

SCHEDULING AND RESOURCE EFFICIENCY

BALANCING

Discrete Species Conserving Cuckoo Search for Scheduling in

an Uncertain Execution Environment

Kirils Bibiks

Submitted for the Degree of

Doctor of Philosophy

Faculty of Engineering and Informatics

University of Bradford

2017

i

Abstract

Kirils Bibiks

Scheduling and Resource Efficiency Balancing

Discrete Species Conserving Cuckoo Search for Scheduling in an Uncertain

Execution Environment

Keywords: Project Scheduling, Cuckoo Search, Species Conservation,

Combinatorial Optimisation, Evolutionary Computation.

The main goal of a scheduling process is to decide when and how to execute

each of the project’s activities. Despite large variety of researched scheduling

problems, the majority of them can be described as generalisations of the

resource-constrained project scheduling problem (RCPSP). Because of wide

applicability and challenging difficulty, RCPSP has attracted vast amount of

attention in the research community and great variety of heuristics have been

adapted for solving it. Even though these heuristics are structurally different and

operate according to diverse principles, they are designed to obtain only one

solution at a time. In the recent researches on RCPSPs, it was proven that these

kind of problems have complex multimodal fitness landscapes, which are

characterised by a wide solution search spaces and presence of multiple local

and global optima.

The main goal of this thesis is twofold. Firstly, it presents a variation of the

RCPSP that considers optimisation of projects in an uncertain environment where

resources are modelled to adapt to their environment and, as the result of this,

improve their efficiency. Secondly, modification of a novel evolutionary

computation method Cuckoo Search (CS) is proposed, which has been adapted

for solving combinatorial optimisation problems and modified to obtain multiple

solutions. To test the proposed methodology, two sets of experiments are carried

out. First, the developed algorithm is applied to a real-life software development

project. Second, performance of the algorithm is tested on universal benchmark

instances for scheduling problems which were modified to take into account

specifics of the proposed optimisation model. The results of both experiments

demonstrate that the proposed methodology achieves competitive level of

performance and is capable of finding multiple global solutions, as well as prove

its applicability in real-life projects.

ii

Acknowledgements

I would like to convey my heartfelt gratitude and sincere appreciation to my

supervisors, Professor Yim Fun Hu and Doctor Jian-Ping Li from the Faculty of

Engineering and Informatics, University of Bradford, for their continuous support

of my PhD study and related research, for their patience, motivation, inspiration,

and immense knowledge. Their guidance helped me at all times during the work

and research on this thesis. I could not have imagined having better advisors and

mentors for my study.

I thank my fellow labmates with whom we have worked on many projects and

assignments for all that time we spent together completing our work before the

deadlines and for all the fun we have had in the last three years.

There is a long list of friends who have been very supportive and encouraging

and without whom I might not have reached the end of this study. I am thankful

to all of them.

Finally, this thesis is dedicated to my parents, family members and my

teachers for all their support, encouragement, and good wishes.

iii

Table of Contents

Chapter 1 Introduction ... 1

1.1 Motivation and Objectives... 3

1.2 Contributions .. 5

1.3 Publications .. 5

1.4 Organisation of the Thesis .. 6

Chapter 2 Literature Review .. 8

2.1 Resource-Constrained Project Scheduling Problem 8

2.1.1 Mathematical Formulation .. 8

2.1.2 Applied Methodologies ... 10

2.2 Stochastic Resource-Constrained Project Scheduling Problem 11

2.2.1 Mathematical Formulation .. 14

2.2.2 Applied Methodologies ... 14

2.3 Methodologies .. 17

2.3.1 Single Point Search Algorithms .. 18

2.3.2 Population-Based Algorithms ... 24

2.3.3 Hybrid Algorithms ... 30

2.3.4 Multimodal Optimisation Algorithms ... 31

2.4 Summary .. 48

Chapter 3 Optimisation Model ... 51

3.1 Problem Statement ... 51

3.2 Basic Definitions ... 53

3.3 Variable Activity Durations .. 54

3.4 Optimisation Objectives .. 57

3.4.1 Makespan Minimisation.. 57

3.4.2 Resource Efficiency Balancing ... 57

3.5 Optimisation Problem ... 58

3.6 Summary .. 59

Chapter 4 Methodologies .. 61

iv

4.1 Discrete Cuckoo Search ... 62

4.1.1 Cuckoo Search .. 63

4.1.2 Discrete Cuckoo Search for RCPSP .. 64

4.1.3 Computational Performance .. 70

4.2 Discrete Flower Pollination Algorithm ... 76

4.2.1 Flower Pollination Algorithm ... 77

4.2.2 Discrete Flower Pollination Algorithm for RCPSPs 78

4.2.3 Computational Performance .. 79

4.3 Improved Discrete Cuckoo Search ... 83

4.3.1 Improved Discrete Cuckoo Search for RCPSPs 84

4.3.2 Computational Performance .. 92

4.4 Discrete Species Conserving Cuckoo Search 97

4.4.1 Discrete Species Conserving Cuckoo Search for RCPSPs 98

4.4.2 Computational Performance .. 107

4.5 Summary .. 113

Chapter 5 Case Studies .. 116

5.1 HARNet Automated Testing System Project 116

5.1.1 Project Description ... 117

5.1.2 Algorithm Application ... 125

5.1.3 Experiment Setup and Parameter Choices 129

5.1.4 Experimental Analysis .. 130

5.2 Further Performance Comparison .. 143

5.2.1 Algorithms .. 143

5.2.2 Experiment Setup and Parameter Choices 144

5.2.3 Comparative Analysis .. 146

5.3 Summary .. 147

Chapter 6 Conclusions and Future Work... 149

6.1 Conclusions .. 149

6.2 Future Work .. 153

6.2.1 Performance Improvement ... 154

6.2.2 Optimisation of Additional Objectives 154

v

6.2.3 DSCCS Adaptability to the Problem-Specific Setting 154

6.2.4 Application of the DSCCS to Other Combinatorial Problems ... 154

VI

List of Figures

Figure 2.1 – Concept of U- and V-valleys .. 32

Figure 4.1 – CS pseudo-code .. 63

Figure 4.2 - Sample project network and schedule 66

Figure 4.3 - Activity List representation of a sample schedule 67

Figure 4.4 - Serial Schedule Generation Scheme pseudo-code 68

Figure 4.5 - Shift operator example ... 70

Figure 4.6 - Pairwise Interchange operator example 70

Figure 4.7 - Population size sampling frequency 73

Figure 4.8 - Abandonment rate sampling frequency 73

Figure 4.9 - Max amount of steps sampling frequency 74

Figure 4.10 - DCS parameters correlations ... 74

Figure 4.11 – FPA pseudo-code .. 78

Figure 4.12 - Two-point Crossover example .. 79

Figure 4.13 - Population size sampling frequency 80

Figure 4.14 - Switching probability sampling frequency 81

Figure 4.15 - Max amount of steps sampling frequency 81

Figure 4.16 - DFPA parameters correlations ... 82

Figure 4.17 - IDCS pseudo-code ... 85

Figure 4.18 - Comparison of Activity List and Event List representations 86

Figure 4.19 - Event Move pseudo-code ... 88

Figure 4.20 - Event Move example. Part 1 .. 89

Figure 4.21 - Event Move example. Part 2 .. 89

Figure 4.22 - Event Crossover pseudo-code ... 90

Figure 4.23 - Event Crossover example .. 91

Figure 4.24 - Population size sampling frequency 93

Figure 4.25 - Abandonment rate sampling frequency 94

Figure 4.26 - Max amount of steps sampling frequency 94

Figure 4.27 - Portion of smart cuckoos sampling frequency 94

Figure 4.28 - IDCS parameters correlations .. 95

Figure 4.29 - DSCCS pseudo-code ... 99

VII

Figure 4.30 - Example of species distribution in a two-dimensional domain

 ... 102

Figure 4.31 - Species Seeds Determination Algorithm pseudo-code..... 104

Figure 4.32 - Species Conservation Algorithm pseudo-code 105

Figure 4.33 - Population size sampling frequency 108

Figure 4.34 - Abandonment rate sampling frequency 108

Figure 4.35 - Max amount of steps sampling frequency 108

Figure 4.36 - Portion of smart cuckoos sampling frequency 109

Figure 4.37 – DSCCS parameters correlations 109

Figure 5.1 – WP9 project network of stages 1 and 2 121

Figure 5.2 – WP9 project network of stages 3 and 4 121

Figure 5.3 – Makespan estimation algorithm pseudo-code 127

Figure 5.4 – Resource efficiency balancing algorithm 128

Figure 5.5 – Effect of m on the solution makespan 134

Figure 5.6 – Effect of m on the amount of obtained results 135

Figure 5.7 – Effect of m on the total computational time 135

Figure 5.8 – Effect of σs on the solution makespan 136

Figure 5.9 – Effect of σs on the amount of obtained results 136

Figure 5.10 – Effect of σs on the total computational time 137

Figure 5.11 – Effect of stopping criterion on the solution makespan...... 138

Figure 5.12 – Effect of stopping criterion on the amount of obtained results

 ... 138

Figure 5.13 – Effect of stopping criterion on the total computational time

 ... 139

Figure 5.14 – Sample optimal deterministic schedule 140

Figure 5.15 – Sample optimal stochastic schedule 141

Figure 5.16 – Activity durations decrease throughout the project execution

 ... 142

VIII

List of Tables

Table 4.1 - DCS parameter values for sensitivity analysis 72

Table 4.2 - DCS optimal parameters values .. 73

Table 4.3 - DCS performance comparison for J30 set 76

Table 4.4 - DCS performance comparison for J60 set 76

Table 4.5 - DCS performance comparison for J120 set 76

Table 4.6 – DFPA parameter values for sensitivity analysis 80

Table 4.7 - DFPA optimal parameters values .. 80

Table 4.8 - DFPA performance comparison for J30 set 83

Table 4.9 - DFPA performance comparison for J60 set 83

Table 4.10 - DFPA performance comparison for J120 set 83

Table 4.11 - IDCS parameter values for sensitivity analysis 93

Table 4.12 - IDCS optimal parameters values ... 93

Table 4.13 - IDCS performance comparison for J30 set 96

Table 4.14 - IDCS performance comparison for J60 set 96

Table 4.15 - IDCS performance comparison for J120 set 97

Table 4.16 – DSCCS parameter values for sensitivity analysis 107

Table 4.17 – DSCCS optimal parameters values 107

Table 4.18 - DSCCS performance comparison for J30 set 110

Table 4.19 - DSCCS performance comparison for J60 set 111

Table 4.20 - DSCCS performance comparison for J120 set 111

Table 4.21 - Example event list representations of found solutions of J30

test instance ... 113

Table 5.1 - WP9 Stage 1 activities ... 119

Table 5.2 - WP9 Stage 2 activities ... 119

Table 5.3 - WP9 Stage 3 activities ... 120

Table 5.4 - WP9 Stage 4 activities ... 121

Table 5.5 - WP9 Resource capacities .. 122

Table 5.6 - WP9 Stage 1 resource requirements 122

Table 5.7 - WP9 Stage 2 resource requirements 123

Table 5.8 - WP9 Stage 3 resource requirements 123

Table 5.9 - WP9 Stage 4 resource requirements 124

IX

Table 5.10 - DSCCS parameter choices for the case study 129

Table 5.11 - Durations of randomly-generated deterministic schedules 131

Table 5.12 - Summary of DSCCS performance results for deterministic

scheduling .. 132

Table 5.13 - Durations of randomly-generated stochastic schedules 132

Table 5.14 - Summary of DSCCS performance results for stochastic

scheduling .. 133

Table 5.15 - Event list representations of sample solutions 142

Table 5.16 - Brief summary of implemented algorithms 144

Table 5.17 - Experimental evaluation results for J30 dataset 146

Table 5.18 - Experimental evaluation results for J60 dataset 146

Table 5.19 - Experimental evaluation results for J90 dataset 146

Table 5.20 - Experimental evaluation results for J120 dataset 147

X

Acronyms

ACO Ant Colony Optimisation

AL Activity List

AON Activity-On-Node

ASL Activity Set List

CP Critical Path

CS Cuckoo Search

DSCCS Discrete Species Conserving Cuckoo Search

DCS Discrete Cuckoo Search

DE Differential Evolution

DFPA Discrete Flower Pollination Algorithms

DP Dynamic Programming

EC Evolutionary Computation

FS Fitness Sharing

FPA Flower Pollination Algorithm

GA Genetic Algorithm

GLS Guided Local Search

GPP Graph Planarization Problem

GRASP Greedy Randomised Adaptive Search Procedure

HARNet Harmonised Antennas and Radio Networks

HATS HARNet Automated Testing System

IDCS Improved Discrete Cuckoo Search

ILS Iterated Local Search

JSSP Job Shop Scheduling Problem

LOP Linear Ordering Problem

MAXSAT Maximum Satisfaction

MMGA Multi-Modal Genetic Algorithm

MRCPSP Multi-mode Resource-Constrained Project Scheduling

Problem

NMA Niching Memetic Algorithm

PERT Project Evaluation Review Technique

PRBM Priority Rule-Based Method

XI

PSO Particle Swarm Optimisation

PSPLIB Project Scheduling Problems Library

QAP Quadratic Assignment Problem

RCMPSP Resource-Constrained Multi-Project Scheduling Problem

RCPSP Resource-Constrained Project Scheduling Problem

RK Random Key

RTS Restricted Tournament Selection

SA Simulated Annealing

SCGA Species Conservation Genetic Algorithm

SGS Schedule Generations Scheme

SOA Service Oriented Architecture

SOP Sequential Ordering Problem

SRCPSP Stochastic Resource-Constrained Project Scheduling

Problem

SC Species Conservation

SS Scatter Search

TS Tabu Search

TSP Travelling Salesman Problem

VNS Variable Neighbourhood Search

VRP Vehicle Routing Problem

WP Work Package

XII

Glossary

Activity – Smallest unit of work that has the following characteristics: definite

duration, logic relationship with other activities, and resource requirements.

Combinatorial optimisation – The process of searching for maxima (or

minima) of an objective function whose domain is a discrete but large

configuration space.

Continuous optimisation – The process of finding the minimum or maximum

value of a function of one or many real variables, subject to constraints that

take form of inequalities.

Critical path – The duration of the longest activity sequence of a project

obtained by relaxing resource constraints of the problem.

Global optimum – A solution that is optimal among all possible solutions, not

just those in a particular neighbourhood of values.

Heuristic – An approach to problem solving that employs a practical method

or previous experience with similar problem. Heuristic is not guaranteed to

obtain optimal solution, but sufficient for immediate goals.

Local optimum – The best solution to a problem within a small neighbourhood

of possible solutions.

Makespan – Total duration of a project.

Metaheuristic – A high-level problem-independent algorithmic framework that

provides a set of guidelines or strategies needed to develop an algorithm for an

optimisation problem.

Multimodal optimisation – The process of finding multiple optimal and/or local

solutions with the aim of complex optimisation problems.

Project – Set of interrelated activities that are to be executed over a fixed

period of time and set of resources that are to be used for the execution of

activities.

Project network – A set of nodes and arcs that depict project activities and

precedence relations and model technological relations between pairs of

activities.

Project scheduling problem library – Library that contains different problem

sets for various types of resource-constrained project scheduling problems.

XIII

Resource-constrained project scheduling problem – Combinatorial

optimisation problem objective of which is to find a feasible schedule of minimal

duration, obtained by assigning a start time to each activity such that the

precedence relations and the resource availabilities are respected.

Resources – People, equipment, facilities, funding, or anything else capable

of definition required for the completion of a project activity.

Schedule – Timetable for a project that shows how activities are sequenced

and when they are going to be executed.

Schedule generation scheme – An algorithm that transforms a solution

representation scheme into a schedule.

Solution representation scheme – Scheme that determines how the problem

is structured in the applied algorithm and influences the applied operators.

Solution search space – The space of all feasible solutions or the set of

solutions among which the desired solution resides..

1

Chapter 1 Introduction

Nowadays, planning and management of resources is an increasingly important

issue not just in engineering, but in all spheres of business in general. Thus, a

careful management of projects, whether it is a software, construction, budgetary

or any other type of project, is an absolute necessity to preserve efficient and

stable operation. The biggest role in project management is devoted to

scheduling. The main goal of the scheduling process is to decide when to start

each of the project’s activities and how these activities will share the available

resources. When such decisions are made, they are expected to have a large

impact on the total duration of the project (i.e. the makespan) and the overall

efficiency of resource use. Consequently, the outcomes of these decisions

(makespan and resource efficiency balance) are considered to be the main

performance criteria when assessing the quality of the optimised project plan.

Nevertheless, when planning such decisions there is a great number of

challenges to be faced:

1. Resource allocation: a project consists of a set of activities which for

their execution require different types of resources with limited

capacities and different levels of efficiencies;

2. Time dependency and presence of uncertainties: there are many

factors that affect the execution time of activities;

3. Conflicting objectives: often optimisation model of a project consists of

multiple objectives, where optimisation of one might negatively impact

optimisation of the other.

A great variety of scheduling problems has been addressed in the literature

(Weglarz, 1999; Kolisch & Padman, 2001), however, despite the assortment, the

majority of these problems can be modelled as generalisations of the resource-

constrained project scheduling problem (RCPSP). The standard RCPSP

represents a generalised version of the job-shop scheduling problem (JSSP)

(Graham, 1966) and in terms of its decision variables, constraints and objective

functions can be defined as follows. A set of activities and a set of resources of

known characteristics (activity durations, activity resource demands, activity

relations and resource availabilities) are given. The decision variables are the

activity starting times, whereas the objective function is the minimisation of

2

project’s makespan, i.e. the completion time of the last activity, assuming project

starts at time 0. Two types of constraints are considered: (1) Precedence

constraints define relationships between activities and their respective order of

execution. (2) Resource constraints ensure that at each time period and for each

resource the total activity demand does not exceed the resource availability.

Once started, an activity cannot be interrupted. Other variations of the RCPSP

exist as well. One of the most common of them are stochastic RCPSP (SRCPSP),

in which activity durations follow some pre-defined probability distribution, and

multi-mode RCPSP (MRCPSP), in which a trade-off between activity durations

and resource requirements is assumed.

Nevertheless, despite simplicity of definition, RCPSPs belong to a class of NP-

hard (Leeuwen, 1998) combinatorial optimisation problems (Blazewicz, Lenstra,

& Kan, 1983), therefore can be considered as intrinsically harder than those that

can be solved by a nondeterministic Turing machine in polynomial time. For

example, in the publicly available project scheduling problems library (PSPLIB)

(Kolisch & Sprecher, 1997), which contains benchmark instances for assessing

the performance of algorithms for RCPSPs, the optimal makespan of instances

with 60 or more activities is still unknown.

Moreover, similarly to other combinatorial optimisation problems, such as

JSSP and travelling salesman problem (TSP) (Ikeda & Kobayashi, 2000),

RCPSPs are proven to have complex multimodal fitness landscapes (Czogalla &

Fink, 2009), which contain high amount of global optima that are spread across

whole solution search space. It was demonstrated that solution search space of

such problems has a big valley structure where good solutions tend to be close

to other good solutions (but not too close) and are spread all around the solution

search space. The statistical analysis indicated that landscapes of these

problems typically consist of several interior plateau meaning that one instance

of a problem can have multiple optimal solutions.

In the context of optimisation, finding a set of global solutions can be highly

desirable for several reasons. First, it will help to eliminate premature

convergence to local optima by diverting the search process into various regions

of the search space simultaneously. Secondly, a set of diverse high-quality

solutions can provide an alternative, potentially better and more innovative,

outcome result in the decision making process.

3

For its relevance to all fields of engineering and challenging difficulty, solving

the RCPSP has become a flourishing theme for a research community. This

becomes even clearer when observing the amount of books (Neumann,

Schwindt, & Zimmermann, 2003; Dorndorf, 2002; Klein, 2001) and research

surveys (Kolisch, Sprecher, & Drexl, 1995; Lawrence, 1984; Herroelen W. , 2006;

Hartmann & Briskorn, 2010) that were published on this subject.

1.1 Motivation and Objectives

Exploitation and exploration of the multimodal fitness landscapes of RCPSPs

have received little research attention. Despite the variety of published research

articles and surveys on RCPSPs, the majority of them aimed at optimising only

one objective (i.e. makespan minimisation) and at obtaining only one solution. At

the time of writing of this thesis and to the knowledge of the author, only one work

attempted to exploit multimodal features of the RCPSP. Pérez et al. (2015)

applied Multi-Modal Genetic Algorithm (MMGA) to solve the Resource-

Constrained Multi-Project Scheduling Problem (RCMPSP), which is the

derivative of the standard RCPSP. In their work, the authors were able to prove

that multiple optima can be obtained in the RCMPSP, as well as to demonstrate

that multimodal techniques provide better performance than other alternative

commonly accepted methodologies for RCMPSP. Moreover, in his previous

works (Pérez, Herrera, & Hernández, 2003; Pérez, Posada, & Herrera, 2012),

Pérez successfully applied similar approach for solving the JSSP.

There are several explanations to the lack of enthusiasm among researchers

in addressing these issues. On the one hand, optimisation of several objectives

necessitates the development of an alternative optimisation and decision model

that will differ from the standard formulations of RCPSPs. As a consequence,

new means of the solution representation and schedule generation need to be

developed. On the other hand, obtaining multiple global solutions requires the

application of a special class of algorithms that are specifically designed for

multimodal optimisation problems. Due to the discrete fitness landscapes of

RCPSPs, and other combinatorial optimisation problems in general, the

algorithms from that category are not typically applied to solve them. Hence, the

application of such algorithms for RCPSPs induces the development of means of

their porting.

4

The main goal of this PhD thesis is to propose an optimisation model for

scheduling projects in a variable environment. In the proposed model, decisions

regarding resource allocation and activity sequencing are simultaneously

considered while taking into account the experience, efficiency and learnability of

each resource type. In here, resource refers to human resource or members of

the project team; resource efficiency reflects the speed at which an activity can

be implemented by the project team; experience is defined as the total amount of

time that members of the project team have previously spent on working in a

similar problem; and learnability is the reflection of how quickly resource acquires

its experience. To solve the optimisation problem, an evolutionary computation

(EC) method that is capable obtaining multiple global optima is developed and

several important aspects of its application to this problem as investigated, such

as solution representation, difference estimation between solutions, and

schedule generation.

In order to achieve this goal, the following objectives have been set:

 To define an optimisation model for scheduling in an uncertain

environment:

o Where activity durations are subject to influence of external

factors;

o Which considers optimisation of primary and secondary

objectives;

o Which takes the advantage of the RCPSP multimodal property.

 To develop different methodologies to solve the defined RCPSP

problems:

o To study, review and select the suitable solution representation

and schedule generation schemes

o To explore and extend advanced evolutionary computation

techniques capable of global search to solve those problems

o To explore techniques to obtain multiple solutions for RCPSPs

o To evaluate the efficiency of the proposed algorithms in solving

benchmark problems

o To apply the proposed methodologies to solve a real RCPSP

problem

5

1.2 Contributions

Throughout the work on this thesis, the following contributions to the science and

engineering have been made:

 A new optimisation model for scheduling large-scale projects which

takes into account the efficiencies and learnabilities of the resources

(Chapter 3);

 Design of discrete cuckoo search (DCS) algorithm and its subsequent

application to the RCPSP (Chapter 4);

 Design of a new discrete flower pollination algorithm (DFPA) is

introduced and applied to solve the RCPSP (Chapter 4);

 Extension of DCS to derive an improved discrete cuckoo search (IDCS)

algorithm is proposed and its application to solve the RCPSP (Chapter

4):

o Paradigm of the original cuckoo search (CS) is changed and now

uses crossover operator to create new individuals;

o The algorithm operates on a novel solution representation

scheme called event list (EL);

o New crossover operator based on the EL is proposed. The

operator is designed to combine useful problem-specific

information extracted from the parent for the purpose of

generating high-quality children.

 A new discrete species conserving cuckoo search (DSCCS) method

able to obtain multiple global solutions of tackling multimodal properties

of the RCPSP is introduced (Chapter 4):

o Adaptation of species conservation technique and subsequent

application to problems in the discrete domain;

o Application of the species conservation technique to the IDCS

1.3 Publications

To this date, the following publications have been authored or co-authored based

on the works done during this PhD:

Journal papers:

6

 K. Bibiks, Y. F. Hu, J.-P. Li, P. Pillai, A. Smith, “Discrete species

conserving cuckoo search for the resource constrained project scheduling

problem,” IEEE Transactions on Evolutionary Computation, Submitted

 K. Bibiks, Y. F. Hu, J.-P. Li, P. Pillai, A. Smith, “Improved discrete cuckoo

search for the resource constrained project scheduling problem,” Applied

Soft Computing, Accepted, subject to revision

 K. Bibiks, J.-P. Li, Y. F. Hu, “Discrete flower pollination algorithm for the

resource constrained project scheduling problem,” International Journal of

Computer Science and Information Security, vol. 13, no. 7, pp. 15-22, 2015

Conference papers:

 K. Bibiks, Y. F. Hu, J.-P. Li, A. Smith, “Discrete cuckoo search for the

resource constrained project scheduling problem,” IEEE 18th International

Conference on Computational Science and Engineering, Porto, 2015

 M. Amir, Y. F. Hu, P. Pillai, K. Bibiks, “Interaction Models for Profiling

Assets in an Extensible and Semantic WoT Framework,” in Proceedings

of the Tenth International Symposium on Wireless Communication

Systems, Ilmenau, 2013

1.4 Organisation of the Thesis

The remainder of this thesis is organised as follows.

Chapter 2 contains literature reviews related to the most relevant scheduling

problems and solution methods that were applied to solve these problems.

Moreover, methodologies for application in multimodal scenarios are reviewed as

well.

Chapter 3 details optimisation model of the problem that is considered in this

thesis. Mathematical description of the problem is provided and similarities and

differences with other scheduling problems in the literature are given.

Chapter 4 describes preliminary work that was done during the development

of methodology for the proposed optimisation model. Several metaheuristic

algorithms are presented. Performances of the developed algorithms are

assessed using sets of benchmark instances from the PSPLIB, which are then

compared with performances of other state-of-the-art heuristics. Sections of this

chapter were used as foundations for research articles for publications in journals

and conferences (see Section 1.3).

7

Chapter 5 presents case studies that are based on the optimisation model

proposed in Chapter 3 and which are used to assess performance of the

metaheuristic methodology presented in Chapter 4. The first case study is based

on a real-life research project which consists of 51 activities and 4 types of

resources and scheduling of which is subject to a number of uncertainties outlined

in the chapter. Multimodal fitness landscape nature of the case study is exploited

by the developed metaheuristic when a set of optimal solutions is obtained out

which the most efficiently balanced one is chosen. For the second case study,

several popular algorithms for the RCPSP are implemented and tested on the

sets of benchmark instances that were modified to include additional parameters

specific for the proposed optimisation model.

Finally, Chapter 6 concludes the work done in this thesis, outlines summary of

achievement and contributions that were made and provides possible directions

for future work.

8

Chapter 2 Literature Review

This chapter presents relevant project scheduling problems to this research and

reviews literature on methods that were previously applied to solve them.

First, the Resource-Constrained Project Scheduling Problem (RCPSP) is

introduced. Mathematical description of the problem is provided.

This is followed by an introduction of the Stochastic Resource-Constrained

Project Scheduling Problem (SRCPSP), its mathematical description and fields

of applied methodologies.

Lastly, the state-of-the-art metaheuristic methodologies are presented for each

of the presented metaheuristics with examples of applications of these

methodologies to relevant problems.

2.1 Resource-Constrained Project Scheduling Problem

Project scheduling addresses a problem of finding an optimal sequence of a set

of activities that are associated with a set of resources such that all set objectives

are optimised and all constraints are satisfied. It has been an active area of

research for many decades and has drawn an increasing in recent years. Various

scheduling problems have been studied in the literature (Weglarz, 1999; Kolisch

& Padman, 2001), however, despite the varieties, all of these problems are NP-

hard (Blazewicz, Lenstra, & Kan, 1983) combinatorial optimisation problems that

can be modelled as variations of the RCPSP.

2.1.1 Mathematical Formulation

In the literature, large variety of the RCPSP derivatives exist (Hartmann &

Briskorn, 2010), however, all of them, in one way or another, are based on the

standard classical RCPSP. The main objective of standard classical RCPSP is to

find an optimal schedule with minimal duration by assigning starting time to each

activity in a project with respect to precedence relations and resource

availabilities.

In the RCPSP a project is represented by a finite set of activities (i.e. jobs) V =

{0, 1, …, n, n+1}. Activities 0 and n + 1 are unique dummy activities which

represent the start and the end of a project, respectively. Typically, activities that

constitute a project are represented by an activity-on-node (AON) network, also

9

sometimes referred to as project network, denoted as G = (V, E) (Zhou & Chen,

2002), where V is a set of nodes that denote activities and E is a set of arcs that

denote precedence constraints. Alternatively, precedence constraints can be

denoted as i ⟶ j or (i, j). Pred(j) defined the set of direct predecessors, while

Succ(j) is the set of direct successors of activity j. The processing time of activity

j is given by pj. The processing time of dummy activities 0 and n + 1 is p0 = pn+1 =

0.

For their execution activities require renewable resources. In the context of the

RCPSP, the term ‘renewable resources’ is defined as a pre-specified number of

units of a resource being available for every period of the planning time horizon

T (i.e. time period during which activity of going to be executed). Resources are

defined by a finite set ℛ𝜌. The total availability of resource unit k is defined by 𝑅𝑘
𝜌
.

The period usage of activity j of renewable resource k is denoted by 𝑟𝑗𝑘
𝜌
, whereas

the total resource consumption of renewable resource k by activity j is given by

𝑟𝑗𝑘𝑚
𝜌

.

The starting times of activities are represented by a schedule S = {S0, S1, …, Sn,

Sn+1}, where Sj is the starting time of activity j. S0 is used as a reference point

which signifies the start of a project and is always assumed to be 0.

Consequently, set C = {C0, C1, …, Cn, Cn+1} denotes completion times, where Cj

is completion time of activity j. The total duration of a project, or its makespan,

will be equal to the completion time of the last activity Cn+1. ℒT defines the set of

time-feasible schedules, ℒR the set of resource-feasible schedules and ℒ = ℒR ∩

ℒT the set of feasible schedules. Finally, 𝑑𝑖𝑗
𝑚𝑖𝑛 and 𝑑𝑖𝑗

𝑚𝑎𝑥 denote minimum and

maximum time lags, respectively, between the start of activities i and j.

Taking into consideration the above-presented formulation, the optimisation

model of the RCPSP can then be stated as follows:

max|| CprecPS (1)

where PS stand for project scheduling, prec signifies precedence feasible and

Cmax represents completion time of last activity in the project. This model forms

the core problem among the class of standard deterministic RCPSPs and it

means that while minimising the project’s makespan, precedence and resource

constraints needs to be observed.

10

2.1.2 Applied Methodologies

Due to the simplicity of the definition, wide applicability, and high complexity, the

RCPSP has attracted a considerable amount of attention from researchers and

vast amount of methodologies has been proposed for solving it. Blazewicz et al.

(1983) showed that, as a generalisation of the classical Job-Shop Scheduling

Problem (JSSP) (Graham, 1966), RCPSP belongs to a class of NP-hard

combinatorial optimisation problems (Leeuwen, 1998).

Kolisch and Hartmann (1999) did a comprehensive review of different methods

proposed to solve RCPSP and classified them into two categories: exact methods

and heuristic approaches, whereas heuristic approaches were further divided into

priority rule-based methods and metaheuristics. In the last 20 years both exact

solution procedures and heuristics have witnessed a tremendous growth and

improvement, which is confirmed by the amount of published surveys (Hartmann

& Kolisch, 2000; Kolisch & Hartmann, 2006; Herroelen W. , 2006; Ozdamar &

Ulusoy, 1995; Demeulemeester & Herroelen, 2002).

In order to evaluate algorithms proposed for the RCPSP and create basis for

comparison, Kolisch and Sprecher (1997) proposed to measure performance of

the algorithms by applying them to schedule benchmark isntances from Project

Scheduling Problem Library (PSPLIB). The following setup has been proposed.

Three sets of benchmark instances need to be used: 480 instances from J30 set,

each of which consisted of 30 activities and 4 resources; 480 instances from J60

set, each of which consisted of 60 activities and 4 resources; and 600 instances

from J120 set, each of which consisted of 120 activities and 4 resources. In order

to pass the evaluation, the algorithm has to be applied to schedule all instances

from J30, J60, and J120 sets. The only compulsory criterion in this setup is the

setting of stopping criterion, value of which needs to be 1000, 5000 and 50000

objective evaluations. After running each of the instances, performance of the

algorithm is measured by calculating average deviation percentage from Critical

Path (CP). Computational time in this evaluation is not taken into account is it will

largely depend on the experimental setup. Such way of measuring performance

of the RCPSP methodologies has become de facto standard way of evaluation

and it has been adopted by many researchers.

Tormos and Lova (2001) in their research tested several popular exact solution

procedures and heuristics for the RCPSP. Performances of the selected

algorithms were measured using the setup proposed by Kolisch and Sprecher

11

(1997). The most competitve exact algorithms were the ones of Brucker et al.

(1998), Mingozzi et al. (1998), and Specher (2000). Nevertheless, even though

these exact algorithms demonstrated good performances, in a satisfactory

manner they were only capable of solving small-scale instances of problems with

up to 60 activities.

Another comprehensive survey done by Hartmann and Kolisch (2000) and its

update version (Kolisch & Hartmann, 2006) provided a classification and

performance evaluation of different state-of-the-art heuristics that have been

proposed for RCPSPs. As was shown by their experimental evaluation,

metaheuristic methods demonstrate far better performance than heuristics. For

53 methods sorted with respect to the performance of evaluation 1000, 5000, and

50000 schedules, the best methods for J30, J60 and J120 sets were all

metaheuristic approaches, which included genetic algorithm (GA) with path

relinking (Kochetov & Stolyar, 2003), scatter search (SS) (Debels, De Reyck,

Leus, & Vanhoucke, 2006), hybrid GA (Valls, Ballestin, & Quintanilla, 2003), and

simulated annealing (SA) (Bouleimen & Lecocq, 2003).

Because of this, as of today, the application of metaheuristic algorithms is

considered to be the most effective and reliable way of solving the RCPSP.

2.2 Stochastic Resource-Constrained Project Scheduling
Problem

Most of the literature on the project scheduling concentrates on finding a schedule

with fixed activity durations and starting times, which is then used as a guideline

for the actual execution of a project. In the real-world, however, during the

execution of a project unexpected events or circumstances can cause deviations

from the original schedule. Examples of such can include an under- or

overestimation of the workforce, cancelations, delays based on unexpected

issues, equipment failure, nature disasters, etc. In the majority of the situations,

these kinds of events can be modelled as fluctuations in the activity durations.

In comparison to deterministic project scheduling, little research on project

scheduling under risk and uncertainty can be found in the literature. Herroelen

and Leus (2005) reviewed various problems related to this field and identified the

most important research tracks in this area:

 Reactive Scheduling

12

 Proactive Scheduling

 Stochastic Project Scheduling

 Fuzzy Project Scheduling

Reactive scheduling deals with the uncertainties in scheduling by revising or

re-optimising the baseline schedule when an unexpected event happens. Actions

that are taken during such revisions may be based on various underlying

strategies. On the one hand, the reactive approach may rely on very simple

techniques such as schedule repair action or right shift rule. Paradigms of these

techniques were first introduced by Sadeh et al. (1993) and Smith (1994),

respectively. These approaches work by moving forward in time all activities that

were affected by the schedule breakdown. Moving of activities is done either

because they were using resources that caused the breakage or because of the

precedence relations. Since such strategy does not re-sequence activities, it may

lead to poor results. On the other hand, the reactive scheduling approach may

involve full rescheduling of the affected part of the schedule that remains to be

executed. Such approach is commonly referred to as rescheduling. The goal of

rescheduling is to generate a new schedule that will deviate from the original one

as little as possible. As performance measure, the new project makespan is used.

Such strategy may rely on the use of exact or heuristic algorithms that use the

minimisation of the sum of the difference between the activities’ starting times in

the original and repaired schedules as the objective (El Sakkout & Wallace,

2000). Calhoun et al. (Calhoun, Deckro, Moore, Chrissis, & Van Hove, 2002)

used goal programming to revise project schedule with the initial objectives and

the objective of minimising the number of changed activities. Another way of

dealing with deviation from the initial activity duration projection is via application

of match-up scheduling practices (Bean, Birge, Mittenthal, & Noon, 1991).

Proactive scheduling (also known as robust scheduling), in comparison to

reactive scheduling, considers future disruptions during initial schedule

generation. The main concern here is the generation of initial schedule that will

minimise the effects of disruptions on the performance measures, therefore

robustness is considered as the primary objective (Mehta & Uzsoy, 1998).

Several robustness measures exist. Some robustness measures are based on

the actual performance of the realised schedules, and some are based on

regrets. The regret represents the difference between performances of realised

and optimal schedules (Demeulemeester & Herroelen, 2011). Several techniques

13

for achieving robustness exist, such as fault tolerance (Ghosh, 1996), temporal

protection (Gao, 1995), time window slack (Davenport, Gefflot, & Beck, 2001),

minimax objective (Sevaux & Sorensen, 2002) and abstraction of resource usage

(Herroelen & Leus, 2004).

Stochastic project scheduling, or more commonly known as stochastic

resource-constrained project scheduling problem (stochastic RCPSP or

SRCPSP), aims at scheduling project activities with known activity duration

distribution. The main objective in the SRCPSP is the minimisation of the

expected project makespan subject to precedence relations and limited resource

capacities. However, unlike in the deterministic RCPSP, the outcome of the

SRCPSP is a so-called scheduling policy (Mohring, Radermacher, & Weiss,

1984). The execution of a project in the SRCPSP represents a multi-stage

decision process, where at each consecutive step, by acting as a scheduling rule,

policy determines which activity is going to be started next.

