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Execution Environment 
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The main goal of a scheduling process is to decide when and how to execute 

each of the project’s activities. Despite large variety of researched scheduling 

problems, the majority of them can be described as generalisations of the 

resource-constrained project scheduling problem (RCPSP). Because of wide 

applicability and challenging difficulty, RCPSP has attracted vast amount of 

attention in the research community and great variety of heuristics have been 

adapted for solving it. Even though these heuristics are structurally different and 

operate according to diverse principles, they are designed to obtain only one 

solution at a time. In the recent researches on RCPSPs, it was proven that these 

kind of problems have complex multimodal fitness landscapes, which are 

characterised by a wide solution search spaces and presence of multiple local 

and global optima.  

The main goal of this thesis is twofold. Firstly, it presents a variation of the 

RCPSP that considers optimisation of projects in an uncertain environment where 

resources are modelled to adapt to their environment and, as the result of this, 

improve their efficiency. Secondly, modification of a novel evolutionary 

computation method Cuckoo Search (CS) is proposed, which has been adapted 

for solving combinatorial optimisation problems and modified to obtain multiple 

solutions. To test the proposed methodology, two sets of experiments are carried 

out. First, the developed algorithm is applied to a real-life software development 

project. Second, performance of the algorithm is tested on universal benchmark 

instances for scheduling problems which were modified to take into account 

specifics of the proposed optimisation model. The results of both experiments 

demonstrate that the proposed methodology achieves competitive level of 

performance and is capable of finding multiple global solutions, as well as prove 

its applicability in real-life projects.   
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Glossary 

 

Activity – Smallest unit of work that has the following characteristics: definite 

duration, logic relationship with other activities, and resource requirements.  

Combinatorial optimisation – The process of searching for maxima (or 

minima) of an objective function whose domain is a discrete but large 

configuration space. 

Continuous optimisation – The process of finding the minimum or maximum 

value of a function of one or many real variables, subject to constraints that 

take form of inequalities. 

Critical path – The duration of the longest activity sequence of a project 

obtained by relaxing resource constraints of the problem. 

Global optimum – A solution that is optimal among all possible solutions, not 

just those in a particular neighbourhood of values. 

Heuristic – An approach to problem solving that employs a practical method 

or previous experience with similar problem. Heuristic is not guaranteed to 

obtain optimal solution, but sufficient for immediate goals. 

Local optimum – The best solution to a problem within a small neighbourhood 

of possible solutions. 

Makespan – Total duration of a project. 

Metaheuristic – A high-level problem-independent algorithmic framework that 

provides a set of guidelines or strategies needed to develop an algorithm for an 

optimisation problem. 

Multimodal optimisation – The process of finding multiple optimal and/or local 

solutions with the aim of complex optimisation problems. 

Project – Set of interrelated activities that are to be executed over a fixed 

period of time and set of resources that are to be used for the execution of 

activities. 

Project network – A set of nodes and arcs that depict project activities and 

precedence relations and model technological relations between pairs of 

activities. 

Project scheduling problem library – Library that contains different problem 

sets for various types of resource-constrained project scheduling problems. 
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Resource-constrained project scheduling problem – Combinatorial 

optimisation problem objective of which is to find a feasible schedule of minimal 

duration, obtained by assigning a start time to each activity such that the 

precedence relations and the resource availabilities are respected. 

Resources – People, equipment, facilities, funding, or anything else capable 

of definition required for the completion of a project activity. 

Schedule – Timetable for a project that shows how activities are sequenced 

and when they are going to be executed. 

Schedule generation scheme – An algorithm that transforms a solution 

representation scheme into a schedule. 

Solution representation scheme – Scheme that determines how the problem 

is structured in the applied algorithm and influences the applied operators. 

Solution search space – The space of all feasible solutions or the set of 

solutions among which the desired solution resides.. 
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Chapter 1 Introduction 

 

Nowadays, planning and management of resources is an increasingly important 

issue not just in engineering, but in all spheres of business in general. Thus, a 

careful management of projects, whether it is a software, construction, budgetary 

or any other type of project, is an absolute necessity to preserve efficient and 

stable operation. The biggest role in project management is devoted to 

scheduling. The main goal of the scheduling process is to decide when to start 

each of the project’s activities and how these activities will share the available 

resources. When such decisions are made, they are expected to have a large 

impact on the total duration of the project (i.e. the makespan) and the overall 

efficiency of resource use. Consequently, the outcomes of these decisions 

(makespan and resource efficiency balance) are considered to be the main 

performance criteria when assessing the quality of the optimised project plan. 

Nevertheless, when planning such decisions there is a great number of 

challenges to be faced: 

1. Resource allocation: a project consists of a set of activities which for 

their execution require different types of resources with limited 

capacities and different levels of efficiencies; 

2. Time dependency and presence of uncertainties: there are many 

factors that affect the execution time of activities; 

3. Conflicting objectives: often optimisation model of a project consists of 

multiple objectives, where optimisation of one might negatively impact 

optimisation of the other. 

