7 research outputs found

    An Investigation of Generalized Differential Evolution Metaheuristic for Multiobjective Optimal Crop-Mix Planning Decision

    Get PDF
    This paper presents an annual multiobjective crop-mix planning as a problem of concurrent maximization of net profit and maximization of crop production to determine an optimal cropping pattern. The optimal crop production in a particular planting season is a crucial decision making task from the perspectives of economic management and sustainable agriculture. A multiobjective optimal crop-mix problem is formulated and solved using the generalized differential evolution 3 (GDE3) metaheuristic to generate a globally optimal solution. The performance of the GDE3 metaheuristic is investigated by comparing its results with the results obtained using epsilon constrained and nondominated sorting genetic algorithms—being two representatives of state-of-the-art in evolutionary optimization. The performance metrics of additive epsilon, generational distance, inverted generational distance, and spacing are considered to establish the comparability. In addition, a graphical comparison with respect to the true Pareto front for the multiobjective optimal crop-mix planning problem is presented. Empirical results generally show GDE3 to be a viable alternative tool for solving a multiobjective optimal crop-mix planning problem

    Improved discrete cuckoo search for the resource-constrained project scheduling problem

    Get PDF
    YesAn Improved Discrete Cuckoo Search (IDCS) is proposed in this paper to solve resource-constrained project scheduling problems (RCPSPs). The original Cuckoo Search (CS) was inspired by the breeding behaviour of some cuckoo species and was designed specifically for application in continuous optimisation problems, in which the algorithm had been demonstrated to be effective. The proposed IDCS aims to improve the original CS for solving discrete scheduling problems by reinterpreting its key elements: solution representation scheme, Lévy flight and solution improvement operators. An event list solution representation scheme has been used to present projects and a novel event movement and an event recombination operator has been developed to ensure better quality of received results and improve the efficiency of the algorithm. Numerical results have demonstrated that the proposed IDCS can achieve a competitive level of performance compared to other state-of-the-art metaheuristics in solving a set of benchmark instances from a well-known PSPLIB library, especially in solving complex benchmark instances.Partially funded by the Innovate UK project HARNET – Harmonised Antennas, Radios and Networks under contract no. 100004607

    The enhanced best performance algorithm for global optimization with applications.

    Get PDF
    Doctor of Philosophy in Computer Science. University of KwaZulu-Natal, Durban, 2016.Abstract available in PDF file

    Development of Complementary Fresh-Food Systems Through the Exploration and Identification of Profit-Maximizing, Supply Chains

    Get PDF
    abstract: One of the greatest 21st century challenges is meeting the needs of a growing world population expected to increase 35% by 2050 given projected trends in diets, consumption and income. This in turn requires a 70-100% improvement on current production capability, even as the world is undergoing systemic climate pattern changes. This growth not only translates to higher demand for staple products, such as rice, wheat, and beans, but also creates demand for high-value products such as fresh fruits and vegetables (FVs), fueled by better economic conditions and a more health conscious consumer. In this case, it would seem that these trends would present opportunities for the economic development of environmentally well-suited regions to produce high-value products. Interestingly, many regions with production potential still exhibit a considerable gap between their current and ‘true’ maximum capability, especially in places where poverty is more common. Paradoxically, often high-value, horticultural products could be produced in these regions, if relatively small capital investments are made and proper marketing and distribution channels are created. The hypothesis is that small farmers within local agricultural systems are well positioned to take advantage of existing sustainable and profitable opportunities, specifically in high-value agricultural production. Unearthing these opportunities can entice investments in small farming development and help them enter the horticultural industry, thus expand the volume, variety and/or quality of products available for global consumption. In this dissertation, the objective is three-fold: (1) to demonstrate the hidden production potential that exist within local agricultural communities, (2) highlight the importance of supply chain modeling tools in the strategic design of local agricultural systems, and (3) demonstrate the application of optimization and machine learning techniques to strategize the implementation of protective agricultural technologies. As part of this dissertation, a yield approximation method is developed and integrated with a mixed-integer program to estimate a region’s potential to produce non-perennial, vegetable items. This integration offers practical approximations that help decision-makers identify technologies needed to protect agricultural production, alter harvesting patterns to better match market behavior, and provide an analytical framework through which external investment entities can assess different production options.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    Studies in heuristics for the annual crop planning problem.

    Get PDF
    M. Sc. University of KwaZulu-Natal, Durban 2012.Increase in the costs associated with agricultural production and the limited availability of resources have amplified the need for optimized solutions to the problem of crop planning. The increased costs have imparted negatively on both the cost of production as well as the sale prices of finished products to consumers, with the resultant effects on the socio-economic livelihoods of people around the world. This has increased the burden of poverty, malnutrition, diseases and other types of social problems. The limited availability of land, irrigated water and other resources in crop planning therefore demand optimal solutions to the problem of crop planning, in order to maintain the desired level of profitable outputs that do not strain available resources while still meeting the demands of consumers. Incidentally, the current situation is such that crop producers are required to generate more output per area of crops cultivated within the ambit of the available resources for crop production. This creates a great challenge both for farmers and researchers. Interesting, the problem is essentially an optimization problem hence a challenge to researchers in mathematical and computing science. Notably within the agricultural sector, achieving efficient use of irrigated water demands that optimized solutions be found for its usage during crop planning and production. Incidentally, increase in population growth and limited availability of fresh water has increased the demand of fresh water supply from all sectors of the economy. This has increased the pressure on the agricultural sector as being one of the primary users of fresh water supply to use irrigated water more efficiently. This is to minimize excessive water wastage. It has therefore become very important that optimized solutions be found to the allocation and use of the irrigated water, for water conservational purposes. This is also a very essential key to crop planning decisions. Therefore, in order to determine good solutions to crop planning decisions, this study dwells on a fairly new but important area of agricultural planning, namely the Annual Crop Planning (ACP) problem which essentially focuses at the level of an irrigation scheme. The study presents a model of the ACP problem that helps to determine solutions to resource allocations amongst the various competing crops that are required to be grown at an irrigation scheme within a year. Both new and existing irrigation schemes are considered. Determining solutions for an ACP problem requires that the requirements and constraints presented by crop characteristics, climatic conditions, market demand conditions and the variable costs associated with agricultural production are observed. The objective is to maximize the total gross profits that can be earned in producing the various crops within a production year. Due to the complexity involved in determining solutions for an ACP problem, exact methods are not researched in this study. Rather, to determine near-optimal solutions for this -Hard optimization problem, this research introduces three new Local Search (LS) metaheuristic algorithms. These algorithms are called the Best Performance Algorithm (BPA), the Iterative Best Performance Algorithm (IBPA) and the Largest Absolute Difference Algorithm (LADA). The motivation for implementing these algorithms is to investigate techniques that can be used to determine effective solutions to difficult optimization problems at low computational costs. This study also investigates the performances of three recently introduced swarm intelligence (SI) metaheuristic algorithms in determining solutions to the ACP problems studies. These algorithms have shown great strength in providing competitive solutions to similar optimization problems in literature, hence their use in this work. To the best of the researchers’ knowledge, this is the first work that reports comparative study of the performances of these particular SI algorithms in determining solutions to a crop planning problem. Interesting results obtained and reported herein show the viability, effectiveness and efficiency of incorporation proven metaheuristic techniques into any decision support system that will help determine solutions to the ACP problem

    Sustainable Agriculture and Advances of Remote Sensing (Volume 2)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publication of the results, among others
    corecore