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This paper presents an annual multiobjective crop-mix planning as a problem of concurrent maximization of net profit and
maximization of crop production to determine an optimal cropping pattern. The optimal crop production in a particular
planting season is a crucial decision making task from the perspectives of economic management and sustainable agriculture.
A multiobjective optimal crop-mix problem is formulated and solved using the generalized differential evolution 3 (GDE3)
metaheuristic to generate a globally optimal solution. The performance of the GDE3 metaheuristic is investigated by comparing
its results with the results obtained using epsilon constrained and nondominated sorting genetic algorithms—being two
representatives of state-of-the-art in evolutionary optimization.The performancemetrics of additive epsilon, generational distance,
inverted generational distance, and spacing are considered to establish the comparability. In addition, a graphical comparison with
respect to the true Pareto front for the multiobjective optimal crop-mix planning problem is presented. Empirical results generally
show GDE3 to be a viable alternative tool for solving a multiobjective optimal crop-mix planning problem.

1. Introduction

The overarching objective of this work is to investigate the
performance of the generalized differential evolution meta-
heuristic for multiobjective optimal crop-mix planning deci-
sion in the agricultural domain. The purpose of agricultural
crop planning decision is generally to guarantee sufficient
food resources for the human population, which is increas-
ingly growing at a fast rate. In addition, the global demand for
food items is growing at an accelerated rate. However, most
of the available techniques for expanding agricultural systems
have a serious long-term implication for the human environ-
ment [1]. The impact of increasing crop demand definitely
depends heavily on the development of global agriculture.
The needed development of the agricultural farming systems
is directed toward achieving a great technology improvement.
This should meet the year 2050 crop demand vision with
much lower environmental impact. The impact of doubling

the global crop production will depend on how increased
production is achieved [2].

The intensification of agricultural practices such as clear-
ing land for massive crop production, achieving higher
yields through increased agricultural inputs, and promoting
innovations through the application of information com-
munication technology could improve crop production and
agricultural value chain [3]. The increasing growth of human
population across the world has called for sustainable growth
in agricultural products—so as to meet the primary needs
of the human population [4]. One copious strategy of sus-
tainable agriculture is crop-mix—sometimes called mixed
cropping [5].The formulation ofmultiobjective optimal crop-
mix planning problem as presented in this paper simplifies
the task of crop planning in agriculture setting that is
generally aimed at maximizing returns from the meager
resources available to farmers [6].
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The current work explores an approach based on evolu-
tionarymetaheuristics to solve amultiobjective optimal crop-
mix optimization problem. This could suggest an effective
tool to support farmers in optimal crop planning decision
making. There are numerous reasons for using evolution-
ary metaheuristics to solve optimization problems. One of
such reasons is that evolutionary metaheuristics need little
problem specific knowledge and can be applied to a broad
range of problem types [7]. The evolutionary metaheuristics
required the target objective function for a given problem
to be optimized, but additional problem specific knowledge
can be easily brought into metaheuristics to improve their
performances [8]. In addition, metaheuristics require no
derivative information; they are robust, flexible, and relatively
simple to implement [9].

Previous studies on crop planning have used single
and multiobjective optimization models, including linear
programming [10–13], dynamic programming [14], and evo-
lutionary metaheuristics [15–18] to solve diverse formula-
tions of crop planning problem. The variety of optimization
techniques previously considered for crop planning ranges
from single to multiobjective and from linear to nonlinear
forms, where computational intelligence techniques have
been explored [18]. However, multiobjective optimization
problems are frequently converted to single objective func-
tion optimization by means of weighting functions for
several objective functions and solved using optimization
techniques that are well suited for single objective func-
tion optimization. The relative importance of each objective
function is expressed by the weighting functions. However,
optimizing different objective functions concurrently with-
out emphasizing the importance of each objective func-
tion a priori is called Pareto optimization. This relatively
new optimization approach is more alluring for solving
many nonlinear, multidimensional, multiobjective, com-
binatorial, nondifferentiable, nonconvex, and constrained
practical problems often encountered in the real world
phenomena.