A great variety of scheduling problems has been addressed in the literature 

(Weglarz, 1999; Kolisch & Padman, 2001), however, despite the assortment, the 

majority of these problems can be modelled as generalisations of the resource-

constrained project scheduling problem (RCPSP). The standard RCPSP 

represents a generalised version of the job-shop scheduling problem (JSSP) 

(Graham, 1966) and in terms of its decision variables, constraints and objective 

functions can be defined as follows. A set of activities and a set of resources of 

known characteristics (activity durations, activity resource demands, activity 

relations and resource availabilities) are given. The decision variables are the 

activity starting times, whereas the objective function is the minimisation of 
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project’s makespan, i.e. the completion time of the last activity, assuming project 

starts at time 0. Two types of constraints are considered: (1) Precedence 

constraints define relationships between activities and their respective order of 

execution. (2) Resource constraints ensure that at each time period and for each 

resource the total activity demand does not exceed the resource availability. 

Once started, an activity cannot be interrupted. Other variations of the RCPSP 

exist as well. One of the most common of them are stochastic RCPSP (SRCPSP), 

in which activity durations follow some pre-defined probability distribution, and 

multi-mode RCPSP (MRCPSP), in which a trade-off between activity durations 

and resource requirements is assumed. 

Nevertheless, despite simplicity of definition, RCPSPs belong to a class of NP-

hard (Leeuwen, 1998) combinatorial optimisation problems (Blazewicz, Lenstra, 

& Kan, 1983), therefore can be considered as intrinsically harder than those that 

can be solved by a nondeterministic Turing machine in polynomial time. For 

example, in the publicly available project scheduling problems library (PSPLIB) 

(Kolisch & Sprecher, 1997), which contains benchmark instances for assessing 

the performance of algorithms for RCPSPs, the optimal makespan of instances 

with 60 or more activities is still unknown.  

Moreover, similarly to other combinatorial optimisation problems, such as 

JSSP and travelling salesman problem (TSP) (Ikeda & Kobayashi, 2000), 

RCPSPs are proven to have complex multimodal fitness landscapes (Czogalla & 

Fink, 2009), which contain high amount of global optima that are spread across 

whole solution search space. It was demonstrated that solution search space of 

such problems has a big valley structure where good solutions tend to be close 

to other good solutions (but not too close) and are spread all around the solution 

search space. The statistical analysis indicated that landscapes of these 

problems typically consist of several interior plateau meaning that one instance 

of a problem can have multiple optimal solutions. 

In the context of optimisation, finding a set of global solutions can be highly 

desirable for several reasons. First, it will help to eliminate premature 

convergence to local optima by diverting the search process into various regions 

of the search space simultaneously. Secondly, a set of diverse high-quality 

solutions can provide an alternative, potentially better and more innovative, 

outcome result in the decision making process.  
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For its relevance to all fields of engineering and challenging difficulty, solving 

the RCPSP has become a flourishing theme for a research community. This 

becomes even clearer when observing the amount of books (Neumann, 

Schwindt, & Zimmermann, 2003; Dorndorf, 2002; Klein, 2001) and research 

surveys (Kolisch, Sprecher, & Drexl, 1995; Lawrence, 1984; Herroelen W. , 2006; 

Hartmann & Briskorn, 2010) that were published on this subject. 

 

1.1 Motivation and Objectives 

Exploitation and exploration of the multimodal fitness landscapes of RCPSPs 

have received little research attention. Despite the variety of published research 

articles and surveys on RCPSPs, the majority of them aimed at optimising only 

one objective (i.e. makespan minimisation) and at obtaining only one solution. At 

the time of writing of this thesis and to the knowledge of the author, only one work 

attempted to exploit multimodal features of the RCPSP. Pérez et al. (2015) 

applied Multi-Modal Genetic Algorithm (MMGA) to solve the Resource-

Constrained Multi-Project Scheduling Problem (RCMPSP), which is the 

derivative of the standard RCPSP. In their work, the authors were able to prove 

that multiple optima can be obtained in the RCMPSP, as well as to demonstrate 

that multimodal techniques provide better performance than other alternative 

commonly accepted methodologies for RCMPSP. Moreover, in his previous 

works (Pérez, Herrera, & Hernández, 2003; Pérez, Posada, & Herrera, 2012), 

Pérez successfully applied similar approach for solving the JSSP. 

There are several explanations to the lack of enthusiasm among researchers 

in addressing these issues. On the one hand, optimisation of several objectives 

necessitates the development of an alternative optimisation and decision model 

that will differ from the standard formulations of RCPSPs. As a consequence, 

new means of the solution representation and schedule generation need to be 

developed. On the other hand, obtaining multiple global solutions requires the 

application of a special class of algorithms that are specifically designed for 

multimodal optimisation problems. Due to the discrete fitness landscapes of 

RCPSPs, and other combinatorial optimisation problems in general, the 

algorithms from that category are not typically applied to solve them. Hence, the 

application of such algorithms for RCPSPs induces the development of means of 

their porting. 
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The main goal of this PhD thesis is to propose an optimisation model for 

scheduling projects in a variable environment. In the proposed model, decisions 

regarding resource allocation and activity sequencing are simultaneously 

considered while taking into account the experience, efficiency and learnability of 

each resource type. In here, resource refers to human resource or members of 

the project team; resource efficiency reflects the speed at which an activity can 

be implemented by the project team; experience is defined as the total amount of 

time that members of the project team have previously spent on working in a 

similar problem; and learnability is the reflection of how quickly resource acquires 

its experience. To solve the optimisation problem, an evolutionary computation 

(EC) method that is capable obtaining multiple global optima is developed and 

several important aspects of its application to this problem as investigated, such 

as solution representation, difference estimation between solutions, and 

schedule generation. 