Lastly, fuzzy project scheduling assumes that probability distributions for the

activity durations are unknown due to the lack of historical data. In situations that

involve imprecision rather than uncertainty, the use of fuzzy numbers for

modelling activity durations is recommended. The outcome of a fuzzy scheduling

pass normally is a fuzzy schedule, which indicates fuzzy starting times of the

activities in the project. Dorn et al. (1995) noted that a fuzzy schedule at certain

levels gives some degree of freedom and lets to choose the starting times of

certain activities a little earlier or later when soft constraints may be imposed. In

this sense, a fuzzy schedule consists of multiple crisp schedules. The most recent

work on fuzzy scheduling has been gathered by Slowinski and Hapke (2010).

Herroelen and Leus (2005) outlined advantages of the SRCPSP over other

research tracks and its higher suitability for the project scheduling under

uncertainties, mainly for the reason that it does not require a generation of the

baseline plan for making advance commitments to both subcontractors and

customers. Moreover, the authors also highlighted SRCPSP’s similarity with its

deterministic variant and confirmed the possibility of application of some of the

RCPSP methods for the SRCPSP, given necessary modifications are made.

14

2.2.1 Mathematical Formulation

Similar to the deterministic RCPSP, the main goal of the SRCPSP is to minimise

the expected project makespan while considering limited resource availabilities

and precedence relationships.

Following the notation of the RCPSP presented in Section 2.1.1, a project in

the SRCPSP is similarly represented by an AON graph G = (V, E) (Zhou & Chen,

2002), where V = {0, 1, 2, …, n, n + 1} denotes the set of activities and E is a set

of arcs representing zero-lag finish-start precedence relations. In the SRCPSP,

activities 0 and n + 1 are assumed to be dummy activities that represent the start

and end of the project, respectively. The durations of other activities are denoted

by a random vector d = (d1, d2, …, dn), where dj denotes the random duration of

activity j.

For their execution, activities require renewable resources which are defined

by a finite set ℛ𝜌. The total capacity of resource k is denoted by 𝑅𝑘
𝜌
. Activity j

requires an amount of 𝑟𝑗𝑘
𝜌

≤ 𝑅𝑘
𝜌
 units of resource type k.

Given the presence of both resource and precedence constraints, schedules

are generated through application of so-called scheduling policies or strategies.

According to Olagu´ibel and Goerlich (1993), scheduling policy Π makes a

decisions at decision point t, where decision at time t is to start at time t a

precedence and resource feasible set of activities S(t), where feasible means that

all constraints are respected. The decision may only exploit information that is

available until the current time t. As soon as the execution of activities is

complete, their final durations becomes known, yielding to realisation of d. The

application of policy Π leads to the creation of a schedule Π(d) = {S0, S1, S2, …, Sn,

Sn+1} of activity start times and the resulting schedule makespan Cmax(Π(d)).

Therefore, optimisation problem of the SRCPSP can be stated as creation of

scheduling policy that will minimise the expected project duration E[Cmax(Π(d))]

over a class of policies. If it is assumed that the distributions of the activity

durations are discrete, then the problem is a generalisation of the deterministic

RCPSP presented in Section 2.1.1, therefore its difficulty can be described as

NP-hard in the strong sense (Demeulemeester & Herroelen, 2002).

2.2.2 Applied Methodologies

The literature on relevant methods proposed for solving the SRCPSP is rather

limited. All presented approaches can be divided into two categories: on the one

15

hand, there are theoretical studies and applications of general or particular

classes of scheduling policies; on the other hand, there are various classes of

heuristics proposed.

2.2.2.1 Scheduling Policies

A scheduling policy can be regarded as a dynamic decision process that decides

which activity is going to be started at the current decision time t. Various classes

of scheduling policies have been proposed for the SRCPSP. Stork (2001) did a

comprehensive review of existing policies and summarised them as follows:

 Priority policies

 Pre-selective policies

 Non-anticipativity constraint

 Earliest start policy

 Linear pre-selective policy

First introduced by Radermacher (1981), a priority policy is the best-known

class of scheduling policies for the SRCPSP. A policy is called priority if at

decision time t a maximum amount of available activities is scheduled according

to their respective priority numbers. Due to their properties, priority policies are

easy to define and implement, however, at the same time, applications of such

policies can result in an optimal schedule not being found. Furthermore, a

deviation in the activity processing times may cause specific anomalies to appear,

resulting in prolonged schedule duration, even though the activity processing

times have been reduced. In the literature, such behaviour is commonly referred

to as Graham anomaly and it has been described by Graham (1966) in the

context of parallel machine scheduling. For example, such events as decrease in

the duration of activities, addition of additional capacity and removal of

precedence constraints may lead to increase of the project makespan. As the

result of Graham anomalies, priority policies are very rarely used for the

SRCPSP.

Radermacher (1984) introduced another class of policies called pre-selective

policies. These policies work by establishing sets of preselected activities called

minimal forbidden sets. The execution of these sets is then postponed until at

least one activity from the defined set has been completed. In contrast to priority

policies, preselective policies are not susceptible to Graham anomalies, hence

are more robust. The preselective policies were further studied by Igelmund and

16

Radermacher (1983). Mohring and Stork (2000) introduced quite useful

representation of pre-selective policies using so-called waiting conditions.

Waiting conditions are modelled as AND/OR precedence constraints.

In various publications on stochastic scheduling problems (Wets, 1989;

Escudero, Kamesam, King, & Wets, 1993) another class of scheduling policies

appears, called non-anticipativity constraint. The requirement of a non-

anticipativity constraint is that decision made at any decision time can only be

based on the information available at that moment. Radermacher (1985) has

shown that this requirement exactly expresses the possibility of using the

maximal amount of available information for each decision point.

Rockafellar and Wets (1991) presented a class of robust policies, which

includes earliest start policy among all. The earliest start policy is closely related

to the class of preselective policies and can be viewed as a pair of a combinatorial

object and an algorithm which transforms a given scenario into a schedule.

Lastly, Stork (2001) proposed linear preselective policies which combine the

list-oriented features of priority policies with the selection-oriented character of

preselective policies. The idea is to define the selection via a priority ordering of

the activities.

Since scheduling procedures rely on a preliminary enumeration, the use of

scheduling policies for the SRCPSP becomes computationally intractable when

the size of projects reaches to practical instances (e.g. 50 activities or more).

Stork (2001) concluded that for larger instances the only remaining alternative to

the scheduling policies is the application of heuristic approaches.

2.2.2.2 Heuristics

There are very few heuristics developed for the SRCPSP. One of the first

computational methods proposed to address the issue of uncertain activity

durations in project scheduling was the project evaluation review technique

(PERT) (Malcolm, Roseboom, Clark, & Fazar, 1959). PERT analysis works by

estimating the expected project duration and predicts possible deviations from

the baseline schedule, assuming probability distributions of activity durations are

known. Dodin (2006) reviewed different variations of PERT methodologies and

outlined that main limitation of these methods is the lack of decision-support. This

limitation is caused by the fact that PERT methodologies only focus on

understanding the statistical properties of a project makespan, yet they do not

17

identify the optimal activity starting times, nor identify which path(s) of the

schedule will be critical. Several attempts have been made to address this

limitation (Dodin, 1984; Elmaghraby, Ferreira, & Tavares, 2000), however, the

line of this research did not produce any significant results, mainly due to the fact

that proposed methods do not explicitly use resource constraints, instead

resources are assumed to be unlimited.

More recent research tracks on the SRCPSP have been dealing with the

application of various metaheuristics. Two-phase genetic algorithm (GA)

(Ashtiani, Leus, & Aryanezhad, 2011). The method useD a pre-processing

procedure to estimate a sequence of all activities at time zero, skipping the

observation of early activities. In the optimal control theory, such terminology

corresponds to an open-loop policy (Martinez & Soares, 2002). Typically,

methods based on this policy are static in nature and during the execution of the

project they are not updated.

In contrast to open-loop policies, an alternative solution is a closed-loop policy.

The main difference between the two is that closed-loop policy makes the

scheduling decisions in a dynamic fashion through the application of the dynamic

programming (DP) (Bertsekas, 2007). Instead of scheduling an entire activity

sequence for the whole project, a closed-loop policy at each decision point

selects activities that are permissible for a start. This selection is based on an

optimal decision rule and is made by the decision-maker, given the relevant

information about the project is known. Several DP-based approaches for the

SRCPSP have been proposed in the chemical-pharmaceutical environment

(Choi, Realff, & Lee, 2004). Another DP approach was presented by Haitao and

Womer (2015). The authors presented an efficient and effective approximate DP

algorithm based on the priority policy. The performance of the algorithm was

enhanced by employing constraint programming, which subsequently improved

the performance of base policy offered by a priority rule-based heuristic.

2.3 Methodologies

As can be noted from the surveys on the presented problems (Kolisch &

Hartmann, 1999; Kolisch & Hartmann, 2006; Herroelen & Leus, 2005), the most

effective algorithms proposed for solving them belong to the class of

metaheuristics. The use of metaheuristics for application in scheduling problems

18

(and optimisation problems in general) is a rapidly growing area of research. Due

to the importance of these problems for the scientific as well as engineering

worlds, each year, more and more innovative methodologies are being proposed.

Dreo et al. (2006) presented a survey of nowadays most important metaheuristic

methodologies from a conceptual point of view. The authors analysed differences

and similarities of all known metaheuristics and outlined their concepts and

components. All methodologies there are covered in the survey were classified

as follows:

 Nature-inspired or non-nature inspired

 Population-based or single point search

 Dynamic or static objective function

 One or various neighbourhood structures

 Non-hybrid or hybrid

 Single or multiple solutions

 Memory or memory-less methods

Clearly, metaheuristic algorithms are not restricted to only one classification,

hence one method can be classified to belong to several groups. From the

research point of view, the most significant category of metaheuristics is

population-based vs single point search (Blum & Roli, 2003). This is explained by

the fact, that nowadays the biggest trend in the field of engineering optimisation

is a hybridisation of methods: integration of single point search methodologies

into population-based ones. Thus, metaheuristics from these categories are used

as a base for forming more advanced and complicated methods. Nevertheless,

such categories of metaheuristics as hybrid and multiple solutions are not least

important, as these methodologies usually represent state-of-the-art solutions for

the most complicated optimisation problems.

2.3.1 Single Point Search Algorithms

The search process of single point search methods (or more commonly known

as trajectory methods) is characterised by a trajectory in the search space,

meaning that the next solution found by the algorithm may belong to the

neighbourhood of the previous solution. Hence, the search process of these

algorithms can be viewed as the evolution of a dynamical system in time (Bar-

Yam, 1997). The process of operation of these algorithms typically begins with

an initial solution represented by an initial trajectory in the search space, which is

19

constantly improved via solution improvement mechanism until predefined

stopping condition is met. The most commonly used single point search

metaheuristics are simulated annealing (SA) (Kirkpatrick, Gelatt, & Vecchi, 1983),

tabu search (TS) (Glover, 1986), greedy randomised adaptive search procedure

(GRASP) (Feo & Resende, 1995), variable neighbourhood search (VNS)

(Hansen & Mladenovic, 1999), guided local search (GLS) (Voudoris & Tsang,

1999), and iterated local search (ILS) (Martin, Otto, & Felten, 1991).

2.3.1.1 Simulated Annealing

Among all single point search metaheuristics, Simulated Annealing (SA) is

considered to be the oldest one. First presented by Kirkpatrick et al. (1983), its

fundamental idea is to allow moves that will result in solutions of worse quality

than the current best with the aim of escaping from the local optima trap. The

process of SA begins with the creation of an initial solution (randomly or

heuristically) and then its further improvement via local search. In the nutshell,

this whole process can be characterised as a Markov chain (Feller, 1968), as it

follows a trajectory in the state space where the choice of the next state only

depends on the previous one. Because of that, the basic versions of SA are

memory-less and can easily be integrated into other metaheuristics.

Nevertheless, the inclusion of memory can be beneficial for the development of

more advanced SA approaches (Chardaire, Lutton, & Sutter, 1995).

For the RCPSP, SA has been applied successfully a number of times. Boctor

(1996) demonstrated fairly good performances of SA approaches on PSPLIB

benchmark instances.

Bouleimen and Lecocq (2003) proposed an SA in which predictable search

pattern is replaced by a new strategy that takes into account the properties and

characteristics of the RCPSP solution space. Jozefowksa et al. (2001) applied

the SA to solve the multi-mode variant of the RCPSP.

Nikulin and Drexl (2010) used SA to solve the airport flight gate scheduling

problem which was modelled in the form of RCPSP. While previous approaches

have been simplified to a single objective counterpart, they used SA to optimise

more than one objective. The objectives were modelled by means of fuzzy

members.

Apart from the RCPSP, SA has also been applied to several other

combinatorial optimisation problems, such as Quadratic Assignment Problem

20

(QAP) (Connolly, 1990) and job-shop scheduling problem (JSSP) (Laarhoven,

Aarts, & Lenstra, 1992). For more examples of the SA applications refer to (Aarts

& Lenstra, 1997).

2.3.1.2 Tabu Search

Tabu Search (TS) is believed to be the most cited and commonly used. The

concept of TS, which is based on the work of Glover (1977), was first introduced

by Glover (1986). In comparison to other single point search methods, TS works

by explicitly using a history of the search process. With this, TS can avoid falling

into local optima trap as well as implement explorative strategies. As a basic

ingredient for the solution search, TS applies the best improvement local search

operator, whereas to escape from the local optima, TS uses a short-term

memory, which is implemented in a form of tabu list. Tabu list keeps track of the

previously visited neighbourhoods and forbids moves toward them. Therefore,

the moves of TS are only permitted towards solutions neighbourhoods of which

have not yet been visited. At each iteration, based on the tabu list, via

improvement local search TS forms a set of allowed solutions. After the set is

formed, the best solution from this set is chosen as a current best one. Due to

the dynamics of the search process, TS is considered to be a dynamic

neighbourhood explorative method (Stutzle, 1999).

Thomas and Salhi (1998) were the first to apply TS for the RCPSP. The most

notable characteristic of the presented method is the utilisation of two diverse

neighbourhood structures.

Similarly, Nonobe and Ibaraki (2002) proposed a TS method for the RCPSP

which operates on the Activity List (AL) solution representation scheme and uses

specific rules for exploring solution search space and defining structure of the

neighbourhood.

Klein (2000) developed a so-called reactive TS for the RCPSP with time-

varying resource constraints. The algorithm is based on the AL representation

and uses a serial Schedule Generation Scheme (SGS) to convert solution

representation scheme into a schedule. The solution search space is explored by

swap moves, which involve the relocation of predecessors or successors of the

swapped activities, given all precedence constraints are satisfied.

21

Another implementation of the TS for project scheduling was presented by Pan

et al. (2009). The original TS model is improved by optimising the neighbourhood

exploration mechanism.

Tsai and Gemmill (1998) developed a TS methodology for deterministic and

stochastic variants of the RCPSP. To provide more diversified search, the

presented adaptation of the TS that uses several tabu lists, randomised short-

term memory, and multiple starting schedules.

One of the most recent applications of the TS for the RCPSP was done by

Artigues et al. (2003). Their algorithm uses various insertion rules to estimate the

structure of the neighbourhood and successfully explore the solution search

space.

Moreover, TS has been applied to most of the other combinatorial optimisation

problems, such as QAP (Taillard, 1991), maximum satisfaction (MAXSAT)

problem (Battitti & Protasi, 1997), assignment problems (Dell'Amico, Lodi, &

Maffioli, 1999), JSSP (Nowicki & Smutnicki, 1996), and the vehicle routeing

problem (VRP) (Gendreau, Laporte, & Potvin, 2001).

2.3.1.3 Greedy Randomised Adaptive Search Procedure

First introduced by Feo and Resende (1995), Greedy Randomised Adaptive

Search Procedure (GRASP) is a simple metaheuristic that has been created by

combining a constructive heuristics and local search operator. The solution

search process of GRASP consists of two phases: solution construction and

solution improvement. The first phase, namely solution construction, is

responsible for building a solution on a step-by-step basis by adding one element

at a time. The mechanism responsible for this consists of two components:

dynamic constructive heuristic and randomisation. The second phase of the

algorithm is a basic local search process.

The basic versions of GRASP do not require to use any history of the search

process. Therefore, the only memory requirement of this algorithm is to store the

best solution found so far. This fact serves as the main reason for integration of

GRAPS into other metaheuristics. Moreover, due to its simplicity, the GRASP is

computationally fast and is capable of producing satisfactory results in a short

amount of time.

In the literature, there are not many examples of the application of GRASP for

the RCPSP. The most prominent application of GRASP was done by Alvarez-

22

Valdes et al. (2008). The authors studied a generalisation of the classical RCPSP

which considers the new type of resource. For this problem, several pre-

processing techniques are developed which help to determine the existence of

feasible solutions and reduce the number of variables and constraints. The

developed techniques are applied in conjunction with the GRASP.

Another application of the GRASP is proposed by Ballestin and Leus (2009),

this time for the SRCPSP. The authors developed an integrated simulation-

optimisation framework, in which GRASP is applied to explore the solution search

space, while the simulation is used to evaluate the solutions found in the local

neighbourhood.

Applications of the GRASP for other optimisation problems were proposed by

Binato et al. (2000) for the JSSP, Resende and Ribeiro (2001) for the graph

planarization problem (GPP), and Prais and Ribeiro (2000) for assignment

problems. For more examples of GRASP applications refer to (Festa & Resende,

2002).

2.3.1.4 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is a metaheuristic proposed by Hansen

and Mladenovic (1999). Its idea is based on the application of strategy that is

based on a dynamically changing structure of the neighbourhood. The concept

of the algorithm is very general and there are many degrees of freedom for

designing its variants and instantiations. The basic versions of VNS begin its

operation by the structure of the neighbourhood and generating the initial

population. After this is done, the main cycle begins, which is composed of three

phases: shaking, local search, and move. In the shaking phase a solution s` in

the kth neighbourhood of the current solution s is randomly selected. The randomly

selected solution then becomes the local search starting point. The local search

then explored other neighbourhoods for a new solution. At the end of the local

search process, the new solution s`` is compared with s and, if it is better, replaces

it and the algorithm starts again with k = 1. Otherwise k is incremented and a new

shaking phase is initiated.

Fleszar and Hindi (2004) were the first to propose to solve the RCPSP by

applying the VNS method. The proposed method uses enhanced move operator

which relocates activities within the AL. To speed up the exploration of the search

space, authors apply specific lower bounds calculations.

23

Another application of the VNS for the RCPSP is done by Kochetov and Stolyar

(2011). The developed algorithm includes a new local search and moves

operators, which greatly improve the performance of the method in comparison

to other implementations of the VNS for the RCPSP. The method is tested on a

set of benchmark instances. The results of testing are satisfactory; the algorithm

shows competitive performance against other trajectory metaheuristics.

Roshanaei et al. (2009) developed a variation of the VNS for the RCPSP. The

fundamental difference of the presented method is the obviation of the notorious

chaotic behaviour of local search-based metaheuristics by the means of insertion

of several systematic neighbourhood structures.

Moreover, other notable applications of the VNS and its variants for other

optimisation problems were done by Fleszar et al. (2009) for the VRP, Fonseca

and Santos (2014) for high-school timetabling, and by Abdelmaguid (2015) for

the JSSP.

2.3.1.5 Guided and Iterated Local Searches

In contrast to other trajectory methods, which deal with the static neighbourhood,

the Guided Local Search (GLS) (Voudoris & Tsang, 1999) and Iterated Local

Search (ILS) (Martin, Otto, & Felten, 1991) dynamically change the structure of

the neighbourhood space to provide more efficient and effective exploration. GLS

explores the search space by dynamically changing the objective function, while

ILS does it with the means of the perturbation (i.e. finds local optima, perturbs the

solutions, and then restarts the process). Both of these variations of the local

search most of the times serve as a framework for other metaheuristics or are

integrated directly into them.

For the RCPSP, local search methods are usually used in conjunction with

other algorithms. Therefore, in the literature, there are not many examples of the

application of non-hybrid local search metaheuristics.

A local search algorithm for the RCPSP was developed by Pesek et al. (2007).

Their method uses several improved neighbourhood structures that are identified

by relocating a fixed amount of activities in the AL.

Palpant et al. (2004) presented a local search strategy in which a subpart of

the current solution is fixed and the other part defines a sub-problem which is

solved by applying a heuristic or an exact method.

24

A complicated local search strategy for the RCPSP is presented by Ranjbar

(2008). The method represents a filter and fan methodology which operates on

the AL solution representation and consists of two major mechanisms: local

search; and filter and fan strategy. The local search uses local move operators to

estimate structure of the neighbourhood, while the filter and fan strategy uses a

list of obtained local optima to evaluate the solution neighbourhood defined by

the local search.

Nevertheless, GLS, ILS and its variations were extensively applied to solve

other optimisation problems. For example, Mills and Tsang (2000) applied GLS

to solve the weighted MAXSAT, Kilby et al. (1999) used GLS to solve the VRP,

Voudouris, and Tsang (1999) developed a variation of the GLS for the TSP.

Further, ILS was applied to the TSP (Martin, Otto, & Felten, 1991), QAP

(Lourenco, Martin, & Stutzle, 2001), and the single machine total weighted

tardiness problem (Besten, Stutzle, & Dorigo, 2001).

2.3.2 Population-Based Algorithms

Rather than dealing with a single solution, population-based methods at every

iteration deal with a set (i.e. population) of solutions (i.e. individuals). Because of

this property, population-based metaheuristics explore the search space in a

more natural and intrinsic way, while the final result of the operation strongly

depends on the way the population is manipulated. The most studied group of

population-based metaheuristics in the literature is the category of Evolutionary

Computation (EC) (Back, Fogel, & Michalewicz, 1997). EC is a sub-field of

algorithms that are inspired by the nature and capability of living beings to evolve

and adapt to their environment. Therefore, the algorithms from that category can

be characterised as computational models of the evolutionary process.

2.3.2.1 Genetic Algorithm

Genetic Algorithm (GA), inspired by the process of biological evolution, has been

introduced by Holland (1975) and is one of the most widely used metaheuristics.

The ideas of the GA are based on the survival of the fittest process when over

consecutive generations individuals evolve and the strongest among them

survive. Each generation consists of a population of individuals in which each

individual represents a point in the search space and a possible solution to the

problem at hand. Individuals in the population are made to go through a process

of evolution which consists of selection, mating (crossover) and mutation.

25

Husbands et al. (1996) outlined the advances of GAs for scheduling and

illustrated the resemblance between scheduling and sequence-based problems.

One of the first implementations of GA for the RCPSP was presented by

Hartmann (1998). He proposed to use a variation of GA where every gene

composing a chromosome is a delivery rule. Later, Hartmann (2002) improved

his original method by introducing a self-adapting mechanism. With the inclusion

of this mechanism, the algorithm is capable of adapting to the problem instance

by learning which of the decoding procedures is more successful.

Alcaraz and Maroto (2001) proposed an improved version of the GA which

includes a new solution representation scheme and advanced crossover

technique. Further, Mori and Tseng (1997) have applied it to solve the multi-mode

variant of RCPSP.

Coelho and Tavares (2003) presented a GA which is based on the AL

representation scheme and serial SGS. The authors proposed a new crossover

operator for the AL called late join function crossover. The operator constructs

new individuals by adopting the solution of the first parent and swapping each

adjacent pair that is in reverse order in the second one. Similarly, the

implementation of GA for the RCPSP developed by Hindi et al. (2002) is also

based on the AL representation and serial SGS. However, in this method, the

initial population is produced by a pure random mechanism.

Tolku (2002) developed a GA which instead of using solution representation

schemes, directly works with schedules (i.e. vectors of starting times). Since

genetic operators (crossover and mutation) may produce infeasible schedules,

the author developed a penalty function, which is used to evaluate the constraint

violations.

A slightly different approach for GA implementation was shown by Zhu et al.

(2011). Unlike any other traditional GA implementations, the authors

implemented a resource fragment mechanism that stores such information as

starting times and resource distributions of the activities. In order to generate a

feasible schedule and further improve it, a resource allocation and schedule

enhancement methods are implemented. The quality of the constructed schedule

is evaluated with the new fitness function.

GAs have been extensively applied to most of the optimisation problems.

Examples of such uses include the TSP (Grefenstette, Gopal, Rosmaita, & Gucht,

1985) and QAP (Kratica, Tosic, Filipovic, & Dugosija, 2011) among all. For an

26

extensive collection of more examples of GA applications refer to the survey of

Blum and Roli (2003).

2.3.2.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) was introduced by Kennedy and Eberhart

(1995) and represents a population-based stochastic optimisation technique

inspired by social behaviour of bird flocking or fish schooling. In a PSO, at each

iteration, a group of individuals is adjusted closer to the fittest member of the

population. This principle resembles a flock of birds who circle over an area where

they can smell a hidden source of food. The one who is closest to the food chirps

the loudest and the other birds swing around in his direction. If any of the other

circling birds comes closer to the target than the first, it chirps louder and the

others move toward him. This tightening pattern continues until one of the birds

happens upon the food.

One of the most notable applications of the PSO for the RCPSP was done by

Chen et al. (2010). The authors proposed two scheduling rules: delay local search

and bi-directional scheduling rule. To speed up the procedure of solution

makespan evaluation, critical path calculations are used. Simulation results

indicate the efficiency of the proposed algorithm in producing high-quality

solutions.

Another application of the PSO for the RCPSP was presented by Zhang

(2005). In order to deal with permutation feasibilities and precedence constraints

during particle flying, the hybrid particle-updating mechanism is introduced. The

potential solutions represented by particles (or exact positions of the particles)

either in the permutation form or in the priority form are transformed to feasible

schedules. The transformation is done using a serial SGS.

Linyi (2007) presented an implementation of a PSO for the RCPSP with the

one-point crossover. The author introduced a new method for calculating the

crossover function based on the precedence feasibility list of the activities.

Moreover, a new approach for representation of particle evolution is presented

and explained. The computational experiments showed that the developed

modification of the PSO outperformed several other non-hybrid heuristics.

Moreover, applications of the PSO to other combinatorial optimisation

problems are quite common. Few examples of such are TSP (Shi, Liang, Lee,

Lu, & Wang, 2007) and JSSP (Surekha, Raajan, & Sumathi, 2010).

27

2.3.2.3 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a population-based metaheuristic approach

proposed by Dorigo (1999), the main source of inspiration of which is the foraging

behaviour of the real ants. ACO is based on a parametrised probabilistic model

– the pheromone model – which is used to model the chemical pheromone trails.

In the ACO, the solutions are incrementally constructed by ants. This is achieved

by adding opportunely defined solution components to a partial solution under

consideration. For this, artificial ants perform randomised walks on a completely

connected graph, vertices of which are solutions components. In the literature,

this graph is commonly referred to as the construction graph.

The first application of the ACO for the RCPSP was presented by Merkle et al.

(2002). In the proposed approach, a single ant corresponds to one application of

the serial SGS. The eligible activity to be scheduled next is selected using a

weighted evaluation of the latest start time priority rule and so-called

pheromones, which represent the learning effect of previous ants. A pheromone

value describes how promising it seems to put a certain activity in the schedule.

Further features of the approach include separate ants for forward and backwards

scheduling and 2-opt-based local search phase at the end of the heuristic’s

operation.

An improved ACO for the RCPSP was introduced by Luo et al. (2003). The

general ACO is improved by using the ant with backtracking capabilities and

several kinds of heuristics for the construction of the solution. The combination of

direct and summation pheromone evaluation methods and the pseudo-random-

proportional action choice rule are also used.

Similarly, another implementation of the ACO was developed by Yuan et al.

(2009). In the method, task duration and resources are considered as the

heuristic information. This information is later used to calculate the accurate state

transition probability and reach the scheduling optimisation.

Successful adaptations of the ACO to other optimisation problems include the

application to routeing in communication networks (Caro & Dorigo, 1998),

sequential ordering problem (SOP) (Gambardella & Dorigo, 2000), JSSP (Dorigo

& Stutzle, 2003).

28

2.3.2.4 Scatter Search

Scatter Search (SS) and its more generalised form path relinking were developed

by Glover et al. (2000). Their main difference from other ECs is the introduction

of unifying principles for joining (or recombining) solutions based on the

generalised path constructions in the Euclidean or neighbourhood spaces.

Moreover, these methodologies also incorporate ideas that were originated from

the TS, such as the use of adaptive memory and associated memory-exploiting

mechanism. SS (as well as path relinking) is a search strategy that generates a

set of solutions that are chosen from a set of reference solutions corresponding

to the problem under consideration. Once the set of solutions is constructed, an

improvement mechanism is applied. The improved solutions then form a set of

dispersed solutions, which later is used as reference solutions at the next

iterations.

One of the first application of the SS for the RCPSP was done by Ranjbar and

Kianfar (2009). The authors presented an improvement to their original local

search method, this time, it was SS method with double justification technique.

The method operates on the topologically ordered AL representation and uses

double justification to perform backwards and forward shifts for further

improvements of the schedules. In the same year, another SS variant was

proposed by Mahdi-Mobini et al. (2009). Similarly to the previous method, the

presented algorithm also operates on the AL representation and uses double

justification technique. On the other hand, this approach incorporates two point

crossover operator, a path relinking strategy, and a permutation-based operator.

Another application of the SS for the RCPSP was proposed by Berthaut et al.

(2014). The presented SS includes a new move operator and path relinking

method which are used in conjunction together. The algorithm is tested on the

PSPLIB test instances and demonstrated the best results among other compared

metaheuristics.

The most recent SS adaptation for the RCPSP is developed by

Paraskevopoulos et al. (2012). Unlike other methodologies for the RCPSP, the

presented approach is based on a new representation of a solution called the

event list. This representation scheme is based on an ordered list of events that

are sets of activities that start at the same time. Moreover, the algorithm

incorporates a new improvement method and event list-based combination

method.

29

Because of its relative newness, there has been an increasing interest in SS

in recent years. Examples of its application are multi-objective assignment

problems (Laguna, Lourenco, & Marti, 2000) and linear ordering problems (LOPs)

(Campos, Glover, Laguna, & Marti, 2001) among all. For further SS applications

refer to a survey done by Glover et al. (2005).

2.3.2.5 Cuckoo Search

Developed by Yang and Deb (2009), Cuckoo Search (CS) is one of the recently-

introduced metaheuristic algorithms. CS was inspired by the broom parasitism of

some cuckoo species that lay their eggs in the nests of the birds of other species.

In the basic version of CS, the cuckoos are illustrated as basic search agents.

Eggs in nests serve as candidate solutions for the problem at hand and each egg

is a metaphor for a new solution. The main goal is to use new and potentially

better solution to replace a worse solution in the nest.

Based on the work done in (Yang & Deb, 2010), CS has shown itself as a very

efficient algorithm for finding the global optima with high success rate. Yang

(2010) showed that in some cases CS was superior to both PSO and GA in terms

of efficiency and success rate. Moreover, primarily because of its effectiveness

and simplicity, CS has managed to attract the attention of many researchers from

different application fields and domain, refer to (Nguyen, Truong, & Phung, 2016;

Teymourian, V.Kayvanfar, Komaki, & Zadeha, 2016; Sekhar & Mohanty, 2016;

Elazim & Ali, 2016) for examples.

In terms of applications of CS to problems in the discrete domain, as of today

there are not many cases. One of the first works that attempted to solve a discrete

optimisation problem using CS was presented by Ouaarab et al. (2013). In their

work, the authors used the basic and improved CSs to solve the travelling

salesman problem. Further, CS has also found a recent and significant

application to the NP-hard annual crop-planning problem by Chetty and Adewumi

(2013).

More recently, Yang (2012) proposed a generalised version of CS called

Flower Pollination Algorithm (FPA). The algorithm is based on the principle of

pollination of flowers, however, it bears a lot of similarities with the CS. The major

difference between these two is the application of the crossover operator in FPA.

30

2.3.3 Hybrid Algorithms

Nowadays, one of the biggest trends in the engineering optimisation is the

hybridisation of metaheuristics. Hybrid algorithms exploit the complementary

character of different optimisation strategies. As a result, choosing an adequate

composition of several algorithmic concepts for hybridisation can be the key for

achieving better performance in solving many hard optimisation problems.

Several forms of hybridisation of metaheuristics exist. Talbi (2002) in his survey

on hybrid metaheuristic proposed to classify hybridisation forms as follows:

 Hybridising metaheuristics with (meta-) heuristics

 Hybridising metaheuristics with constraint programming

 Hybridising metaheuristics with tree search techniques

 Hybridising metaheuristics with problem relaxation

 Hybridising metaheuristics with dynamic programming

The process of designing and implementing effective hybrid metaheuristic is

rather complicated and requires broad knowledge of algorithmic techniques and

specifics of the problem to which the algorithm is going to be applied.

Nevertheless, despite such complexities, a large number of publications (Bluma,

Puchingerb, Raidlc, & Roli, 2011) documents great success and benefits of

various hybrid approaches.

In the review done by Kolisch and Hartmann (2006) on the latest state-of-the-

art heuristics for the RCPSP, the best performance results were achieved indeed

by a hybrid metaheuristic developed by Valls et al. (2003). This algorithm is based

on the GA and introduces several changes to the original paradigm: a local

improvement operator; a new selection mechanism; and new crossover operator

specific for the RCPSP. The new crossover operator, called peak crossover, is

designed to combine useful problem-specific information extracted from the

parents for the purpose of generating high-quality offspring.

Moreover, in the last decade, more researchers resorted to the development

of the hybrid approaches for the RCPSP. One of the first of such methodologies

was introduced by Valls et al. (2003). The presented algorithm is a population-

based method with a TS integrated into it that uses a topologically ordered

random key (RK) as the representation of a solution. The solution neighbourhood

is structured and explored by the application of three different types of local move

operators. Likewise, Kochetov and Stolyar (2003) proposed an evolutionary

algorithm that combines the GA, the path relinking and the tabu search.

31

In (2004), Valls et al. proposed another hybrid population-based methodology

for the RCPSP. The authors applied a combination of scatter search (SS) and

path relinking strategies. Moreover, for subsequent improvement of the results,

the algorithm uses a forward and backwards schedule improvement technique,

commonly referred to as double justification (Valls, Ballestıń, & Quintanilla, 2005).

Tseng and Chen (2006) developed a hybrid metaheuristic which they applied

to solve the RCPSP. The presented algorithm hybridises the ACO, GA and TS

methods. In particular, ACO is used to create an initial population, GA to further

improve it, and TS for supplementary modifications.

A more complicated way of a solution search space exploration was proposed

by Debels et al. (2006). The developed algorithm represents a hybrid

metaheuristic which is implemented by combining SS and the ideas of the

electromagnetism. For this method, the authors developed a specialised

representation of a solution and new intensification procedure.

Debels and Vanhoucke (2005) presented another hybrid methodology for the

RCPSP, this time, based on the GA. The presented method deconstructs the

RCPSP into various sub-problems which re further solved with the application of

the GA. As the next step, the sub-solutions are assembled by the solution

framework. In a similar fashion, Mendes et al. (2009) presented a GA that uses

an RK as default representations of a solution.

Another hybrid methodology was presented by Agarwal et al. (2011). The

authors proposed a neurogenetic algorithm for the RCPSP. The algorithm works

by hybridising a population-based strategy that is based on a GA and local search

algorithms and principles of the neural networks. Similarly to previously reviewed

algorithms, the presented algorithm also operated on the AL representation.

Finally, an improved immune algorithm for the RCPSP was proposed by Wu

et al. (2011). The presented approach is a population-based metaheuristic that

emulates the immune system of living organisms. It uses an RK as solution

representation scheme, random numbers of which are obtained by the chaotic

generator, and incorporates a novel hypermutation mechanism.

2.3.4 Multimodal Optimisation Algorithms

One common characteristic of methodologies that were presented in this

literature review so far is that they all focus on obtaining only one solution at the

time.

32

Ikeda and Kobayashi (2000) examined fitness landscapes of the most popular

combinatorial optimisation problems, such as JSSP and TSP, and demonstrated

that these problems typically have deceptive multimodal landscapes (i.e. strong

local optima exist far from the global optima). Moreover, the authors showed that

the fitness landscapes of these problems have structures of a big valley (Boese,

1995), meaning that one area of the solution space might contain many solution

candidates that tend to be very similar to each other. Depending on the problem

instance, its fitness landscape might consist of several big valleys. If valley that

contains the global optimum covers a much smaller part of the domain that the

other valleys, this topology poses considerable challenges for search heuristics,

as most searches are drawn toward the bottom of suboptimal valley. Ikeda and

Kobayashi (2000) referred such topologies as UV-valleys, primarily for their

structural appearance as can be seen Figure 2.1.

Figure 2.1 – Concept of U- and V-valleys

Czogalla and Fink (2009) also independently analysed a fitness landscape of

the RCPSP and provided a statistical analysis of their research. The authors

proved that the solution space of the RCPSP, similarly to other combinatorial

optimisation problems, has a big valley structure and showed that good solutions

tend to be close to other good solutions (but not too close) and they are spread

all around the solution search space. The statistical analysis indicated that the

landscape of the RCPSP consist of several interior plateau meaning that one

instance of the problem can have multiple optimal solutions.

More recently, Pérez et al. (Pérez, Posada, & Lorenzana, 2015) applied Multi-

Modal Genetic Algorithm (MMGA) to solve the Resource-Constrained Multi-

Project Scheduling Problem (RCMPSP), which is the derivative of the standard

RCPSP. In their work, the authors were able to prove that multiple optima can be

obtained in the RCMPSP, as well as to demonstrate that multimodal techniques

33

provide better performance than other alternative commonly accepted

methodologies for RCMPSP. Moreover, in his previous works (Pérez, Herrera, &

Hernández, 2003; Pérez, Posada, & Herrera, 2012), Pérez successfully applied

similar approach for solving the JSSP.

From the above-mentioned works, it can be concluded that globally multimodal

landscapes of these problems consist of plural big valleys, and each of them has

its own important local or global optima. In the example presented in Figure 2.1,

a sample fitness landscape of a two-dimensional problem contains two big

valleys. It is worth mentioning that U- and V-valleys are not explicitly identified by

heuristics in the search process, as these are just relative concepts. From the

presented example, it can be noted that one of the valleys seems to have a

relatively better fitness than the other one at the beginning of the search process.

If the global optima are located in a V-valley, traditional heuristics are likely to fail

to find it, because the search will go toward a more promising area (U-valley). As

the result, the effect of premature convergence will occur.