2. Materials and Methods

2.1. Optimal Crop-Mix Planning Model. This section presents
the mathematical formulation of the optimal crop-mix plan-
ning problem investigated in this work.Theoptimal crop-mix
planning model is designed to maximize total net profit that
can be produced by maximizing total crop production. The
objective is to make an optimum use of the available limited
resources in order to determine the land allocation for several
competing crops required to be planted in a year. The soil
characteristics, cropping patterns, crop produced, planting
region, and cropping method are factors that contribute to
the production cost, yield rate, and earning realized by a
decision farmer. The crop-mix planning model is considered
for a large scale planning incorporated with dataset col-
lected from the South African abstract of agricultural statis-
tics [19]. The model is specified as biobjective functions—
profit function and crop production function with a set of
constraints.

2.1.1. Objective Function 1: Profit Maximization. Maximize
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Objective Function 2: Crop Production Maximization. Maxi-
mize
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The two objectives functions are to be concurrently
solved, subject to the following constraints: food delivery,
land allocation, labor cost, capital cost, and nonnegativity of
decision variables.

Food Delivery Constraint. Consider
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Labor Cost Constraint. Consider
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Capital Cost Constraint. Consider
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Nonnegativity Constraint. Consider
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where

(i) 𝑖 is a crop that can be considered for production,
(ii) 𝑗 is a crop combination made up of 𝑖,
(iii) 𝑘 is land type, 𝑘 = 1 for a single-cropped land, 𝑘 =

2 for a double-cropped land, and 𝑘 = 3 for a triple-
cropped land.
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in metric tons per hectare of crop 𝑖 of crop combina-
tion 𝑗 in land type 𝑘,
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amount of money that can be invested for cropping,

(xiv) 𝑀 is number of alternative crops for single-cropped
land,

(xv) 𝑛 is number of crop combinations for double-cropped
land,

(xvi) 𝑞 is number of crop combinations for triple-cropped
land,

(xvii) 𝑀
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is a crop in each 𝑗 for single-cropped land, 𝑗 =

1, . . . , 𝑚,
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a crop 𝑖 of crop combination 𝑗 in land type 𝑘.

2.2. Multiobjective Metaheuristics. The multiobjective evolu-
tionary metaheuristics are population based techniques for
solving complex multiobjective optimization problems. A
metaheuristic is an iterative master process that guides and
modifies the operation of a subordinate heuristic to efficiently
produce high quality solutions by exploring and exploiting
a solution search space [20]. The synonymous underlying
principle for all evolutionary metaheuristics is that, given an
initial population of individuals, an environmental pressure
causes the natural selection of the surviving individuals—
leading to a rise in the population fitness.Themost surviving
individuals, according to their measures of fitness, would
steadily progress to the next generation by the application of
recombination and mutation operators that create diversity.
The recombination operator is applicable to two or more
selected parents to produce a set of offsprings. The mutation
operator is applicable to a single parent to reproduce an
offspring and selection operator guarantees the quality of
individuals in the given population. The execution of recom-
bination andmutation operators yields a set of offsprings that
compete with the existing population members for a place
in the next generation. This process is iterated to refine the
individuals produced and the iteration comes to a stop when
a quality individual is found or a given termination condition
is satisfied.

In this study, we investigated a set of metaheuristics to
test the performance of generalized differential evolution for
multiobjective optimal crop-mix planning problem. These
metaheuristics are 𝜀-constrained, widely used in practice to
solve multiobjective optimization; the nondominated sorting
genetic algorithm (NSGA), one of the most popular elitist
multiobjective evolutionary algorithms; and the generalized
differential evolution 3 (GDE3), a more recent metaheuristic
that finds a global optimum solution for a multiobjective
optimization problem.