In order to achieve this goal, the following objectives have been set: 

 To define an optimisation model for scheduling in an uncertain 

environment: 

o Where activity durations are subject to influence of external 

factors; 

o Which considers optimisation of primary and secondary 

objectives; 

o Which takes the advantage of the RCPSP multimodal property. 

 To develop different methodologies to solve the defined RCPSP 

problems: 

o To study, review and select the suitable solution representation 

and schedule generation schemes   

o To explore and extend advanced evolutionary computation 

techniques capable of global search to solve those problems 

o To explore techniques to obtain multiple solutions for RCPSPs 

o To evaluate the efficiency of the proposed algorithms in solving 

benchmark problems 

o To apply the proposed methodologies to solve a real RCPSP 

problem 
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1.2 Contributions 

Throughout the work on this thesis, the following contributions to the science and 

engineering have been made: 

 A new optimisation model for scheduling large-scale projects which 

takes into account the efficiencies and learnabilities of the resources 

(Chapter 3); 

 Design of discrete cuckoo search (DCS) algorithm and its subsequent 

application to the RCPSP (Chapter 4); 

 Design of a new discrete flower pollination algorithm (DFPA) is 

introduced and applied to solve the RCPSP (Chapter 4); 

 Extension of DCS to derive an improved discrete cuckoo search (IDCS) 

algorithm is proposed and its application to solve the RCPSP (Chapter 

4): 

o Paradigm of the original cuckoo search (CS) is changed and now 

uses crossover operator to create new individuals; 

o The algorithm operates on a novel solution representation 

scheme called event list (EL); 

o New crossover operator based on the EL is proposed. The 

operator is designed to combine useful problem-specific 

information extracted from the parent for the purpose of 

generating high-quality children. 

 A new discrete species conserving cuckoo search (DSCCS) method 

able to obtain multiple global solutions of tackling multimodal properties 

of the RCPSP is introduced (Chapter 4): 

o Adaptation of species conservation technique and subsequent 

application to problems in the discrete domain; 

o Application of the species conservation technique to the IDCS 

 

1.3 Publications 

To this date, the following publications have been authored or co-authored based 

on the works done during this PhD: 

Journal papers: 
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 K. Bibiks, Y. F. Hu, J.-P. Li, P. Pillai, A. Smith, “Discrete species 

conserving cuckoo search for the resource constrained project scheduling 

problem,” IEEE Transactions on Evolutionary Computation, Submitted 

 K. Bibiks, Y. F. Hu, J.-P. Li, P. Pillai, A. Smith, “Improved discrete cuckoo 

search for the resource constrained project scheduling problem,” Applied 

Soft Computing, Accepted, subject to revision 

 K. Bibiks, J.-P. Li, Y. F. Hu, “Discrete flower pollination algorithm for the 

resource constrained project scheduling problem,” International Journal of 

Computer Science and Information Security, vol. 13, no. 7, pp. 15-22, 2015 

Conference papers: 

 K. Bibiks, Y. F. Hu, J.-P. Li, A. Smith, “Discrete cuckoo search for the 

resource constrained project scheduling problem,” IEEE 18th International 

Conference on Computational Science and Engineering, Porto, 2015 

 M. Amir, Y. F. Hu, P. Pillai, K. Bibiks, “Interaction Models for Profiling 

Assets in an Extensible and Semantic WoT Framework,” in Proceedings 

of the Tenth International Symposium on Wireless Communication 

Systems, Ilmenau, 2013 

 

1.4 Organisation of the Thesis 

The remainder of this thesis is organised as follows.  

Chapter 2 contains literature reviews related to the most relevant scheduling 

problems and solution methods that were applied to solve these problems. 

Moreover, methodologies for application in multimodal scenarios are reviewed as 

well. 

Chapter 3 details optimisation model of the problem that is considered in this 

thesis. Mathematical description of the problem is provided and similarities and 

differences with other scheduling problems in the literature are given. 

Chapter 4 describes preliminary work that was done during the development 

of methodology for the proposed optimisation model. Several metaheuristic 

algorithms are presented. Performances of the developed algorithms are 

assessed using sets of benchmark instances from the PSPLIB, which are then 

compared with performances of other state-of-the-art heuristics. Sections of this 

chapter were used as foundations for research articles for publications in journals 

and conferences (see Section 1.3).  
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Chapter 5 presents case studies that are based on the optimisation model 

proposed in Chapter 3 and which are used to assess performance of the 

metaheuristic methodology presented in Chapter 4. The first case study is based 

on a real-life research project which consists of 51 activities and 4 types of 

resources and scheduling of which is subject to a number of uncertainties outlined 

in the chapter. Multimodal fitness landscape nature of the case study is exploited 

by the developed metaheuristic when a set of optimal solutions is obtained out 

which the most efficiently balanced one is chosen. For the second case study, 

several popular algorithms for the RCPSP are implemented and tested on the 

sets of benchmark instances that were modified to include additional parameters 

specific for the proposed optimisation model. 