One of the possible ways of the diversification of a search process and

elimination of possibilities of falling into local optima trap is to maintain the

diversity of a population. This can be achieved by diverting the search process

into various regions of the search space simultaneously. In the optimisation this

is achieved by application of methods specifically designed for tackling

multimodal optimisation problems. Every multimodal optimisation technique has

to simultaneously fulfil two partially conflicting tasks: to locate multiple optima and

to maintain a set of best solutions for diversity purpose.

Several attempts have been made to transform EC methods so that they could

be applied in problems with globally multimodal landscapes (refer to (Eiben &

Smith, 2003) for recent surveys). However, when tailoring such EC, there are a

number of issues to be considered: 1) the division of a population into sub-

populations; 2) preservation of these sub-populations; 3) connection of these

populations to the existing optima in the solution space. In the literature, the most

popular and effective technique that managed to address all three issues is

niching.

In nature, an ecosystem consists of regions (niches). A niche represents a part

of a habitat where a living thing makes its home. Each of these niches has a

diverse set of characteristics and stimulates the formation and subsequent

development of different types of species. Hence, species is a living thing that

34

lives in a niche. To allow the coexistence in their niches, the individuals that form

a species share a set of similar biological features. Moreover, this set of biological

species allows them to breed with each other, and, at the same time, makes the

interbreeding among members of different species impossible. Usually, the

individuals that form a species depend on the resources their niche provides to

them. In the context of optimisation problems, each niche is represented by a

region of a search space and is related to a peak of the fitness landscape.

Species that inhabit that niche represent a solution candidates for the problem.

In this respect, niching or speciation techniques have been proposed for the

simultaneous evolution of subpopulations.

Mahfoud (1995) undertook a detailed comparison of popular sequential and

parallel niching methods. By applying reviewed techniques on various multimodal

problems, the author concluded that parallel niching outperforms sequential

niching in all problems with intermediate to high complexity. Sequential niching

was only able to solve problems of low complexity. The most competitive

sequential niching techniques are those of, Beasley et al. (1993), and Li et al.

(2004).

Many different parallel niching concepts and methodologies have been

developed. The most prominent examples of such techniques are species

conservation (SC) (Li, Balazs, & Parks, 2002), clustering (Yin & Germay, 1993),

fitness sharing (FS) (Cavicchio, 1970), crowding (Jong, 1975), clearing

(Petrowski, 1996), restricted tournament selection (RTS) (Harik, 1997), and

niching memetic algorithm (NMA) (Moscato, 1989).

2.3.4.1 Species Conservation

Species Conservation (SC) is a recent technique that was introduced by Li et al.

(2002) and it realises niching by utilising the idea of species. The technique is

based on the concept of separation of the population into several species

according to their similarity and the subsequent evolution of the species in

parallel.

In SC, a species represents a subset of finite population PN, which is composed

of individuals that are considered to be similar enough to each other. The

similarity is defined by calculating a distance d between individuals with respect

to the species distance parameter σs. If a distance between two individuals is less

35

than half the species distance (i.e. σs/2), then they are assigned to the same

species.

To divide a population into species and determine which individuals will be

preserved into the next generation later, a set of species seeds Xs is established.

In the beginning of the procedure, the population is sorted in descending order of

fitness of its members. Then. After sorting is completed, the fittest member is then

added to the Xs as the first species seed. Then, for each member of the

population, a distance is calculated between him and species seeds in the Xs. If

the distance is greater than σs/2, the individual is added to the Xs.

After all species have been established, the population is evolved by applying

the usual genetic operators: selection, crossover, and mutation. Since some

species may not survive the outcomes of these operations, they need to be

copied into the next generation, thus prolonging their existence. To do so, the

species seeds of the previous generation are replaced with the individuals of the

same species in the next generation if their fitness is worse than of those in the

previous generation. If no individuals of the same species are found in the next

generation, the worst individual of the new population is replaced by the species

seed. Since the species seeds are being taken from the previous generation, the

number of species is always less than the population size.

Li et al. (2002) integrated SC technique into simple GA and presented Species

Conserving Genetic Algorithm (SCGA). The performance of the SCGA was

successfully tested on various multimodal test functions. The test results proved

this technique to be very effective in locating multiple global optima. One of the

biggest advantages of the SCGA is that it makes no distinction between

genotypes and phenotypes. Therefore, the genetic operators are applied directly

to individuals represented by arrays of real numbers, thus increasing the

simplicity of the technique. The results of further experiments ran by Li and Wood

(2009) confirmed the effectiveness and efficiency of this technique.

Parrot and Li (2004) and Li (2004) proposed a Species-based Particle Swarm

Optimisation by applying SC concept to the basic PSO. The main strength of the

basic PSO is the ability to adaptively adjust particles’ positions based on the

dynamic interactions with other particles in the population. Because of that, the

algorithm becomes very well suited for application in problems with the

multimodal landscape. Using the SC technique, the presented algorithms

determine the neighbourhood best particles and use them to guide different

36

portions of the swarm population towards different optima. The proposed

methodologies were successfully tested on various multimodal problems from the

literature.

Analogously to the previous methodologies, Iwamatsu (2006) extended the

original PSO with the SC technique. The algorithm works by dividing particle

swarm into multiple species. Each species explores a different area of the search

space independently by sharing information to its members. To provide

information exchange between species, the immigration of particles from one

species to another is implemented. The performance of the algorithm is

compared with several other proposals on a set of multimodal test problems.

Ando et al. (2005) incorporated SC into a GA to receive Adaptive Isolation

Model algorithm. The presented approach applies SC to detect clusters in the

population which are identified as attractors in the fitness landscape. The

subpopulations, which make-up clusters, are then isolated and each is optimised

independently, whereas the regions of these subpopulations are suppressed.

The purpose of isolation is to increase comprehensiveness, i.e. the probability of

finding stronger attractors, and the overall efficiency of the multimodal process.

In comparison to other SC-based methodologies, the algorithm does not require

to configure species distance parameter σs, as it is estimated from the

variance/covariance matrix of the subpopulations.

Stoean et al. (2010) presented a Topological Species Conservation Genetic

Algorithm that integrates the conservation of the best successive local individuals

with topological subpopulations separation, instead of the common radius-

triggered manner. The algorithm inherits the ideas of SC of establishing and

conserving dominating individuals, and, at the same time, uses the principles of

the multinational GA to establish sub-populations and distinguish between basins

of attraction. Such approach allows to control seed dynamics even further, both

as replication and exploration are concerned, and eliminates the requirement of

the species distance σs.

Dong et al. (2005) used SC technique in conjunction with mixed mutation

strategy. The presented technique mixes Gaussian, Cauchy, Lévy, single-point

and chaos mutations, which are then applied to the each individual in the

population to generate an offspring according to a mixed strategy distribution.

Mixed strategy distribution is dynamically adjusted based on the performance of

37

the mutation strategies. The addition of the SC eliminated the premature

convergence.

Shibasaka et al. (2007) presented a Species-based Differential Evolution

(SDE). The presented method is the first attempt to integrate SC into DE. The

method showed promising results in locating multiple global optima.

2.3.4.2 Clustering

To promote the formation of the niches and at the same time eliminate the need

for estimation of the niche radius parameter σshare (needed in the majority of other

niching techniques), Yin and Germay (1993) proposed clustering.

In the original clustering technique, niches are formed using the adaptive

Macqueen’s K-means clustering algorithm (MacQueen, 1967). The procedure of

clustering (niches formation) is normally utilised in population-based

metaheuristics and performed at each generation. The procedure begins with the

initialisation of a fixed number (k) of seed points, referred to as the best k

individuals. Using a minimum allowable distance dmin between niche centroids,

the clusters are built around each seed point. Then, based on the values of dmin

and dmax parameters, the remaining members of the population are added to these

existing clusters or are used to form new ones. The final fitness of each individual

is calculated using the following relation:

)')2/(1(max,

ddn

f
F

cic

i
i


 (2)

Where nc is the number of individuals in the niche containing the individual i

and dmax is the maximum distance allowed between an individual and its niche

centroid. As can be noted from (2), the estimation of a fitness is based on the

distance di,c between the individual i and its niche centroid. Such method of

estimation significantly reduces the time complexity.

Yang et al. (2005) proposed Density Clustering technique. With the aim of

preventing the loss of diversity, Yang et al. replaced the global selection

procedure applied to the whole population with the local selection strategy which

is applied to sub-populations instead. Thus, the species that are represented by

sub-populations are dynamically identified using density-based clustering

algorithm. The algorithm also includes a method for automatically calculating the

clustering threshold.

38

Gan and Warwick (2001) proposed the Dynamic Niche Clustering. The

developed technique represents an improvement to the original methodology and

is a niching method that manages a separate population of overlapping fuzzy

niches. Each of the fuzzy niches has independent radii which operate in the

decoded parameter space and is maintained alongside the normal population.

Moreover, the authors implemented a speedup process that is applied to the

initial population with the goal of reducing the time complexity of the preliminary

stages. It is demonstrated that the added process improves the overall

robustness of the technique.

Streichert et al. (2004) proposed a variation of the clustering strategy for the

EC. The basic idea of the proposal is to transfer the biological concept of non-

interbreeding species living in separate ecological niches into EC. The technique

artificially separates the initial population into species by locating the clusters of

individuals in the search space, which naturally occur due to the general

convergence of EC algorithms. These clusters are then separated into isolated

subpopulations in which individuals compete and breed like in any traditional EC.

Each of the subpopulations converges to a global/local optimum. The division of

the population into species the diversity in the population.

Jelasity et al. (2001) proposed the Abstract Clustering technique for

multimodal optimisation. To accelerate and parallelise existing search methods,

the authors proposed to create clusters with the application of the hill climber

technique. The communication between clusters is minimal and as the search

goes on, the volume of clusters decreases. The process of clusters decrease is

implemented in the similar fashion as cooling in the SA. The reason for limited

communication between clusters is to ensure that each hill is explored only by

one hill climber. The authors embedded their technique into a GA and the results

of the evaluation confirmed its effectiveness.

Alamil et al. (2009) presented a fuzzy clustering-based PSO that does not

require any prior information about the cluster radius σshare and a number of known

optima. The basic idea of this technique is to maintain and promote the formation

of the parallel sub-swarms using fuzzy clustering. Since σshare is dynamically

adapted, a fine local tuning is used to improve the solution during the evolution

of the process.

Another method based on fuzzy clustering is proposed by Alami et al. (2007).

In the presented approach, namely Multi-Population Cultural Algorithm, with the

39

application of the fuzzy clustering technique, the entire population is divided into

smaller subpopulations. These sub-populations and their belief spaces are kept

isolated and handled by their own local cultural algorithm. Therefore, to follow the

principle of social environment, the cultural exchange concept is implemented.

Experimental results indicate that proposed methodology performs better than

normal fitness sharing technique and demonstrate that the method is capable of

optimising high dimensional multimodal functions.

Ling et al. (2008) utilised the clustering strategy into GA to eliminate the genetic

drift that is introduced by the crowding strategy. To combine the clustering and

crowding technique, the authors introduced a peak detection concept. The niches

and clusters in the fitness landscape of a given problem are formed using the

standard crowding strategy. Different niches can coexist in the same cluster and

lead to the same optimal solutions. To remove the genetic drift caused by the

tendency of crowding techniques to converge to numerous potential solutions

simultaneously, the clustering operator is employed to stimulate exploration of

the entire solution search space.

Passaro and Starita (2008) used k-means clustering technique in the

conjunction with PSO for identifying niches within the swarm and locating multiple

global optima.

2.3.4.3 Fitness Sharing

Amongst all proposed niching techniques, Fitness Sharing (FS) is the first one

that attempted to deal directly with the locations and preservations of multiple

solutions. The original concept was proposed by Goldberg (1987) and was further

improved by Goldberg and Richardson (1987). The main idea of FS is to divide

the population into different sub-groups according to the similarity of the

individuals and within each of the subgroups, its members will share the relevant

information among them.

FS works by modifying the search space and reducing the payoff in densely

populated regions. As the outcome, the fitness of each individual within the

subgroup is decreased by an amount nearly equal to the number of similar

individuals. Typically, the shared fitness fi’ of an individual i with the fitness fi is

i

i
i

m

f
f '

 (3)

40

where mi is a niche count parameter which represents the number of members

with whom the individual shares his fitness. The niche count is the sum of the

sharing function of all individuals in the population:





PN

j

iji dshm
1

)((4)

where NP is the size of the population and di,j is the distance between individuals

i and j. Therefore, the sharing function (sh) estimates the level of similarity

between members of the population and is calculated as follows:




)(1)(

share

ij

ij

d
dsh  (5)

where σshare represents the threshold of dissimilarity and α is the constant

parameter which regulates the shape of the sharing function. If α is set to one,

the resulting sharing function is the triangular sharing function (1987). The

distance di,j between two individuals is characterised by a similarity metric based

on either genotypic or phenotypic similarity. Deb and Goldberg (1989) show that

sharing based on phenotypic similarity may give slightly better results than

sharing with genotypic similarity.

Goldberg and Wang (1998) proposed an alternative sharing scheme known as

the Evolutionary Sharing. The scheme surpasses limitations of the original FS

scheme by letting niches adapt to complex landscapes, thus, promoting a better

distribution of solutions for problems with many poorly spaced optima. The

presented technique is based on the principles of Monopolistic Competition in

economics. In accordance with this principle, two populations are utilised – a

population of customers and population of businessmen. The individuals from

both populations attempt to maximise their interests by evolving nearby spaced

niches consisting of the fittest individuals. The solutions to the problem at hand

are represented by the members of businessman population.

Analogously, to overcome the limitations of the original technique, Della

Cioppa et al. (2007) proposed Dynamic Fitness Sharing. The proposed method

allows an explicit, dynamic identification of the species discovered at each

generation. The authors implemented a species elitist strategy which consists of

the localisation of species on the fitness landscape and application of the sharing

mechanism to each of them. The performance of the method is assessed using

41

a set of standard multimodal test functions adopted from the literature.

Experimental results confirm that the technique performs significantly better than

original fitness sharing.

Horn (2002) proposed a composite of resource sharing and FS named

Resource-Based FS. Unlike traditional FS techniques, the presented method

exploits principles of the resource sharing which are based on nature's way to

induce speciation during evolution. The explicit use of resources keeps the

calculations of equilibrium points simple, whereas the path to the equilibrium does

not lose key species along the way.

Thomsen (2004) integrated the FS concept with the DE to form the Sharing

Differential Evolution. The sharing DE utilises the classical sharing technique

described previously and uses the Euclidean distance for estimation of the

similarity between individuals. At each iteration, the algorithm generates a

number of offspring equal to the size of the parent population NP. After NP

offspring is generated, the fitness of each individual is calculated using the

sharing function and the worst half of the population is purged. The algorithm

provides elitism by always preserving the individuals with the best un-scaled

fitness.

Salazar-Lechuga and Rowe (2005) introduced the algorithm that combines the

concepts of PSO and FS to tackle the multimodal optimisation problems. Ideas

of the PSO are extended with the FS function, allowing the algorithm to spread

particles along the Pareto front and guide the search in right directions. Because

of that, the FS function is used in the objective space. This promotes the diversity

in the population, as particles within highly populated areas in the objective space

are less likely be followed. At each iteration, the particles with the highest fitness

are inserted into the repository. The particles from the repository are then used

to guide the search for the next generations and conserve a set of non-dominated

solutions until the end of the run.

2.3.4.4 Crowding

Crowding (Jong, 1975) is motivated by the analogy of the competition for limited

resources among individuals of the same species in the natural population. Its

ideas are based on the principle that dissimilar individuals tend to reside in

different niches and, as the result, they do not compete. In the original proposal,

De Jong (1975) proposed a simple method which replaces individuals with lower

42

fitness with the newly generated individuals, assuming they are similar enough.

The similarity between individuals, likewise in other niching techniques, is defined

by a distance d between them (i.e. the closer individuals are, the more similar

they are). In genotypic distance sharing the distance function is simply the

Hamming distance, whereas in phenotypic distance sharing the distance function

is defined using some problem-specific knowledge, the most common choice of

which is the Euclidean distance.

The technique can be compared to a simple GA. The main difference between

those two is that in crowding only a fraction of the global population (indicated

generation gap G) reproduces and dies in each generation. As the result, in the

crowding, new members of a particular species replace older members of that

species. Such way the pre-existing diversity of the population is always

maintained.

Moreover, in contrast to other niching methods, crowding does not assign

individuals to fitness peak. Instead, the number of individuals that is assembled

on the peak is largely determined by the size of that peak’s basin of attraction. To

estimate the size of a niche, a random sample of individuals is taken from the

population, denoted by the crowding factor CF. If the value of CF is set too low,

in some cases the individual from the population might be replaced by the new

individual that is not similar enough, thus creating the replacement error. To

overcome this problem, CF should be very large or equal to the number of

individuals in the population. Because of the frequent occurrences of the

replacement errors, the initial crowding of De Jong was shown to be of limited

usefulness in multimodal optimisation (Deb & Goldberg, 1989).

Mahfoud (1992) reviewed De Jong’s (1975) original crowding technique and

proved its inability to maintain more than two peaks of a multimodal objective

function, mainly due to the replacement errors that result from a genetic drift. As

a solution to this issue, Mahfoud (1992) proposed the improvement of the original

method called Deterministic Crowding. The objective of the deterministic

crowding is to maintain diversity in the population, eliminate any parameters that

require problem specific knowledge, reduce the occurrence of replacement

errors, and improve selection mechanism. The proposed algorithm works by

selecting two parents from the current population and randomly performing

crossover and mutation on them. As the outcome of this procedure, two offspring

are generated. Then the children replace the nearest parent if they have better

43

fitness. In the case of a tie, parents are preferred. The procedure is performed

Np/2 times (where Np is the population size). Thus, deterministic crowding results

in two sets of tournaments: (parent 1 against child 1 and parent 2 against child 2)

or (parent 1 against child 2 and parent 2 against child 1). The set of tournaments

that yields the closest competitions is held.

With the aim of improving the performance of GAs for multimodal optimisation

in ill-scaled and locally multimodal domains, Ando et al. (2005) developed a

Sample-Based Crowding. In the presented scheme, the pairs for tournament

selection are determined based on a statistical comparison of their fitness values.

The technique takes into account ranks of the parents among the sampled values

in the selection process which are used to determine their indispensability. These

measurements are scale-invariant, thus enabling the proposed method to search

a domain without presuming a distance between optima and eliminating the need

for scaling and correlating the variables.

Thomsen (2004) extended DE with a crowding technique to receive Crowding

Differential Evolution. In crowding DE an offspring is generated by using the

standard DE operators, which then competes against the most similar individuals

in the current population. The individual is replaced if the value of his fitness is

worse. To avoid a replacement error, the value of crowding factor CF is equal to

the population size NP.

Zaharie (2004) proposed a Multi-population Crowding Differential Evolution by

integrating crowding technique into DE algorithm. Under this scheme, the

initialisation of subpopulations is no longer necessary, as each subpopulation is

now capable of locating multiple global optima. To avoid global processing, the

use of crowding is only limited to the establishment of subpopulations.

Similarly, another integration of crowding into DE is presented by Kundu et al.

(2013). To avoid the use of niching parameters that require prior knowledge about

the fitness landscape, the authors used local mutation for search the solution

space. Moreover, a speciation-based memory archive is integrated for

regeneration of population after an environmental change is detected. The

experimental analysis and comparison with other peer algorithms confirmed the

effectiveness of the proposed method.

To handle multimodal optimisation problems, Angus (2009) incorporated the

idea of crowding into ACO. The implementation of the crowding helps to maintain

the diversity of the population, making the ACO more robust. During the

44

experimental evaluations, the algorithm was able to locate and maintain multiple

spatially distributed near-optimal solutions for various multimodal test problems.

2.3.4.5 Clearing

Petrowski (1996) presented the clearing procedure. It draws inspiration from the

principle of sharing of limited resources among the strongest members of the

niche and elimination of weaker individuals of the same niche.

Typically integrated into GAs, the clearing procedure is applied between the

processes of the fitness evaluation of all members of population and selection for

the crossover. Similarly to other niching methods, the clearing uses a dissimilarity

measure between individuals to determine whether they belong to the same

subpopulation or not. This value could be the Hamming distance for binary coded

genotypes or the Euclidian distance for real-coded genotypes. Each

subpopulation contains a dominant individual: the one that has the best fitness.

If the individual belongs to a given subpopulation, then its dissimilarity with the

dominant is less than a given threshold σc (clearing radius).

In this method, each subpopulation contains a dominant individual: the one

with the best fitness. The fact that an individual belongs to a subpopulation means

that it is at less than a threshold σc from this subpopulation’s dominant. But,

differently from sharing, in clearing the dominant’s fitness is preserved and all the

other individuals have their finesses zeroed (in the case of maximisation

problem). In other words, all resources of the niche are given to only one

individual: the so-called winner.

Petrowski (1996) generalised the basic clearing technique, stating that each

niche can by dominated by more than one winner. The maximum amount of

winners that can dominate the niche is defined by the capacity (k) parameter. The

niche’s capacity can range from 1 to the population size, therefore, the niching

effect can be, respectively, maximised or minimised as convenient.

Dick (2010) developed an extension to the original clearing method called local

clearing. The presented technique uses information gained during the course of

evolution to accurately determine the correct niche radius in both real-parameter

and discrete optimisation problems. This adaptability of the niche radius is based

on the fact that the parallel instances of niching within local clearing allow each

subpopulation to focus on different, yet partially overlapping, subsets of optima.

When these subsets are combined, the system gets a clearer picture of the

45

location of optima within the total fitness landscape and subsequently can more

accurately predict the correct niche radius.

Variation of the clearing called Context-Based Clearing is presented by Fayek

et al. (2010). The presented approach is a clearing procedure that makes use of

a context information with the aim of preventing the elimination of candidates that

may lead to significant optima. In the case of the technique, context refers to the

fitness distribution within a certain area around pivot elements. Within the same

area, if the candidate has similar fitness, it is assumed that all candidates

converge to the same optima; hence, the whole area can be cleared. However, if

candidates’ finesses differ significantly, clearing the whole set may cause a loss

of important date. The procedure performs clearing according to the

heterogeneity of the individuals within the subpopulation, whereas heterogeneity

is measured using the standard deviation of individuals’ fitness.

As a solution to the clearing’s main weakness – the estimation of the clearing

radius – Sacco et al. (2004) proposed Fuzzy Clearing. While in the standard

clearing a dominating individual dominates those that are within his clearing

radius, in the proposed technique the population is divided into clusters, hence

the use of radius parameter is no longer needed. To cluster the population, the

authors proposed a fuzzy class separation algorithm. The algorithm borrows from

a fuzzy logic a concept of pertinence that denotes a degree of association of an

individuals to a given class. The proposed technique is successfully tested on a

set of multimodal problems.

Qu et al. (2012) embedded clearing into DE algorithm. In the presented

method, the initial population is divided into three equal subpopulations. The

value of clearing radius for each subpopulation is different and is related to the

problem’s search range. During the selection phase, subpopulations exchange

with the relevant information.

In (2014), Sacco et al. proposed a clearing paradigm that is based on the works

of Sacco et al. (2004) and Qu et al. (2012). The technique uses a clustering

heuristic based on the topographical information on the objective function and

new mutation operator, taken from the DE (Qu, Liang, Suganthan, & Chen, 2012).

The presented clearing variant, namely topographical clearing, was applied to DE

algorithm, however, as the authors state, it can be applied to any evolutionary or

swarm-based technique.

46

2.3.4.6 Restricted Tournament Selection

Restricted Tournament Selection (RTS), introduced by Harik (1997), is a modified

tournament selection for multimodal optimisation and its main idea is to allow the

GAs to choose which individuals will be replaced by a new pair of individuals.

As in deterministic crowding, RTS randomly selects two parents from the

population and creates two offspring by applying crossover and mutation

operators. For each generated offspring, the algorithm randomly selects sample

individuals from the population, the size of which is denoted by w (windows size,

analogous to CF in crowding), and find the nearest one to the offspring, by

applying the similarity distance measure. The distance can either be Euclidean

(for real values) or Hamming (for binary-coded variables). The closest individual

within the w sample competes with the offspring to determine the one with better

fitness. If the offspring has higher fitness, the opponent is replaced. Such type of

tournament restricts members of the population from competing with others that

are not similar enough.

Harik (1997) tests his model on several multimodal real-world problems with

the number of peaks varying from 5 to 32. The algorithm proved to be capable of

maintaining individuals at all peaks, even though some peaks increasingly lost an

amount of individuals. Moreover, the algorithm managed maintained all global

optima in all multimodal test problems.

Roy and Parmee (1996) presented an Adaptive Restricted Tournament

Selection integrated into a GA for tackling multimodal optimisation problems. The

main difference between the standard RTS and its adaptive variant is that the

former requires no prior knowledge about the distribution of the optima on the

fitness landscape to distribute the final population on different peaks.

Qu and Suganthan (2010) integrated the concept of the RTS into DE algorithm.

The developed algorithm works by maintaining two different populations in

parallel, where the size of each population is denoted by a windows size w. Each

population generates a set of offsprings which then compete with members of

both populations. Each offspring is compared against the closest to him a

member of the population (based on the Euclidean distance). If the offspring has

the higher fitness than the individual competing against him, offspring replaces

this individual.

47

2.3.4.7 Niching Memetic Algorithm

Niching Memetic Algorithm (NMA), first introduced by Moscato (1989), represents

an extension of the sequential niching technique of Beasley et al. (1993)

proposed for application in the multimodal optimisation problems. The algorithm

incorporates a gradient-based local search process that makes use of a derating

function along with niching and clearing techniques. To promote the exploration

of previously unvisited regions of the search space, the added process is used to

penalise the individuals that are residing in regions which contain the already

located optima. Similarly to other niching techniques, the NMA requires the use

of a niche radius. However, the performance of the algorithm is not highly

sensitive to the value of this parameter. In problems where the number and

distribution of the optima are unknown, this can be considered as an advantage.

The process of NMA operation begins with the initialisation of the population

of randomly or heuristically created individuals. After that, two additional

parameters need to be configured: the total number of optimal solutions JTotal and

niche radius σc. Then, at each iteration, a new generation is obtained by applying

the usual genetic operators (i.e. evaluation, selection, crossover, and mutation).

In each generation, individuals in the population move toward the nearest peak

following a hill-climbing gradient-based algorithm. If at some point during this

process an individual leaves the pre-specified region of the search space, the

corresponding variables take the boundary value assigned. If J optimal solutions

have been already located (with J < JTotal), the distances from each individual in

the population to their nearest optimal solutions are determined. These distances

together with the niche radius σc are used to assign an effective fitness function

to each individual in the population. Therefore, the closer the individuals are to

previously located optima, the lower his effective fitness is. Once the individuals

in the population have been ordered in accordance to their effective fitness, the

selection begins. Individuals with the high effective fitness value have an

advantage over others individuals in the form of larger survival probabilities,

which are assigned following the order position. Because of that, the individuals

that lie within a niche radius of located optima are eliminated, thus promoting the

occupation of yet unvisited niches.

The performance of NMA is not highly sensitive to the choice of the σc

parameter. Moreover, in comparison to other niching methods, NMA does not

48

need to maintain permanent subpopulations around each found optima, as it only

requires to store locations of the found peaks.

Vitela and Castano (2008) extended NMA to propose Sequential Niching

Memetic Algorithm. The authors incorporated a Gaussian derating function with

clearing in a real-coded memeting algorithm into a single point local search

technique to accurately locate all optima (both local and global) in pre-specified

regions of the solution space. Moreover, at each iteration, a local improvement

algorithm as applied to every member of the population, substituting the original

population members with the resulting solutions. The proposed algorithm uses

the parent-centric real-parameter crossover operator which together with

exploration and intensification phases efficiently searches the solution space.

Performance measurements with test functions used by other authors show a

high level of success in locating all optima and outperforming several other

methodologies.

Sheng et al. (2008) integrated NMA into a GA. The authors suggested a unified

criterion for simultaneous clustering and feature selection based on a scatter

separability index, which is then optimised by the proposed algorithm. In order to

allow simultaneous clustering and feature selection without the number of the

cluster being known a priori, a composite representation is devised to encode

both feature selection and cluster centres with a variable number of clusters. As

a consequence, the crossover and mutation operators are suitably modified to

tackle the concept of composite chromosomes with variable length. Additionally,

the authors hybridised the proposed procedure with additional local search

operators, where are introduced to refine the feature selection and clusters

centres. These local searches move solutions toward local optima and allow a

significant improvement in the computational efficiency. Finally, a niching method

is integrated with the resulting hybrid GA to preserve the population diversity and

prevent premature convergence.

2.4 Summary

Various strategies and methodologies have been proposed for dealing with

standard deterministic RCPSPs, starting with simple exact methods, like a branch

and bound algorithm (Brucker, Knust, Schoo, & Thiele, 1998), and ending with

more advanced hybrid heuristics, like neurogenetic algorithm (Agarwal, Colak, &

49

Erenguc, 2011) and chaos-based improved immune algorithm (Wu, Wan, Shukla,

& Li, 2011). Despite the variety of the proposed methodologies, the best

performance results were achieved by algorithms belonging to a class of hybrid

metaheuristics. In particular, in the survey on latest state-of-the-art

methodologies for the RCPSP (Kolisch & Hartmann, 2006), the algorithm with the

best performance is hybrid GA (Valls, Ballestin, & Quintanilla, 2003). In more

recent years, more competitive heuristics for the RCPSP have been proposed.

The most prominent examples of those are SS (Paraskevopoulos, Tarantilis, &

Ioannou, 2012) and GA (Zhu, Li, & Shen, 2011).

In comparison to the deterministic RCPSP, the amount of methodologies

proposed for solving SRCPSP is significantly lower. In the literature, there are

two types of strategies recognised: use of scheduling policies, and use of

heuristics. Scheduling policies are computationally fast and relatively easy to

implement, however, they are only effective for small scale SRCPSP instances.

Therefore, in this regard, application of the heuristic methods remains as the only

reasonable approach. Out of all found heuristics for the SRCPSP, the best

performance results were achieved by a two-phase GA developed by Ashtiani et

al. (2011). However, the main drawback of this method is its static nature. To

contradict this issue, several DP methodologies have been proposed for the

RCPSP (Choi, Realff, & Lee, 2004; Haitao & Womer, 2015), however, their

performance evaluation did not show any significant improvements.

The majority of algorithms for both of these problems either operate on the AL

or RK representations or use customised adaptations of these two. For local

search, were incorporated such mechanisms as double justification (Valls,

Ballestıń, & Quintanilla, 2005), local moves and activity swaps (Bouleimen &

Lecocq, 2003). For crossover, the most commonly used are single-point or two-

point crossover operators (Hartmann, 1998).

Nevertheless, despite the variety of the proposed methodologies, all of them

deal with locating only one global optimum. The statistical analysis of the RCPSP

fitness landscape, done by Czogalla and Fink (2009), indicated that the

landscape of this problem is filled with a relatively high amount of interior plateau,

meaning that for one problem there might be several global solutions. In the

optimisation point of view, it is highly desirable to locate multiple optima: as it

helps to maintain a diversity in the population, thus reducing chances of falling

50

into local optima trap and increasing chances of finding a global solution; and can

provide an alternative, potentially better and more innovative, outcome result.

51

Chapter 3 Optimisation Model

The problem considered in this thesis, namely HARNet project management

problem (HPMP), can be characterised as a special case of the RCPSP and it

represents an optimisation model for scheduling projects in uncertain

environment.

The chapter is split into five parts. The first part outlines the need for a new

optimisation model.

In the second part, basic mathematical definitions of the proposed model are

provided. These are standard definitions that coincide with definitions of the

standard deterministic RCPSP.

The third section of this chapter gives a formal explanation of the nature of

variability of activity durations and shows how it can be influenced by resources

through them gaining experience.

The fourth section of the chapter outlines two objectives (primary and

secondary) that are to be optimised.

Lastly, the overall problem statement is presented, which includes explanation

of how the solution is obtained and what type of methodology needs to be applied

to find it.

3.1 Problem Statement

Even though SRCPSP has received some portions of attention in the literature

(Herroelen & Leus, 2005), in many cases the analysis of sources and causes of

possible variabilities and their relation to the stochastic nature of activity durations

has been avoided. Because of that, in the majority of publications on the

SRCPSP, the stochastic durations of all activities follow predefined distributions.

Examples of applied distributions are the triangular (Cho & Eppinger, 2005),

uniform (2009), exponential (Vonder, Demeulemeester, & Herroelen, 2007), beta

(Lamas & Demeulemeester, 2015), and normal (Bui, Michalewicz, Parkinson, &

Abello, 2012).

In the real world, however, stochastic nature of durations can be reliant on

many factors, such as the time period when activity is executed and efficiency of

the allocated resource. For instance, quite often organisations have to initiate

52

new and arduous projects that would require the collaboration of many technical

and managerial groups of people and, in some cases, some of the groups that

participate in the project execution might have no relevant experience of working.

However, as the execution of the project progresses, by participating in the

completion of some of the project’s activities, the maturity and efficiency of these

groups are improving. As the result, the groups’ capabilities to execute

successive activities are expected to improve as well. Therefore, under such

circumstances, the mean duration of an activity will reduce if it is started later in

time and is allocated more efficient resources. In project scheduling with

uncertainties, there are cases which also consider other external factors of

influence on the activity duration (Davenport & Beck, 2001), however, for a long-

term period planning these factors are very hard to predict and, thus, may create

a high level of duration variability. Because of that, optimisation model proposed

in this chapter only considers two things: period of time when activity is executed

and experience of the allocated resource.

Various proposals have been made to address the above-described issues.

Drezet and Billaut (2008) studied a variant of RCPSP that considers allocation of

labour resources to the activities with varying in time resource requirements. The

authors provide an integer linear formulation of the problem and use greedy

algorithm to solve it. Talbot (1982) surveyed generalised version of the RCPSP

in which activity durations and resources can be balanced by each other. Such

variant of RCPSP can also be regarded as a special case of the multimode

RCPSP (Mori & Tseng, 1997), in which modes represent different combinations

of activity durations and resource requirements. Golenko-Ginzburg and Gonik

(1997) were one of the first who studied the issue of duration/resource trade-off

in the SRCPSP. In the problem described by the authors, activities have

stochastic durations, nature of which is linearly dependent on the number of

allocated resources.

Nevertheless, the common trait of the above-mentioned proposals is that for

the duration/resource trade-off only the only consider amount of allocated

resources. Other factors that can influence the duration of activities, such as

efficiencies of resources, are not taken into account. To reflect this issue, Xiong

et al. (2016) proposed an alternative probability distribution model that considers

a case where durations of activities depend on the efficiency of the distributed

resource, its ability to learn, and execution environment. In the context of the

53

proposed probability distribution model, efficiency of a resource influences the

speed at which an activity is implemented, whereas the learnability reflects the

rate at which the efficiency is gained. Unlike the traditional SRCPSPs, where

stochastic durations are modelled using deterministic distributions, to incorporate

the above-described effects, (Xiong, Leusb, Yanga, & Abbass, 2016) propose to

use the mean of the durations that may decrease as the resource efficiency has

improved via experience. The mean of the durations, in this case, reflects the

overall capability to execute an activity. Such classification of the stochastic

distribution has allowed the authors to model the resource efficiency and level of

uncertainty as functions of time, which may affect the durations of activities,

making them time- and resource-dependent. Therefore, following the above-

described concept, it is now possible to create a special version of the RCPSP

which will take into account the variable nature of activity durations.

3.2 Basic Definitions

Basic definitions of the proposed optimisation model, named HARNet project

management problem (HPMP), coincide with those that formalise the

deterministic RCPSP. Following the same mathematical definitions as defined in

Chapter 2, a project is denoted by V = {0, 1, …, n, n + 1}, consisting of 1 to n non-

dummy (active) activities and activities 0 and n+1 are dummy activities . Activity

processing times are defined by a set p = {p0, p1, …, pn, pn+1}, whereas activity

starting and completion times are denoted by S = {S0, S1, …, Sn, Sn+1} and C = {C0,

C1, …, Cn, Cn+1}, respectively. If no volatilities are assumed, deterministic duration

and starting time of an activity j are respectively denoted by pj and Sj. Each of the

project’s activities requires resources for its execution. Resources are

represented by a set 𝓡𝜌 , which consists of k resource types. During its

execution, for each period of duration t, activity j requires 𝑟𝑗𝑘
𝜌

 units of resource k,

total availability of which is 𝑅𝑘
𝜌
. Since resources are renewable, after the

execution of an activity is completed, the capacities of previously used resources

are restored. Limited resource capacities imply that during certain periods of time

several activities may require the same type of resource, which, due to its limited

availability, can only be used by one of them at a time. A set of active activities,

denoted by Vt, during period t in the schedule S can be formalised as follows:

54

Vt = { j  V | Sj  t < Cj} j = 1, … n (6)

Following the above definitions, the resource constraints of resource type k are

expressed as follows:





tVj

kjk Rr 
  

kR 0t (7)

where both 𝑟𝑗𝑘
𝜌

 and 𝑅𝑘
𝜌

 are integers which represent resource requirement and

resource capacity, respectively.

For their execution, activities may require different types of resources,

examples of which can include manpower, specialised equipment or premises.

Some of the activities in the project might be inter-related with each other. In

project scheduling, the most widely considered kind of relationships between

activities is “end-to-start” relation. Such relationship implies that execution of

activity can begin only after execution of all of its predecessors has been

completed. The precedence relationship is characterised by a binary relation E

and is presumed to be irreflexive and transitive. Notation (i, j) ∈ E means that

activity j can only be started once the i is completed. Notation (0, i) ∈ E with i>0

means that dummy activity 0 is predecessor of all project activities. Analogously,

notation (i, n+1) ∈ E, with i<n+1 means that n+1 is successor of all project

activities. A precedence graph (commonly known as project network) G = {V, E}

is inferred. The nodes in the graph correspond to activities and arcs that are

connecting the nodes correspond to precedence relationships between them.