2.2.1. Generalized Differential Evolution. The generalized dif-
ferential evolution 3 (GDE3) [21] modifies the selection rule
of the basic differential evolution (DE) [22] and extends
DE/rand/1/bin strategy [23] to problems with 𝑀 objective
functions and𝐾 constraint functions. InDE/rand/1/bin nota-
tion, “rand” indicates how the vector for mutation is selected.
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The number of vector differences used in the mutation is
indicated next, and “bin” indicates the way the old vector and
the trial vector are recombined. The basic principle behind
the selection rule is that the trial vector 𝑢

𝑖,𝐺
is compared with

the old vector 𝑥
𝑖,𝐺
. If the trial vector has an equal or lower

objective value, then it replaces the old vector in the next
generation [24]. This can be presented as follows:
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In the case of comparing feasible, incomparable, and
nondominating solutions, both offspring and parent vectors
are saved for the population of the next generation. This
mechanism reduces the computational costs of the meta-
heuristic and improves its efficiency.The population size may
increase at the end of a generation based on a similar selection
method as used in NSGA-II; the population is reduced
back to the original size. The sorting of the population
members is based on the goal for a posteriori optimization.
The worst population members are eliminated according to
the principle of nondominance and crowding in order to
reduce the population size to the original size. The GDE3
is similar to the differential evolution for multiobjective
optimization (DEMO) [25], except that DEMO does not
provide a mechanism for constraint handling nor recedes to
basic DE in the case of a single objective. This is because
DEMO modifies the basic DE and does not consider weak
dominance in the selection. The GDE3 improves the ability
to handle multiobjective optimization problems by giving a
better distributed set of solutions and is less sensitive to the
selection of control parameter values when compared to the
earlier versions of GDE [26].

2.2.2. The 𝜀-Constrained. The 𝜀-constrained optimization
technique is capable of generating widespread alternative
solutions to constrained multiobjective version of the crop-
mix planningmodel.The 𝜀-constrained technique is based on
the principle of selecting one objective function—usually the
most preferred one to be optimized—whilst the other objec-
tive functions are treated as constraints that are bounded by
some allowable levels of epsilon, 𝜀

𝑖
[27]. This implies that a

single objective function optimization problem is defined for
the most relevant objective functions subject to additional
constraints. The levels of 𝜀

𝑖
required to generate the entire

Pareto optimal set for an optimization problem are then
altered. The apparent difficulty encountered when using this
technique is how to choose the 𝜀

𝑖
values. It is practically hard

to know beforehand what the best values will be. If the value
of 𝜀 is slightly increased, it could lead to a lot of redundant
runs and if the steps between different runs are too large, it is
possible to miss Pareto optimal solutions.

2.2.3. Nondominated Sorting Genetic Algorithm. The non-
dominated sorting genetic algorithm (NSGA) [28] has three
essential properties: (i) it uses an elitist principle; (ii) it
uses an explicit diversity preserving mechanism; and (iii) it
emphasizes the nondominated solutions. In a typical scenario
of the fast nondominated sorting, two entities are required to

be computed: (i) domination count 𝑛
𝑝
, which is the number

of solutions that dominate the solution 𝑝, and (ii) 𝑆
𝑝
, which is

a set of solutions that 𝑝 dominates. The solutions with 𝑛
𝑝
− 0

represent the first nondominated Pareto front.Thereafter, for
each solution with 𝑛

𝑝
− 0, each member (𝑞) of its set 𝑆

𝑝
is

visited and its domination count is reduced by one to remove
solution 𝑝 from 𝑛

𝑞
. The member for which the domination

count becomes zero (𝑛
𝑞
− 0) is put in a separate list 𝑄, which

represents the seconddomination front.These procedures are
repeated for each member of 𝑄 to identify the third front
and the procedure is continued until all fronts are identified.
In order to obtain a density estimation of possible solutions
surrounding a particular solution, the average distance of two
points is computed on either side of the point along each of
the objectives [29].

3. Results and Discussion

The multiobjective optimal crop-mix planning problem was
solved using GDE3, NSGA-II, and 𝜀-constrained. The pop-
ulation size was 100 and the number of generations was
50. The GDE3, NSGA-II, and 𝜀-constrained metaheuristics
were implemented using C-Sharp programming language in
VISUAL-STUDIO version 2010 on an HP PC with Pentium
dual core processor having 2.30GHz clock speed and 4GB of
RAM. Simulation experiments were performed to determine
the best values of step length “F” and crossover rate “CR”
for better performance in GDE3 metaheuristic. The values of
CR and 𝐹 were varied from 0.1 to 1 with an increment of 0.1.
The simulation experiments were conducted for each value
of 𝐹 with respect to all values of CR. Consequently, 100 such
simulation experiments were performed.