Finally, Chapter 6 concludes the work done in this thesis, outlines summary of 

achievement and contributions that were made and provides possible directions 

for future work.  
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Chapter 2 Literature Review 

 

This chapter presents relevant project scheduling problems to this research and 

reviews literature on methods that were previously applied to solve them. 

First, the Resource-Constrained Project Scheduling Problem (RCPSP) is 

introduced. Mathematical description of the problem is provided. 

This is followed by an introduction of the Stochastic Resource-Constrained 

Project Scheduling Problem (SRCPSP), its mathematical description and fields 

of applied methodologies. 

Lastly, the state-of-the-art metaheuristic methodologies are presented for each 

of the presented metaheuristics with examples of applications of these 

methodologies to relevant problems. 

 

2.1 Resource-Constrained Project Scheduling Problem 

Project scheduling addresses a problem of finding an optimal sequence of a set 

of activities that are associated with a set of resources such that all set objectives 

are optimised and all constraints are satisfied. It has been an active area of 

research for many decades and has drawn an increasing in recent years. Various 

scheduling problems have been studied in the literature (Weglarz, 1999; Kolisch 

& Padman, 2001), however, despite the varieties, all of these problems are NP-

hard (Blazewicz, Lenstra, & Kan, 1983) combinatorial optimisation problems that 

can be modelled as variations of the RCPSP.  

2.1.1 Mathematical Formulation 

In the literature, large variety of the RCPSP derivatives exist (Hartmann & 

Briskorn, 2010), however, all of them, in one way or another, are based on the 

standard classical RCPSP. The main objective of standard classical RCPSP is to 

find an optimal schedule with minimal duration by assigning starting time to each 

activity in a project with respect to precedence relations and resource 

availabilities. 

In the RCPSP a project is represented by a finite set of activities (i.e. jobs) V = 

{0, 1, …, n, n+1}. Activities 0 and n + 1 are unique dummy activities which 

represent the start and the end of a project, respectively. Typically, activities that 

constitute a project are represented by an activity-on-node (AON) network, also 
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sometimes referred to as project network, denoted as G = (V, E) (Zhou & Chen, 

2002), where V is a set of nodes that denote activities and E is a set of arcs that 

denote precedence constraints. Alternatively, precedence constraints can be 

denoted as i ⟶ j or (i, j). Pred(j) defined the set of direct predecessors, while 

Succ(j) is the set of direct successors of activity j. The processing time of activity 

j is given by pj. The processing time of dummy activities 0 and n + 1 is p0 = pn+1 = 

0. 

For their execution activities require renewable resources. In the context of the 

RCPSP, the term ‘renewable resources’ is defined as a pre-specified number of 

units of a resource being available for every period of the planning time horizon 

T (i.e. time period during which activity of going to be executed). Resources are 

defined by a finite set ℛ𝜌. The total availability of resource unit k is defined by 𝑅𝑘
𝜌
. 

The period usage of activity j of renewable resource k is denoted by 𝑟𝑗𝑘
𝜌
, whereas 

the total resource consumption of renewable resource k by activity j is given by 

𝑟𝑗𝑘𝑚
𝜌

. 

The starting times of activities are represented by a schedule S = {S0, S1, …, Sn, 

Sn+1}, where Sj is the starting time of activity j. S0 is used as a reference point 

which signifies the start of a project and is always assumed to be 0. 

Consequently, set C = {C0, C1, …, Cn, Cn+1} denotes completion times, where Cj 

is completion time of activity j. The total duration of a project, or its makespan, 

will be equal to the completion time of the last activity Cn+1. ℒT defines the set of 

time-feasible schedules, ℒR the set of resource-feasible schedules and ℒ = ℒR  ∩ 

ℒT the set of feasible schedules. Finally, 𝑑𝑖𝑗
𝑚𝑖𝑛 and 𝑑𝑖𝑗

𝑚𝑎𝑥 denote minimum and 

maximum time lags, respectively, between the start of activities i and j. 

Taking into consideration the above-presented formulation, the optimisation 

model of the RCPSP can then be stated as follows: 

max|| CprecPS   (1) 

where PS stand for project scheduling, prec signifies precedence feasible and 

Cmax represents completion time of last activity in the project. This model forms 

the core problem among the class of standard deterministic RCPSPs and it 

means that while minimising the project’s makespan, precedence and resource 

constraints needs to be observed. 
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2.1.2 Applied Methodologies 

Due to the simplicity of the definition, wide applicability, and high complexity, the 

RCPSP has attracted a considerable amount of attention from researchers and 

vast amount of methodologies has been proposed for solving it. Blazewicz et al. 

(1983) showed that, as a generalisation of the classical Job-Shop Scheduling 

Problem (JSSP) (Graham, 1966), RCPSP belongs to a class of NP-hard 

combinatorial optimisation problems (Leeuwen, 1998).  

Kolisch and Hartmann (1999) did a comprehensive review of different methods 

proposed to solve RCPSP and classified them into two categories: exact methods 

and heuristic approaches, whereas heuristic approaches were further divided into 

priority rule-based methods and metaheuristics. In the last 20 years both exact 

solution procedures and heuristics have witnessed a tremendous growth and 

improvement, which is confirmed by the amount of published surveys (Hartmann 

& Kolisch, 2000; Kolisch & Hartmann, 2006; Herroelen W. , 2006; Ozdamar & 

Ulusoy, 1995; Demeulemeester & Herroelen, 2002). 