Following the above definitions, the precedence constraints are expressed as

follows:

iij pSS  Eji ),((8)

3.3 Variable Activity Durations

Following the concept proposed in (Xiong, Leusb, Yanga, & Abbass, 2016), the

activity durations for the proposed optimisation model can be described

mathematically as follows. An activity i has a duration pi and for its execution it

requires resources k. HPMP differentiates between two types of resources:

 Improvable resources - the ones that can gain experience and improve

over time (e.g. manpower)

55

 Invariant resources – the ones that have constant efficiency factors (e.g.

specialised equipment)

The main difference between the improvable and invariant resources is the

ability of the former ones to influence the duration of activities to which they are

currently assigned through the experience that they have gained from the

execution of previous activities. To accommodate the effect of experience gain,

in addition to resource capacities, improvable resources have two additional

parameters:

 Efficiency coefficient ek - represents the maximum efficiency gain that

can be achieved by unexperienced resource

 Learning coefficient lk - quantifies how long it will take for a resource to

achieve its maximum efficiency through learning

where ek ∈ [0, 1]. Value ek = 0.25, for instance, would mean that a highly

experienced resource Rk can be up to 25% more efficient than a starter, whereas

a higher value for lk would indicate more time is needed for resource k to reach

the maximal potential. In the context of the proposed optimisation model,

efficiency of a resource is the amount of experience that it currently has that can

be used to reduce the duration of an activity. At the start of the project, when

resources have no experience and their efficiencies are at the lowest levels, the

duration of an activity i is pi
*. As resources gain more experience, durations of

activities to which they are assigned reduce. Therefore, the duration of an activity

i at given moment of time pi(t) can be defined as follows:

)(

*
)(

tg

p
tp

i

i
i  (9)

where t is the starting time of an activity i and gi(t) is the function for estimating

resource efficiency or operating speed (Golenko-Ginzburg & Gonik, 1997). It is

worth noting, that gi(t) is a non-decreasing function of t that depends on the

resources allocated for activity i.

Efficiency of each resource type k is represented as Ek(t). To represent the time

that resource Rk has been working until the current time instance t, the notation

Wk(t) is used which is calculated as:





k

t

m

km

k
R

r

tW

 0)((10)

56

where 𝑟𝑘𝑚
𝜌

 is the availability of resource k at given moment of time m with total

capacity 𝑅𝑘
𝜌
.

The relationship between Ek(t) and Wk(t) is a non-increasing function that relies

on the specifics of the project’s setting and characteristics. Moreover, it has to

obey the following rule: when Wk(t)=0, the experience of resource k is at the

lowest level, hence it does not contribute to any reduction of the activity duration.

Thus, the relationship Ek(t) and Wk(t) relationship is formalised as follows:



















0)(,1

0)(,

)
)(

exp(

1

)(

tW

tW

tW

l

e

tE

k

k

k

k

k

k
 (11)

where ek and lk are efficiency and learning coefficients of a resource Rk,

respectively. Further, from (11) it can be also noted that the value of Ek(t) is

always in the range of [1, 1 + ek].

In the real-life, the value of parameters ek and lk can be estimated through a

managerial statement that will be based on relevant experience and knowledge

gained through working with these resources (i.e. people) on previous projects.

For example, a managerial statement like “100% of the maximum learning effect

for resource type k can be achieved after 25 weeks of work” can be be

mathematically interpreted as 100% = exp(-lk / 25), which yields that lk = 25 * (-

ln(1.0)).

Given that activity i is going to be started at time t, its overall efficiency can be

estimated as the average efficiency of all required types of resources over

required resource units and is defined as follows:





R

k ik

ki

r

tE
tE

1

)(
)(


 (12)

Following the above definition, the function for operating speed estimation is

now defined as












0

0

1

)(
)(

t

ttE
tg

i

i
 (13)

Function gi(t) is time-based and depends on the decision variables for resource

allocation at given instant of time t. The received value can then be used in (9)

57

for estimating how the duration activity i is going to be affected if it is scheduled

to be executed at time t.

The min and max processing times (i.e. durations) of activity i, denoted

respectively by pi
min

 and pi
max

, are calculated as:

*)1(min

iki pep  *max

ii pp  (14)

3.4 Optimisation Objectives

In practice, successful completion of a project may be subject to optimisation of

several objectives. In the context of optimisation, these objectives are used to

assess quality of the schedules that are produced to plan the execution of the

project. The optimisation model proposed in this thesis considers optimisation of

two objectives: makespan minimisation (primary objective) and resource

efficiency balancing (secondary objective).

3.4.1 Makespan Minimisation

The main objective of the majority of problems that are derivatives of the RCPSP

is the minimisation of the project’s duration (i.e. the makespan). Similarly, for

problems which consider project scheduling with variable activity durations the

minimal makespan is also used as a primary measure to assess a quality of the

produced schedule. Analytical evaluation of the expected project duration is

typically highly intractable and is usually estimated by means of simulations.

Therefore, the first objective is to minimise f1, which is defined as follows:

P

C

f

P

p

p

n





1

1

1 (15)

 CP
n+1 is the completion time of the last dummy activity achieved in the p-th

simulation replication. In project scheduling, the number of simulations P typically

is in the ranges between 25 (Stork, 2001) and 1000 (Ballestin & Leus, 2009).

3.4.2 Resource Efficiency Balancing

For successful completion of complex projects, stable and robust groups of staff

(i.e. resources) are required to tackle future complex activities. If some members

of staff of the project team have very high efficiency, while others lack experience,

then the ability of the project team to perform activities efficiently is under risk. If,

58

for example, activity requires participation of two groups of staff out of the project

team, then the group of more experienced personnel would need to wait for

another group to finish their part. In an ideal scenario, the competency and

maturity of all staff needs to be at similar levels.

In order to assess stability and robustness of the produced schedule, a

variance index is used, which has been successfully utilised in other scheduling

and planning problems, such as military capability planning problem (Abbass, et

al., 2008). Therefore, the second objective is to minimise f2 (i.e. estimation the

balance of resource efficiency) which is defined as follows:






R

k

k

f 1
2

 (16)

where σk is the standard deviation of the efficiency of resource type Rk and  is

mean of standard deviations. σk can estimated as follows:

2)(
1

EE
R

k

k

k  (17)

where E is the average efficiency of all resource types. Lower values of f2 signify

better balance of resource efficiencies among different types of resources. The f2

= 0 corresponds to a perfect balance, meaning that all resources have equal

efficiency.

In the nutshell, (16) represents a fairness measure which ensures that

experience gain between all resources is on equal level. Another way of

measuring fairness would be via chi-squared test (Greenwood & Nikulin, 1996)

which examines the differences with categorical variables and compares the

actual observations with expectations

3.5 Optimisation Problem

Herein, for optimisation of the objectives, the problem exploits multimodal

properties of the RCPSP. First, the problem is solved via optimisation of the

objective f1 by finding a set of best solutions with minimal makespan. Then, for

each of the solutions in this set, the second objective f2 is calculated.

Therefore, the best way of approaching this problem is via application of a

metaheuristic algorithm specifically designed for tackling multimodal optimisation

59

problems and that is capable of obtaining multiple global solutions. For the

reasons of having multiple objectives (one primary and one secondary), first, the

algorithm will obtain a set of best schedules with minimal makespan, thus

completing objective f1. Then, out of this set, the most efficient schedule is going

to be chosen, satisfying objective f2.

Following the above definition, the problem can be formalised as follows:

 Min:
P

C
P

p

p

n




1

1

 (18)






R

k

k

1
 (19)

Subject to: 



tVj

kjk Rr 
  

kR 0t (20)

 iij pSS  Eji ),((21)

where Vt is as defined in section 3.2.

The presented problem is a variation of the RCPSP and can be regarded as a

NP-hard combinatorial optimisation problem (Blazewicz, Lenstra, & Kan, 1983)

with a complex multimodal fitness landscape (Czogalla & Fink, 2009).

3.6 Summary

Optimisation model, namely HPMP, presented in this chapter represents a

special case of the RCPSP in which activity durations follow probability

distribution model that is dependent on resource efficiency, experience, and

learnability of resources, where resource in the HPMP case refers to human

resource, i.e. members of the project team. Resource efficiency reflects the

speed at which an activity can be implemented by the project team; experience

is the total amount of time that members of the project team have previously spent

on working on a similar problem; and learnability is the reflection of how quickly

resource acquires its experience. As the result, the duration of an activity may be

shortened with the increase of resource efficiency.

 The HPMP considers optimisation of two objectives: minimisation of

makespan (primary) and balance of resource efficiency (secondary).

60

Optimisation of these objectives exploited multimodal properties of RCPSPs and

is achieved via application of metaheuristic algorithm tailored specifically for

multimodal optimisation problems and that is capable of obtaining multiple

solution candidates. First, the algorithm obtains set of best solutions with minimal

makespan. Then, from this set, the algorithm selects the most efficiently balanced

one.

Being variation of the RCPSP, the problem is NP-hard combinatorial

optimisation problem with a complex multimodal fitness landscape. Therefore,

the application of metaheuristic algorithms for multimodal optimisation problems

is justified.

61

Chapter 4 Methodologies

This chapter presents four new algorithms developed during the course of this

PhD study, namely

 Discrete Cuckoo Search (DCS) algorithm

 Discrete Flower Pollination Algorithm (DFPA)

 Improved Discrete Cuckoo Search (IDCS) algorithm

 Discrete Species Conserving Cuckoo Search (DSCCS) algorithm

The Discrete Cuckoo Search (DCS) and Discrete Flower Pollination Algorithm

(DFPA) are population-based metaheuristic algorithms adapted from the Cuckoo

Search (CS) (Yang & Deb, 2009) and Flower Pollination Algorithm (FPA) (Yang

X.-S. , 2012). Previously, in the majority of cases CS and FPA had only been

applied to problems in the continuous domain and demonstrated to be very

effective in finding global optima with high success rate and, in some cases, even

managed to outperform such popular metaheuristics as Genetic Algorithm (GA)

and Particle Swarm Optimisation (PSO) in terms of efficiency and success rate.

Nevertheless, at the time of writing this thesis, CS and FPA had only limited

number of applications to optimisation problems in the discrete domain (Yang X.

, 2010). The most prominent examples are the travelling salesman problem (TSP)

(Ouaarab, Ahiod, & Yang, 2013) and the annual crop-planning problem (Chetty

& Adewumi, 2013). In both of these examples, the algorithms showed competitve

levels of performance, which validated their applicability for optimation problems

in the discrete domain.

Performance of DCS and DFPA is evaluted using benchmark instances from

Project Scheduling Problems Library (PSPLIB) (Kolisch & Sprecher, 1997). The

results of evaluation can be regarded as satisfactory as the algorithms were able

to outperform such heuristics as GA and Simulated Annealing (SA).

Nevertheless, their performance can be furtherly improved by addressing some

of the limitations that these algorithms have: inefficienct solutions representaions

scheme and use of context-free operators. To address these limitations, the

Improved Discrete Cuckoo Search (IDCS) is introduced in the next section. IDCS

introduces several changes to the original DCS paradigm:

 addition of a new mechanic aimed at improving the quality of received

results but with less iterations;

62

 new solution representation scheme specific for RCPSP and its

stochastic variant; and

 novel local search and crossover operators, based on the newly-

introduced solution representation scheme.

Similarly to DCS and DFPA, performance of IDCS is testing using benchmark

instances from PSPLIB. This time, the results of performance evaluation are

compared against state-of-the-art heuristics for RCPSP where IDCS was able to

appear in top ranks. Nevertheless, one of the limitations of IDCS is the inability

to obtain multiple solutions candidates at once, hence Discrete Species

Conserving Cuckoo Search (DSCCS) is introduced in the next section.

DSCCS is the result of integration of the Species Conservation (SC) (Li,

Balazs, & Parks, 2002) technique into IDCS. SC technique is a method of

evolving parallel sub-populations integration of which allows the algorithm to

obtain multiple global solutions. The technique is based on distributed elitism,

achieved by identifying in each generation a set of prime individuals that are

considered to be worth preserving into the next generation. The formation of

species allows to divide the search space into smaller regions, making each

species focused on searching for solutions within the specified region. This

creates an opportunity for a finer search for a local best optimum, provides higher

chances of finding global optima, as well as enables the algorithm to obtain

multiple solution candidates, thus making it suitable for applications in multimodal

scenarios.

4.1 Discrete Cuckoo Search

Out of all reviewed metaheuristics during the literature review, the one that has

not been applied, as of yet, to the RCPSP is the CS. In the previous works of

Yang and Deb (2010) CS has demonstrated to be a very efficient algorithm for

solving continuous optimisation problems and in some cases it was shown to be

superior to both PSO and GA in terms of efficiency and success rate. However,

as of today, CS has been primarily used in optimisation of problems with

continuous domain (Nguyen, Truong, & Phung, 2016; Teymourian, V.Kayvanfar,

Komaki, & Zadeha, 2016; Sekhar & Mohanty, 2016). One of the first attempts to

apply CS to solve a problem with a discrete domain was done by Ouarrab et al.

(2013). In their work, the authors applied CS to solve the TSP.

63

4.1.1 Cuckoo Search

CS is a metaheuristic search algorithm, which has been recently proposed by

Yang and Deb (2009). The ideas of the algorithm take inspiration from the

reproduction strategy of some cuckoo species that lay their eggs in the nests of

other host birds of different species. The host birds in their turn may discover that

the eggs are not their own and either destroy the egg or abandon the nest. To

translate this into an optimisation tool, Yang and Deb used three idealised rules:

1. Each turn cuckoo lays one egg (i. e. a potential solution) and dumps it in

a randomly chosen nest (i. e. member of population)

2. A fraction of the nests containing the best eggs (i. e. the fittest members

of population) will carry over to the next generation

3. The number of nests (i. e. population size) is constant and there is a

probability (pa) that a host can discover an alien egg, which can result in

the abandoning of the nest

The last principle can be understood as follows. If the abandonment rate

parameter pa is set to 0.2, then 20% of worst nests will be replaced with the newly

generated ones.

The steps involved in the CS are derived from the above-mentioned rules and

are shown in Figure 4.1.

Cuckoo Search

Initialise a population P of m individuals xi, Pm = (x1, x1, …, xm)

For all xi do

 Calculate fitness Fi = f(xi)

End for

While (ObjectiveEvaluationNumber < MaxEvaluationNumber)

 Create individual (xj) via Lévy Flight

 Calculate fitness Fj = f(xj)

 Choose random individual xi from population Pm

 If (Fj >Fi) then

 Replace xi with xj

 End if

 Abandon a fraction pa of individuals with worst fitness

 Generate new random individuals

End while

Find the fittest individual

Figure 4.1 – CS pseudo-code

64

As can be noted from the above pseudo-code, an important aspect of the CS

is the use of Lévy flight for both local and global searching. The Lévy flight

process, which has previously been used in other search heuristics

(Pavlyukevich, 2007), is a random walk that is characterised by a series of

instantaneous moved chosen from a probability density function which has a

power law tail. This process represents the optimum random search pattern and

is frequently found in nature (Viswanathan, 2008).

When generating a new individual, a Lévy flight is performed starting at the

position of the fittest individual of the population. If the objective function (i.e.

fitness) of the new individual is better than the objective function of another

randomly selected one, the new individual replaces it. The scale of this random

search is controlled by multiplying the generated Lévy flight by a step size α:

)(
)1(

 Levyxx t

i

t

i 


 (22)

For example, setting α = 0.1 could be beneficial for problems with a small

domains, whereas setting it to a larger values makes the algorithm suitable for

problems with bigger domains. Yang and Deb (2009) did not discuss the

boundary handling in their formulation. Instead, they use an approach similar to

PSO boundary handling (Yilmaz & Kuzuoglu, 2009): when a Lévy flight results in

the generation of an individual outside the bounds of the objective function, the

fitness and position of the original individual would not change.

One of the advantages of CS over other popular metaheuristics such as PSO

and GA is that it needs only adjust one parameter – the abandonment rate pa.

Yang and Deb (2010) found that the convergence rate was not strongly affected

by the value of pa and they suggested setting it to pa = 0.25. Moreover, as the

result of experimental evaluations (Yang & Deb, 2010), the CS has been shown

to perform well in comparison to GA and PSO.

4.1.2 Discrete Cuckoo Search for RCPSP

The areas of application of the original CS, as was intended by its creators, were

problems in the continuous optimisation domain. Because of that, this version of

the algorithm cannot be directly utilised to solve the RCPSP, as it is a

combinatorial optimisation problem. In order to do so, the ideas of CS need to be

extended to the discrete domain, thus DCS is presented.

65

One of the major goals of extending CS to solve the RCPSP is to retain its key

advantages, such as little amount of parameters to configure and efficiency, and

incorporate them into the discrete version of the algorithm. The adaptation of CS

to the RCPSP primarily emphasises the reinterpretation of its key elements:

1. Solution representation scheme

2. Objective evaluation

3. Lévy flight

4.1.2.1 Solution Representation Scheme

The efficiency of a representation scheme is expected to be an important factor

for performance of any algorithm. For the RCPSP it is more convenient to operate

on an encoded solution (i. e. indirect form) rather than work with its direct form,

as it is difficult to consider both precedence and resource constraints

simultaneously when new individual is generated. In the scope of the RCPSP,

the direct form of a solution is the resulted schedule of a project, whereas the

indirect form of a solution is the encoded version of a schedule, designed to

eliminate complexities of schedule manipulation for an algorithm.

According to Palmer and Kershenbaum (1994), in order for a metaheuristic

algorithm to function properly, the ideal solution representation scheme must

possess the following properties:

1. Computationally fast transformation of a representation into a solution

2. Each solution in the original space has a solution in the encoded space

3. Each encoded solution corresponds to one feasible solution in the

original space

4. All solutions in the original space are represented by the same amount

of encoded solutions

5. Small changes in the encoded solution result in the small changes in

the original solution

Kolisch and Hartmann (1999) reviewed popular solution representation

schemes and their appropriate operators for the RCPSP and outlined the two

most commonly implemented and used ones: Activity List (AL) and Random Key

(RK).

The AL representation scheme is a vector of size n, elements of are activities.

Index of each of the AL’s elements depicts the order in which an activity is going

to be scheduled; hence, activities in the AL are scheduled in the same order as

66

they presented. The RK, on the other hand, encodes a solution as a vector of n

numbers where the ith number relates to the ith activity. RK is transformed into a

schedule by successively scheduling activities with highest random keys (random

numbers). Based on computational experiments conducted on sets of benchmark

instances from PSPLIB, Kolisch and Hartmann (2006) concluded that AL is more

efficient than the RK and algorithms that operate on this representation scheme

tend to produce better results. In the performance evaluation of more than 20

heuristics for the RCPSP, top 8 algorithms operated on AL representation

scheme.

In order to demonstrate how AL representation scheme of a sample schedule

would look like, an example project is taken from (Debels & Vanhoucke, 2005),

as shown in Figure 4.2. The project consists of 19 non-dummy activities and

single resource with capacity of 10 units. In the upper part of the figure, a project

network is displayed. Under each node, a duration and resource request of the

corresponding activity are provided respectively. In the lower part of the figure, a

feasible schedule of makespan 47 is represented in the form of an extended

Gantt chart. The horizontal axis of the chart shows time when each activity is

executed, while the vertical axis shows a number of resources are taken. Each

block on the chart corresponds to an activity from the sample project.

Figure 4.2 - Sample project network and schedule

67

The AL representation of the above schedule is presented in Figure 4.3. In the

figure, an array consisting of 19 elements is shown. Each element in the array

has a number which depicts the activity’s number in the project. Further, below

each element, its starting time is given.

Figure 4.3 - Activity List representation of a sample schedule

4.1.2.2 Objective Evaluation

In the RCPSP, in order to convert the solution representation scheme (i.e. AL)

into schedule and estimate its makespan, the procedure called Schedule

Generation Scheme (SGS) is applied. SGS constructs a schedule by scheduling

each activity, one at a time, according to the sequence defined by the

representation scheme. Kolisch (1996) divided SGS into two kinds: serial and

parallel.

Serial SGS works as follows: at each iteration, an eligible activity is selected

according to its priority (i.e. their position in the AL) and inserted inside a partial

schedule at the earliest possible time (respecting the project precedence and

resource constraints), while keeping unchanged the starting times of the already

scheduled activities. An activity is eligible if all its predecessors have been

scheduled. Parallel SGS, on the other hand, schedules a set of activities at each

iteration. With each iteration i it associates schedule time ti, which equals to the

latest finishing time of the already scheduled activities at time ti-1. The activities,

which are available for scheduling with respect to precedence and resource

constraints, are scheduled at ti one by one with respect to their priority order.

Once this is done, the next schedule time and related set of eligible activities are

computed. This is repeated until activities are scheduled.

As was demonstrated by Sprecher et al. (1995), schedules that are generated

by serial SGS are referred to as active, whereas schedules that are created by

parallel are referred to as non-delay. Kolisch (1996) has shown that a set of active

schedules will always contain an optimal schedule (hence the name). On the

other hand, the schedules produced by parallel SGS are able to utilise resources

as early as possible (without delays), leading to schedules that are more

compact. Further, in his study of both variants of SGS, Kolisch concluded that on

average, in terms of obtaining optimal results and overall success rate, serial

68

SGS performs better than parallel SGS, espcially on instances which consists of

many activities and/or scarce resource capacties.

Based on the above-mentioned research and conclusion from the author

(Kolisch R. , 1996), serial SGS is selected as the main measure of evaluation of

the objective. The pseudo-code of serial SGS is presented in Figure 4.4.

Serial Schedule Generation Scheme

Initialise activity list A of size n, An = (a1, a2, …, an)

Initialise empty set of activity starting times S

For all ai do

 Find earliest possible starting time si by checking finishing time

 of its predecessors

 While(resourceConstraintsNotSatisfied(ai, si))

 si++

 End while

 S[ai] = si

End for

Figure 4.4 - Serial Schedule Generation Scheme pseudo-code

Serial SGS converts given activity list A by scheduling each of its activities as

early as possible in the same order as they appear. Concretely, the whole

process can be broken down into the following steps:

 Pick first unscheduled activity ai from A

 If ai has any predecessors, find the latest finishing time si

 Check resource availabilities at time si. If starting activity ai is not

possible, increment si until resource constraints are not satisfied

 Once ai is scheduled, proceed with the next activity in A

4.1.2.3 Lévy Flight

Yang and Deb (2009) have demonstrated that Lévy flights improve search for

solutions in continuous optimisation problems and enhance the overall

performance of the algorithms. Moreover, they were able to show that Lévy flights

are characterised by intensive search around local solution followed by

occasional big steps in the long run.

Several ways of Lévy flight implementations exist. Leccardi (2005) compared

different approaches for generation of Lévy flight values and as the conclusion of

his experiments, he estimated that the algorithm developed by Mantegna (1994)

69

is the most efficient method. Mantegna’s (1994) algorithm produces random

noise according to a symmetric Lévy distribution, which is ideal for Lévy flight.

In the Mantegna’s (1994) algorithm, the Lévy distribution is calculated as




1

||

)(

v

u
Levy  (23)

where u and v are drawn from normal distributions defined as

),0(~ 2

uNu ),0(~ 2

vNv  (24)

2

1

2**)
2

1
(

)
2

sin(*)1(

















 u 1v (25)

where the distribution parameter λ ∈ [0.3, 1.99] and Γ denotes Gamma function.

To adapt Lévy flight to a problem in the discrete domain, the Lévy distribution

number generated by Mantegna’s algorithm is associated with the amount and

types of operations (i.e. steps) that will be performed on an individual from the

population in an attempt to transform it into a better one.

Depending on the range to which the received value belongs, the following

operations can be performed:

1. [0, i] – perform one small step

2. [(k-1) *i, k * i] – perform k amount of small steps

3. [k * i, 1] - perform big step

where the value of i in this process is i = 1/(s+1), s is a configurable parameter

representing the max number of steps that can be performed and k ∈ [2, .., s].

For example, assume that s = 4, hence i = 0.2, therefore the whole interval is

divided into five parts:

1. Lévy in [0, 0.25] – small step

2. Lévy in [0.25. 0.5] – 2 small steps

3. Lévy in [0.5, 0.75] – 3 small steps

4. Lévy in [0.75, 1] – big step

The step of a movement represents a distance in the search space that will be

travelled to obtain a new solution by application of mutation operators.

To mimic a small step, the simple shift operator (Della Croce, 1995) is applied.

The simple shift operator randomly selects an activity ai inserts it immediately

70

after another activity ai, given that precedence constraints are not violated. In the

example in Figure 4.5, sample AL from Figure 4.3 is used to demonstrate how

this operator works: here Activity 14 is selected and inserted right after Activity

17.

Figure 4.5 - Shift operator example

To mimic a large step, pairwise interchange operator (Hartmann, 1998) is

applied. Pairwise interchange is defined as swapping two randomly-picked

activities ai and aj if in the resulting activity list precedence constraints are not

violated. In the example shown in Figure 4.6, Activity 16 is swapped with Activity

12.

Figure 4.6 - Pairwise Interchange operator example

4.1.3 Computational Performance

To evaluate the performance of the DCS, various numerical experiments are

conducted on sets of benchmark instances from PSPLIB (Sprecher, Kolisch, &

Drexl, 1995) designed specifically for testing RCPSP methodologies. PSPLIB

contains instances of scheduling problems with varying difficulty, which are

grouped into sets in accordance to the amount of activities each project contains.

The following sets are available:

 J30 – 480 instances of scheduling problems, each consisting of 30

activities and 4 resource types

 J60 – 480 instances of scheduling problems, each consisting of 60

activities and 4 resource types

71

 J120 – 600 instances of scheduling problems, each consisting of 120

activities and 4 resource types

Due to the complexity of the problem, the optimal solutions are only available

for J30 set, whereas for J60 and J120 instances only best-known solutions are

given.

In order to assess performance of an algorithm after running each of the

benchmark instances, a deviation from optima is calculated:

%100*
o

or

ms

msms
deviation


 (26)

where msr is the makespan of received solution, whereas mso is the makespan of

optimal solution.

For J30 instances, deviation is calculated with respect to optimal solutions,

while for J60 and J120 instances deviation is calculated with respect to the length

of the critical path (CP). CP is obtained by computing the makespan of a project

by relaxing the resource constraints of the problem (Hartmann & Briskorn, 2010).

4.1.3.1 Experimental Setup

Before the performance of the algorithm can be evaluated and compared with

others, it is necessary to configure it and find the most appropriate parameters

setting. To do this, the irace package (Birattari, Yuan, Balaprakash, & Stützle,

2010) is utilised in the experimental setup.

The irace package is an automatic configuration tool for tuning optimisation

algorithms, that is, automatically finding good configurations for the parameters

values. Irace works by receiving a list of algorithm’s parameters as input and uses

a set of training instances to find the optimal levels for each of the parameters.

This is achieved by searching in the parameter search space for good performing

algorithm configurations by executing the target algorithm on different instances

with different parameter configurations.

In this experimental setup, irace is set to use benchmark instances from

PSPLIB to tune the algorithm. In this setup benchmark instance from J30, J60,

and J120 sets have been utilised for tuning of the target algorithm:

 J30 set – every tenth instance starting from number 1, 48 instances total

 J60 set – every tenth instance starting from number 1, 48 instances total

72

 J120 set – every tenth instance starting from number 1, 60 instances

total

The stopping criterion for running each of the instances was set to 5000

objective evaluations.

After the algorithm is configured and optimal parameters are identified, its

performance can be evaluated and compared against other methodologies. It is

assumed that these other methodologies would have already gone through the

same parameter fine-tuning process. Typically, performances of algorithms for

the RCPSP are evaluated by running all benchmark instances from J30, J60, and

J120 sets from PSPLIB. In order to provide the basis for comparison with other

algorithms, Hartmann et al. (2000) suggested to limit the execution of algorithms

to the amount of times the objective function is evaluated (i. e. the number of

generated schedules). The advantage of this stopping criterion is that it is

independent of the computer platform. Therefore, all heuristics can be tested

using the original implementation and the best configuration. Moreover, such

tests are independent of compilers and implementation skills, thus the concept of

algorithm is evaluated, rather than its program code. Hence, in order to evaluate

the performance of an algorithm, three sets of experiments have been conducted

in which the algorithm will have to run all benchmark instances from J30, J60,

and J120 sets for the three stopping criteria (maximum of 1000, 5000, and 50000

objective function evaluations).

4.1.3.2 Parameters Settings

The DCS has three configurable parameters:

 Population size m

 Abandonment rate pa

 Max amount of steps s

In order to find the optimal values for these parameters, a sensitivity analysis

has been carried out using the irace package. Ranges of parameters value

selected for the analysis are summarised in Table 4.1.

Table 4.1 - DCS parameter values for sensitivity analysis

Parameter Values Range

Population size (m) [10, 200]

Abandonment rate (pa) [0, 0.9]

Max amount of steps (s) [1, 10]

73

As the result of the algorithm tuning, the optimal parameters values identified

by irace are summarised in Table 4.2.

Table 4.2 - DCS optimal parameters values

Parameter Value

Population size (m) 18

Abandonment rate (pa) 0.8

Max amount of steps (s) 4

During the tuning process, irace iteratively updated the sampling models of the

parameters to focus on the best regions of the parameter search space. The

frequency of the sampling of parameters values in the regions of the specified

parameters search space for m, pa and s is presented in graphs in Figure 4.7,

Figure 4.8 and Figure 4.9.

Figure 4.7 - Population size sampling frequency

Figure 4.8 - Abandonment rate sampling frequency

74

Figure 4.9 - Max amount of steps sampling frequency

The graph in Figure 4.10 displays the interaction between parameters and their

dependencies on one another on the example of 100 best parameters

configurations obtained by irace package during fine-tuning.

Figure 4.10 - DCS parameters correlations

During the fine-tuning process, irace iteratively updated the sampling models

of the algorithm’s parameters to focus on the best regions of the parameter

search space. The frequency of the sampled configurations presented in Figure

4.7, Figure 4.8 and Figure 4.9 provide insights on the parameter search space of

DCS. From these graphs it is possible to understand what the optimal parameters

are and how changing their value might affect the overall performance of the

algorithm.

75

Graph in Figure 4.10 is a parallel coordinates plot in which each of its axes

corresponds to the algorithm’s parameter, whereas green lines on the plot

correspond to the parameter configurations that were obtained by irace package.

The presented graph helps to visualise what kind of parameter configurations

where used the most during the algorithm fine-tuning. In this particular example,

the values of 100 best-obtained parameter configurations are plotted. From the

presented in it is easy to see that parameter values of all best configurations are

in regions of [10; 20] for m, [0.8; 0.9] for pa and [3; 4] for s, meaning that there is

almost no ambiguity between the best-obtained configurations

As can be observed from the above-presented graphs, the optimal levels of

DCS parameters were in the following ranges:

 m – [10; 20]

 pa – [0.8; 0.9]

 s – [3; 4]

Due to high abandonment rate, the overall population is constantly updated

with new individuals, hence, there is no need for having maintaining high

population. By keeping max amount of step parameter s values between 2 and

4, the algorithm provides perfect balance between usage of pairwise interchange

and shift operators.

4.1.3.3 Comparative Analysis

The computational results of the performance evaluation of DCS are presented in Table 4.3,

Table 4.4, and

Table 4.5 for J30, J60 and J120 instance sets, respectively. The first column

“Algorithm” reports abbreviations of the algorithms considered for comparison.

Column “Author(s)” reports the name(s) of the original author(s) and reference to

the work in which the algorithm at hand was previewed. The last column refers to

the average deviation % for three stopping conditions: 1000, 5000 and 50000

objective evaluations. For the J30 instances, the average deviation is shown with

respect to optimal solutions, while for J60 and J120 instances the average

deviation % is calculated with respect to the CP length. Computational

performance of other presented algorithms was taken from (Hartmann & Kolisch,

2000) and (Kolisch & Hartmann, 2006).

76

 Table 4.3 - DCS performance comparison for J30 set

Algorithm Author(s) Dev (%)

 1000 5000 50000

DCS Bibiks et a. 0.52 0.16 0.05

TS Nonobe and Ibaraki (2002) 0.46 0.16 0.05

GA Hartmann (1998) 0.38 0.22 0.08

Sampling + BF Tormos and Lova (2001) 0.30 0.17 0.09

ANGEL Tseng and Chen (2006) 0.22 0.09 n/a

Table 4.4 - DCS performance comparison for J60 set

Algorithm Author(s) Dev (%)

 1000 5000 50000

DCS Bibiks et al. 12.89 12.46 11.18

GA Hartmann (1998) 12.21 11.70 11.21

Sampling + BF Tormos and Lova (2001) 11.88 11.62 11.36

ANGEL Tseng and Chen (2006) 11.94 11.27 n/a

TS Nonobe and Ibaraki (2002) 12.97 12.18 11.58

Table 4.5 - DCS performance comparison for J120 set

Algorithm Author(s) Dev (%)

 1000 5000 50000

DCS Bibiks et al. 37.91 35.29 33.20

GA Hartmann (1998) 37.19 35.39 33.21

Sampling + BF Tormos and Lova (2001) 36.24 35.56 34.77

ANGEL Tseng and Chen (2006) 36.39 34.49 n/a

TS Nonobe and Ibaraki (2002) 40.86 37.88 35.85

The performance evaluation of DCS algorithm can be regarded as satisfactory.

By being capable of outperforming GA and TS, among others, DCS shows

acceptable level of performance which can be compared with other non-hybrid

metaheuristics.

4.2 Discrete Flower Pollination Algorithm

Flower pollination algorithm (FPA) is a metaheuristic algorithm developed by

Yang (2012) and it represents a generalised version of the CS. Similarly to CS,

FPA is a population-based metaheuristic that uses Lévy flight to explore solution

77

search space. The main different between the two is the inclusion of the

crossover operator in the latter one. As with CS, FPA originally was developed

for application in continuous optimisation problems. Thus, the modification,

namely discrete flower pollination algorithm (DFPA), for application in the RCPSP

is proposed. The main reason for the implementation of this algorithm in the

context of this PhD project is to analyse the impact of addition crossover operator

to the original paradigm of CS.

4.2.1 Flower Pollination Algorithm

As witch the CS, the ideas of FPA were inspired by a nature process, which in

this case is the reproduction of flowers. Based on the characteristics of flower

pollination process in nature, Yang (2012) based the algorithm on the following

rules:

1. Two types of pollination processes are considered: local pollination and

global pollination

2. Switching between local and global pollination is controlled by

probability ps ∈ [0, 1]

3. During local pollination, a new solution is generated via Lévy flight

4. During local pollination, a new solution is generated via application of

crossover operator

Based on the above definition, the algorithm’s pseudo-code is summarised in

Figure 4.11.

78

Flower Pollination Algorithm

Initialise a population P of m host flowers xi, Pm = (x1, x1, …, xm)

For all xi do

 Calculate fitness Fi = f(xi)

End for

While (ObjectiveEvaluationNumber < MaxEvaluationNumber)

 Generate random number r in range [0, 1]

 If (r < ps) then

 Create individual (xj) via Lévy flight

 Else

 Create individual (xj) via crossover operator

 End if

 Calculate fitness Fj = f(xj)

 Choose random individual xi from population Pm

 If (Fj >Fi) then

 Replace xi with xj

 End if

End while

Rank all individuals and find the fittest nest

Figure 4.11 – FPA pseudo-code

As can be noted from the pseudo-code in Figure 4.11, FPA offers two ways of

creation of new individuals. If the value of a randomly drawn number r in the range

of [0, 1] is less than the value of switching probability ps, then, as in CS, a new

individual xj is generated via application of Lévy flight in accordance to (21).

Otherwise, a crossover operator is utilised.

4.2.2 Discrete Flower Pollination Algorithm for RCPSPs

Previously, FPA have not been applied to problems in the discrete domain.

Similarly to DCS, application of FPA to such problems focuses on the

reinterpretation of its key elements and operators:

 Solution representation scheme

 Objective evaluation

 Lévy flight

 Crossover operator

In DFPA, the reinterpretation of solution representation scheme, objective

evaluation and Lévy flight follow the same procedure as described in sections

4.1.2.1, 4.1.2.2 and 4.1.2.3, respectively.

79

To implement global pollination in a discrete domain, two-point crossover

operator is used (Hartmann, 1998), also known as Davis order crossover. Given

that there are two parents (parent 1 and parent 2), two-point crossover works by

drawing two random integers q1 and q2 with 1 < q1 < q2 < n, where n is the total

amount of activities in the AL. Further the offspring is created by taking the activity

sequence of position i = q1, …, q2 from parent 1 and the remaining activities from

parent 2 in the same order as they appear. An example of this procedure is

demonstrated in Figure 4.12 on the sample AL from Figure 4.3.

Figure 4.12 - Two-point Crossover example

4.2.3 Computational Performance

Similarly to DCS, performance of DFPA has been evaluated by running each of

the benchmark instances from PSPLIB. The results of evaluation are then

compared with other heuristic for RSPCP from (Hartmann & Kolisch, 2000) and

(Kolisch & Hartmann, 2006). Description of the full experimental setup for

parameters tuning and performance evaluation can be found in Section 4.1.3.1.

4.2.3.1 Parameters Settings

The DFPA has three configurable parameters:

 Population size m

 Switching probability ps

 Max amount of steps s

In order to find the optimal values for these parameters, a sensitivity analysis

has been carried out using the irace package. The ranges of parameters values

selected for the analysis are summarised in .

80

Table 4.6.

81

Table 4.6 – DFPA parameter values for sensitivity analysis

Parameter Values Range

Population size (m) [10, 200]

Switching probability (ps) [0, 0.9]

Max amount of steps (s) [1, 10]

As the result of the algorithm tuning, the optimal parameters values identified

by irace are summarised in Table 4.7.

Table 4.7 - DFPA optimal parameters values

Parameter Value

Population size (m) 116

Switching probability (ps) 0.8

Max amount of steps (s) 8

During the tuning process, irace iteratively updated the sampling models of the

parameters to focus on the best regions of the parameter search space. The

frequency of the sampling of parameters values in the regions of the specified

parameters search space for m, ps and s is presented Figure 4.13, Figure 4.14

and Figure 4.15.

Figure 4.13 - Population size sampling frequency

82

Figure 4.14 - Switching probability sampling frequency

Figure 4.15 - Max amount of steps sampling frequency

The graph in Figure 4.16 displays the interaction between parameters and their

dependencies on one another on the example of 100 best parameters

configurations obtained by irace package during fine-tuning.