The GDE3 was compared to NSGA-II and 𝜀-constrained
to investigate its performance when used to solve the mul-
tiobjective optimal crop-mix planning model considered
in this work. It is interesting to discover that NSGA-II is
very sensitive to the initial population. Due to the inability
of NSGA-II to find a single feasible solution using many
different seeds as experimented, the GDE3 was introduced
to compare the outputs of the three metaheuristics. The
improved selection based on crowding distance was demon-
strated in the optimal crop-mix planning problem.TheGDE3
found a solution that converged to the Pareto front in about
50 generations. In addition, the results of the comparative
study show that better Pareto front is obtained by GDE3
with 𝐹 = 0.5 and CR = 0.9. The control parameters for
NSGA-II are the crossover probability 𝑃

𝑐
= 0.9 and mutation

probability𝑃
𝑚

= 1/𝐷 (𝐷 is the number of decision variables).
The distribution index of crossover operator 𝜂

𝑐
= 20 and the

distribution index ofmutation operator 𝜂
𝑚

= 20.The number
of the needed function evaluations for GDE3, NSGA-II, and
𝜀-constrained was set at 10000.

In order to compare the performance of GDE3 with
performances of NSGA-II and 𝜀-constrained, 100 trial runs
were conducted for solving the optimal crop-mix planning
problem. The best front was obtained from GDE3 based on
the statistical performance metrics of additive epsilon indi-
cator (AEI), generational distance (GD), inverted generational
distance (IGD), and spacing (S) [30, 31].
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Table 1: Additive epsilon indicator metric (10−3).

GDE3 NSGA-II 𝜀-Constrained
Best 7.59 8.29 9.50
Average 8.24 9.16 10.90
Worst 9.65 10.5 13.10
Std. dev. 0.431 0.726 9.83

Table 2: Generational distance metric (10−3).

GDE3 NSGA-II 𝜀-Constrained
Best 2.15 2.73 2.94
Average 3.45 4.06 4.12
Worst 6.87 7.10 7.92
Std. dev. 1.48 1.74 1.91

Table 3: Inverted generational distance metric (10−3).

GDE3 NSGA-II 𝜀-Constrained
Best 2.40 2.62 2.73
Average 2.81 3.52 3.88
Worst 3.15 4.39 5.01
Std. dev. 0.171 0.398 0.512

Table 4: Spacing metric (10−3).

GDE3 NSGA-II 𝜀-Constrained
Best 1.07 1.23 1.62
Average 1.47 1.53 1.92
Worst 1.69 2.03 2.84
Std. dev. 0.415 0.653 0.976

Table 1 shows the results of AEI, wherein it can be
seen that GDE3 recorded the best average value of 0.00824,
closely followed by NSGA-II with a value of 0.00916, and 𝜀-
constrained ranked third with a value of 0.0109. The overall
worst performing metaheuristic according to this metric is
the 𝜀-constrained.

Table 2 shows the results of GD, wherein it can be seen
that GDE3 had the best performance, both in terms of
the average value and the standard deviation, followed by
NSGA-II. The GDE3 had the best average value of 0.00345,
closely followed by NSGA-II with a value of 0.00406, and
𝜀-constrained is ranked third with a value of 0.00412. The
overall worst performing metaheuristic according to this
metric is the 𝜀-constrained.

Table 3 shows the results of IGD, wherein it can be seen
that GDE3 gave the best result with an average value of
0.00281 followed by the NSGA-II with an average value of
0.00352. The NSGA-II and the 𝜀-constrained were ranked
second and third, respectively. The overall worst performing
metaheuristic with respect to this performance metric is the
𝜀-constrained.

Table 4 shows the result of spacing, wherein it can be
seen that GDE3 gave the best result with an average value
of 0.001469, closely followed by the NSGA-II with a value of

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.29 0.31 0.33 0.35 0.37 0.39

GDE3
NSGA-II

N
et

 p
ro

fit
 (Z

A
R)

×
e
1
3

Total crop production (tons) × e5

𝜀-constrained

Figure 1: Pareto optimal set for GDE3, NSGA-II, and 𝜀-constrained
metaheuristics.