In order to evaluate algorithms proposed for the RCPSP and create basis for 

comparison, Kolisch and Sprecher (1997) proposed to measure performance of 

the algorithms by applying them to schedule benchmark isntances from Project 

Scheduling Problem Library (PSPLIB). The following setup has been proposed. 

Three sets of benchmark instances need to be used: 480 instances from J30 set, 

each of which consisted of 30 activities and 4 resources; 480 instances from J60 

set, each of which consisted of 60 activities and 4 resources; and 600 instances 

from J120 set, each of which consisted of 120 activities and 4 resources. In order 

to pass the evaluation, the algorithm has to be applied to schedule all instances 

from J30, J60, and J120 sets. The only compulsory criterion in this setup is the 

setting of stopping criterion, value of which needs to be 1000, 5000 and 50000 

objective evaluations. After running each of the instances, performance of the 

algorithm is measured by calculating average deviation percentage from Critical 

Path (CP). Computational time in this evaluation is not taken into account is it will 

largely depend on the experimental setup. Such way of measuring performance 

of the RCPSP methodologies has become de facto standard way of evaluation 

and it has been adopted by many researchers. 

Tormos and Lova (2001) in their research tested several popular exact solution 

procedures and heuristics for the RCPSP. Performances of the selected 

algorithms were measured using the setup proposed by Kolisch and Sprecher 
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(1997).  The most competitve exact algorithms were the ones of Brucker et al. 

(1998), Mingozzi et al. (1998), and Specher (2000). Nevertheless, even though 

these exact algorithms demonstrated good performances, in a satisfactory 

manner they were only capable of solving small-scale instances of  problems with 

up to 60 activities.  

Another comprehensive survey done by Hartmann and Kolisch (2000) and its 

update version (Kolisch & Hartmann, 2006) provided a classification and 

performance evaluation of different state-of-the-art heuristics that have been 

proposed for RCPSPs. As was shown by their experimental evaluation, 

metaheuristic methods demonstrate far better performance than heuristics. For 

53 methods sorted with respect to the performance of evaluation 1000, 5000, and 

50000 schedules, the best methods for J30, J60 and J120 sets were all 

metaheuristic approaches, which included genetic algorithm (GA) with path 

relinking (Kochetov & Stolyar, 2003), scatter search (SS) (Debels, De Reyck, 

Leus, & Vanhoucke, 2006), hybrid GA (Valls, Ballestin, & Quintanilla, 2003), and 

simulated annealing (SA) (Bouleimen & Lecocq, 2003). 

Because of this, as of today, the application of metaheuristic algorithms is 

considered to be the most effective and reliable way of solving the RCPSP. 

 

2.2 Stochastic Resource-Constrained Project Scheduling 
Problem 

Most of the literature on the project scheduling concentrates on finding a schedule 

with fixed activity durations and starting times, which is then used as a guideline 

for the actual execution of a project. In the real-world, however, during the 

execution of a project unexpected events or circumstances can cause deviations 

from the original schedule. Examples of such can include an under- or 

overestimation of the workforce, cancelations, delays based on unexpected 

issues, equipment failure, nature disasters, etc. In the majority of the situations, 

these kinds of events can be modelled as fluctuations in the activity durations. 

In comparison to deterministic project scheduling, little research on project 

scheduling under risk and uncertainty can be found in the literature. Herroelen 

and Leus (2005) reviewed various problems related to this field and identified the 

most important research tracks in this area:  

 Reactive Scheduling 
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 Proactive Scheduling 

 Stochastic Project Scheduling 

 Fuzzy Project Scheduling 

Reactive scheduling deals with the uncertainties in scheduling by revising or 

re-optimising the baseline schedule when an unexpected event happens. Actions 

that are taken during such revisions may be based on various underlying 

strategies. On the one hand, the reactive approach may rely on very simple 

techniques such as schedule repair action or right shift rule. Paradigms of these 

techniques were first introduced by Sadeh et al. (1993) and Smith (1994), 

respectively. These approaches work by moving forward in time all activities that 

were affected by the schedule breakdown. Moving of activities is done either 

because they were using resources that caused the breakage or because of the 

precedence relations. Since such strategy does not re-sequence activities, it may 

lead to poor results. On the other hand, the reactive scheduling approach may 

involve full rescheduling of the affected part of the schedule that remains to be 

executed. Such approach is commonly referred to as rescheduling. The goal of 

rescheduling is to generate a new schedule that will deviate from the original one 

as little as possible. As performance measure, the new project makespan is used. 

Such strategy may rely on the use of exact or heuristic algorithms that use the 

minimisation of the sum of the difference between the activities’ starting times in 

the original and repaired schedules as the objective (El Sakkout & Wallace, 

2000). Calhoun et al. (Calhoun, Deckro, Moore, Chrissis, & Van Hove, 2002) 

used goal programming to revise project schedule with the initial objectives and 

the objective of minimising the number of changed activities. Another way of 

dealing with deviation from the initial activity duration projection is via application 

of match-up scheduling practices (Bean, Birge, Mittenthal, & Noon, 1991). 