83

Figure 4.16 - DFPA parameters correlations

Unlike with DCS, by looking at the graph in Figure 4.16 it is easy to see that

DFPA permits more combinations of optimal parameters settings. The optimal

levels of DFPA parameters identified by irace package were in the following

regions:

 m – [10; 50] & [100; 150]

 ps – [0.4; 0.9]

 s – [7; 10]

4.2.3.2 Comparative Analysis

The computational results of the performance evaluation of DFPA are

presented in

84

Table 4.8, Table 4.9 and Table 4.10 for J30, J60 and J120 instance sets,

respectively. The first column “Algorithm” reports abbreviations of the algorithms

considered for comparison. Column “Author(s)” reports the name(s) of the original

author(s) and reference to the work in which the algorithm at hand was

previewed. The last column refers to the average deviation % for three stopping

conditions: 1000, 5000 and 50000 objective evaluations. For the J30 instances,

the average deviation is shown with respect to optimal solutions, while for J60

and J120 instances the average deviation % is calculated with respect to the CP

length. Computational performance of other presented algorithms was taken from

(Hartmann & Kolisch, 2000) and (Kolisch & Hartmann, 2006).

85

Table 4.8 - DFPA performance comparison for J30 set

Algorithm Author(s) Dev (%)

 1000 5000 50000

TS Nonobe and Ibaraki (2002) 0.46 0.16 0.05

DFPA Bibiks et a. 0.46 0.19 0.06

GA Hartmann (1998) 0.38 0.22 0.08

Sampling + BF Tormos and Lova (2001) 0.30 0.17 0.09

ANGEL Tseng and Chen (2006) 0.22 0.09 n/a

Table 4.9 - DFPA performance comparison for J60 set

Algorithm Author(s) Dev (%)

 1000 5000 50000

DFPA Bibiks et al. 13.01 12.90 11.20

GA Hartmann (1998) 12.21 11.70 11.21

Sampling + BF Tormos and Lova (2001) 11.88 11.62 11.36

ANGEL Tseng and Chen (2006) 11.94 11.27 n/a

TS Nonobe and Ibaraki (2002) 12.97 12.18 11.58

Table 4.10 - DFPA performance comparison for J120 set

Algorithm Author(s) Dev (%)

 1000 5000 50000

GA Hartmann (1998) 37.19 35.39 33.21

DFPA Bibiks et al. 37.82 35.55 33.46

Sampling + BF Tormos and Lova (2001) 36.24 35.56 34.77

ANGEL Tseng and Chen (2006) 36.39 34.49 n/a

TS Nonobe and Ibaraki (2002) 40.86 37.88 35.85

As can be noted from the above-presented results, the addition of the

crossover operator to the algorithm’s paradigm did not have much of an impact

on its overall performance. In all tests, DFPA has showed weaker results than

DCS.

4.3 Improved Discrete Cuckoo Search

Since DCS and DFPA structurally are very similar algorithms, they share the

same common pitfalls and limitations, which are specific to the chosen solution

86

representation scheme, namely AL, and utilised operators. These limitations can

be summarised as follows:

 Representation of one schedule by several structurally different ALs

 Random and context-unaware operators

The first limitation described above is only specific to the AL. Due to the

characteristics of this solution representation scheme, for one schedule several

different representations can exist. Because of that, in some cases, modification

of one AL can result in the generation of exactly the same schedule, hence, the

wasted objective evaluation. Eliminating this limitation will allow an algorithm to

perform better and with less iterations.

The second limitation is specific to the operators used in both algorithms: shift

operator, pairwise exchange, and two-point crossover. Even though these

operators are easy to implement, their operation is purely based on a random

factor and it does not take into consideration any specifics of the problem setting.

Improving these algorithms by adding some elements of intelligence to them will

most certainly increase the algorithm’s efficiency and success rate.

As an attempt of addressing the above-mentioned inefficiencies of DCS and

DFPA and improving their overall performance the improved discrete cuckoo

search (IDCS) is proposed.

4.3.1 Improved Discrete Cuckoo Search for RCPSPs

IDCS represents a modified version of the earlier-presented DCS and its main

objective is to resolve the weaknesses that were described earlier. The main

additions to the original paradigm of the DCS are shown in bold in Figure 4.17

and can be summarised as follows:

 New solution representation scheme

 Improved Lévy flight

 Improvement of fraction of individuals via local search

 Use of crossover operator

87

Improved Discrete Cuckoo Search

Initialise a population P of m host nests xi, Pm = (x1, x1, …, xm)

For all xi do

 Calculate fitness Fi = f(xi)

End for

While (ObjectiveEvaluationNumber < MaxEvaluationNumber)

 Create individual (xj) via Lévy flight

 Calculate fitness Fj = f(xj)

 Choose random individual xi from population Pm

 If (Fj >Fi) then

 Replace xi with xj

 End if

 Improve fraction pc of individuals via local search

 Abandon a fraction pa of individuals with worst fitness

 Generate new random individuals

End while

Find the fittest individual

Figure 4.17 - IDCS pseudo-code

4.3.1.1 Solution Representation Scheme

Both AL and RK schemes can have several representations for a single schedule.

Because of that property, the solution space contains worthless representations

that can be converted into identical schedules, thus reducing efficiency of an

algorithm and resulting in wasted objective evaluations. The essential issues of

the discussed representation schemes can be summed up as follows:

1. If two different RK schemes represent a linear combination of each

other, then both schemes may result in the same solution

2. RK does not take into consideration precedence constraints

3. If two activities have identical starting times, then interchanging their

position (for AL) and priority values (for RK) will not bring any changes

to a solution

4. Because of the precedence constraints, activity positions (for AL) or

priority values (for RK) will not have an effect on the starting time

Several attempts in the literature have been made to resolve the

aforementioned inefficiencies. Debels et al. (2006) proposed a specialised RK

representation scheme to tackle the above deficiencies by applying a

transformation mechanism. To address the first issue, the authors utilised a

88

scaling of the Euclidian space, whereas for the second issue they created a

repairing mechanism that considered the precedence constraints. Moreover, to

address the third issue, activities with the same starting times were assigned the

same priority values. To overcome the last issue, the activities were scheduled in

topological order.

Moumene and Ferland (2008) proposed to decode solutions in a form of

activity set list (ASL). ASL represents an ordered list of different non-empty

subsets of activities. Each subset is comprised of activities that share common

project characteristics, such as predecessors and successors. Because of the

properties of ASL, the search space is significantly reduced, its exploration is

more efficient and optimal solutions are never excluded.

Paraskevopoulos et al. (2012) proposed an alternative to ASL, called event list

(EL). Similarly to ASL, the authors proposed to group activities in the EL with the

same starting times into sets referred to as events. The EL representation

scheme does not use any adjustments and repairing mechanisms and at the

same time manages to effectively resolve the aforementioned inefficiencies of

other representation schemes. Two different ELs can be differentiated by the

distinct events that they contain, both in terms of structure and starting times.

Thus, that way two different ELs cannot result in the same schedule. Moreover,

the EL has been developed to allow local moves of sets of activities, enabling

local search methodologies to generate newly enriched solution neighbours.

Figure 4.18 demonstrates solution representations of a sample schedule from

Figure 4.2 using both AL and EL encodings in parts a) and b) of the image,

respectively.

Figure 4.18 - Comparison of Activity List and Event List representations

As can be noted from the presented example, in EL activities with the same

starting times are grouped together and the resulting groups are ordered by their

89

starting times. Each group of activities (with the same starting times) is

considered as an event. Therefore, a schedule (or a solution) is a set of events

ordered by their starting times.

4.3.1.2 Improved Lévy Flights

As in the original implementation of Lévy flight, the step of a movement

represents a distance in the search space that will be travelled to obtain a new

solution. However, this time small steps are proportional to a number of events

that will be relocated by event move operator, whereas big step is mimicked by

applying event crossover operator. When an event move is performed on an

individuals, a new solution is obtained by relocation of its randomly picked events.

The number of relocated events is proportional to the amount of small steps that

needs to be performed (e.g. 1 step corresponds to the relocation of 1 event).

When event crossover is performed, a new solution is obtained by merging two

individuals from the population together. Since the application of event crossover

symbolises a big step, the current individual is crossed with the one that is farthest

from it.

To facilitate a control of movement through the search space, the amount of

steps to be performed is associated with the Lévy distribution value generated by

Mantegna algorithm, details of which are presented in Section 4.1.2.3.

Event move. The idea of event move operator, first proposed by

Paraskevopoulos et al. (2012), is based on the utilisation of properties of the EL

representation scheme. An event in EL represents a set of activities with equal

starting times. Moreover, these activities can also share the same project

characteristics (i. e. have matching predecessors and/or successors) and thus

can be considered as one entity. However, this conjecture is not always true. In

some situations, activities might be started at the same time because of the

restrictions on the resource loads. Nevertheless, cases where activities have

common network characteristics can be taken as an advantage, as this would

allow to move a whole event throughout the schedule to a different position and,

thus, generating a new, possibly better, solution. In that case, a larger amount of

moves is permitted, which enriches the solution search space with more valuable

solutions. If activities that form an event do not have any common network

characteristics, then permitted local moves will be limited. The algorithm of event

move is summarised in pseudo-code in Figure 4.19.

90

Event Move

Initialise event list E of size k, Ek = (e1, e2, …, ek)

Randomly pick an event ei = (a1, a2, …, an) from Ek

For all aj in ei do

 Find allowable range of positions for relocation for aj

 Relocate aj to new position

End for

Apply SGS for objective evaluation

Figure 4.19 - Event Move pseudo-code

When event move is performed on an EL, a number of random events is picked

for relocation. The number of picked events is proportional to the amount of steps

that will be performed and one step corresponds to the relocation of one event.

For each activity in the chosen event(s), a range of possible positions for

relocation is calculated. The range of positions is formulated in accordance with

the precedence relations between activities: positions of the latest starting

predecessor and the earliest starting successor. Further, all activities that

comprise the chosen event are moved independently from each other to a

random positions within their allowable ranges. Depending on the situation, these

activities might be added to already existing events or form a new event, if no

suitable event exists. Note that events that consist only of one activity are

considered for relocation as well.

After relocating events to new positions is complete, serial SGS is utilised to

convert it into a schedule and calculate its makespan. It is worth mentioning that

relocating event to a particular position in the EL does not guarantee that it will

inherit its starting time. Instead, all of its activities will be rescheduled

independently as early as possible and, as the result, starting times might

change.

Figure 4.20 and Figure 4.21 demonstrate a schedule that has resulted from

the event move. The project from Figure 4.2 is used as the initial solution.

91

Figure 4.20 - Event Move example. Part 1

Figure 4.21 - Event Move example. Part 2

The process of event move begins with a selection of random event and

estimation of feasible positions for relocation for each of the activities in the

selected event. In the example shown in Figure 4.20a, the candidate event for

relocation is highlighted and consists of Activities 9, 14 and 16. Further, the event

is removed from the EL and all events that were scheduled before the chosen

event remained at the same time slots. Subsequently, the activities from the

removed event are inserted into the sub-solution at random positions within the

allowable ranges. In the presented example, Activity 9 is inserted between

Activities 8 and 10, while Activities 14 and 16 were inserted between Activities 10

and 12. As mentioned earlier in this section, even though local move relocates

the events, during conversion of the EL into a schedule each activity is scheduled

independently. Finally, the remaining activities are scheduled and the resulting

92

EL is given in Figure 4.21a, while its schedule is presented in Figure 4.21b. As

can be noted, after activities of the picked event have been rescheduled to

different positions, the makespan of the schedule changed from 47 to 45.

Event crossover. The proposed event crossover method operates on the EL

representation. Instead of using random activity chains of solution parts to be

recombined (i.e. the approach followed in AL-based methodologies), the

proposed operator treats events as the solutions’ elements for recombination.

From the example project in Figure 4.2 and its EL representation in Figure 4.18

it can be observed that the presented EL consists of four events, each of which

contains more than one activity. These events correspond to the peaks of the

highest activity, when multiple activities are being started at the same time. At

that time, more resources are needed and these periods are considered as

periods of high productivity. For the crossover process, such periods in a

schedule serve as a desirable characteristic that can be transferred to the

offsprings.

Therefore, given two solutions, Parent 1 and Parent 2, the event crossover

operator generates an offspring, in such way, that events with the highest amount

of activities are inherited from Parent 1, whereas the positions and order of the

remaining activities is determined by Parent 2. The algorithmic procedure of event

crossover is summarised in Figure 4.22.

Event Crossover

Initialise 2 event lists, Ex and Ey, each consisting of n activities

Sort all events ek in Ex by size in descending order

Start picking largest ek from Ex until total amount of picked activities

 is >= n/2

Pick remaining activities from Ey in the same order as they appear

Form new Ez from picked events

Apply SGS for objective evaluation

Figure 4.22 - Event Crossover pseudo-code

Assume Parent 1 and Parent 2, presented in part a) and b) of Figure

4.23Error! Reference source not found., are two EL representations in the

current population that are going to be used to generate a new offspring. The

makespan of Parent 1 is 47, while makespan of Parent 2 is 62.

93

Figure 4.23 - Event Crossover example

The event crossover process begins by ordering events in Parent 1 in

descending order by their sizes. Then the events are picked one by one from the

largest to the smallest until the number of activities that comprise the picked

events is 50% from the total number of activities. For Parent 1, three events are

selected for the crossover, each of which consists of three activities. The

remaining activities are then taken from Parent 2 in their respective order.

The procedure shown in Figure 4.23 builds an offspring and assigns activities

to their respective positions one by one in a growing position order. At each

moment, an activity is a candidate if it does not belong to any existing event and

has not been assigned, while all its predecessor have already been added. It is

worth noting that during its creation, the offspring is represented in a form of AL.

The resulting AL, shown in Figure 4.23c, with the application of serial SGS is then

converted into EL (Figure 4.23d) by scheduling each activity. Finally, a schedule

with the makespan of 45 is produced, as demonstrated in Figure 4.23e.

94

4.3.1.3 Local Search

Ouaarab et al. (2013) proposed to further improve the original paradigm of CS by

adding additional means of creation solutions. In their improvement of the basic

CS, the authors added additional mechanism that during each iteration randomly

selects fraction of solutions and improves them via local search. The amount of

solutions selected for improvement is controlled via smart cuckoo parameter pc.

The name of this parameter is based on the analogy on some cuckoos that are

capable of engaging a form of surveillance on an area around nests that are likely

to become a host (Payne & Sorenson, 2005).

With the inclusion of the aforementioned mechanism, each turn the improved

CS now can create new solutions as follows:

1. Generation of new solution via Lévy flight;

2. A fraction pc of solutions that are improved via local search

3. A fraction pa of randomly created solutions

The added process can be illustrated as follows. Suppose that the value of pc

is set to 0.5, then 50% of randomly selected solutions from the population will be

modified via one application of event move operator.

4.3.2 Computational Performance

Similarly to previous algorithms in this chapter, performance of IDCS is going to

be evaluated by running each of the benchmark instances from PSPLIB. The

results of evaluation are then compared with other state-of-the-art heuristic for

RSPCP from (Hartmann & Kolisch, 2000) and (Kolisch & Hartmann, 2006).

Description of the full experimental setup for parameters tuning and performance

evaluation can be found in Section 4.1.3.1.

4.3.2.1 Parameters Settings

The IDCS has four configurable parameters:

 Population size m

 Abandonment rate pa

 Max amount of steps s

 Portion of smart cuckoos pc

In order to find the optimal values for these parameters, a sensitivity analysis has

been carried out using the irace package. The ranges of parameters’ values

selected for the analysis are summarised Error! Reference source not found..

95

Table 4.11 - IDCS parameter values for sensitivity analysis

Parameter Values Range

Population size (m) [10, 200]

Abandonment rate (pa) [0, 0.9]

Max amount of steps (s) [1, 10]

Portion of smart cuckoos (pc) [0, 0.9]

As the result of the algorithm tuning, the optimal parameters values identified

by irace are summarised in Table 4.12.

Table 4.12 - IDCS optimal parameters values

Parameter Value

Population size (m) 18

Abandonment rate (pa) 0.7

Max amount of steps (s) 4

Portion of smart cuckoos (pc) 0.2

During the tuning process, irace iteratively updated the sampling models of the

parameters to focus on the best regions of the parameter search space. The

frequency of the sampling of parameters values in the regions of the specified

parameters search space for m, pa, s and pc is presented in Figure 4.24, Figure

4.25, Figure 4.26 and Figure 4.27, respectively.

Figure 4.24 - Population size sampling frequency

96

Figure 4.25 - Abandonment rate sampling frequency

Figure 4.26 - Max amount of steps sampling frequency

Figure 4.27 - Portion of smart cuckoos sampling frequency

As can be noted from the above-presented tuning results, with the utilisation

of more efficient solution representation scheme, the use of new solution

generation operators and addition of new mechanics for solution improvement, in

97

comparison with DCS, the levels of optimal parameters for IDCS almost have not

changed. While values for population size and max amount of steps parameters

remain the same, the value of abandonment rate parameter reduced from 0.8 to

0.7. Further, Figure 4.28 displays the interaction between parameters and their

dependencies on one another on the example of 100 best parameters

configurations obtained by irace package during fine-tuning.

Figure 4.28 - IDCS parameters correlations

From the above-presented results, it is possible to tell that addition of new

configurable parameter (pc) had very little effect on the optimal values of the

algorithm’s parameters. In comparison to DCS, total variability of optimal

parameter combinations has increased, however parameter values of these

configurations remained in the same regions:

 m – [10; 30]

 pa – [0.7; 0.9]

 s – [3; 4]

 pc – [0.1; 0.3]

4.3.2.2 Comparative Analysis

The computational results of the performance evaluation of IDCS are presented in Table 4.13,

Table 4.14 and Table 4.15 for J30, J60 and J120 instance sets, respectively. The

first column “Algorithm” reports abbreviations of the algorithms considered for

comparison. Column “Author(s)” reports the name(s) of the original author(s) and

reference to the work in which the algorithm at hand was previewed. The last

column refers to the average deviation % for three stopping conditions: 1000,

5000 and 50000 objective evaluations. Computational performance of other

presented algorithms was taken from (Hartmann & Kolisch, 2000) and (Kolisch &

Hartmann, 2006).

98

Table 4.13 - IDCS performance comparison for J30 set

Algorithm Author(s) Dev (%)

 1000 5000 50000

SAILS Paraskevopoulos et al. (2012) 0.03 0.01 0.00

GA, TS-PR Kochetov and Stolyar (2003) 0.10 0.04 0.00

SS-PR Mahdi-Mobini et al. (2009) 0.05 0.02 0.01

GAPS Mendes et al. (2009) 0.06 0.02 0.01

IDCS Bibiks et al. 0.09 0.04 0.01

ACOSS Chen et al. (2010) 0.14 0.06 0.01

SS-FBI Debels et al. (2006) 0.27 0.11 0.01

GA Debels and Vanhoucke (2005) 0.15 0.04 0.02

GA-hybrid FBI Valls et al. (2003) 0.27 0.06 0.02

TS Nonobe and Ibaraki (2002) 0.46 0.16 0.05

GA Hartmann (1998) 0.38 0.22 0.08

Sampling + BF Tormos and Lova (2001) 0.30 0.17 0.09

ANGEL Tseng and Chen (2006) 0.22 0.09 n/a

Table 4.14 - IDCS performance comparison for J60 set

Algorithm Author(s) Dev (%)

 1000 5000 50000

SAILS Paraskevopoulos et al. (2012) 11.05 10.72 10.54

SS-PR Mahdi-Mobini et al. (2009) 11.12 10.74 10.57

GAPS Mendes et al. (2009) 11.72 11.04 10.67

IDCS Bibiks et al. 11.78 10.99 10.67

ACOSS Chen et al. (2010) 11.72 10.98 10.67

GA Debels and Vanhoucke (2005) 11.45 10.95 10.68

SS-FBI Debels et al. (2006) 11.73 11.10 10.71

GA-hybrid FBI Valls et al. (2003) 11.56 11.10 10.73

GA, TS-PR Kochetov and Stolyar (2003) 11.71 11.17 10.74

GA Hartmann (1998) 12.21 11.70 11.21

Sampling + BF Tormos and Lova (2001) 11.88 11.62 11.36

ANGEL Tseng and Chen (2006) 11.94 11.27 n/a

TS Nonobe and Ibaraki (2002) 12.97 12.18 11.58

99

Table 4.15 - IDCS performance comparison for J120 set

Algorithm Author(s) Dev (%)

 1000 5000 50000

IDCS Bibiks et al. 33.87 32.74 30.47

ACOSS Chen et al. (2010) 35.19 32.48 30.56

SAILS Paraskevopoulos et al. (2012) 33.32 32.12 30.78

GA Debels and Vanhoucke (2005) 34.19 32.34 30.82

GA-hybrid FBI Valls et al. (2003) 34.07 32.54 31.24

GAPS Mendes et al. (2009) 35.87 33.03 31.44

SS-PR Mahdi-Mobini et al. (2009) 34.51 32.61 31.37

SS-FBI Debels et al. (2006) 35.22 33.10 31.57

GA, TS-PR Kochetov and Stolyar (2003) 34.74 33.36 32.06

GA Hartmann (1998) 37.19 35.39 33.21

Sampling + BF Tormos and Lova (2001) 36.24 35.56 34.77

ANGEL Tseng and Chen (2006) 36.39 34.49 n/a

TS Nonobe and Ibaraki (2002) 40.86 37.88 35.85

The results indicate that the proposed IDCS shows itself as a competitive

algorithm and performs better or on the same level than more advanced

methodologies. IDCS produces the best results regarding the 1000, 5000 and

50000 performance modes for J120 problem set. Considering the 50000

schedules DCS remains one of the most efficient algorithms for solving RCPSP

achieving a 30.78% deviation from CP lower bounds.

4.4 Discrete Species Conserving Cuckoo Search

The IDCS presented in the previous section, demonstrated a satisfactory level of

performance, comparable to other state-of-the-art methodologies for RCPSPs.

However, despite its satisfactory performance, the algorithm cannot be applied

to solve the optimisation model formulated in Chapter 3 as it can only obtain one

solution candidate at a time. To address this issue, the discrete species

conserving cuckoo search (DSCCS) is developed.

The presented DSCCS relies on the species conservation (SC) technique in

obtaining multiple global solutions. SC technique, added to the IDCS, is a method

of evolving parallel sub-populations. First introduced by Li et al. (2002), this

100

technique is based on distributed elitism, achieved by identifying in each

generation a set of prime individuals that are considered to be worth preserving

into the next generation. By running tests on various multimodal optimisation

problems from the literature, Li et al. (2002) were able to demonstrate that with

the application of SC the algorithm is able to reliably find all possible optimal

solutions for all problems under test, as well as achieve competitive performance.

The amount of examples of integration of SC into other metaheuristics (Parrot &

Li, 2004; Li X.-D. , 2004; Ando, Sakuma, & Kobayashi, 2005; Iwamatsu, 2006;

Dong, He, Huang, & Hou, 2005; Stoean, Preuss, Stoean, & Dumitrescu, 2010;

Shibasaka, Hara, Ichimura, & Takahama, 2007) only confirms its effectiveness

and competitiveness over other multimodal techniques.

The main goal of integration of the SC technique into the IDCS is to divide the

whole population into several smaller sub-populations (i.e. species), and each

sub-population consists of solutions with similar characteristics. The formation of

sub-populations allows the search space to be divided into multiple smaller

regions, where each sub-population is responsible for searching for solutions

within their specified region. This creates an opportunity for a finer search for a

local best optima and provides higher chances of finding global optima. Moreover,

multiple solution candidates can be obtained, making the algorithm suitable for

application in multimodal scenarios.

4.4.1 Discrete Species Conserving Cuckoo Search for RCPSPs

DSCCS is the result of the integration of SC technique to the original paradigm

of the IDCS. As an extension to the IDCS, SC technique is based on the species

concept. Species can be defined as a group of individuals (solutions) in a

population with similar characteristics that are grouped around individuals with

the highest fitness called the species seeds. In the context of the IDCS, the whole

population is divided into various sub-populations. Each sub-population consists

of solutions that belong to the same species and is centred on the species seed.

After all species seeds have been defined and species have been formed, each

species seed moves towards a new solution using Lévy flights.

The DSCCS is based on the structure of IDCS and its pseudo-code is shown

in Figure 4.29. Changes to the original structure of the algorithm are highlighted

in bold.

101

Discrete Species Conserving Cuckoo Search

Initialise a population P of m host nests xi, Pm = (x1, x1, …, xm)

Set species distance σs as the average distance between all xi

For all xi do

 Calculate fitness Fi = f(xi)

End for

While (ObjectiveEvaluationNumber < MaxEvaluationNumber)

 Identify species seeds Xs

 For all xi in Xs do

 Create individual (xj) via Lévy flight

 Calculate fitness Fj = f(xj)

 Choose random individual xi from population Pm

 If (Fj >Fi) then

 Replace xi with xj

 End if

 End for

 Improve fraction pc of individuals via local search

 Conserve species seeds Xs

 Abandon a fraction pa of individuals with worst fitness

 Generate new random individuals

End while

Return species seeds with the highest fitness

Figure 4.29 - DSCCS pseudo-code

The most significant changes to the IDCS are the following:

 After a population initialisation, a species distance parameter σs is set

 Within the generation loop, a set Xs of species seeds is determined

 In contrast to the IDCS, where Lévy flights were applied only to the best

individual, in the DSCCS the Lévy flights are performed on each species

seed

 After execution of a Lévy flights and local search procedures, the

species conservation process is performed

 After the operation of the algorithm has ended, multiple solution

candidates are identified

4.4.1.1 Definition of Species

Species in the DSCCS are represented by a group of solutions from population

that have a set of common characteristics with each other. Goldberg and

Richardson (1987) proposed to divide the population into smaller sub-populations

102

based on the similarity of its members. To estimate the similarity between

individuals, they used the Euclidean distance.

The distance between two members of the population xi = [x1, x2, x3, …, xn] and

xj = [x1, x2, x3, …, xn] was estimated as:





n

k

jkikjie xxxxd
1

2)(),((26)

The Euclidian distance represents just one of the possible ways of estimating

the dissimilarity between two solutions. Moreover, depending on the problem and

its setting, different kinds of metrics of distance calculations, hence dissimilarity,

need to be applied. Czogalla and Fink (2009) in their analysis of the RCPSP

fitness landscape reviewed various distance measure techniques. The reviewed

techniques were derived from the interpretation of the permutation

representation. In these techniques, the distance between two solutions was

calculated in relation to the elements of the permutation, the relative order of the

elements, or the absolute position of the elements.

The adjacency distance (Marti, Laguna, & Campos, 2005) is defined as the

number of times a pair of activities is adjacent to both solutions xi and xj:





n

k

kjia zxxd
1

),(;
11

,0

,1  



 


jkikjkik

k

xxand

otherwise

xx
z (27)

The precedence distance (Jones, 1995) is the number of times npre one activity

is preceded by another activity in both solutions xi and xj:

prejip n
nn

xxd 



2

)1(
),((28)

The absolute position distance (Ronald, 1998) is the number of exact position

matches of activities in both solutions xi and xj:





n

k

kjiap znxxd
1

),(with


 


otherwise

xx
z

jkik

k
,0

,1
 (29)

The deviation distance (Reeves, 1999) is the difference between starting times

S of the activities in both solutions xi and xj:





n

k

j

k

i

kjid SSxxd
1

||),((30)

103

In order to analyse applicability of the above-mentioned similarity measures

for the RCPSP, Czogalla and Fink (2009) conducted a series of experiments on

the sets of benchmark instances from the PSPLIB. As the conclusion of their

analysis, the authors noted that algorithms that operated on the deviation

distance measure tend to produce better results. Moreover, Chen et al. (2010)

and Paraskevopoulos et al. (2012) used the abovementioned distance measure

in their algorithms, which confirms its applicability and effectiveness.

In the DSCCS the species are defined in accordance with the species distance

parameter σs, which signifies the upper bound on the distance between two

solutions (i.e. individuals in the population). If a distance d(xi, xj) is lower than σs,

then solutions xi and xj are considered to be belonging to the same species.

Moreover, σs is also used to determine solutions that are going to be preserved

into the next generation.

Species are formed from all members of a population Pm = {x1, x2, x3, …, xm}.

This implies that species are comprised of actual solutions and by no means is

just a region of search space.

In DSCCS species are denoted by a set Si. The Si consists of solutions from

population Pm distance between which is less than the σs. The species Si is formed

around prime individuals that are called dominating individuals (or species seeds)

and denoted as x* ∈ Si.

A solution x* is called dominating if for every other solution x ∈ Si in its species

)(*)(xfxf  (31)

The equality in (31) signifies that one species might be dominated by several

individuals.

A species Si is constructed around a dominating individual x* if, for every other

individual x ∈ Si,

2/)*,(sxxd  (32)

It is worth mentioning that even though species Si is constructed around the

dominating individual x* ∈ Si, this does not mean that all solutions x ∈ Pm within a

radius σs / 2 of x* will be appointed to the same species. An illustration presented

in Figure 4.30 shows an example of a distribution of species. Here, members of

the population are partitioned into four species. Moreover, it can be noted that as

the result of such partition, some solutions were allocated to more than one

104

species (e.g. solutions in species 1, 2 and 3 in the example). Hence, it can be

concluded that several species may be dominated by one dominating individuals,

as well as one individual can belong to several species.

Figure 4.30 - Example of species distribution in a two-dimensional domain

4.4.1.2 Setting of Species Distance

The species distance parameter σs plays the most important role in the formation

of species and identification of species seeds. If the value of the parameter is set

too small, this will result in the formation of too many species and will increase

the computational overhead, thus reducing the efficiency of the algorithm.

Similarly, a too large value of σs will result in too few species being identified.

Deb and Goldberg (1989) in their work implied that each species is enclosed

by an n-dimensional hypersphere with radius σs. Based on this implication, the

authors proposed to estimate the species distance parameter as

n
g

s
N

r
 (33)

where Ng is the known number of global optima and r is the radius of smaller

hypersphere containing a feasible space, which can be calculated as





n

k

l

k

u

k xxr
1

2)(
2

1
 (34)

where xk
u and xk

l represent the upper and lower bounds, respectively.

As can be noted from (34), the presented approach will only work if the

following conditions are satisfied:

105

 the number of global optima needs to be known;

 all global optima need to be evenly distributed over the feasible search

space.

In most practical applications satisfaction of these conditions is impossible for

obvious reasons. To overcome this limitation, Li et al. (2002) proposed to select

σs such that if the distance between newly found solutions that are significantly

different compared to each other is d, then σs need to be σs ≥ 2d. This approach

will guarantee that all members of the population are sufficiently diverse and

selected species seeds are adequately different.

Further, in the literature, a variety of techniques with adaptive niche radius has

been proposed. The most prominent examples are dynamic fitness sharing

(Cioppa, Stefano, & Marcelli, 2007), spatially-structured clearing (Dick, 2010),

dynamic niche clustering (Gan & Warwick, 2001), and adaptive co-evolutionary

sharing (Goldberg & Wang, 1998). Nevertheless, despite the variety of such

techniques, all of them are applied to problems with continuous optimisation

domain; therefore, their methods for automatic identification of the niching radius

are not applicable to problems with discrete domain. As the compromise to this

situation, in DSCCS the species distance parameter is set during the initialisation

phase as the average distance value between all members of the initial

population.

4.4.1.3 Species Determination

In order to split the population into species and determine which individuals will

survive into the next generation, a set of dominating species needs to be

identified from the current population. The species determination algorithm

developed by Li et al. (2002), shown in Figure 4.31, demonstrates how this is

accomplished in the DSCCS. In the presented algorithm, XS denotes a set of

species seeds found in generation G(t).

106

Species Seeds Determination Algorithm

XS = 0

While (no more unmarked individuals in G(t))

 Search for the best unmarked x*∈ G(t)

 Mark x* as processed

 found = FALSE

 For all x ∈ XS do

 If (d(x*, x) ≤ σs/2) then

 found = TRUE

 Break

 End if

 End for

 If (found==FALSE) then

Figure 4.31 - Species Seeds Determination Algorithm pseudo-code

The algorithm presented in Figure 4.31 builds the set XS by going through each

individual in the current generation G(t) and checking its fitness value against the

species seeds found so far. All individuals in G(t) are ordered in decreasing order

of their fitness, hence the algorithm starts its way from the fittest individual. If

during the comparison XS does not contain any species seeds that are closer than

half the species distance (σs / 2) to the considered solution, then this solution will

be added to XS.

The procedure outlined in Figure 4.31 is performed for every generation, and,

as result, it creates additional computational overhead. The computational

complexity of this operation can be characterised in terms of the number of

distance evaluations performed when determining the species seeds in one

generation Ts(m) and can be summarised by the following relation:







m

i

S

mm
imTm

1 2

)1(
)1()((35)

Therefore, the number of distance evaluations performed for each generation

is O(N2).

4.4.1.4 Species Conservation

Once all species have been identified, a new population is built by applying the

usual IDCS operators. Some species may not survive the outcomes of these

operations, therefore, they need to be copied (conserved) into the next

generation, thus prolonging their existence and maintaining the diversity of a

107

population. The SC process, developed by Li et al. (2002), is presented in Figure

4.32.

Species Conservation Algorithm

Mark all individuals as unprocessed

For all x ∈ XS do

 Select the worst unmarked y ∈ S’(x, σs)

 If (y exists) then

 If (f(y) < f(x)) then

 y = x

 End if

 Else

 Select the worst unmarked y ∈ G(t+1)

 y = x

 End if

End for

Figure 4.32 - Species Conservation Algorithm pseudo-code

The SC process shown in Figure 4.32 works as follows:

 New generation G(t+1) is searched for solutions that belong to the same

species (S(x, σs)) that have been identified in generation G(t); i.e.

individual y ∈ G(t+1) for which d(x,y) < σs /2

 If species seed x* is better than the worst of these “similar” solutions, it

will replace it

 If x* is the only member of its species in G(t+1), x* replaces the worst

unmarked solution in G(t+1)

 The species seeds are always carried from the previous generation,

hence the total amount of species seeds NS is always smaller than the

population size m, and unmarked solutions will always exist

All species seeds are either conserved or replaced by superior individuals of

the same species. It is worth mentioning that a scenario when none of the species

will be selected for the conservation into the next generation is also possible.

However, such a scenario can only happen if the new generation is created by

applying operators that contain at least one individual from each of the species

defined by the seeds in XS, and if each of these individuals has higher fitness than

the corresponding species seed.

108

SC adds an additional computational overhead. The complexity of this process

can be characterised by the amount of distance computations performed when

conserving species seeds in one generation Tc(m):

mmmmmmmimmTm SS

m

i

SC

S

**)]1(
2

1
[)1()(

1

 


 (36)

Differentiating the above expression for Tc(m) with respect to ms, it is easily

shown that Tc(m) is maximised when ms = m + 0.5. In practice, ms must be an

integer, and, as the species seeds are identified from the population, cannot

exceed m. Hence, substituting ms = m in (35) leads to:

)1(
2

1
)( mmmTC

 (37)

Combining the results in (31) and (33), the total computational overhead

introduced by species conservation technique, as measured by the number of

distance calculations performed per each generation, Tsc(m) = Ts(m) + Tc(m) is:

mmmmmTm SSC *2*2)(2  (38)

Thus, the complexity of the number of distance computations performed for

each generation is between O(N) and O(N2). If the species distance σs is set small,

this results in greater amount of species in each generation, hence the complexity

tends to increase towards O(N2). On the other hand, if σs is sufficiently large, there

are few species seeds, thus the complexity tend to decrease towards O(N).

4.4.1.5 Global Optima Identification

When stopping condition is met, the DSCCS terminates its operation. At the end

of its operation, the algorithm produces the last set XS of species seeds, e.g. the

best solutions that were sufficiently different from each other. This suggests that

XS should contain the found representative solutions, if any. Unfortunately, XS

may contain both low fitness individuals that were stored because they were

sufficiently different from all the other individuals in previous generations and high

(but not necessarily equal) fitness individuals. Therefore the only solution would

be to select from XS those individuals that have a high enough fitness.

In the presented implementation of the DSCCS, the representative solutions

to the problem at hand are considered to be the fittest individuals in XS, which are

109

all individuals in XS that have a fitness equal to the fitness fmax of the fittest species

seed.

4.4.2 Computational Performance

Similarly to previous algorithms in this chapter, performance of DSCCS is going

to be evaluated by running each of the benchmark instances from PSPLIB. The

results of evaluation are then compared with other state-of-the-art heuristic for

RSPCP from (Hartmann & Kolisch, 2000) and (Kolisch & Hartmann, 2006).

Description of the full experimental setup for parameters tuning and performance

evaluation can be found in Section 4.1.3.1.

4.4.2.1 Parameters Settings

Similarly to IDCS, DSCCS has four configurable parameters:

 Population size m

 Abandonment rate pa

 Max amount of steps s

 Portion of smart cuckoos pc

In order to find the optimal values for these parameters, a sensitivity analysis

has been carried out using the irace package. Ranges of parameters value

selected for the analysis are summarised Table 4.16.

Table 4.16 – DSCCS parameter values for sensitivity analysis

Parameter Values Range

Population size (m) [10, 200]

Abandonment rate (pa) [0, 0.9]

Max amount of steps (s) [1, 10]

Portion of smart cuckoos (pc) [0, 0.9]

As the result of the algorithm tuning, the optimal parameters values identified

by irace are summarised in Table 4.17.

Table 4.17 – DSCCS optimal parameters values

Parameter Value

Population size (m) 180

Abandonment rate (pa) 0.7

Max amount of steps (s) 4

Portion of smart cuckoos (pc) 0.5

110

During the tuning process, irace iteratively updated the sampling models of the

parameters to focus on the best regions of the parameter search space. The

frequency of the sampling of parameters values in the regions of the specified

parameters search space for m, pa, s and pc is presented Figure 4.33, Figure 4.34,

Figure 4.35 and Figure 4.36.

Figure 4.33 - Population size sampling frequency

Figure 4.34 - Abandonment rate sampling frequency

Figure 4.35 - Max amount of steps sampling frequency

111

Figure 4.36 - Portion of smart cuckoos sampling frequency

Further, Figure 4.37 displays the interaction between parameters and their

dependencies on one another on the example of 100 best parameters

configurations obtained by irace package during fine-tuning.