0.001534. The worst performing metaheuristic according to
this metric is the 𝜀-constrained.

In general, because performance metrics can sometimes
be misleading in multiobjective optimization, it is always
desirable to consider a graphical comparisonwhenever possi-
ble [32]. It is particularly germane when analyzing the Pareto
front produced by a metaheuristic to consider two main
evaluation criteria: (i) the placement of the solutions on the
true Pareto front and (ii) uniform distribution of solutions
along the Pareto front.These criteria were applied to establish
graphical comparisons of the metaheuristics investigated in
this work.

The first evaluation criterion requires us to determine the
extent to which the points on the Pareto front are linearly cor-
related. Consequently, the metaheuristic that gives a Pareto
front with points more linearly correlated is judged to be the
best performing in solving the multiobjective optimal crop-
mix planning problem. This approach is effective because it
could indicate a natural association between crop production
and net profit. The strength of the linearly of an association
between two variables such as crop production and net profit
can be determined by calculating the Pearson correlation
coefficient. The correlation coefficient is a number between
−1 and 1 that indicates the strength of the linear association
between two variables, for instance, crop production and
net profit. The higher positive value indicates a strong linear
association in the same direction; that is, increase/decrease in
one variable leads to increase/decrease in the other variable.
If there is evidence of strong linearity, we would likely expect
higher values of crop production to yield higher values of net
profit.The second evaluation criterion suggests that solutions
on the Pareto front should be uniformly distributed.

Figure 1 shows the Pareto fronts for the metaheuristics
investigated in this work. In Figure 1, it can be seen that
NSGA-II had a good distribution of solutions that it found,
but it missed some portion of Pareto front. Hence, NSGA-
II had an average performance of the multiobjective optimal
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7 Cotton, cabbages, dry beans
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9 Cotton, cabbages, tomatoes
10 Cotton, tomatoes, potatoes
11 Maize, soya beans, dry beans
12 Maize, soya beans, potatoes
13 Maize, cabbage, dry beans
14 Maize, cabbage, tomatoes
15 Maize, dry beans, sugar
16 Maize, dry beans, tomatoes
17 Maize, tomatoes, potatoes

Cotton→ cabbage; dry beans; maize; tomatoes
Maize→ cabbage; dry beans; soya beans; tomatoes

Enter the working capital
Select planting season

Select province
Select the crop to plant

Select the crop order of planting

Figure 2: The screenshot of the process page of the decision support system.

crop-mix planning problem, despite its good spacing values.
The correlation coefficient computed for the Pareto front
of NSGA-II is 0.9711, which is slightly less than that of
GDE3, which is 0.9736.The distribution of 𝜀-constrained has
better spacing but missed a considerable portion of the true
Pareto front as in Figure 1. In addition, the metaheuristic
has the least coefficient of correlation of 0.9708. It has been
pointed out that having a good distribution of solutions
becomes irrelevantwhen themetaheuristic does not converge
to the true Pareto front of the optimal crop-mix planning
problem [16]. The GDE3 as shown in Figure 1 clearly had
the best overall performance, both in terms of distribution
of solutions and the placement of solutions on Pareto front.

4. Implementation of a Crop Planning System

The crop planning system based on the generalized differen-
tial evolution 3 (GDE3) was implemented using the C-Sharp
programming language in VISUAL-STUDIO. The purpose
of the implementation was to provide a software tool to
assist farmers in optimal crop planning decisionmaking.The
testing of the crop planning software was done with 10000
fitness function evaluations. The combination of parameters
chosen for the testing is appropriate to have a reasonably
good performance.This can be corroborated by checking the

original sources of the GDE3. The varied operations such as
capturing crop information and managing the information
on crop combination as provided by the crop planning system
could be used for crop planning related activities such as
land allocation and crop selection. The recorded data are
stored in a database for easy accessibility and could be
used in various planning and decision making processes.
The prototype system is relatively easy to use and simple to
accommodate basic users with very little literacy levels.