Proactive scheduling (also known as robust scheduling), in comparison to 

reactive scheduling, considers future disruptions during initial schedule 

generation. The main concern here is the generation of initial schedule that will 

minimise the effects of disruptions on the performance measures, therefore 

robustness is considered as the primary objective (Mehta & Uzsoy, 1998). 

Several robustness measures exist. Some robustness measures are based on 

the actual performance of the realised schedules, and some are based on 

regrets. The regret represents the difference between performances of realised 

and optimal schedules (Demeulemeester & Herroelen, 2011). Several techniques 
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for achieving robustness exist, such as fault tolerance (Ghosh, 1996), temporal 

protection (Gao, 1995), time window slack (Davenport, Gefflot, & Beck, 2001), 

minimax objective (Sevaux & Sorensen, 2002) and abstraction of resource usage 

(Herroelen & Leus, 2004). 

Stochastic project scheduling, or more commonly known as stochastic 

resource-constrained project scheduling problem (stochastic RCPSP or 

SRCPSP), aims at scheduling project activities with known activity duration 

distribution. The main objective in the SRCPSP is the minimisation of the 

expected project makespan subject to precedence relations and limited resource 

capacities. However, unlike in the deterministic RCPSP, the outcome of the 

SRCPSP is a so-called scheduling policy (Mohring, Radermacher, & Weiss, 

1984). The execution of a project in the SRCPSP represents a multi-stage 

decision process, where at each consecutive step, by acting as a scheduling rule, 

policy determines which activity is going to be started next. 

Lastly, fuzzy project scheduling assumes that probability distributions for the 

activity durations are unknown due to the lack of historical data. In situations that 

involve imprecision rather than uncertainty, the use of fuzzy numbers for 

modelling activity durations is recommended. The outcome of a fuzzy scheduling 

pass normally is a fuzzy schedule, which indicates fuzzy starting times of the 

activities in the project. Dorn et al. (1995) noted that a fuzzy schedule at certain 

levels gives some degree of freedom and lets to choose the starting times of 

certain activities a little earlier or later when soft constraints may be imposed. In 

this sense, a fuzzy schedule consists of multiple crisp schedules. The most recent 

work on fuzzy scheduling has been gathered by Slowinski and Hapke (2010).  

Herroelen and Leus (2005) outlined advantages of the SRCPSP over other 

research tracks and its higher suitability for the project scheduling under 

uncertainties, mainly for the reason that it does not require a generation of the 

baseline plan for making advance commitments to both subcontractors and 

customers. Moreover, the authors also highlighted SRCPSP’s similarity with its 

deterministic variant and confirmed the possibility of application of some of the 

RCPSP methods for the SRCPSP, given necessary modifications are made. 
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2.2.1 Mathematical Formulation 

Similar to the deterministic RCPSP, the main goal of the SRCPSP is to minimise 

the expected project makespan while considering limited resource availabilities 

and precedence relationships.  

Following the notation of the RCPSP presented in Section 2.1.1, a project in 

the SRCPSP is similarly represented by an AON graph G = (V, E) (Zhou & Chen, 

2002), where V = {0, 1, 2, …, n, n + 1} denotes the set of activities and E is a set 

of arcs representing zero-lag finish-start precedence relations. In the SRCPSP, 

activities 0 and n + 1 are assumed to be dummy activities that represent the start 

and end of the project, respectively. The durations of other activities are denoted 

by a random vector d = (d1, d2, …, dn), where dj denotes the random duration of 

activity j.  

For their execution, activities require renewable resources which are defined 

by a finite set ℛ𝜌. The total capacity of resource k is denoted by 𝑅𝑘
𝜌
. Activity j 

requires an amount of 𝑟𝑗𝑘
𝜌

≤ 𝑅𝑘
𝜌
 units of resource type k.  

Given the presence of both resource and precedence constraints, schedules 

are generated through application of so-called scheduling policies or strategies. 

According to Olagu´ibel and Goerlich (1993), scheduling policy Π makes a 

decisions at decision point t, where decision at time t is to start at time t a 

precedence and resource feasible set of activities S(t), where feasible means that 

all constraints are respected. The decision may only exploit information that is 

available until the current time t. As soon as the execution of activities is 

complete, their final durations becomes known, yielding to realisation of d. The 

application of policy Π leads to the creation of a schedule Π(d) = {S0, S1, S2, …, Sn, 

Sn+1} of activity start times and the resulting schedule makespan Cmax(Π(d)). 

Therefore, optimisation problem of the SRCPSP can be stated as creation of 

scheduling policy that will minimise the expected project duration E[Cmax(Π(d))] 

over a class of policies. If it is assumed that the distributions of the activity 

durations are discrete, then the problem is a generalisation of the deterministic 

RCPSP presented in Section 2.1.1, therefore its difficulty can be described as 

NP-hard in the strong sense (Demeulemeester & Herroelen, 2002). 

2.2.2 Applied Methodologies 

The literature on relevant methods proposed for solving the SRCPSP is rather 

limited. All presented approaches can be divided into two categories: on the one 
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hand, there are theoretical studies and applications of general or particular 

classes of scheduling policies; on the other hand, there are various classes of 

heuristics proposed. 