Figure 4.37 – DSCCS parameters correlations

As can be observed from the presented results, with the integration of the

species conservation technique into the IDCS, the optimal value for the

population size has increased from 18 to 180. This is due to the fact that now for

successful operation the algorithm needs to maintain high population of

individuals which is divided into species. Having several species allows the

algorithm to multiple regions of the solution search space simultaneously,

however, in order to do this effectively, high population of diverse individuals is

required. With an increase of optimal population size, the optimal value of portion

of smart cuckoos parameter pc increased as well from 0.2 to 0.5. This is explained

by the fact that now each turn a set of prime individuals is conserved into the next

generation and with the higher pc there are more chances to improve this

individual further.

Moreover, the ambiguity of final best parameter combinations has increased

as well. Parameter values of the best configurations were in the following regions:

112

 m – [160; 200]

 pa – [0.7; 0.9]

 s – [4; 8]

 pc – [0.1; 0.9]

4.4.2.2 Comparative Analysis

The computational results of the performance evaluation of DSCCS are presented in Table 4.18,

Table 4.19, and

Table 4.20 for J30, J60 and J120 instance sets, respectively. The first column

“Algorithm” reports abbreviations of the algorithms considered for comparison.

Column “Author(s)” reports the name(s) of the original author(s) and reference to

the work in which the algorithm at hand was previewed. The last column refers to

the average deviation % for three stopping conditions: 1000, 5000 and 50000

objective evaluations. Computational performance of other presented algorithms

was taken from (Hartmann & Kolisch, 2000) and (Kolisch & Hartmann, 2006).

Table 4.18 - DSCCS performance comparison for J30 set

Algorithm Author(s) Dev (%)

 1000 5000 50000

SAILS Paraskevopoulos et al. (2012) 0.03 0.01 0.00

GA, TS-PR Kochetov and Stolyar (2003) 0.10 0.04 0.00

SS-PR Mahdi-Mobini et al. (2009) 0.05 0.02 0.01

DSCCS Bibiks et al. 0.05 0.02 0.01

GAPS Mendes et al. (2009) 0.06 0.02 0.01

ACOSS Chen et al. (2010) 0.14 0.06 0.01

SS-FBI Debels et al. (2006) 0.27 0.11 0.01

GA Debels and Vanhoucke (2005) 0.15 0.04 0.02

GA-hybrid FBI Valls et al. (2003) 0.27 0.06 0.02

TS Nonobe and Ibaraki (2002) 0.46 0.16 0.05

GA Hartmann (1998) 0.38 0.22 0.08

Sampling + BF Tormos and Lova (2001) 0.30 0.17 0.09

ANGEL Tseng and Chen (2006) 0.22 0.09 n/a

Performance wise, the DSCCS showed the third best result for J30 and J60

sets. For J120 set the DSCCS placed eighth amongst all compared algorithms.

113

Table 4.19 - DSCCS performance comparison for J60 set

Algorithm Author(s) Dev (%)

 1000 5000 50000

SAILS Paraskevopoulos et al. (2012) 11.05 10.72 10.54

SS-PR Mahdi-Mobini et al. (2009) 11.12 10.74 10.57

DSCCS Bibiks et al. 11.73 11.01 10.62

GAPS Mendes et al. (2009) 11.72 11.04 10.67

ACOSS Chen et al. (2010) 11.72 10.98 10.67

GA Debels and Vanhoucke (2005) 11.45 10.95 10.68

SS-FBI Debels et al. (2006) 11.73 11.10 10.71

GA-hybrid FBI Valls et al. (2003) 11.56 11.10 10.73

GA, TS-PR Kochetov and Stolyar (2003) 11.71 11.17 10.74

GA Hartmann (1998) 12.21 11.70 11.21

Sampling + BF Tormos and Lova (2001) 11.88 11.62 11.36

ANGEL Tseng and Chen (2006) 11.94 11.27 n/a

TS Nonobe and Ibaraki (2002) 12.97 12.18 11.58

Table 4.20 - DSCCS performance comparison for J120 set

Algorithm Author(s) Dev (%)

 1000 5000 50000

ACOSS Chen et al. (2010) 35.19 32.48 30.56

SAILS Paraskevopoulos et al. (2012) 33.32 32.12 30.78

GA Debels and Vanhoucke (2005) 34.19 32.34 30.82

GA-hybrid FBI Valls et al. (2003) 34.07 32.54 31.24

GAPS Mendes et al. (2009) 35.87 33.03 31.44

SS-PR Mahdi-Mobini et al. (2009) 34.51 32.61 31.37

SS-FBI Debels et al. (2006) 35.22 33.10 31.57

DSCCS Bibiks et al. 36.81 33.10 31.96

GA, TS-PR Kochetov and Stolyar (2003) 34.74 33.36 32.06

GA Hartmann (1998) 37.19 35.39 33.21

Sampling + BF Tormos and Lova (2001) 36.24 35.56 34.77

ANGEL Tseng and Chen (2006) 36.39 34.49 n/a

TS Nonobe and Ibaraki (2002) 40.86 37.88 35.85

The relatively lower performance in J120 set (in comparison to J30 and J60)

can be explained by the fact that benchmark instances with 120 activities have a

114

lot wider search space, therefore the influence of such parameters as population

size m and species distance σs is much higher. In order to provide better results,

the algorithm needs to be able to adapt and estimate the optimal values for

population size m and species distance σs automatically. Nevertheless, these

results indicate that DSCCS is capable of finding solutions of high quality with

fewer iterations. The DSCCS shows itself as a competitive algorithm and

performs better or on the same level than other advanced solutions

methodologies.

As the final conclusion, it should be noted that for smaller problem instances

with 30 and 60 activities the performance of DSCCS in comparison to the IDSC

has improved. However, when solving problems of larger scale, the performance

of the algorithm has noticeably degraded. As was stated earlier, this is explained

by the fact that the solution search space of problems with larger scale becomes

too big, hence setting species distance, as the average distance between all

individuals will not work. Therefore, in order to improve the performance, a

mechanism for automatic adaptation to the specifics of the problem need to be

introduced.

4.4.2.3 Multiple Solutions

One of the features of the DSCCS is the ability to obtain multiple solution

candidates for any given RCPSP problem instance. During algorithm testing,

depending on the test instance, the amount of found candidate solutions varied

from 1 to 22, 1 to 60, and 1 to 21 for J30, J60, and J120 test instances,

respectively. It is also worth mentioning that the DSCCS was able to find optimal

(or best known) solutions in the majority of all test instances with high rate.

Some feasible solutions for J305_1 test instance are shown in Table 4.21. The

optimal makespan (denoted by the starting time of the last activity in the EL) of

the test instance is 53. The presented examples indicate that the search space

of the RCPSP is indeed filled with a large amount of global optima, as well as

prove the capability of DSCCS obtaining multiple solutions.

115

Event list representation

1 0 20

1 5 22

2 4 10 9 11 17 25 23 21

3 8 7 12 6 16 15 13 14 18 27 26 30 19 24 29 28 31

0 1 5 6 7 11 15 18 22 23 27 30 36 37 40 45 50 53

2 0

1

2 6 10 5 17 11 20 23 19 21

3 8 7 12 4 16 9 15 13 18 14 22 25 27 26 30 24 29 28 31

0 1 5 6 7 11 13 17 18 21 24 27 28 29 30 38 40 46 50 53

3 0

1

2 4 8 6 5 11 20 17 23 25 21

3 7 16 12 10 15 13 13 9 14 22 18 27 19 26 24 30 29 28 31

0 5 6 10 11 15 18 18 20 22 27 28 30 34 39 40 42 47 50 53

4 0

1 5 20

2 4 10 9 11 17 22 19 26 21

3 8 7 12 6 16 15 13 14 18 27 23 30 25 24 29 28 31

0 1 5 6 7 11 15 18 22 23 27 30 36 38 40 44 50 53

5 0

1

2 4 8 6 5 11 20 17 23 25 21

3 7 16 12 10 15 13 9 14 22 18 27 19 26 24 30 29 28 31

0 5 6 10 11 15 18 20 22 27 28 30 34 39 40 42 47 50 53

6 0

1 21

2 6 4 8 9 17 20 11 25

3 7 12 16 10 15 13 5 18 22 14 23 19 27 26 24 30 29 28 31

0 5 6 7 11 17 18 21 25 27 28 30 31 33 39 40 42 47 50 53

7 0

1 27

2 4 8 6 5 11 20 17 25 24 21

3 7 16 12 10 15 13 9 14 20 18 23 26 19 30 29 28 31

0 5 6 10 11 15 18 20 22 27 28 30 34 39 40 47 50 53

8 0

1 5 21

2 6 4 15 20 11 19 25

3 8 7 12 16 10 9 13 17 18 22 14 23 27 26 24 30 29 28 31

0 1 5 6 7 11 13 18 21 24 27 28 30 33 38 40 42 46 50 53

9 0

1 21

2 5 4 8 5 20 11 19 25

3 6 12 16 10 9 15 13 17 18 22 14 23 27 26 24 30 29 28 31

0 5 6 7 11 13 17 18 21 23 27 28 30 33 38 40 42 46 50 53

10 0

1 17

2 4 8 6 5 11 18 20 21

3 7 16 12 10 15 13 9 14 22 27 23 25 26 19 24 30 29 28 31

0 5 6 10 11 15 18 20 22 27 28 30 33 34 37 40 42 45 50 53

Table 4.21 - Example event list representations of found solutions of J30 test instance

4.5 Summary

In the first two sections of this chapter two novel algorithms, CS and FPA, are

modified and applied to solve the RCPSP. The ideas of CS and FPA are extended

116

to a discrete domain, resulting in the development of DCS and DFPA,

respectively. As the original versions of these algorithms were specifically

designed for the application in continuous optimisation problems, in order to apply

them for solving RCPSPs, the algorithms’ key components and elements are

reinterpreted. These include solution representation and encoding scheme;

exploration and exploitation of the solution search space; and crossover operator

in the case of DFPA.

Some preliminary computational experiments were carried out to test the

suitability of the algorithms when applied to solve RCPSPs on the sets of

benchmark instances from PSPLIB and the results of tests were compared with

the performances of other non-hybrid algorithms for RCPSPs from the literature.

The comparative analysis showed that both algorithms have a competitive level

of performance. Nevertheless, DCA and DFPA have many areas for

improvement, which include: inefficient solution representation scheme, use of

randomisation-reliant and context-free operators, and the creation of random

individuals.

To address and fix the limitations of the DCS and DFPA, the IDCS was

proposed. The IDCS represents an improved version of the DCS and it introduces

the following changes to the original paradigm of DCS:

 use of the EL as more efficient solution representation scheme;

 addition of a new mechanism for improvement individuals in the current

population via local search;

 use of the event move operator that takes into account properties of the

activities (successors and predecessors) to improve the current

solution; and

 the event crossover which is designed to combine useful problem-

specific information extracted from the parent for the purpose of

generating high quality children.

The performance of the IDCS was evaluated using all benchmark instances

from J30, J60, and J120 sets from PSPLIB and the performance evaluation

results are compared against other state-of-the-art algorithms for RCPSPs from

literature. The results show that IDCS outperforms most of the chosen state-of-

the-art algorithms for the instance sets J30, J60, and J120.

Nevertheless, due to the specifics of the optimisation model proposed in this

thesis, one of the areas of improvement of the algorithm is its adaptation for

117

application in multimodal scenarios. Thus, by combining the IDCS and SC

technique, a new metaheuristic algorithm DSCCS was subsequently proposed.

The application of the species conserving technique to the IDCS has made

this algorithm suitable for the use in multimodal scenarios. The main difference

between the IDCS and DSCCS is the introduction of two new additional

operators: species determination and species conservation processes.

Moreover, in contrast to the IDCS where Lévy flight is only applied on the fittest

individual, in the DSCCS the Lévy flight is applied to all species seeds.

The computational results show that DSCCS is a high-quality algorithm which

is capable of achieving high performance comparable to other state-of-the-art

heuristics for the RCPSP, as well as obtaining multiple solution candidates.

118

Chapter 5 Case Studies

This chapter focuses on the application of the DSCCS, presented in Chapter 4,

to the HPMP, proposed in Chapter 3. For this, two sets of experiments are

conducted: activity scheduling and resource allocation of the real-world project,

and the algorithm’s performance evaluation on the set of benchmark instances.

For the first experiment, the DSCCS is applied to schedule activities of the

real-life software development project. The project consists of 51 different

activities with complex precedence relationships and 6 types of resources.

For the second experiment, several of the most popular methodologies for the

RCPSP are implemented and then applied to solve the benchmark instances

from PSPLIB, which were edited to feature additional parameters for resource

efficiency and learnability.

5.1 HARNet Automated Testing System Project

Harmonised Antennas and Radio Networks (HARNet) represents a large-scale

aeronautical R&D project and is characterised by a complex structure, reliance

on intensive high-tech, a collaboration of many partner companies, and exposure

to considerable uncertainties and risks. Because of that, the development of

HARNet was split into smaller work packages (WPs) that were distributed among

the partners as follows:

 WP1: Identification and management of the project transversal activities

 WP2: Next generation antennas design study and development

 WP3: Next generation communication environment development

 WP4: Design and synthesis of the harmonised amplifier sets

 WP5: Design and synthesis of the harmonised transceiver

 WP6: Design and synthesis of an I/Q baseband bus system

 WP7: Design and development of the baseband processing system

 WP8: Design and development of system capable of providing high

burst capacity data transfers for entertainment and system upgrades

 WP9: Design and development of the automated testing environment

The WP1 is a managerial project objective of which is to identify, assess and

manage the wide range of general risks and requirements subject to all

119

development stages of the HARNet. WPs ranging from WP2 to WP8 are

hardware related projects, main concern of which is the study, design and

development of the certain HARNet elements, which, when combined together,

will form the entire system. The last WP in the list, WP9, in comparison to other

WPs, represents a software project. Its objective is to produce an overarching

automated test system that will cooperate with external and third-party testing

mechanisms to carry out the testing of the HARNet components at different

stages of the development cycle.

Due to the previous experiences of being involved only with hardware-related

projects, planning and scheduling of the design and development stages of the

WP9 (HARNet automated testing system (HATS)) were new for the HARNet

project managers. The management of such project required more efficient tools

and models. Without such tools, the managers had to face the following

managerial challenges:

 Resource allocation and scheduling – the development cycle of WP9

consisted of set of activities which required collaboration of different

teams with various specialities and from different departments

 Uncertain activity durations – most of the activities in the WP9 were new

for the project managers and developers. This created the difficulty of

the evaluation durations of activities

 Time dependency – as the development of the project went ahead,

related factors might evolve with time, influencing the duration of the

activities. For instance, as experience accumulated and technological

maturity grown, technology risks tended to decrease

 Conflicting objectives – WP9 involved multiple conflicting objectives,

such as minimisation of makespan and maximisation of the competency

of selected group members

For the development of WP9, focus on the above-mentioned challenges could

provide managers with effective candidate solutions to shorten the development

cycle, save costs and improve efficiency. This could be achieved by designing

efficient optimisation and decision support models.

5.1.1 Project Description

The main outcome of the WP9 was envisioned to be the overarching automated

testing system that would aim to cooperate with external and third-party testing

120

mechanisms to carry out testing and validation of many different radio

components. Moreover, because of its generic and extensible design, it could

also be used to test other software and hardware components. Support for testing

of new components could be easily added due to the extensible nature of the

system. Further, HATS was projected to allow interfacing with existing testing

tools, so that all testing can be carried out and orchestrated from one overarching

system.

5.1.1.1 Project Background

The main content of the WP9 included the design and development of the HATS

prototype system and its subsequent integrations and system tests. The overall

project’s lifetime could be divided into the following stages:

 Stage 1: Review of the testing technologies and identification of the

functional requirements

 Stage 2: System architecture design

 Stage 3: Synthesis of the test prototype system

 Stage 4: Testing and verification of the final system

The functional requirements of the HATS prototype were identified in

collaboration with partners from other WPs and covered only the bare minimal

set of functionalities that needed to be implemented.

Because of the HATS’ generality and extensibility, the system architecture had

a modular structure and was based on the principles of the service-oriented

architecture (SOA) and modular programming.

The functionality of HATS was separated into independent, interchangeable

modules, such that each contained everything necessary to execute only one

aspect of the desired functionality. As the development process went further, the

core functionality of HATS could be expanded by the addition of new modules.

Moreover, such approach has also helped to split the project activities equally

between all groups of developers, making each group capable to independently

develop and test their assigned module.

5.1.1.2 Project Network

The development cycle of HATS consisted of 51 activities, which are listed in Table 5.1,

Table 5.2,

121

Table 5.3 and

122

Table 5.4. Project networks presented in Figure 5.1 and Figure 5.2 characterise

the precedence relations of all activities that are comprised in the project.

Activities A0 and A52 are dummy activities that signify the start and the end of the

project, respectively, and have a deterministic duration of 0. The preliminary

duration estimations pi* of all other non-dummy activities Ai can be found in the

last column of the respective tables and are expressed in weeks.

Table 5.1 - WP9 Stage 1 activities

Ai Name pi*

A1 Review of tools, techniques, and methodologies 4

A2 Review of automated testing technologies 4

A3 Selection of tools and technologies 2

A4 Determination of operating environment and preconditions 3

A5 Determination of HATS components and subcomponents 4

A6 Definition of testing scopes and interfaces 2

A7 Definition of functional requirements 6

Table 5.2 - WP9 Stage 2 activities

Ai Name pi*

A8 Identification of functional components 2

A9 Identification of system specification 2

A10 Software architecture design 7

A11 Hardware architecture design 6

A12 Graphical user interface (GUI) design 7

A13 Component design 5

A14 Database design 3

A15 Definition of test cases 5

A16 Definition of physical and logical interfaces 3

A17 Definition of test flow diagrams 9

123

Table 5.3 - WP9 Stage 3 activities

Ai Name pi*

A18 Core engine development 8

A19 Communication manager development 2

A20 User manager development 2

A21 Component manager development 4

A22 Test scenario manager development 6

A23 Test scheduling manager development 10

A24 Test execution manager development 9

A25 Test results manager development 2

A26 Maintenance manager development 2

A27 Adaptation manager development 5

A28 System configuration manager development 3

A29 Utility manager development 2

A30 System under test adapters development 4

A31 GUI core engine development 6

A32 GUI test designer and planner development 6

A33 GUI results processor and reporter development 2

A34 GUI component configuration panel development 3

A35 GUI system configuration panel development 3

A36 GUI user configuration panel development 2

124

Table 5.4 - WP9 Stage 4 activities

Ai Name pi*

A37 Backend integration testing 6

A38 Frontend integration testing 5

A39 Whole system integration testing 7

A40 Component interfaces testing 5

A41 System performance testing 4

A42 Compatibility testing 3

A43 Scalability testing 3

A44 Maintenance testing 5

A45 GUI testing 5

A46 Usability testing 3

A47 Security testing 3

A48 Regression testing 3

A49 Testing among different stations 2

A50 Joint testing and verification 7

A51 Operational acceptance testing 4

A1

A2

A4

A5

A3

A6

A7A0

A8

A9

A14

A13

A10

A11

A12

A16

A17

A15

Figure 5.1 – WP9 project network of stages 1 and 2

A15

A31

A24

A18

A19

A32

A33

A21

A35

A22

A20

A34

A30 A28 A29

A27

A46

A36

A23

A47

A41

A26

A40

A25

A42

A44

A43

A38

A49

A48

A37

A39 A52

A50

A51

A45

A52

Figure 5.2 – WP9 project network of stages 3 and 4

As can be observed from the project networks presented in Figure 5.1 and

Figure 5.2, stages 1 and 2 are relatively sequential and consist of the activities

125

with easy-to-follow relationships. However, stages 3 and 4 contain activities with

complex dependency networks scheduling which is a challenging task.

5.1.1.3 Project Resources

For execution of all planned activities of the WP9 project several types of

resources were needed. All resources that are considered in this case study have

limited capacities, therefore, inappropriate scheduling and allocation may cause

conflicts among the tasks. The total number of resources that are available for

completion of the case study and their efficiencies are presented in Table 5.5.

Table 5.5 - WP9 Resource capacities

Rk Description RCk ek lk

R1 Researchers in the frontend department 4 0.55 15

R2 Researchers in the backend department 9 0.40 15

R3 Researches in the design department 5 0.35 20

R4 Researchers in the system engineering department 5 0.25 25

R5 Network analyser 2 n/a n/a

R6 Network router 1 n/a n/a

Resource requirements of each of the case study’s activities are shown in Table 5.6,

126

Table 5.7,

Table 5.8 and

Table 5.9.

Table 5.6 - WP9 Stage 1 resource requirements

Ai R1 R2 R3 R4 R5 R6

A1 3 3 1 1 0 0

A2 1 1 3 3 0 0

A3 2 2 2 2 0 0

A4 0 0 2 3 0 0

A5 1 1 2 2 0 0

A6 0 0 2 4 0 0

A7 2 2 1 1 0 0

127

Table 5.7 - WP9 Stage 2 resource requirements

Ai R1 R2 R3 R4 R5 R6

A8 0 0 2 2 0 0

A9 0 1 1 3 0 0

A10 1 3 3 1 0 0

A11 0 1 2 3 0 0

A12 4 0 2 0 0 0

A13 0 2 2 2 0 0

A14 0 2 2 0 0 0

A15 3 3 0 0 0 0

A16 0 0 2 3 0 0

A17 3 3 0 0 0 0

Table 5.8 - WP9 Stage 3 resource requirements

Ai R1 R2 R3 R4 R5 R6

A18 0 4 2 1 0 0

A19 0 1 1 3 1 1

A20 0 2 2 0 0 0

A21 0 3 1 2 1 0

A22 0 3 3 1 0 0

A23 0 4 2 0 0 0

A24 0 4 2 2 1 1

A25 1 2 1 0 0 0

A26 0 1 1 3 0 0

A27 0 2 2 3 1 0

A28 1 1 0 3 1 1

A29 0 2 2 1 0 0

A30 0 0 2 4 1 0

A31 4 0 3 0 0 0

A32 3 1 3 0 0 0

A33 3 0 1 1 0 0

A34 2 0 1 2 0 0

A35 2 0 1 3 0 0

A36 3 0 1 0 0 0

128

Table 5.9 - WP9 Stage 4 resource requirements

Ai R1 R2 R3 R4 R5 R6

A37 0 4 1 2 0 0

A38 4 0 1 2 0 0

A39 3 3 2 2 2 0

A40 0 2 0 3 1 1

A41 1 3 1 3 0 0

A42 2 0 3 2 0 0

A43 2 0 3 2 0 0

A44 0 0 3 3 0 0

A45 4 0 1 2 0 0

A46 2 1 2 1 0 0

A47 0 1 2 2 0 1

A48 2 2 2 1 0 0

A49 2 2 0 3 2 0

A50 3 3 2 2 1 0

A51 2 2 3 3 0 0

Resources R1, R2, R3, and R4 represent people, i.e. departments in which each

unit of these resources corresponds to one researcher or developer. In this case

study, four groups of researchers are considered, corresponding to different

areas of expertise and different levels of experience: frontend, backend, design,

and system engineering. Depending on the activity’s requirement, several units

(researchers) of a particular resource type might be needed for its execution. If

so, the researchers will work in cooperation as a group and support the design

specification, organisation of the interface, review, technical consulting, etc.

Consequently, activities are completed by different groups of researchers under

a higher-level global plan. Resources R5 and R6 represent special equipment

needed for completion of some of the activities. In contrast to resources R1, R2,

R3, and R4, resources R5 and R6 cannot gain any experience, thus, they cannot

influence the duration of activities.

Since the actual data of the WP9 project is confidential, the values ek and lk in

this case study have been chosen artificially for the purpose of illustrating

properties of the proposed optimisation model. In the context of this work, value

ek represents the maximum efficiency gain that can be achieved by resource type

129

by learning and gaining relevant experience. Value e1 = 0.25, for example,

denotes that a highly experienced group of researchers can be up to 25% more

efficient than it was before the project started. The learnability coefficient lk

measures the learning effect through experience: a higher value of this parameter

suggests that the experience gain effect will require more time. A simple method

to estimate lk in the real-world project would be via a management report. For

example, statement like “90% of the maximum experience gain effect for the

resource Rk can be accomplished after 30 weeks of practice” can lead to the

following:

)
30

exp(%90 kl (39)

which yields the value lk = 30*(-ln(0.9)) = 3.1608. The lk-values selected for this

case study in Error! Reference source not found. are much higher and they

correlate to a rather slow learning effect.

5.1.2 Algorithm Application

Application of any algorithm for the RCPSP-kind of problem mainly focuses on

the reinterpretation of its key elements, which include solution representation,

objective function, and genetic operators. Additionally, application of techniques

for multimodal optimisation would also require reinterpretation of metrics of

similarity estimation between members of the population.

To test the validity of the proposed optimisation model and solve the presented

case study, the DSCCS is going to be utilised. For more detailed description of

the DSCCS refer to Section 4.4. The experimental evaluation of the DSCCS on

sets of benchmark instances from PSPLIB for the standard RCPSP

demonstrated the capability of the algorithm to confidently handle RCPSP

instances of various sizes, ability to find multiple optimal solutions and

competitiveness against other state-of-the-art methodologies for the deterministic

RCPSP.

As DSCCS was specifically developed for solving the derivatives of RCPSPs,

in order to apply it to the proposed optimisation model the only element that needs

to be reinterpreted is the objective function. The considered optimisation model

considers optimisation of two objectives: makespan minimisation and resource

efficiency balancing. In the standard RCPSP, the makespan of a schedule is

130

estimated by assigning starting time to each of the schedule’s activities using

serial or parallel schedule generation scheme (SGS). Due to the specifics of the

proposed model, the standard variations of the SGS are not applicable here,

hence a new scheme needs to be introduced that will take into account the

varying durations of the activities. The estimation of resource efficiency balancing

will follow the procedure described in Section 3.4.2. The reinterpretation of other

algorithm’s key elements is not necessary and they will remain as follows:

 Solution representation – event list, presented in Section Error!

Reference source not found.

 Lévy flight and local search – event move, described in Section 4.3.1.2

 Generation of new individuals – event crossover, proposed in Section

4.3.1.2

 Similarity estimation – deviation distance, described in Section 4.4.1.1

5.1.2.1 Makespan Estimation

In the standard deterministic RCPSP, the schedule’s makespan is estimated by

converting a solution into a schedule by successively scheduling activities one by

one in the same order as they appear in the solution. Once the schedule is

created, the makespan is equal to the starting time Sn+1 of the last dummy activity

An+1. The conversion of a solution into a schedule is accomplished by applying

SGS. For the traditional RCPSPs, Kolisch (1996) outlined two types of SGS:

serial and parallel.

Serial SGS uses the activity incrimination approach and schedules one activity

at a time as early as possible while satisfying precedence and resource

constraints. This is achieved by producing the list of activities and selecting at

each stage the next activity from the list to schedule it at its first possible starting

time without violating both the precedence and resource constraints.

Instead of iterating over the activity list, parallel SGS iterates over the time

horizon of the project and schedules the eligible activities. The scheme starts at

time point t = 0 and attempts to schedule all activities eligible for scheduling at

this time point. Once this is done, the time pointer is increased. At each decision

point, the eligible activities are scheduled with a starting time equal to the decision

point. Activities that cannot be scheduled due to the resource conflict are skipped

and become eligible to schedule at the next decision point.

131

Due to the properties of these SGSs, the schedules that are generated using

serial SGS are called active schedules, meaning their activities are scheduled as

early as possible and rescheduling them to earlier starting times will violate the

precedence or resource constraints. The schedules that are created by parallel

SGS are called non-delay schedules. Non-delay schedule is a schedule where

no resources were kept idle at a time when it could begin processing an activity.

Kolisch (1996) in his experimental evaluation of both scheduling modes showed

that in the majority of conducted experiments serial SGS produced better results,

mainly due to the inability of parallel SGS to reach an optimal solution in some

cases.

The SGS for the proposed optimisation model is based on the serial SGS,

primarily because of its superiority over parallel SGS. The pseudo-code of the

algorithm used for converting activity sequence A of the EL representation into

the schedule and estimating its makespan Sn+1 is shown in Figure 5.3.

Makespan Estimation Algorithm

checkFeasibility(A)

For all Ai ∈ A do

 Find the earliest possible starting time t

 Calculate duration pi
m for time t

 While(checkSchedulability(Ai, pi, t) == false)

 t = t + 1

 Calculate duration pi
m for new starting time t

 End while

 Set Si = t

 Update resource usage matrix

End for

Figure 5.3 – Makespan estimation algorithm pseudo-code

The makespan estimation process shown in Figure 5.3 begins with checking

the feasibility of the inputted activity sequence. Two conditions are checked here:

the sequence has to start and end with the starting and ending dummy activities,

respectively; activities in the sequence need to be placed after their respective

predecessors. If one of these conditions is not satisfied, the algorithm will not

proceed. Once the feasibility of the sequence is verified, for each subsequent

activity in the given sequence the following is performed:

 Taking into consideration the information about activity Ai predecessors,

estimate its earliest possible starting time t. In this case, it is equal to

132

the latest finishing time of one of its predecessors. At this step the

resource availabilities are not considered

 Calculate new activity duration pi(t) at time t taking into account

resource experience

 Check resource availabilities for a time period [t, t + pi
m]. If scheduling

at this time period is not possible, increment time by 1 and recalculate

new duration for a new time. This step is repeated until the feasible time

is found

 Set starting time Si of activity Ai to t and update resource usage matrix

for subsequent operations

After all activities have been scheduled, the schedule duration is equal to the

starting time of the last dummy activity Sn+1.

The procedure of makespan estimation is applied to each new EL after its

creation.

5.1.2.2 Resource Efficiency Balancing

In order to provide stable and consistent execution of a project, resource

efficiency balance is necessary. If some resources have very high experience

while others are lacking it, then the execution of some activities might be

necessarily prolonged. Moreover, this might also leave some resources idle for

some periods of time.

The majority of traditional RCPSPs only consider makespan minimisation is

their primary and the only one objective. For the proposed optimisation model,

the resource efficiency balancing is combined with the process of best solution

identification which is performed at the end of DSCCS operation. The pseudo-

code of this procedure is shown in Figure 5.4. In the context of given problem,

resource efficiency balancing takes into account the fairness measure which

ensures that all resources are distributed equally and fairly among all activities

and receive similar amount of experience.

Resource Efficiency Balancing Algorithm

Find the smallest f1(x) ∈ Xs; rref = f1(x)

Filter Xs to include only individuals with makespan of rref

For all x ∈ Xs do

 Estimate f2(x)

End for

133

Find the smallest f2(x) ∈ Xs;

Figure 5.4 – Resource efficiency balancing algorithm

The resource efficiency balancing begins with the search of the species seed

from the species seeds set Xs with the lowest makespan. The value of the found

species seed is then used as a reference to filter all other species seeds which

have higher makespan. As was shown by previous researches and experiments

(Czogalla & Fink, 2009; Ikeda & Kobayashi, 2000; Pérez, Posada, & Lorenzana,

2015), RCPSPs have multimodal landscapes which correspond to the existence

of multiple global solutions. Therefore, when species seeds set Xs is filtered to

contain only individuals with the best makespan, it is expected that multiple

individuals will remain. After it is done, for each of the remaining species seeds

the resource efficiency balance is estimated. At the end, the algorithm selects the

individuals with the best balancing.

The procedure outlined in Figure 5.4 is only performed once as the very last

stage of the algorithm’s operation.

5.1.3 Experiment Setup and Parameter Choices

As was shown by previous experiments, the algorithm’s parameters have a

significant impact on its performance, quality of the received solutions,

computational time and the success rate. The DSCCS has four parameters that

can be configured: population size m, abandonment rate pa, a portion of smart

cuckoos pc, max amount of steps s and configurable species distance σs. The

effects of these parameters and their influence on the quality and amount of

received solutions are studied in Section Error! Reference source not found..

For the proposed case study, the performance is going to be examined by

applying different algorithmic settings for all parameters. The values of these

parameters are summarised in Table 5.10, where σs* represents the average

distance between all individuals in the population and is calculated automatically

by the algorithm.

Table 5.10 - DSCCS parameter choices for the case study

Parameter Value

Population size (m) 180

Abandonment rate (pa) 0.7

Portion of smart cuckoos (pc) 0.5

Max amount of steps (s) 4

134

Species distance (σs*) σs*

Stopping criterion [5000, 50000]

Values of the DSCCS parameters for this experiment are going to be set to the

values specified in the table above. These values were obtained through

automatic fine-tuning of the algorithm via application of irace package on

benchmark test instances from experimental setup described in Section 4.1.3.1.

The main reason for using several combinations of parameters for stopping

criterion is to analyse the behaviour of the DSCCS on the presented case study,

see what kind of impact its parameters will have when applied to solve a practical

example, and identify the minimal value sets required to find the optimal solution

for given scenario.

In order to experimentally validate the proposed optimisation model and see

how efficiency and learnability coefficients affect the durations of activities, two

sets of experiments will be carried out: deterministic scheduling, which assumes

that activity durations are constant, and stochastic scheduling in which activity

durations can change depending on the experience of the applied resources and

execution time. Before applying DSCCS to solve the instances of the problem,

10000 randomly-generated schedules are created and their properties are

examined. This step is required so later it would be possible to analyse the

performance of the algorithm and visualise how effective it was in scheduling the

case study. For both experiments, the algorithm is going to be applied 1000 times

to solve the presented case study. The results of these are then averaged and

presented in the subsequent sections.

In order to avoid the impact of randomness, 100 independent runs for each

experiment are carried out and the results of these runs are averaged.

5.1.4 Experimental Analysis

The results presented in this section pertain to the case study presented in

Section 5.1.1. Three criteria for the performance evaluation are considered:

 Makespan of the final solution(s);

 Amount of obtained optimal solutions;

 Computational time.

It is worth mentioning that for the amount of obtained optimal solutions criterion

solutions are accounted if they are considered to be different enough and their

135

makespan is equal to the makespan of the reference solution. In this experiment,

the reference solution is the best solution that was obtained by the algorithm

throughout all experiments. The similarity of the solutions is identified with respect

to the value of species distance parameter σs via application of deviation distance

measure (Reeves, 1999).

5.1.4.1 Deterministic Scheduling

Randomly-generated schedules. Before any assessment of the algorithm’s

performance can begin, first, it is necessary to identify the durations of randomly

generated schedules. This is required as later these durations can be compared

with the results received by the algorithm to evaluate its performance and to see

whether there are any improvements in the schedules obtained by the algorithm

and how effective these improvements are, if any. To identify these values, for

statistical purposes four sets of randomly generated feasible deterministic

schedules are created. The received data is summarised in Table 5.11, where

size denotes the number of random schedules in each set, σs* is the average

distance between every pair of solutions, min. ms. is the minimal makespan,

mean ms. – mean value of the makespan, median ms – median of the makespan,

max. ms. – maximum makespan and st. dev. – standard deviation.

Table 5.11 - Durations of randomly-generated deterministic schedules

Size σs* Min. ms. Mean ms. Median ms. Max. ms. St.dev.

100 2148 134 141.1 140.2 148 44.4

250 2150 133 140.3 139.6 149 43.8

1000 2146 130 139.9 137.9 153 43.5

10000 2151 128 139.8 137.4 155 43.4

As can be observed from Table 5.11, the best schedule that was obtained by

randomly placing activities in the precedence feasible order is the one with the

makespan of 128 weeks. On average, the duration of randomly generated

schedules in all cases varied from 135 to 145 weeks. The worst schedule that

was generated randomly had the makespan of 155 weeks.

Optimised schedules. The results of deterministic scheduling experiments

are summarised in Table 5.12. It is worth mentioning that in the given table the

optimal solution is the one that has the same makespan as referral solution. In

136

the context of this experiment, “optimal solution” is the one with a makespan of

113 weeks.

Table 5.12 - Summary of DSCCS performance results for deterministic scheduling

Parameter Min. Mean Median Max.

Makespan 113 116 115 120

Number of found optimal solutions 0 3 3 5

Computational time (s) 23.9 26.4 25.2 31.3

On average, the proposed case study was relatively easy to solve for the

algorithm, as it managed to find the reference solution with a makespan of 113

weeks in roughly of 75% of the total amount of runs. The worst schedule that was

obtained by the DSCCS during this experiment had a makespan of 120 weeks.

Moreover, in some runs, the algorithm was not able to obtain solution with referral

makespan, hence the number “0” in Table 5.12. The average amount of found

best solutions has not changed and its values are the same as they were in the

previous experiment.

As can be seen in Table 5.12, in some cases the algorithm was not able to

obtain solution with referral makespan. Nevertheless, the number of found

solutions with the makespan of reference solution (if any were found at all) varied

from 1 to 4.

5.1.4.2 Stochastic Scheduling

Randomly-generated schedules. Similarly to what was done in Section 5.1.4.1,

performance evaluation of the algorithm on the proposed optimisation model and

case study in stochastic scheduling mode begins with the generation of randomly-

created feasible schedules. Results of this procedure are summarised in Table

5.13.

Table 5.13 - Durations of randomly-generated stochastic schedules

Size σs* Min. ms. Mean ms. Median ms. Max. ms. St. dev.

100 988 119 127.1 124.8 139 37.2

250 1001 117 126.9 124.3 137 39.9

1000 1009 112 126.5 122.9 140 41.8

137

10000 1015 112 126.5 122.1 146 42.4

Makespan of the randomly-generated schedules in stochastic mode

demonstrate that due to the abilities of the resources to influence the durations

of activities, given they have enough experience, the average makespan of

random schedules in comparison to the deterministic mode has decreased from

~140 to ~127, which is equal to roughly 10%. The shortest makespan of the

randomly-generated schedule is 112 weeks, a 12.5% improvement in

comparison to standard deterministic schedules. This is due to the fact that in

deterministic scheduling experiments learnabilities and efficiencies of resources

are not taken into account, hence durations of activities are always constant.

Optimised schedules. For optimisation in stochastic mode, same parameter

configurations were used as in deterministic mode. The results of these

experiments are summarised in Table 5.14. It is worth mentioning that in the given

table the optimal solution is the one that has the same makespan as referral

solution. In the context of this experiment, “optimal solution” is the one with a

makespan of 97 weeks.

Table 5.14 - Summary of DSCCS performance results for stochastic scheduling

Parameter Min. Mean Median Max.

