (2012) 37, 734-745; doi: 10.1038/npp.2011.250; published online 26 October 2011Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)MedtronicEli LillyMcNeilCyberonicsNIMHNARSADTSAOCFTufts UniversityMGH Psychiatry AcademyBrainCellsSystems Research and Applications CorporationBoston UniversityCatalan Agency for Health Technology Assessment and ResearchNational Association of Social Workers MassachusettsMassachusetts Medical SocietyNIDAGerman Research Foundation/Federal Ministry for Education and ResearchOxford University PressNIHNIAAHRQJanssen PharmaceuticalsForest Research InstituteShire DevelopmentNorthstarJanssenAstraZenecaLundbeckSolvayUniv São Paulo, Sch Med, Dept Psychiat, São Paulo, BrazilUniv São Paulo, Sch Med, Inst Psychiat, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Psychiat, Interdisciplinary Lab Clin Neurosci LiNC, São Paulo, BrazilHarvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Psychiat, Boston, MA USAUniversidade Federal de São Paulo UNIFESP, Dept Psychiat, Interdisciplinary Lab Clin Neurosci LiNC, São Paulo, BrazilFAPESP: 2005/55628-8FAPESP: 06/61459-7FAPESP: 06/50273-0FAPESP: 2008/10257-0FAPESP: 06/58286-3FAPESP: 2005/04206-6CAPES: 4375/08-4Web of Scienc
    corecore