2.2.2.1 Scheduling Policies 

A scheduling policy can be regarded as a dynamic decision process that decides 

which activity is going to be started at the current decision time t. Various classes 

of scheduling policies have been proposed for the SRCPSP. Stork (2001) did a 

comprehensive review of existing policies and summarised them as follows:  

 Priority policies 

 Pre-selective policies 

 Non-anticipativity constraint 

 Earliest start policy  

 Linear pre-selective policy 

First introduced by Radermacher (1981), a priority policy is the best-known 

class of scheduling policies for the SRCPSP. A policy is called priority if at 

decision time t a maximum amount of available activities is scheduled according 

to their respective priority numbers. Due to their properties, priority policies are 

easy to define and implement, however, at the same time, applications of such 

policies can result in an optimal schedule not being found. Furthermore, a 

deviation in the activity processing times may cause specific anomalies to appear, 

resulting in prolonged schedule duration, even though the activity processing 

times have been reduced. In the literature, such behaviour is commonly referred 

to as Graham anomaly and it has been described by Graham (1966) in the 

context of parallel machine scheduling. For example, such events as decrease in 

the duration of activities, addition of additional capacity and removal of 

precedence constraints may lead to increase of the project makespan. As the 

result of Graham anomalies, priority policies are very rarely used for the 

SRCPSP.  

Radermacher (1984) introduced another class of policies called pre-selective 

policies. These policies work by establishing sets of preselected activities called 

minimal forbidden sets. The execution of these sets is then postponed until at 

least one activity from the defined set has been completed. In contrast to priority 

policies, preselective policies are not susceptible to Graham anomalies, hence 

are more robust. The preselective policies were further studied by Igelmund and 
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Radermacher (1983). Mohring and Stork (2000) introduced quite useful 

representation of pre-selective policies using so-called waiting conditions. 

Waiting conditions are modelled as AND/OR precedence constraints.  

In various publications on stochastic scheduling problems (Wets, 1989; 

Escudero, Kamesam, King, & Wets, 1993) another class of scheduling policies 

appears, called non-anticipativity constraint. The requirement of a non-

anticipativity constraint is that decision made at any decision time can only be 

based on the information available at that moment. Radermacher (1985) has 

shown that this requirement exactly expresses the possibility of using the 

maximal amount of available information for each decision point. 

Rockafellar and Wets (1991) presented a class of robust policies, which 

includes earliest start policy among all. The earliest start policy is closely related 

to the class of preselective policies and can be viewed as a pair of a combinatorial 

object and an algorithm which transforms a given scenario into a schedule. 

Lastly, Stork (2001) proposed linear preselective policies which combine the 

list-oriented features of priority policies with the selection-oriented character of 

preselective policies. The idea is to define the selection via a priority ordering of 

the activities. 

Since scheduling procedures rely on a preliminary enumeration, the use of 

scheduling policies for the SRCPSP becomes computationally intractable when 

the size of projects reaches to practical instances (e.g. 50 activities or more). 

Stork (2001) concluded that for larger instances the only remaining alternative to 

the scheduling policies is the application of heuristic approaches. 

2.2.2.2 Heuristics 

There are very few heuristics developed for the SRCPSP. One of the first 

computational methods proposed to address the issue of uncertain activity 

durations in project scheduling was the project evaluation review technique 

(PERT) (Malcolm, Roseboom, Clark, & Fazar, 1959). PERT analysis works by 

estimating the expected project duration and predicts possible deviations from 

the baseline schedule, assuming probability distributions of activity durations are 

known. Dodin (2006) reviewed different variations of PERT methodologies and 

outlined that main limitation of these methods is the lack of decision-support. This 

limitation is caused by the fact that PERT methodologies only focus on 

understanding the statistical properties of a project makespan, yet they do not 
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identify the optimal activity starting times, nor identify which path(s) of the 

schedule will be critical. Several attempts have been made to address this 

limitation (Dodin, 1984; Elmaghraby, Ferreira, & Tavares, 2000), however, the 

line of this research did not produce any significant results, mainly due to the fact 

that proposed methods do not explicitly use resource constraints, instead 

resources are assumed to be unlimited. 

More recent research tracks on the SRCPSP have been dealing with the 

application of various metaheuristics. Two-phase genetic algorithm (GA) 

(Ashtiani, Leus, & Aryanezhad, 2011). The method useD a pre-processing 

procedure to estimate a sequence of all activities at time zero, skipping the 

observation of early activities. In the optimal control theory, such terminology 

corresponds to an open-loop policy (Martinez & Soares, 2002 ). Typically, 

methods based on this policy are static in nature and during the execution of the 

project they are not updated. 

In contrast to open-loop policies, an alternative solution is a closed-loop policy. 

The main difference between the two is that closed-loop policy makes the 

scheduling decisions in a dynamic fashion through the application of the dynamic 

programming (DP) (Bertsekas, 2007). Instead of scheduling an entire activity 

sequence for the whole project, a closed-loop policy at each decision point 

selects activities that are permissible for a start. This selection is based on an 

optimal decision rule and is made by the decision-maker, given the relevant 

information about the project is known. Several DP-based approaches for the 

SRCPSP have been proposed in the chemical-pharmaceutical environment 

(Choi, Realff, & Lee, 2004). Another DP approach was presented by Haitao and 

Womer (2015). The authors presented an efficient and effective approximate DP 

algorithm based on the priority policy. The performance of the algorithm was 

enhanced by employing constraint programming, which subsequently improved 

the performance of base policy offered by a priority rule-based heuristic.  