The system was tested with a scenario where a household
farmer has a working capital of R10,000 (unit in South Africa
rand) with the land mass of 1 hectare. The farmer chooses to
plant crops that could be planted alongwith cotton andmaize
such that the crop combination should be of order 3; that is
the farmer decided to plant on a tricropped land. The farmer
supplied all the necessary inputs and clicked on the button
(view combination group) to view the crop combination
group, consisting of crops that could be planted with the
selected crops (cotton, maize). In order to view the number
of possible crop combinations that could be obtained, the
farmer selected any of the crop combination group of his/her
choice and clicked the button (possible crop combination).
Figure 2 shows the screenshot of the process.

The system allocated a land portion to each crop combi-
nation; working with the scenario where the farmer decided
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Table 5: The land allocation result.

Optimization
Serial number of crop combination Crop combination Allocated land portion
1 Cotton, dry beans, maize 0.0538847660170879
2 Cotton, dry beans, soya beans 0.0552823360239594
3 Cotton, dry beans, sugar 0.0554001961353126
4 Cotton, dry beans, tomatoes 0.0537548193766635
5 Cotton, maize, soya beans 0.054378675341399
6 Cotton, maize, tomatoes 0.0537169683262593
7 Cotton, cabbages, dry beans 0.0560629255563752
8 Cotton, cabbages, maize 0.0529411764705882
9 Cotton, cabbages, tomatoes 0.0529411764705882
10 Cotton, tomatoes, potatoes 0.0530232065275474
11 Maize, soya beans, dry beans 0.053340093038395
12 Maize, soya beans, potatoes 0.054408535208579
13 Maize, cabbage, dry beans 0.0577712841409234
14 Maize, cabbage, tomatoes 0.0529411764705882
15 Maize, dry beans, sugar 0.0535396709191825
16 Maize, dry beans, tomatoes 0.0529411764705882
17 Maize, tomatoes, potatoes 0.0532893345994195

Table 6: Output of the optimization process.

Net profit (ZAR) Total crop production (tons) Total land utilization (ha)
995.31296475439 31.5857454386647 0.919617517093457

to choose both combination groups, the system produced the
result in Table 5. Finally, Table 6 shows the best result of the
optimization processwhilemaximizing total crop production
and minimizing total planting area concurrently.

5. Conclusions

This work suggests that generalized differential evolution 3
(GDE3) is a useful multiobjective optimization tool for opti-
mal crop-mix planning decision support. The metaheuristic
is able to produce improved results when compared to those
generated by other two metaheuristics that are representa-
tives of the state-of-the-art in evolutionary multiobjective
optimization. The GDE3 uses a simple mechanism to deal
with constraints and the results computed by the meta-
heuristic generally indicate that such mechanism, despite its
simplicity, is effective in practice.

The following conclusions can be made about the per-
formance of GDE3: (i) GDE3 is able to produce most of
the true Pareto fronts of the optimal crop-mix planning
problem considered and it has the best performance; (ii) the
GDE3 is able to produce a good distribution of solutions
of the multiobjective optimal crop-mix planning problem;
and (iii) GDE3 is ranked first with respect to the selected
performance metrics. It can be concluded that GDE3 is
practically effective for supporting optimal crop planning
decision making process. Given the features of GDE3, an
extension of the paradigm for multiobjective optimization
can be particularly useful to deal with dynamic functions.The

performance comparison of these metaheuristics is valuable
for a decision maker to consider tradeoffs in accuracy versus
complexity of solution techniques.

Future work will extendGDE3 for crop planning decision
under uncertainty. This will produce a novel approach to
deal with practical situations for which profit coefficients
of agriculture are uncertain. The optimization approach
can help farmers to efficiently utilize the available meager
resources, including planting area, time, and money. The
approach combines indigenous farming with information
communication technology to optimize crop production,
support efficient planning, and help farmers determine the
possible combination of crops to plant on the same plant-
ing land year by year. As part of the future work, other
optimization techniques can be compared to GDE3 to estab-
lish its superiority over many other techniques for crop
planning decision making.
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