Makespan 97 103 101 108

Number of found optimal solutions 0 3 3 5

Computational time (s) 43.4 56.9 51.2 69.1

Resource efficiency 0.0658 0.2224 0.284 0.4219

The best-optimised schedules of the case study project in stochastic mode had

the makespan of 97 weeks. In comparison to the best schedules received in

deterministic scheduling mode, the makespan of which was 113 weeks, the total

duration decreased by 15%.

Similarly to deterministic experiment, in some runs, the algorithm was not able

to obtain solution with referral makespan, hence the number “0” in Table 5.14.

The average amount of found best solutions has not changed and its values are

the same as they were in the previous experiment.

Due to the additional operations that algorithm had to make, such as

calculations of new activity durations and resource efficiency balancing, DSCCS

138

computational time has doubled and in some cases even tripled. On average, it

has increased from 26.4s to 56.9s.

The resource efficiency of final solutions in the majority of cases varied in the

range of 0.2 to 0.25. The most well-balanced solution had the total resource

efficiency of 0.0658.

5.1.4.3 Parameters Influence

Lastly, to conclude this case study, this section analyses how the variance of the

DSCCS parameters affects the performance criteria considered in both

deterministic and stochastic scheduling modes.

Effect of the population size. Graphs presented in Figure 5.5, Figure 5.6,

and Figure 5.7 demonstrate the influence of the population size m on the quality

of the obtained solutions, the amount of obtained reference solutions and

computational time, respectively, in deterministic and stochastic modes. The

value of m in the presented results is set in the range of [10, 250]. The values of

other parameters are set to optimal values that were identified by irace package

from Table 5.10.

Figure 5.5 – Effect of m on the solution makespan

139

Figure 5.6 – Effect of m on the amount of obtained results

Figure 5.7 – Effect of m on the total computational time

As can be observed from the above-presented graphs, the population size m

has a direct impact on all performance criteria. Its increase has a positive impact

on the performance and success rate of the algorithm, and negative impact on

total computation time, as with higher population the algorithm has to do more

operations. The minimal value of m, which the DSCCS was able to obtain with

the reference solution (in combination with other parameters), was 125 in

deterministic mode and 150 in stochastic mode.

Effect of the species distance. Graphs presented in Figure 5.8, Figure 5.9,

and Figure 5.10 show the influence of the species distance σs on the quality of

140

obtained solutions, the amount of obtained optimal solutions and computational

time, respectively, in deterministic and stochastic scheduling modes. The values

of σs in the presented graphs are set in the range of [σs*/5, σs*]. The stopping

criterion was set to 50000 objective evaluations, whereas the values of other

parameters coincide with those in Table 5.10.

Figure 5.8 – Effect of σs on the solution makespan

Figure 5.9 – Effect of σs on the amount of obtained results

141

Figure 5.10 – Effect of σs on the total computational time

The effect of σs in this experimental setup coincides with the results of the

DSCCS experimental evaluation conducted in Section Error! Reference source

not found.. The smaller values of σs result in more species formed in the overall

population in which leads to greater chances of finding the reference solution. As

can be noted from Figure 5.8 and Figure 5.9, with smaller σs values, the algorithm

is capable of finding more solutions with the best-known makespan. However, all

of this also results in higher computational overhead, which is confirmed by the

graphs.

Effect of the stopping criterion. Graphs presented in Figure 5.11, Figure

5.12, and Figure 5.13 demonstrate the influence of the stopping criterion on the

quality of obtained solutions, the amount of obtained optimal solutions and

computational time, respectively, in deterministic and stochastic scheduling

modes. The values of stopping criterion in the presented graphs are set in the

range of [1000, 10000]. The values of other parameters coincide with those in

Table 5.10.

142

Figure 5.11 – Effect of stopping criterion on the solution makespan

Figure 5.12 – Effect of stopping criterion on the amount of obtained results

143

Figure 5.13 – Effect of stopping criterion on the total computational time

From the above-presented results, it is easy to see that the effect of stopping

criterion on the performance evaluation criteria is very similar to the one of the

population size m. The higher value of stopping criterion results in the better

quality of received solutions and higher computational overhead.

5.1.4.4 Comparative Analysis

For the comparative analysis two solutions s1 and s2 with reference makespans of

113 and 97 weeks from deterministic and stochastic experimental setups,

respectively, are selected for further analysis and investigation of the change of

activity durations. A complete description of solutions is provided in Figure 5.14

and Figure 5.15, where each figure depicts execution schedule of the respective

solution. Each of the figures is divided into six sections, where each section

corresponds to a particular resource type. Resources are aligned in the same

order as they appear in Table 5.5 (i.e. section 1 of each of the figures corresponds

to R1). In each of the sections, rows represent available resource units and each

block in the row stands for an activity, each colour shade corresponding to a

particular activity. Each of the sections shows the consumption of resource units

by activities over the time scale. The ELs of the selected solutions are presented

in Table 5.15. EL of s1 consists of 41 events, while EL of s2 consists of 36 events.

144

Figure 5.14 – Sample optimal deterministic schedule

145

Figure 5.15 – Sample optimal stochastic schedule

146

Table 5.15 - Event list representations of sample solutions

Event list representation

s1 {[4, 5] [2] [1] [6] [3] [7] [8, 9] [10, 11] [13] [12] [14] [17] [16] [15] [31, 24]

[35] [32, 30] [18] [36, 28] [22] [34] [19, 25] [33, 29] [21] [47, 46] [38, 20]

[27] [23] [45] [26] [40] [43] [41] [42] [48] [49] [44] [50] [37] [51] [39]}

s2 {[4, 5] [2] [1] [6] [3] [7] [8, 9] [10, 13] [14] [12] [11] [17, 16] [15] [24, 31]

[32] [30] [18] [28, 22] [33, 25] [20] [34, 35] [29, 19, 36] [21, 47, 46] [38,

23] [27] [45] [26] [40] [43] [41, 48] [42] [49] [44, 50] [37] [51] [39]}

Both solutions have optimal makespan for their respective scheduling modes

and, as the result, their activity sequences bear many similarities. The first halves

of both schedules (i.e. execution of stage 1 and stage 2 activities), due to the

linearity of these stages, are almost identical and the overall activity sequencing

and resource allocation can be regarded as the same. Moreover, from the

presented examples, it is easy to see that the majority of work that was done by

the algorithm in terms of scheduling was during the sequencing of stage 3 and

stage 4 activities, mainly due to their complex precedence relationships and

variety of possible scheduling combinations. Throughout the execution of the

project, resources were used sparsely, i.e., not each unit was needed during each

time period. Nevertheless, for each of the resource types, there are also periods

of very high activity and intense use.

Lastly, Figure 5.16 displays the decrease of activity durations in percentage

throughout the execution of the project on the example of s2.

Figure 5.16 – Activity durations decrease throughout the project execution

147

From the presented results it can be observed that as the execution of project

goes on, activities that were started at later time periods benefited more than

those that were started earlier. As can be noted from the presented graph, due

to the fact that resources have different efficiency and learnability coefficients,

and imperfect resource efficiency balancing, some of the activities have benefited

more than the others. For example, at time period 11 duration of one of the

activities was shortened by 4%, however, the duration of activity that was started

at later time period 17 remained the same. Towards the end of project’s

execution, activity durations were shortened on average by 20%. The biggest

decrease in the activity duration was by 24%.

5.2 Further Performance Comparison

In order to furtherly assess performance of the DSCCS on the proposed

optimisation model, several among the most popular algorithms in the literature

for the deterministic RCPSP have been implemented. Each of the implemented

algorithms, along with DSCCS, were used to run edited RCPSP benchmark

instances from PSPLIB (Kolisch & Sprecher, 1997). The obtained results are then

compared and analysed.

5.2.1 Algorithms

For the selection of the algorithms for this experiment, the following criteria has

been considered:

 Type of the applied SGS

 Computational performance

 The simplicity of implementation

Due to the specifics of the optimisation model to which these algorithms are

going to be applied, the standard variations of SGS are not applicable for this

scenario. Instead, a variation of the serial SGS is going to be used to produce

schedules with time- and resource-dependant activity durations. For further

description of the applied SGS refer to Section 5.1.2.1. Since the proposed SGS

is a derivative of serial SGS, it is desirable that the algorithm selected for the

comparison would also be based on the serial SGS.

As the result of the selection process, the following algorithms have been

chosen to implement:

 SA, implementation developed by Bouleimen and Lecocq (2003)

148

 GA, version of Hartmann (1998)

 TS, version of Nonobe and Ibaraki (2002)

In the past, these algorithms were demonstrated to be very effective and

competitive in solving the deterministic RCPSP. In the experimental evaluation of

multiple heuristics for the RCPSPs, done by Kolisch and Hartmann (2006), the

above-mentioned algorithms were applied to solve sets of benchmark instances

from PSPLIB. As the result of evaluations, the algorithms ended up being in top

10 among 60 different heuristics. The key characteristics of these algorithms are

summarised in Table 5.16. For more detailed information refer to the original

works.

Table 5.16 - Brief summary of implemented algorithms

Name SGS Solution

representation

Genetic operators

SA Serial with FBI AL Shift move operator

GA Serial AL
Two-point crossover, activity

swap

TS Serial with FBI AL Shift move operator

The application of these algorithms for the proposed optimisation model will

only result in the change of SGS. Other key elements will remain the same.

5.2.2 Experiment Setup and Parameter Choices

To evaluate performance of DSCCS on the proposed optimisation model and

compare its performance against other algorithms, subsets of the standard

benchmark instances from PSPLIB are used. For this experiment, four datasets

are created, where each dataset contains benchmark instances from J30 (total

of 480 instances), J60 (total of 480 instances), J60 (total of 480 instances), and

J120 (total of 600 instances) sets and consists of problem instances with 30, 60,

90, and 120 activities, respectively. Due to the large variety of available problem

instances, in order to fully test algorithms on problems with different structural

parameters, from each of the PSPLIB problem sets event 10th benchmark

instance is selected. Therefore, in total 204 instances are selected: 48 instances

from J30 set, 48 instances from J60 set, 48 instances from J90 set and 60

instances J120 set.

149

Such approach ensures that all combinations of structural parameters are

covered and all aspects of the algorithm performance are tested. To model the

effect of resource learnability and experience, for each of the resource types, the

following is assumed:

 R1: ek = 0.15, lk = 35

 R2: ek = 0.20, lk = 25

 R3: ek = 0.20, lk = 25

 R4: ek = 0.15, lk = 15

The remaining parameters of each of the benchmark instances remain

unchanged.

In the experiments, each algorithm was used to run each of the benchmark

instances 25 times and the results for each instance will be averaged. For this

procedure, the stopping criterion is going to be set to 50000 objective evaluations.

Other parameters of the implemented algorithms are going to be set to the same

values as were used in the original experiments performed by their respective

authors. The DSCCS parameters for this evaluation are going to be set to those

that are in Table 4.17.

For the performance evaluation in this experiment two criteria are considered:

 Deviation from CP

 Computational time

The first criteria, deviation from CP, reflects the difference in the duration of

the obtained schedule from its CP, which is obtained by scheduling all activities

ignoring the resource constraints and is obtained as follows:

%100*
CP

CPresult
dev


 (36)

The second criteria, computational time, reflects the total amount of time that

was required for the algorithm to solve the benchmark instance. In traditional

evaluations of the RCPSP algorithms, the computational time is never taken into

account, primarily because of the different experimental setups and algorithm

implementations. However, since in this experiment all algorithms are going to be

run on the same machine and will follow the same procedure of performance

evaluation, their computational time can be adequately measured.

150

Due to the inability of the implemented algorithms to obtain multiple solutions,

the resource efficiency balancing objective in this procedure is not going to be

optimised.

5.2.3 Comparative Analysis

The experimental results of the algorithm’s performance evaluation are

summarised in Table 5.17, Table 5.18, Table 5.19, and Table 5.20 for J30, J60,

J90, and J120 sets, respectively. The first column denotes the name of the

algorithm, column “Author(s)” shows the name of the original author. Column

“Dev. (%)” shows average deviation of solutions from the critical path (CP).

Column “Comp. time” displays the average computational time required to solve

each of the benchmark instances. All results in the tables are sorted with respect

to the average deviation. In accordance to standard RCPSP performance

evaluation experiments, here as the main performance factor is only considered

deviation from optimal solutions, whereas computational time is left out and

provided strictly as a reference.

Table 5.17 - Experimental evaluation results for J30 dataset

Algorithm Author(s) Dev. (%) Comp. time

DSCCS Bibiks et al. 0.00 29.7

TS Nonobe and Ibaraki (2002) 0.06 21.3

SA Bouleimen and Lecocq (2003) 0.08 17.5

GA Hartmann (1998) 0.09 23.6

Table 5.18 - Experimental evaluation results for J60 dataset

Algorithm Author(s) Dev. (%) Comp. time

DSCCS Bibiks et al. 4.36 63.1

SA Bouleimen and Lecocq (2003) 6.81 38.6

TS Nonobe and Ibaraki (2002) 7.25 41.2

GA Hartmann (1998) 7.49 45.3

Table 5.19 - Experimental evaluation results for J90 dataset

Algorithm Author(s) Dev. (%) Comp. time

DSCCS Bibiks et al. 13.93 95.5

GA Hartmann (1998) 15.85 74.1

TS Nonobe and Ibaraki (2002) 16.01 71.9

SA Bouleimen and Lecocq (2003) 16.13 64.4

151

Table 5.20 - Experimental evaluation results for J120 dataset

Algorithm Author(s) Dev. (%) Comp. time

DSCCS Bibiks et al. 25.14 130.9

GA Hartmann (1998) 29.18 113.3

TS Nonobe and Ibaraki (2002) 30.01 112.9

SA Bouleimen and Lecocq (2003) 32.38 101.2

The above-presented results show that by managing to obtain lowest deviation

from optimal solution in all experiments, DSCCS achieves the highest

performance between all compared algorithms for all datasets. The performances

of other implemented algorithms are in line with the performance evaluations that

were by done by Kolisch and Hartmann [22]. These results demonstrate that the

application of the algorithm to the proposed model does not impact its

performance. It also was worth mentioning that in all experiments DSCCS was

able to obtain from three to six solution candidates, whereas other algorithms,

due to their limitations, could obtain only one solution.

Computational time, however, shows a different picture. Here, DSCCS

demonstrated the worst result, mainly due to the additional computational

overhead that is caused by the species conservation procedure. Among all tested

algorithms, the fastest to solve all benchmark instances was SA. The main reason

for such fast computational speed is the work only with one solution and reduced

amount of operations that it makes at each iteration. The computational time of

TS is close to the one of the SA, primarily because of the fact that both these

methods are trajectory-based. Computational time of GA is somewhere in the

middle between the ones of SA and DSCCS.

5.3 Summary

The work in this chapter focused on the application of the DSCCS on the

optimisation model proposed in Chapter 3 and activity scheduling with varying

resource efficiencies. For this, two sets of experiments are carried out: scheduling

and sequencing of the activities of the real practical project, and execution of the

edited PSPLIB benchmark instances and subsequent comparison of the received

results with the results obtained by other implemented algorithms.

For the first experiment, the HARNet project is selected as the practical

example, which is then used to demonstrate the applicability of the proposed

152

optimisation model for scheduling development projects, and analyse the

behaviour of the DSCCS when applied to the real-world project. HARNet

represents a large-scale aeronautical project which relied on the collaboration of

many partners and consisted of many subprojects (WPs). In this case study, the

DSCCS is applied to schedule the activities of the WP9, mainly due to the

reasons that people who have worked on this sub-project had very little of

relevant experience and as the project went on, their effectiveness improved. The

WP9 consisted of 51 activities and 6 resource types. The resource from 1 to 4

represent a group of researchers, whereas resources 5 and 6 represent

specialised equipment. Because of that, only resources 1-4 can impact the

activity durations. To analyse the difference between deterministic and stochastic

scheduling, and study the resource experience gain and its effect on the activity

durations, the DSCCS is applied to solve two instances of the case study:

deterministic, in which activity durations do not vary, and stochastic, in which the

activity durations depends on the execution time and applied resources. The

reference schedule received in deterministic mode had the makespan of 113

weeks. The reference makespan of stochastic schedule was 97 weeks. Further,

two best schedules (one from the deterministic mode and one from stochastic)

are selected for comparative analysis. The analysis has shown close to the end

of the project’s execution, the duration of the activities has reduced on average

by 20%.

For the second experiment, three among the most popular methodologies for

the deterministic RCPSP are implemented and are applied to solve the PSPLIB

benchmark instances. To correlate the benchmark instances to the proposed

optimisation mode, the instances are modified to include additional parameters

for resource efficiency and learnability. In total 204 instances are selected and

are divided into four datasets. Implemented algorithms, along with the DSCCS,

are applied to solve each of the benchmark instances. To evaluate the

performances of the algorithms, two criteria are considered: average deviation

from CP, and average computational time. As the result of the experimental

evaluation, the DSCCS showed the best level of performance among all

algorithms, however, at the same time, it had the worst computational time,

mainly due to the additional computational overhead that was caused by the

application of the species conservation technique.

153

Chapter 6 Conclusions and Future Work

This chapter of the thesis concludes the work that was done during this PhD

study, summarises the main achievements and accomplishments, and identifies

possible areas for further improvement.

6.1 Conclusions

This PhD work builds on Cuckoo Search (CS) and Flower Pollination Algorithms

(FPA) algorithms and extends them to address challenges in optimising large-

scale project schedule in an uncertain environment, subject to multiple

constraints such as limited resource capacities and strict precedence

relationships between activities. Several novel concepts have been proposed,

implemented and tested during this PhD study.

a) Derivation of Discrete Cuckoo Search (DCS) and Discrete Flower Pollination

Algorithm (DFPA), respectively, to solve RCPSP in discrete domain

DCS and DFPA were derived by adapting CS and FPA to solve discrete

RCPSP rather than RCPSP in the continuous domain, which CS and FPA were

originally developed, through reinterpretation of their key elements: solution

representation scheme, solution improvement operators and Lévy flight. For the

solution representation scheme activity list was chosen, as it is the most common

representation scheme for the RCPSP and a large variety of operators has been

developed. In the review on state-of-the-art heuristics for the RCPSP by Kolisch

and Hartmann (2006) 23 out of 27 algorithms operated on activity list solution

representation scheme. For solution improvement operators, pairwise exchange

and shift operators were selected, as combination of these operators seemed to

work best when integrated into Lévy flight: for smaller Lévy number (i.e. small

step) a number of shift operations was performed on a solution, whereas for big

numbers (i.e. large step) pairwise exchange was executed.

Both algorithms were evaluated in accordance to the standardised tests

defined by Hartmann et al. (2000) by running all benchmark instances of J30, J60

and J120 sets from PSPLIB for 1000, 5000 and 50000 objective evaluations.

Results showed that both algorithms were capable of solving discrete problems

and both showed relatively good performance and managed to outperform some

non-hybrid metaheuristics against which they were compared, such as Tabu

154

Search (TS) and Genetic Algorithm (GA). In particular, DCS appeared in top 1 for

J30, J60, and J120 sets, whereas DFPA was outperformed by TS in J30 tests by

0.01% and by GA in J120 by 0.25%. However, both algorithms suffered from

several drawbacks that affected their performance: reliance on inefficient solution

representation scheme (activity list) and utilisation of random-based solution

improvement operators (pairwise exchange and shift operators). This leads to the

development of the IDCS algorithm.

b) Improved Discrete Cuckoo Search (IDSC) algorithm

The main disadvantage of the activity list solution representation scheme in

DCS and DFPA is the representation of a single schedule by multiple

representation schemes. Because of that, if two activities have identical starting

times, then interchanging their positions will not bring any changes to a solution,

which, in turn, results in wasted operation. To address this issue, IDCS replaced

activity list by event list. The main distinctive feature of event list from other

solution representation scheme is that activities with identical starting times are

grouped into events. In some circumstances, such events can comprise activities

sharing common project characteristics, such as having the same predecessors

and/or successors. Moreover, the introduction of the new solution representation

scheme resulted in smarter and less random operators to be used to their

advantages: event move exploits shared network characteristics of events for

more efficient perturbations, whereas event crossover was used to combine

useful problem-specific information extracted from the parents for generating

high-quality offspring. The performance of IDCS was again evaluated on sets of

benchmark instances from PSPLIB and compared against other algorithms for

the RCPSP. The results showed that IDCS greatly improved the performance of

DCS and DFPA. In addition, IDCS outperformed all other metaheuristics for J120

sets and its performance was among the top five for J30 and J60 sets.

During the validation of IDCS on single benchmark instances, it was found that

IDCS is able to obtain multiple solutions for one problem instance. In fact other

researchers, for example Czogalla and Fink (2009), also pointed out that

RCPSPs exhibit complex multimodal fitness landscapes; hence, for one instance

of the problem, several optimal solutions might exist. Multiple solutions are

beneficial in that they can eliminate premature convergence to local optima and

can sometimes lead to more innovative outcomes, such as more efficient or well-

balanced schedules. Nevertheless, at the time of writing, this property had only

155

been addressed in one publication (Pérez, Posada, & Lorenzana, 2015). As a

result, research effort thereafter was devoted to explore multimodal optimisation

techniques such as the Species Conservation (SC) technique to combine with

IDCS to obtain multimodal solutions for RCPSPs.

c) Development of Discrete Species Conserving Cuckoo Search (DSCCS)

In order to explore the potential of IDCS to obtain multimodal solutions,

techniques for multimodal optimisation were reviewed. Among the different

techniques, SC was chosen for its simplicity and effectiveness as it only relies on

distance metric (Euclidean distance) to estimate the similarity between solutions.

However, due to the specifics of the RCPSP and its discrete search space, SC

could not be directly applied. Therefore, in order to be adapted, the Euclidian

distance metric needed to be replaced with a similarity metric specific for the

RCPSP. Czogalla and Fink (2009) in their analysis of the RCPSP fitness

landscape reviewed various distance measure techniques. The authors

conducted a series of experiments on the sets of benchmark instances from

PSPLIB. As the conclusion of their analysis, the authors noted that algorithms

that operated on the deviation distance measure (Reeves, 1999) tend to produce

better results. Moreover, Chen et al. (2010) and Paraskevopoulos et al. (2012)

used the abovementioned distance measure in their algorithms, which confirms

its applicability and effectiveness. As the conclusion of these analyses, deviation

distance measure was chosen as the main method of similarity measure in

adaptation of SC to the RCPSP.

SC technique was then integrated into IDCS to form DSCCS. In DSCCS the

whole population was divided into smaller subpopulations (i.e. species). Each

subpopulation had devoted region of search space and was centred on the fittest

solution (i.e. dominating individual). Having multiple sub-population ensures that

diversity of population is kept high at all stages and significantly reduces chances

of falling into local optima trap.

Similarly to other developed algorithms, the performance of DSCCS is

assessed on the sets of benchmark instances for RCPSP. In comparison to

IDCS, the performance was slightly degraded for J120 and the algorithm moved

from top 1 to top 5. For J30 and J60 sets its performance stayed on the same

level. The lower performance can be explained by the fact that due to having a

need to maintain several sub-populations in parallel and being restricted by the

amount of objective evaluations that can be performed, the amount of times Lévy

156

flight can be applied to improve one solution has decreased. Nevertheless, such

trade-off in performance is understandable and has been discussed in many

publications (Wolpert & Macready, 1997). However, DSCCS achieved what other

algorithms could not achieve in finding multiple solutions for RCPSPs.

During algorithm testing, depending on the test instance, the number of

candidate solutions varied from 1 to 22, 1 to 60, and 1 to 21 for J30, J60, and

J120 test instances, respectively. The number of solutions primarily depended on

the value of the species distances σs: for smaller value of σs the algorithm was

capable to obtain more solutions and vice versa. It is also worth mentioning that

the DSCCS was able to find multiple optimal (or best-known) solutions in the

majority of all test instances with high success rate.

d) Extension of the RCPSP by introduction of efficiency and learnability factors

to resources

In order to take advantage of the RCPSP multimodal properties, the HARNet

Project Management Problem (HPMP) is proposed. HPMP can be characterised

as a special case of the RCPSP and it represents a model for scheduling large

and complex projects that are new to their execution environment. The main

difference of HPMP from other variants of the RCPSPs is that throughout the

project execution, as the resources are consumed by activities, the resources

gain experience which then can influence the durations of activities. The rate at

which resources acquire experience is defined by their learnability coefficient.

The maximum amount of time by which the duration of the activity can be reduced

is defined by the effectiveness coefficient. To take the advantage of RCPSP’s

multimodal property, for successful completion HPMP considers optimisation of

two objectives: primary – makespan minimisation, and secondary – resource

efficiency balancing. The optimisation of these objectives is achieved as follows:

firstly, the applied algorithm acquires a set of candidate solutions with the shortest

makespan; secondly, out of the acquired set, the algorithm chooses the most

suitable solution with the lowest resource efficiency-balancing coefficient.

Nevertheless, HPMP can also be solved by the methodology developed for

standard RCPSP; however, in this case, only one objective can be optimised at

a time.

A application scenario HPMP was devoted to the planning and management

of the large-scale projects (i.e. software development) where activities were

executed through different resources (i.e. groups of researchers and developers)

157

that have no, or have very little of, relevant experience. In the beginning of the

execution of such projects, there is a high level of uncertainties caused by the

lack of knowledge and expertise. However, as the project goes on, people

practice relevant skills and, as the result, the level of uncertainties vanishes and

the duration of activities reduces.

To assess applicability of the proposed optimisation model in real-life scenario

and further evaluate performance of the DSCCS two case studies are created.

First case study represents a scheduling of the practical project. The considered

project is the real-world project that was undertaken a year ago. It consisted of

51 interrelated activities execution of which required 6 types of resources. Four

of these resources are groups of people, other two types of resources are

specialised equipment. For this case study, two sets of experiments are

conducted, which cover the production of normal deterministic and variable

stochastic schedules. The results of these experiments are then compared and

analysed. For the second case study, several most popular methodologies for the

RCPSP are implemented. Further, the performances of the implemented

methodologies, along with the DSCCS are evaluated on sets of the edited

benchmark instances. The main difference of these benchmarks from their

standard variants is the inclusion of two additional parameters needed for the

proposed optimisation model: learnability and effectiveness coefficients. As the

results of evaluation, the DSCCS has greatly outperformed all other implemented

algorithms, however, its computational time the worst among all. Nevertheless,

these case studies demonstrated the operability and effectiveness of the

proposed optimisation model: showed how the activity durations may decrease

depending on the time of execution and applied resource, and verified the relative

ease of application RCPSP methodologies to it. Moreover, they confirmed the

great performance of the DSCCS, its capability to obtain multiple solutions, and

its applicability in scheduling of real-life projects.

6.2 Future Work

Even though the case studies conducted in Chapter 5 demonstrated the

effectiveness of the proposed optimisation model and great performance of the

DSCCS, there are still areas for the possible improvements.

158

6.2.1 Performance Improvement

By managing to outperform the majority of state-of-the-art heuristics in

benchmark tests, IDCS and DSCCS showed competitive level of performance.

Nevertheless, despite this, there still were several methodologies with better

performance results, which shows that there is still some room for improvement

left.

6.2.2 Optimisation of Additional Objectives

Traditional RCPSPs consider optimisation of only one objective: makespan

minimisation. The optimisation model proposed in this thesis introduces

optimisation of the second objective: resource efficiency balancing. However, in

the real-world project, sometimes optimisation of these two objectives is not as

vital as the minimisation of the overall cost of the project. In order to introduce the

objective of cost minimisation to the problem, several conditions need to be

introduced:

 With the execution of each of the activities needs to be associated new

parameter that will specify the cost of execution of this activity at certain

period of time;

 The durations of activities need to follow new probability distribution

which can randomly reduce or increase their durations;

 Generation of a baseline deterministic schedule, which will be used as

the reference for establishing the planned costs of the project.

6.2.3 DSCCS Adaptability to the Problem-Specific Setting

A possible area of improvement for the DSCCS include automatic identification

of the key parameters. As the computational experiments have shown, the

species distance and population size parameters have very significant impact on

the performance of the algorithm and the amount of obtained global optima. The

solution search space varies from problem to problem; hence, the optimal values

for key parameters will vary as well. To provide the optimal performance, the

algorithm has to be able to adapt to the problem at hand and automatically

estimate the optimal values for the parameters.

6.2.4 Application of the DSCCS to Other Combinatorial Problems

When applied to solve the RCPSP, DSCCS showed competitive level of

performance results as it managed to outperform the majority of the compared to

159

state-of-the-art methodologies and obtain multiple global solutions for each of the

problem instances. However, RCPSP is just one of the combinatorial optimisation

problems with multimodal fitness landscape. Examples of other problems include

JSSP and TSP, among all. The application of the DSCCS to these problems will

primarily consist of the reinterpretation of its key elements: solution

representation scheme, genetic operators, and objective function.

160

References

Aarts, E. H., & Lenstra, J. K. (1997). Local Search in Combinatorial

Optimization. Chichester, UK: Wiley.

Abbass, H. A., Bender, A., Dam, H. H., Baker, S., Whitacre, J. M., & Sarker,

R. A. (2008). Computational scenario-based capability planning.

Proceedings of the 10th annual conference on Genetic and

evolutionary computation (pp. 1437-1444). Atlanta, GA, USA: ACM.

Abdelmaguid, T. F. (2015). A neighborhood search function for flexible job

shop scheduling with separable sequence-dependent setup times.

Applied Mathematics and Computation, 260(1), 188–203.

Agarwal, A., Colak, S., & Erenguc, S. (2011). A neurogenetic approach for the

resource-constrained project scheduling problem. Computers and

Operations Research, 38, 44-50.

Alami, J., Benameur, L., & Imrani, A. A. (2009). A fuzzy clustering based PSO

for multimodal optimization. International Journal of Computational

Intelligence Research, 167, 96–107.

Alami, J., Imrani, A. A., & Bouroumi, A. (2007). multipopulation cultural

algorithm using fuzzy clustering. Applied Soft Computing, 7(2), 506–

519.

Alcaraz, J., & Maroto, C. (2001). A Robust Genetic Algorithm for Resource

Allocation in Project Scheduling. Annals of Operations Research,

102(1), 83-109.

Alvarez-Valdes, R., Crespo, E., Tamarit, J., & Villa, F. (2008). GRASP and

path relinking for project scheduling under partially renewable

resources. European Journal of Operational Research, 189(3), 1153–

1170.

Ando, S., Sakuma, J., & Kobayashi, S. (2005). Adaptive isolation model using

data clustering for multimodal function optimisation. Proceedings of the

7th annual conference on Genetic and evolutionary computation (pp.

1417-1424). Washington, DC: ACM.

Ando, S., Suzuki, E., & Kobayashi, S. (2005). Sample based crowding method

for multimodal optimization in continuous domain. The 2005 IEEE

161

Congress on Evolutionary Computation. Edinburgh, Scotland, UK:

IEEE.

Angus, D. (2009). Niching for ant colony optimisation. In Biologically-Inspired

Optimization Methods (pp. 165-188). Berlin: Springer.

Artigues, C., Michelon, P., & Reusser, S. (2003). Insertion techniques for static

and dynamic resource-constrained project scheduling. European

Journal of Operational Research, 149, 249-267.

Ashtiani, B., Leus, R., & Aryanezhad, M.-B. (2011). New competitive results

for the stochastic resource-constrained project scheduling problem:

Exploring the benefits of pre-processing. Journal of Scheduling, 14(2),

157-171.

Back, T., Fogel, D. B., & Michalewicz, Z. (1997). Handbook of Evolutionary

Computation. Bristol, UK: IOP Publishing Ltd.

Ballestin, F. (2007). When it is worthwhile to work with the stochastic RCPSP.

Journal of Scheduling, 10, 153-166.

Ballestin, F., & Leus, R. (2009). Resource-constrained project scheduling for

timely project completion with stochastic activity durations. Production

and Operations Management, 18(4), 459-474.

Bar-Yam, Y. (1997). Dynamics of Complex Systems. Cambridge, MA, USA:

Addison-Wesley.

Battitti, R., & Protasi, M. (1997). Reactive Search, A history-base heuristic for

MAX-SAT. Journal of Experts Algorithms, 2, 2-28.

Bean, J. C., Birge, J. R., Mittenthal, J., & Noon, C. E. (1991). Match-up

scheduling with multiple resources, release dates and disruptions.

Operations Research, 39(3), 470–483.

Beasley, D., Bull, D., & Martin, R. (1993). A sequential niche technique for

multimodal function optimization. Evolutionary Computation, 1(2), 101-

125.

Berthaut, F., Pellerin, R., Hajji, A., & Perrier, N. (2014). A Path Relinking-

Based Scatter Search for the Resource-Constrained Project

Scheduling Problem. Octobre: Interuniversity Research Centre on

Enterprise Networks, Logistics and Transportation.

Bertsekas, D. (2007). Dynamic programming and optimal control. Athena

Scientific.

162

Besten, M. L., Stutzle, T., & Dorigo, M. (2001). Design of iterated local search

algorithms: An example application to the single machine total weighted

tardiness problem. In Lecture Notes in Computer Science (pp. 441–

452). Berlin: Springer.

Binato, S., Hery, W. J., Loewenstern, D., & Resende, M. G. (2000). A greedy

randomized adaptive search procedure for job shop scheduling. In C.

C. Ribeiro, & P. Hansen, Essays and Surveys on Metaheuristics (pp.

59-79). Kluwer Academic Publishers.

Birattari, M., Yuan, Z., Balaprakash, P., & Stützle, T. (2010). F-race and

iterated F-race: An overview. In M. C. T. Bartz-Beielstein, Experimental

Methods for the Analysis of Optimization Algorithms (pp. 311–336).

Berlin, Germany: Springer,.

Blazewicz, J., Lenstra, J., & Kan, A. (1983). Scheduling subject to resource

constraints: classification and complexity. Discrete Applied

Mathematics, 5(1), 11–24.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys, 35(3),

268-308 .

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys, 35(3),

268-308.

Bluma, C., Puchingerb, J., Raidlc, G. R., & Roli, A. (2011). Hybrid

metaheuristics in combinatorial optimization: A survey. Applied Soft

Computing, 11, 4135–4151.

Boctor, F. F. (1996). Resource-constrained project scheduling by simulated

annealing. Internation Journal of Production Research, 34(8), 2335-

2351.

Boese, K. D. (1995). Cost Versus Distance in the Traveling Salesman

Problem. UCLA CS Department: Technical Report TR-950018.

Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing

algorithm for the resource-constrained project scheduling problem and

its multiple mode version. European Journal of Operational Research,

149(1), 268–281.

163

Brucker, P., Knust, S., Schoo, A., & Thiele, O. (1998). A branch and bound

algorithm for the resource-constrained project scheduling problem.

European Journal of Operational Research, 107(2), 272–288.

Bui, L. T., Michalewicz, Z., Parkinson, E., & Abello, M. B. (2012). Adaptation

in dynamic environments: A case study in mission planning. IEEE

Transactions on Evolutionary Computation, 16, 190-209.

Calhoun, K., Deckro, R., Moore, J., Chrissis, J., & Van Hove, J. (2002).

Planning and re-planning in project and production planning. Omega,

30, 155-170.

Campos, V., Glover, F., Laguna, M., & Marti, R. (2001). An experimental

evaluation of a scatter search for the linear ordering problem. Journal

of Global Optimisation, 21, 397-414.

Caro, D. D., & Dorigo, M. (1998). AntNet: Distributed stigmergetic control for

communication networks. Journal of Artificial Intelligence Research, 9,

317-365.

Cavicchio, D. (1970). Adapting search using simulated evolution. Ann Arbor,

MI: Ph.D. Dissertation, Univ. Michigan.

Chardaire, P., Lutton, J. L., & Sutter, A. (1995). Thermostatistical persistency:

A powerful improving concept for simulated annealing algorithms.

European Journal of Operational Research, 86, 565–579.

Chen, R. M., Wub, C. L., & Lo, S. T. (2010). Using novel particle swarm

optimization scheme to solve resource-constrained scheduling problem

in PSPLIB. Expert Systems with Applications, 37, 1899-1910.

Chen, W., Shi, Y.-j., Teng, H.-f., & Lan, X.-p. (2010). An efficient hybrid

algorithm for resource-constrained project scheduling. Information

Sciences, 180(6), 1031–1039.

Chetty, S., & Adewumi, A. O. (2013). Comparison Study of Swarm Intelligence

Techniques for the Annual Crop Planning Problem. IEEE Transactions

on Evolutionary Computation, 18(2), 258 - 268.

Cho, S. H., & Eppinger, S. D. (2005). A simulation-based process model for

managing complex design projects. IEEE Transactions on Engineering

Management, 52, 316-328.

Choi, J., Realff, M. J., & Lee, J. H. (2004). Dynamic programming in a

heuristically confined state space: A stochastic resource-constrained

164

project scheduling application. Computers and Chemicals Engineering,

28, 1039–1058.

Cioppa, A. D., Stefano, C. D., & Marcelli, A. (2007). Where Are the Niches?

Dynamic Fitness Sharing. IEEE Transactions on Evolutionary

Computation, 11(4), 453 - 465.

Coelho, J., & Tavares, L. (2003). Comparative analysis of metaheuricstics for

the resource-constrained project scheduling problem. Instituto Superior

Tecnico, Portugal: Technical report, Department of Civil Engineering.

Connolly, T. D. (1990). An improved annealing scheme for the QAP. European

Journal of Operational Research, 46, 93-100.

Czogalla, J., & Fink, A. (2009). Fitness Landscape Analysis for the Resource

Constrained Project Scheduling Problem. In Learning and Intelligent

Optimization (pp. 104-118). Berlin: Springer Berlin Heidelberg.

Czyzak, P., & Jaskievicz, A. (1996). Metaheuristic technique for solving

multiobjective investment planning problem. Controls and Cybernetics,

25, 177–187.

Davenport, A. J., & Beck, J. C. (2001). A survey of techniques for scheduling

with uncertainty. Unpublished Manuscript, University of Toronto.

Retrieved July 2017, from http://tidel.mie.utoronto.ca/publications.php

Davenport, A., Gefflot, C., & Beck, J. (2001). Slack-based techniques for

robust schedules. Seventh International Conference on Principles and

Practice of Constraint Programming, (pp. 91-105). Paphos, Cyprus.

Deb, K., & Goldberg, D. E. (1989). An investigation of niche and species

formation in genetic function optimization. Proceedings of the Third

International Conference on Genetic Algorithms (pp. 42-50). San

Mateo, CA: Morgan Kaufmann Publishers Inc.

Debels, D., & Vanhoucke, M. (2005). A Decomposition-Based Genetic

Algorithm for the Resource-Constrained Project-Scheduling Problem.

Operations Research, 55(3), 457 - 469.

Debels, D., De Reyck, B., Leus, R., & Vanhoucke, M. (2006). A hybrid scatter

search/electromagnetism meta-heuristic for project scheduling.

European Journal of Operational Research, 169(2), 638 - 653.

Della Croce, F. (1995). Generalized pairwise interchanges and machine

scheduling. European Journal of Operational Research, 83, 310-319.

165

Dell'Amico, M., Lodi, A., & Maffioli, F. (1999). Solution of the cumulative

assignment problem with a well-structured tabu search method. Journal

of Heuristics, 5, 123–143.

Demeulemeester, E., & Herroelen, W. (2002). Project Scheduling - A

Research Handbook. Boston: Kluwer Academic Publishers.

Demeulemeester, E., & Herroelen, W. (2011). Robust Project Scheduling.

Foundations and Trends® in Technology, Information and Operations

Management, 3(3-4), 201-376.

Dick, G. (2010). Automatic identification of the niche radius using spatially-

structured clearing methods. IEEE Congress on Evolutionary

Computation, 18-23 July 2010. Barcelona, Spain: IEEE.

doi:10.1109/CEC.2010.5586085

Dodin, B. (1984). Determining the K most critical paths in PERT networks.

Operations Research, 32(4), 859-877.

Dodin, B. (2006). A practical and accurate alternative to PERT. Perspective in

modern project scheduling, 46, 3-24.

Dong, H., He, J., Huang, H.-K., & Hou, W. (2005). A Mixed Mutation Strategy

Evolutionary Programming Combined with Species Conservation

Technique. Lecture Notes in Computer Science, 3789, 593-602.

Dorigo, M., & Stutzle, T. (2003). The ant colony optimisation metaheuristics:

Algorithms, applications, and advances. In F. W. Glover, & G. A.

Kochenberger, Handbook of Metaheuristics (pp. 251-285). Norwell,

MA: Springer US.

Dorigo, M., Caro, G. D., & Gambardella, L. M. (1999). Ant algorithms for

discrete optimization. Artistic Life, 5(2), 137–172.

Dorn, J., Kerr, R., & Thalhammer, G. (1995). Reactive scheduling: improving

robustness of schedules and restricting the effects of shop floor

disturbances by fuzzy reasoning. International Journal of Human–

Computer Studies, 42, 687–704.

Dorndorf, U. (2002). Project Scheduling with Time Windows – From Theory to

Applications. Berlin: Physica-Verlag.

Dréo, J., Pétrowski, A., Siarry, P., & Taillard, E. (2006). Metaheuristics for Hard

Optimization. Berlin: Springer-Verlag Berlin Heidelberg.

166

Drezet, L. E., & Billaut, J. C. (2008). A project scheduling problem with labour

constraints and time-dependent activities requirements. International

Journal of Production Economics, 112, 217 - 225.

Eiben, A. E., & Smith, J. E. (2003). Multimodal problems and spatial

distribution. In A. E. Eiben, & J. E. Smith, Introduction to Evolutionary

Computing (pp. 155-181). Berlin, Germany: Springer-Verlag Berlin

Heidelberg.

El Sakkout, H., & Wallace, M. (2000). Probe backtrack search for minimal

perturbation in dynamic scheduling. Constraints, 5(4), 359–388.

Elazim, S. A., & Ali, E. (2016). Optimal Power System Stabilizers design via

Cuckoo Search algorithm. International Journal of Electrical Power &

Energy Systems, 75(2), 99–107.

Elmaghraby, S. E., Ferreira, A. A., & Tavares, L. (2000). Optimal start times

under stochastic activity durations. International Journal of Production

Economics, 64(1), 153-164.

Escudero, L. F., Kamesam, P. V., King, A. J., & Wets, R. (1993). Production

planning via scenarion modelling. Annals of Operations Research, 43,

311-335.

Fayek, M. B., Darwish, N. M., & Ali, M. M. (2010). Context based clearing

procedure: A niching method for genetic algorithms. Journal of

Advanced Research, 1, 301–307.

Feller, W. (1968). An Introduction to Probability Theory and Its Applications.

New-York: Wiley,.

Feo, T. A., & Resende, M. G. (1995). Greedy randomised adaptive search

procedures. Journal of Global Optimisation, 6, 109-133.

Festa, P., & Resende, M. G. (2002). GRASP: An annotated bibliography. In C.

C. Ribeiro, & H. P., Essays and Survey on Metaheuristics (pp. 325–

367). Bouston, MI: Springer US.

Fleszar, K., & Hindi, K. (2004). Solving the resource-constrained project

scheduling problem by a variable neighborhood search. European

Journal of Operational Research, 155, 402-413.

Fleszar, K., Osman, H. I., & Hindi, K. S. (2009). A variable neighbourhood

search algorithm for the open vehicle routing problem. European

Journal of Operational Research, 195(3), 803–809.

167

Fonseca, G. H., & Santos, H. G. (2014). Variable Neighborhood Search based

algorithms for high school timetabling. Computers & Operations

Research, 52, 203–208.

Gambardella, L. M., & Dorigo, M. (2000). Ant colony systems hybridized with

a new local search for the sequential ordering problems. Journal of

Computing, 12(3), 2027-2032.

Gan, J., & Warwick, K. (2001). Dynamic Niche Clustering: a fuzzy variable

radius niching technique for multimodal optimisation in GAs.

Proceedings of the 2001 Congress on Evolutionary Computation.

Seoul, South Korea: IEEE.

Gao, H. (1995). Building robust schedules using temporal protection – an

empirical study of constraint based scheduling under machine failure

uncertainty. Master’s Thesis: Department of Industrial Engineering,

University of Toronto.

Gendreau, M., Laporte, G., & Potvin, J.-Y. (2001). Metaheuristics for the

vehicle routing problem. SIAM Series on Discrete Mathematics and

Applications, 9, 129-154.

Ghosh, S. (1996). Enhancing Real-Time Schedules to Tolerate Transient

Faults. University of Pittsburgh : Ph.D. thesis.

Glover, F. (1977). Heuristics for integer programming using surrogate

constraints. Decimal Science, 8, 156-166.

Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers and Operations Research, 13, 533-549.

Glover, F., & Kochenberger, G. (2005). Handbook on meteheuristics.

Springer.

Glover, F., Laguna, M., & Marti, R. (2000). Fundamentals of scatter search

and path relinking. Control, 29(3), 653-684.

Goldberg, D. E. (1987). Genetic Algorithms in Search, Optimization, and

Machine Learning. New-York: Addison-Wesley.

Goldberg, D. E., & Richardson, J. (1987). Genetic algorithms with sharing for

multimodal function optimisation. Proceedings of the Second

International Conference on Genetic Algorithms on Genetic algorithms

and their application (pp. 41-49). Cambridge, Massachusetts, USA : L.

Erlbaum Associates Inc.

168

Goldberg, D. E., & Wang, L. (1998). Adaptive niching via coevolutionary

sharing. In D. Quagliarella, Genetic Algorithms and Evolution Strategies

in Engineering and Computer Science (pp. 21-38). New-York: John

Wiley and Sons.

Golenko-Ginzburg, D., & Gonik, A. (1997). Stochastic network project

scheduling with non-consumable limited resources. International

Journal of Production Economics, 48, 29-37.

Graham, R. L. (1966). Bounds on multiprocessing timing anomalies. Bell

System Technical Journal, 45, 1563–1581.

Greenwood, P. E., & Nikulin, M. S. (1996). A Guide to Chi-Squared Testing.

New York: Wiley.

Grefenstette, J., Gopal, R., Rosmaita, B., & Gucht, D. (1985). Genetic

Algorithms for the Traveling Salesman Problem. Proceedings of the 1st

International Conference on Genetic Algorithms (pp. 160-168).

Hillsdale, NJ: L. Erlbaum Associates Inc.

Haitao, L., & Womer, N. K. (2015). Solving stochastic resource-constrained

project scheduling problems by closed-loop approximate dynamic

programming. European Journal of Operational Research, 246, 20-33.

Hansen, P., & Mladenovic, N. (1999). An introduction to variable neighborhood

search. In Metaheuristics: Advances and trends in local search

paradigms for optimization (pp. 433–458). Kluwer Academic

Publishers.

Hapke, M., & Slowinski, R. (1996). Fuzzy priority heuristics for project

scheduling. Fuzzy Sets and Systems, 83, 291-299.

Harik, G. R. (1997). Finding multi-modal solutions using restricted tournament

selection. Proceedings of the Sixth International Conference on Genetic

Algorithms (pp. 24-31). San Francisco, CA: Morgan Kaufmann

Publishers Inc.

Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained

project scheduling. Naval Research Logistics , 45(7), 733–750.

Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling

under resource constraints. Naval Research Logistics , 49(5), 433–448.

169

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of

the resource-constrained project scheduling problem. European

Journal of Operational Research, 207, 1–14.

Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of state-of-the-art

heuristics for the resource-constrained project scheduling. European

Journal of Operational Research, 127(2), 394–407.

Herroelen, W. (2006). Project scheduling–theory and practice. Production and

Operations Management, 14(4), 413–432.

Herroelen, W., & Leus, R. (2004). The construction of stable project baseline

schedules. European Journal of Operational Research, 156, 550–565.

Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty:

Survey and research potentials. European Journal of Operational

Research, 165, 289-306.

Hindi, K. S., Yang, H., & Fleszar, K. (2002). An evolutionary algorithm for

resource-constrained project scheduling. IEEE Transactions on

Evolutionary Computation, 6, 512-518.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Michigan:

MIT Press.

Holland, J. H. (1975). Interim and prospectus. In Adaptation in Natural and

Artificial Systems (pp. 171–180). Ann Arbor, MI: Univ. of Michigan

Press.

Horn, J. (2002). Resource-Based Fitness Sharing. In Volume 2439 of the

series Lecture Notes in Computer Science (pp. 381-390). Berlin :

Springer Berlin Heidelberg.

Husbands, P., Jermy, G., McIlhagga, M., & Ives, R. (1996). Two applications

of genetic algorithms to component design. AISB workshop on

evolutionary computing, (pp. 50-61). Chicago, CH.

Igelmund, G., & Radermacher, F. J. (1983). Preselective strategies for the

optimization of stochastic project networks under resource constraints.

Networks, 13, 1-28.

Ikeda, K., & Kobayashi, S. (2000). GA Based on the UV-Structure Hypothesis

and Its Application to JSP. In Parallel Problem Solving from Nature

PPSN VI (pp. 273-282). Berlin: Springer Berlin Heidelberg.

170

Iwamatsu, M. (2006). Multi-species particle swarm optimizer for multimodal

function optimization. IEICE Transactions on Information and Systems,

E89D(3), 1181–1188.

Jelasity, M., Ortigosa, P. M., & García, I. (2001). UEGO, an Abstract Clustering

Technique for Multimodal Global Optimization. Journal of Heuristics,

7(3), 215-233.

Jones, T. (1995). Evolutionary Algorithms, Fitness Landscapes and Search.

Albuquerque, New Mexico: PhD thesis, University of New Mexico,.

Jong, K. D. (1975). An analysis of the behavior of a class of genetic adaptive

systems. Ann Arbor, MI: Ph.D. Dissertation, Univ. Michigan.

Jozefowksa, J., Mika, M., Rozycki, R., Waligora, G., & Weglarz, J. (2001).

Simulated Annealing for Multi-Mode Resource-Constrained Project

Scheduling. Annals of Operations Research, 102, 137–155.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings

of IEEE International Conference on Neural Networks (pp. 1942-1948).

Piscataway, NJ: IEEE.

Kilby, P., Prosser, P., & Shaw, P. (1999). Guided Local Search for the Vehicle

Routing Problem with time windows. In Meta-heuristics: Advances and

trends in local search paradigms for optimization (pp. 473–486). Berlin:

Eds. Kluwer Academic.

Kirkpatrick, S., Gelatt, C., & Vecchi, M. P. (1983). Optimisation by simulated

annealing. Science, 13, 671-680.

Klein, R. (2000). Project scheduling with time-varying resource constraints.

International Journal of Production Research, 38(16), 3937–3952.

Klein, R. (2001). Scheduling of resource-constrained projects. Kluwer

Academic Publishers.

Kochetov, Y. A., & S. (2011). Iterative local search methods for the talent

scheduling problem. Proceedings of 1st international symposium and

10th Balkan conference on operational research, September 22, (pp.

282-288). Thessaloniki, Greece .

Kochetov, Y. A., & Stolyar, A. A. (2003). Evolutionary local search with variable

neighborhood for the resource constrained project scheduling problem.

Proceedings of the 3rd International Workshop of Computer Science

and Information Technologies. Novosibirks, Russia.

171

Kolisch, R. (1996). Serial and parallel resource-constrained project

scheduling: theory and computation. European Journal of Operational

Research, 90(2), 320–333.

Kolisch, R., & Hartmann, S. (1999). Heuristic Algorithms for the Resource-

Constrained Project Scheduling Problem: Classification and

Computational Analysis. In Project Scheduling: Recent models,

algorithms and applications (pp. 147-178). Berlin: Kluwer.

Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for

resource-constrained project scheduling: An update. European Journal

of Operational Research, 174(1), 23–37.

Kolisch, R., & Padman, R. (2001). An integrated survey of deterministic project

scheduling. Omega, 29, 249-272.

Kolisch, R., & Sprecher, A. (1997). PSPLIB - A project scheduling problem

library. European Journal of Operational Research, 96(1), 205–216.

Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and generation

of a general class of resource-constrained project scheduling problems.

Management Science, 41(10), 1693-1703 .

Kratica, J., Tosic, D., Filipovic, V., & Dugosija, D. (2011). A new genetic

representation for quadratic assignment problem. Yugoslav Journal of

Operations Research, 21(2), 225-238.

Kundu, S., Biswas, S., Das, S., & Suganthan, P. N. (2013). Crowding-based

local Differential Evolution with Speciation-based Memory Archive for

Dynamic Multimodal Optimization. Proceedings of the 15th annual

conference on Genetic and evolutionary computation (pp. 33-40). New

York, NY: ACM.

Laarhoven, P. J., Aarts, E. H., & Lenstra, J. K. (1992). Job Shop Scheduling

by Simulated Annealing. Operations Research, 40, 113-125.

Laguna, M., Lourenco, H., & Marti, R. (2000). Assigning proctors to exams

with Scatter Search. In Computing Tools for Modeling, Optimization and

Simulation: Interfaces in Computer Science and Operations Research

(pp. 215–227). Boston: Eds. Kluwer Academic Publishers, MA.

Lamas, P., & Demeulemeester, E. (2015). A purely proactive scheduling

procedure for the resource-constrained project scheduling problem with

stochastic activity durations. Journal of Scheduling, 193, 1-20.

172

Lawrence, S. R. (1984). Resource-Constrained Project Scheduling: an

experimental investigation of heuristic scheduling techniques. Graduate

School of Industrial Administration. Pittsburgh, PA, USA: Carnegie-

Mellon University.

Leccardi, M. (2005). Comparison of three algorithms for Lèvy Noise

Generation. Proceedings of fifth EUROMECH nonlinear dynamics

conference (pp. 5-11). Eindhoven.

Leeuwen, J. v. (1998). Handbook of Theoretical Computer Science. In Vol. A,

Algorithms and complexity. Amsterdam: Elsevier.

Li, C.-S., Priemer, R., & Cheng, K.-H. (2004). Optimization by random search

with jumps. International Journal for Numerical Methods in Engineering,

60(7), 1301-1315.

Li, J., & Wood, A. (2009). Random search with species conservation for

multimodal functions. IEEE Congress on Evolutionary Computation.

Trondheim, Norway: IEEE. doi:10.1109/CEC.2009.4983344

Li, J.-P., Balazs, M. E., & Parks, G. T. (2002). A species conserving genetic

algorithm for multimodal function optimization. Evolutionary

Computation, 10(3), 207-234.

Li, X.-D. (2004). Adaptively Choosing Neighbourhood Bests using Species in

a Particle Swarm Optimizer for Multimodal Function Optimisation.

Lecture Notes in Computer Science, 3102, 105–116.

Linyi, D., & Lin, Y. (2007). A Particle Swarm Optimization for Resource-

Constrained Multi-Project Scheduling Problem. International

Conference on Computational Intelligence and Security (pp. 1010-

1014). Harbin, China: IEEE.

Lourenco, H. R., Martin, O., & Stutzle, T. (2001). A beginner’s introduction to

Iterated Local Search. Proceeding of the 4th Metaheuristics

International Conference, (pp. 1-11). Porto, Portugal.

Luo, S., Wang, C., & Wang, J. (2003). Ant colony optimization for resource-

constrained project scheduling with generalized precedence relations.

International Conference on Tools with Artificial Intelligence.

Sacramento, CA, USA: IEEE. doi:10.1109/TAI.2003.1250202

173

MacQueen, J. B. (1967). Some Methods for classification and Analysis of

Multivariate Observations. University of California Press. University of

California.

Mahdi-Mobini, M. D., Rabbani, M., Amalnik, M. S., Razmi, J., & Rahimi-Vahed,

A. R. (2009). Using an enhanced scatter search algorithm for a

resource-constrained project scheduling problem. Soft Computing,

13(6), 597-610.

Mahfoud, S. W. (1992). Crowding and preselection revisited. Parallel Problem

Solving from Nature, 2, pp. 27-37.

Mahfoud, S. W. (1995). A Comparison of Parallel and Sequential Niching

Methods. Proceedings of the 6th International Conference on Genetic

Algorithms (pp. 136-143). San Francisco, CA: Morgan Kaufmann

Publishers Inc,.

Malcolm, D. G., Roseboom, J. H., Clark, C. E., & Fazar, W. (1959).

Applications of a technique for research and development program

evaluation. OperationsResearch, 7(5), 646-669.

Mantegna, R. N. (1994). Fast, accurate algorithm for numerical simulation of

Levy stable stochastic processes. Physical Review E, 49, 4677-4683.

Marti, R., Laguna, M., & Campos, V. (2005). Scatter search vs. genetic

algorithms. An experimental evaluation with permutation problems. In

Metaheuristic Optimization Via Memory and Evolution. Operations

Research/Computer Science Interfaces Series. (pp. 263–282). Boston,

MA: Kluwer Academic Publishers.

Martin, O., Otto, S., & Felten, E. W. (1991). Large-step Markov chains for the

traveling salesman problem. Complex Systems, 5(3), 299-326.

Martinez, L., & Soares, S. (2002). Comparison between closed-loop and

partial open-loop feedback control policies in long term hydrothermal

scheduling. IEEE Transactions on Power Systems, 17(2), 330 - 336.

Mehta, S., & Uzsoy, R. (1998). Predictable Scheduling of a Job Shop Subject

to Breakdowns. IEEE Transactions on Robotics and Automation, 14(3),

365-378.

Mendes, J. J., Gonçalves, J. F., & Resende, M. G. (2009). A random key based

genetic algorithm for the resource constrained project scheduling

problem. Computers and Operations Research, 36(1), 92-109.

174

Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for

resource-constrained project scheduling. IEEE Transactions on

Evolutionary Computation, 6(4), 333-346.

Mills, P., & Tsang, E. (2000). Guided local search for solving SAT and

weighted MAX-SAT Problems. Journal of Automated Reasoning, 24(1),

205–223.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., & Bianco, L. (1998). An Exact

Algorithm for the Resource Constrained Project Scheduling Problem

Based on a New Mathematical Formulation. Management Science,

44(5), 714-729 .

Mohring, R. H., & Stork, F. (2000). Linear preselective policies for stochastic

project scheduling. Mathematical Methods of Operations Research,

52(3), 501–515.

Mohring, R. H., Radermacher, F., & Weiss, G. (1984). Stochastic scheduling

problems I – General strategies. Operations Research, 28, 65-104.

Mori, M., & Tseng, C. C. (1997). A genetic algorithm for multi-mode resource

constrained project scheduling problem. European Journal of

Operational Research, 100(1), 134–141.

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and

martial arts: towards memetic algorithms. Report 826: CalTech

Concurrent Computation Program, Tech. Rep.

Moumene, K., & Ferland, J. A. (2008). New representation to reduce the

search space for the resource-constrained project scheduling problem.

RAIRO - Operations Research, 42(2), 215-228.

Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project Scheduling with

Time Windows and Scarce Resources. Berlin: Springer-Verlag.

Nguyen, T. T., Truong, A. V., & Phung, T. A. (2016). A novel method based on

adaptive cuckoo search for optimal network reconfiguration and

distributed generation allocation in distribution network. International

Journal of Electrical Power & Energy Systems, 78(6), 801–815.

Nikulin, Y., & Drexl, A. (2010). Theoretical aspects of multicriteria flight gate

scheduling: deterministic and fuzzy models. Journal of Scheduling, 13,

261-281.

175

Nonobe, K., & Ibaraki, T. (2002). Formulation and tabu search algorithm for

the resource constrained project scheduling problem. In C. C. Hansen,

Essays and surveys in metaheuristics (pp. 557–588). Springer US.

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job-

shop problem. Management Science, 42(2), 797-813.

Olagu´ibel, R. A.-V., & Goerlich, J. M. (1993). The project scheduling

polyhedron: Dimension, facets, and lifting theorems. European Journal

of Operational Research, 67, 204–220.

Ouaarab, A., Ahiod, B., & Yang, X.-S. (2013). Discrete cuckoo search

algorithm for the travelling salesman problem. Neural Computing and

Applications, 24(7), 1659-1669.

Ozdamar, L., & Ulusoy, G. (1995). A survey on the resource–constrained

project scheduling. IIE Transactions, 27, 574–586.

Palmer, C., & Kershenbaum, A. (1994). Representing trees in genetic

algorithms. Proceedings of the first IEEE international conference on

evolutionary computation (pp. 379-384). New York: IEEE Press.

Palpant, M., Artigues, C., & Michelon, P. (2004). LSSPER: Solving the

Resource-Constrained Project Scheduling Problem with Large

Neighbourhood Search. Annals of Operations Research, 131(1), 237-

257.

Pan, N.-H., Lee, M., & Chen, K.-Y. (2009). Improved Tabu Search Algorithm

Application in RCPSP. Proceedings of the International

MultiConference of Engineers and Computer Scientists,. Vol I, p. 44.

Hong-Kong: IMECS 2009, March 18-20.

Paraskevopoulos, D. C., Tarantilis, C. D., & Ioannou, G. (2012). Solving

project scheduling problems with resource constraints via an event list-

based evolutionary algorithm. Expert Systems with Applications, 39,

3983-3994.

Parrot, D., & Li, X. (2004). A particle swarm model for tracking multiple peaks

in a dynamic environment using speciation. Congress on Evolutionary

Computation, 19-23 June 2004. Portland, OR, USA: IEEE.

doi:10.1109/CEC.2004.1330843

176

Passaro, A., & Starita, A. (2008). Particle swarm optimization for multimodal

functions: clustering approach. Journal of Artificial Evolution and

Applications, 2008(8).

Pavlyukevich, I. (2007). Lévy flights for Non-local search and simulated

annealing. Journal of Computational Physics, 1830-1844.

Payne, R. B., & Sorenson, M. D. (2005). The Cuckoos. Oxford, UK: Oxford

University Press.

Pérez, A., Posada, M., & Lorenzana, A. (2015). Taking advantage of solving

the resource constrained multi-project scheduling problems using multi-

modal genetic algorithms. Soft Computing, 20(5), 1879–1896.

Pérez, E., Herrera, F., & Hernández, C. (2003). Finding multiple solutions in

job shop scheduling by niching genetic algorithms. Journal of Intelligent

Manufacturing, 14(3), 323–339.

Pérez, E., Posada, M., & Herrera, F. (2012). Analysis of new niching genetic

algorithms for finding multiple solutions in the job shop scheduling.

Journal of Intelligent Manufacturing, 23(3), 341–356.

Pesek, I., Schaerf, A., & Zerovnik, J. (2007). Hybrid local search techniques

for the resource-constrained project scheduling problem. LNCS, 4771,

57-68.

Petrowski, A. (1996). A clearing procedure as a niching method for genetic

algorithms. Proceedings of Third IEEE International Conference on

Evolutionary Computation. Nagoya, Japan: IEEE.

doi:10.1109/CEC.1996.542703

Prais, M., & Ribeiro, C. C. (2000). Reactive GRASP: An application to a matrix

decomposition problem in TDMA traffic assignment. Journal of

Computing, 12, 164-176.

Qing, L., Gang, W., Zaiyue, Y., & Qiuping, W. (2008). Crowding clustering

genetic algorithm for multimodal function optimisation. Applied Soft

Computing, 8, 88-95.

Qu, B.-Y., & Suganthan, P. N. (2010). Novel multimodal problems and

differential evolution with ensemble of restricted tournament selection.

IEEE Congress on Evolutionary Computation, 18-23 July 2010.

Barcelona, Spain: IEEE. doi:10.1109/CEC.2010.5586341

177

Qu, B.-Y., Liang, J., Suganthan, P., & Chen, T. (2012). Ensemble of clearing

differential evolution for multi-modal optimization. In Y. Tan, Y. Shi, &

Z. (. Ji, Advances in Swarm Intelligence. ICSI 2012. Lecture Notes in

Computer Science (Vol. vol. 7331, pp. 350-357). Berlin: Springer Berlin

Heidelberg.

Radermacher, F. J. (1981). Cost-dependent essential systems of ES-

strategies for stochastic scheduling problems. Methods of Operations

Research, 42, 17–31.

Radermacher, F. J. (1984). Optimal strategies for stochastic scheduling

problem. A survey. In S. Boroda, Writings on computer science and

applied mathematics (pp. 114-201). RWTH Aachen: Berlin.

Radermacher, F. J. (1985). Scheduling of project networks. Annals of

Operations Research, 4, 227-252.

Ranjbar, M. (2008). Solving the resource constrained project scheduling

problem using filter-and-fan approach. Applied Mathematics and

Computation, 201, 313-318.

Ranjbar, M., & Kianfar, F. (2009). A hybrid scatter search for the RCPSP.

Transaction E: Industrial Engineering, 16(1), 11-18.

Reeves, C. R. (1999). Landscapes, operators and heuristic search. Annals of

Operations Research, 86(1), 473–490.

Resende, M. G., & Ribeiro, C. C. (2001). A GRASP for graph planarisation.

Networks, 27(3), 201-222.

Rockafellar, R. T., & Wets, R. J.-B. (1991). Scenarios and policy aggregation

in optimization under uncertainty. Mathematics of Operations

Research, 16, 119-147.

Ronald, S. (1998). More distance functions for order-based encodings. IEEE

World Congress on Computational Intelligence. Anchorage, AK, USA:

IEEE. doi:10.1109/ICEC.1998.700089

Roshanaei, V., Naderi, B., Jolai, F., & Khalili, M. (2009). A variable

neighborhood search for job shop scheduling with set-up times to

minimize makespan. Future Generation Computer Systems, 25(6),

654–661.

Roy, R., & Parmee, I. C. (1996). Adaptive restricted tournament selection for

the identification of multiple sub-optima in a multi-modal function. In

178

Lecture Notes in Computer Science, vol. 1143 (pp. 236–256). London:

Springer-Verlag.

Sacco, W. F., Henderson, N., & Rios-Coelho, A. C. (2014). Topographical

clearing differential evolution: A new method to solve multimodal

optimization problems. Progress in Nuclear Energy, 71, 269-278.

Sacco, W. F., Machado, M. D., Pereira, C. M., & Schirru, R. (2004). The fuzzy

clearing approach for a niching genetic algorithm applied to a nuclear

reactor core design optimization problem. Annals of Nuclear Energy,

31, 55-69.

Sadeh-Koniecpol, N., & Otsuka, S. (1993). Predictive and reactive scheduling

with the microboss production scheduling and control system.

Proceedings of the IJCAI-93 Workshop on Knowledge-based

Production Planning, Scheduling, and Control. Chambery, France.

Salazar-Lechuga, M., & Rowe, J. E. (2005). Particle swarm optimization and

fitness sharing to solve multi-objective optimization problems. IEEE

Congress on Evolutionary Computation , 2, 1204 - 1211.

Sekhar, P., & Mohanty, S. (2016). An enhanced cuckoo search algorithm

based contingency constrained economic load dispatch for security

enhancement. International Journal of Electrical Power & Energy

Systems, 75(2), 303–310.

Sevaux, M., & Sorensen, K. (2002). A genetic algorithm for robust schedules

in a just-in-time environment. 8th International Workshop on Project

Management and Scheduling, (pp. 16-32). Valencia.

Shahsavar, M., & AkhavanNiaki, S. T. (2010). An efficient genetic algorithm to

maximize net present value of project payments under inflation and

bonus–penalty policy in resource investment problem. Advances in

Engineering Software, 41, 1023–1030.

Sheng, W., Liu, X., & Fairhurst, M. (2008). A Niching Memetic Algorithm for

Simultaneous Clustering and Feature Selection. IEEE Transactions on

Knowledge and Data Engineering, 20(7), 868 - 879.

Shi, X., Liang, Y., Lee, H., Lu, C., & Wang, Q. (2007). Particle swarm

optimization-based algorithms for TSP and generalized TSP.

Information Processing Letters, 105(3), 169–176.

179

Shibasaka, M., Hara, A., Ichimura, T., & Takahama, T. (2007). Species-based

differential evolution with switching search strategies for multimodal

function optimization. IEEE Congress on Evolutionary Computation, 25-

28 Sept 2007. Singapore: IEEE. doi:10.1109/CEC.2007.4424604

Shlesinger, M. F., Zaslavsky, G. M., & Frisch, U. (1994). Lévy Flights and

Related Topics in Physics. Proceedings of the International Workshop.

Lecture Notes in Physics, Vol. 450. Nice, France: Springer-Verlag

Berlin Heidelberg.

Slowinski, R., & Hapke, M. (2010). Scheduling under Fuzziness. Physica-

Verlag: Heidelberg.

Smith, S. F. (1994). Reactive scheduling systems. In D. Brown, & W. Scherer,

Intelligent Scheduling Systems (pp. 155-169). Kluwer US.

Sprecher, A. (2000). Scheduling Resource-Constrained Projects

Competitively at Modest Memory Requirements. Management Science,

46(5), 710-723.

Sprecher, A., Kolisch, R., & Drexl, A. (1995). Semi-active, active, and non-

delay schedules for the resource-constrained project scheduling

problem. European Journal of Operational Research, 80(1), 94–102.

Stoean, C., Preuss, M., Stoean, R., & Dumitrescu, D. (2010). Multimodal

Optimization by Means of a Topological Species Conservation

Algorithm. IEEE Transactions on Evolutionary Computation, 14(6), 842

- 864.

Stork, F. (2001). Stochastic resource-constrained project scheduling.

Technische Universitat Berlin.: Ph.D. thesis.

Streichert, F., Stein, G., Ulmer, H., & Zell, A. (2004). A Clustering Based

Niching EA for Multimodal Search Spaces. In Artificial Evolution (pp.

293-304). Berlin : Springer Berlin Heidelberg.

Stutzle, T. G. (1999). Local Search Algorithms for Combinatorial Problems -

Analysis, Improvements and New Applications (Vol. 220 of

Dissertations in Artificial Intelligence). IOS Press, Incorporated.

Surekha, P., Raajan, P. M., & Sumathi, S. (2010). Particle Swarm Optimization

approaches to solve combinatorial job shop scheduling problems. IEEE

International Conference on Computational Intelligence and Computing

Research (pp. 1-5). Coimbatore, India: IEEE.

180

Taillard, E. (1991). Robust Taboo Search for the Quadratic Assignment

Problem. Parallel Computations, 17, 443–455.

Talbi, E.-G. (2002). A Taxonomy of Hybrid Metaheuristics. Journal of

Heuristics, 8(5), 5410564.

Talbot, F. B. (1982). Resource-constrained project scheduling with time-

resource tradeoffs: The nonpreemptive case. Management Science,

28, 1197-1210.

Teymourian, E., V.Kayvanfar, Komaki, G., & Zadeha, M. (2016). Enhanced

intelligent water drops and cuckoo search algorithms for solving the

capacitated vehicle routing problem. Information Sciences, 334(6),

354–378.

Thomas, P. R., & Salhi, S. (1998). A tabu search approach for the resource

constrained project scheduling problem. Journal of Heuristics, 4, 123-

139.

Thomsen, R. (2004). Multimodal optimization using crowding-based

differential evolution. Proceedings of the Congress on Evolutionary

Computation. Portland, OR, USA: IEEE.

doi:10.1109/CEC.2004.1331058

Tolku, Y. C. (2002). Application of genetic algorithms to construction

scheduling with or without resource constraints. Canadian Journal of

Civil Engineering, 29, 421-429.

Tormos, P., & Lova, A. (2001). A Competitive Heuristic Solution Technique for

Resource-Constrained Project Scheduling. Annals of Operations

Research, 102(1), 65-81.

Tsai, Y.-W., & Gemmill, D. D. (1998). Using tabu search to schedule activities

of stochastic resource-constrained projects. European Journal of

Operational Research, 111, 129-141.

Tseng, L., & Chen, S. (2006). A hybrid metaheuristic for the resource-

constrained project scheduling problem. European Journal of

Operational Research, 175(2), 707-721.

Valls, V., Ballestin, F., & Quintanilla, S. (2003). A hybrid genetic algorithm for

the RCPSP. Technical Report, University of Valencia, Department of

Statistics and Operations Research.

181

Valls, V., Ballestıń, F., & Quintanilla, S. (2005). Justification and RCPSP: A

technique that pays. European Journal of Operational Research,

165(2), 375–386.

Valls, V., Ballesting, F., & Quintanilla, S. (2004). A population-based approach

to the resource-constrained project scheduling problem. Annals of

Operations Research, 305-324, 131.

Valls, V., Quintanilla, M. S., & Ballestin, F. (2003). Resource-constrained

project scheduling: A critical reordering heuristic. European Journal of

Operational Research, 149, 282-301.

Viswanathan, G. M. (2008). Lévy flights and superdiffusion in the context of

biological encounters and random searches. Physics of Life Reviews,

133-150.

Vitela, J. E., & Castanos, O. (2008). A real-coded niching memetic algorithm

for continuous multimodal function optimization. Proceedings of

Evolutionary Computation, IEEE World Congress on Computational

Intelligence (pp. 50-62). Hong Kong, China: IEEE.

Vonder, S. V., Demeulemeester, E., & Herroelen, W. (2007). A classification

of predictive-reactive project scheduling procedures. Journal of

Scheduling, 10, 195-207.

Voudoris, C., & Tsang, E. (1999). Guided local search. European Journal of

Operational Research, 113(2), 469–499.

Weglarz, J. (1999). Project Scheduling. Recent models, Algorithms and

Applications. Berlin: Kluwer Academic Publishers.

Wets, R. J.-B. (1989). The aggregation principle in scenario analysis and

stochastic optimization. In S. W. Wallace, Algorithms and Model

Formulations in Mathematical Programming (pp. 91-113). Berlin,

Heidelberg: Springer.

Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 1(1), 67 - 82.

doi:10.1109/4235.585893

Wu, S., Wan, H., Shukla, S. K., & Li, B. (2011). Chaos-based improved

immune algorithm (CBIIA) for resource-constrained project scheduling

problems. Expert Systems with Applications, 38, 3387–3395.

182

Xiong, J., Leusb, R., Yanga, Z., & Abbass, H. A. (2016). Evolutionary multi-

objective resource allocation and scheduling in the Chinese navigation

satellite system project. European Journal of Operational Research,

251(2), 662–675.

Yang, H. Z., Li, F. C., & Wang, C. M. (2005). A density clustering-based niching

genetic algorithm for multimodal optimization. Proceedings of 2005

International Conference on Machine Learning and Cybernetics, 3,

1599–1604.

Yang, X. (2010). Engineering Optimization: An Introduction with Metaheuristic

Applications. Cambridge: John Wiley & Sons.

Yang, X.-S. (2012). Flower Pollination Algorithm for Global Optimisation.

Unconventional Computation and Natural Computation, 7445, 240-249.

Yang, X.-S., & Deb, S. (2009). Cuckoo search via Levy Flights. Proc. of World

congress on Nature & Biologically Inspired Computing (pp. 210-214).

Coimbatore, India: IEEE.

Yang, X.-S., & Deb, S. (2010). Engineering Optimisation by Cuckoo Search.

Mathematical Modelling and Numerical Optimisation, 1(4), 330-343.

Yilmaz, A. E., & Kuzuoglu, M. (2009). A particle swarm optimization approach

for hexahedral mesh smoothing. International Journal for Numerical

Methods in Fluids, 60, 55–78.

Yin, X., & Germay, N. (1993). A fast genetic algorithm with sharing scheme

using cluster analysis methods in multi-modal function optimization. In

R. Albrecht, C. Reeves, & N. Steele, Artificial Neural Nets and Genetic

Algorithms. Vienna, Austria: Springer.

Yuan, Y., Wang, K., & Ding, L. (2009). A Solution to Resource-Constrained

Project Scheduling Problem: Based on Ant Colony Optimization

Algorithm. Ninth International Conference on Hybrid Intelligent

Systems. Shenyang, China: IEEE. doi:10.1109/HIS.2009.91

Zaharie, D. (2004). Extensions of differential evolution algorithms for

multimodal optimization. Proceedings of SYNASC’04, 6th International

Symposium of Symbolic and Numeric Algorithms for Scientific

Computing, (pp. 523-534).

183

Zhang, H. (2005). Particle swarm optimization-based schemes for resource-

constrained project scheduling. Automation in Construction, 14(3),

393–404.

Zhou, Y., & Chen, Y. (2002). Business process assignment optimization. IEEE

International Conference on Systems, Man and Cybernetics. Yasmine

Hammamet, Tunisia: IEEE.

Zhu, J., Li, X., & Shen, W. (2011). Effective genetic algorithm for resource-

constrained project scheduling with limited preemptions. International

Journal of Machine Learning and Cybernetics(2), 55-65.