 

2.3 Methodologies 

As can be noted from the surveys on the presented problems (Kolisch & 

Hartmann, 1999; Kolisch & Hartmann, 2006; Herroelen & Leus, 2005), the most 

effective algorithms proposed for solving them belong to the class of 

metaheuristics. The use of metaheuristics for application in scheduling problems 
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(and optimisation problems in general) is a rapidly growing area of research. Due 

to the importance of these problems for the scientific as well as engineering 

worlds, each year, more and more innovative methodologies are being proposed. 

Dreo et al. (2006) presented a survey of nowadays most important metaheuristic 

methodologies from a conceptual point of view. The authors analysed differences 

and similarities of all known metaheuristics and outlined their concepts and 

components. All methodologies there are covered in the survey were classified 

as follows:  

 Nature-inspired or non-nature inspired 

 Population-based or single point search 

 Dynamic or static objective function 

 One or various neighbourhood structures 

 Non-hybrid or hybrid 

 Single or multiple solutions 

 Memory or memory-less methods 

Clearly, metaheuristic algorithms are not restricted to only one classification, 

hence one method can be classified to belong to several groups. From the 

research point of view, the most significant category of metaheuristics is 

population-based vs single point search (Blum & Roli, 2003). This is explained by 

the fact, that nowadays the biggest trend in the field of engineering optimisation 

is a hybridisation of methods: integration of single point search methodologies 

into population-based ones. Thus, metaheuristics from these categories are used 

as a base for forming more advanced and complicated methods. Nevertheless, 

such categories of metaheuristics as hybrid and multiple solutions are not least 

important, as these methodologies usually represent state-of-the-art solutions for 

the most complicated optimisation problems.   

2.3.1 Single Point Search Algorithms 

The search process of single point search methods (or more commonly known 

as trajectory methods) is characterised by a trajectory in the search space, 

meaning that the next solution found by the algorithm may belong to the 

neighbourhood of the previous solution. Hence, the search process of these 

algorithms can be viewed as the evolution of a dynamical system in time (Bar-

Yam, 1997). The process of operation of these algorithms typically begins with 

an initial solution represented by an initial trajectory in the search space, which is 
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constantly improved via solution improvement mechanism until predefined 

stopping condition is met. The most commonly used single point search 

metaheuristics are simulated annealing (SA) (Kirkpatrick, Gelatt, & Vecchi, 1983), 

tabu search (TS) (Glover, 1986), greedy randomised adaptive search procedure 

(GRASP) (Feo & Resende, 1995), variable neighbourhood search (VNS) 

(Hansen & Mladenovic, 1999), guided local search (GLS) (Voudoris & Tsang, 

1999), and iterated local search (ILS) (Martin, Otto, & Felten, 1991). 

2.3.1.1 Simulated Annealing 

Among all single point search metaheuristics, Simulated Annealing (SA) is 

considered to be the oldest one. First presented by Kirkpatrick et al. (1983), its 

fundamental idea is to allow moves that will result in solutions of worse quality 

than the current best with the aim of escaping from the local optima trap. The 

process of SA begins with the creation of an initial solution (randomly or 

heuristically) and then its further improvement via local search. In the nutshell, 

this whole process can be characterised as a Markov chain (Feller, 1968), as it 

follows a trajectory in the state space where the choice of the next state only 

depends on the previous one. Because of that, the basic versions of SA are 

memory-less and can easily be integrated into other metaheuristics. 

Nevertheless, the inclusion of memory can be beneficial for the development of 

more advanced SA approaches (Chardaire, Lutton, & Sutter, 1995). 

For the RCPSP, SA has been applied successfully a number of times. Boctor 

(1996) demonstrated fairly good performances of SA approaches on PSPLIB 

benchmark instances.  

Bouleimen and Lecocq (2003) proposed an SA in which predictable search 

pattern is replaced by a new strategy that takes into account the properties and 

characteristics of the RCPSP solution space. Jozefowksa et al. (2001) applied 

the SA to solve the multi-mode variant of the RCPSP. 

Nikulin and Drexl (2010) used SA to solve the airport flight gate scheduling 

problem which was modelled in the form of RCPSP. While previous approaches 

have been simplified to a single objective counterpart, they used SA to optimise 

more than one objective. The objectives were modelled by means of fuzzy 

members.  

Apart from the RCPSP, SA has also been applied to several other 

combinatorial optimisation problems, such as Quadratic Assignment Problem 
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(QAP) (Connolly, 1990) and job-shop scheduling problem (JSSP) (Laarhoven, 

Aarts, & Lenstra, 1992). For more examples of the SA applications refer to (Aarts 

& Lenstra, 1997). 

2.3.1.2 Tabu Search 

Tabu Search (TS) is believed to be the most cited and commonly used. The 

concept of TS, which is based on the work of Glover (1977), was first introduced 

by Glover (1986). In comparison to other single point search methods, TS works 

by explicitly using a history of the search process. With this, TS can avoid falling 

into local optima trap as well as implement explorative strategies. As a basic 

ingredient for the solution search, TS applies the best improvement local search 

operator, whereas to escape from the local optima, TS uses a short-term 

memory, which is implemented in a form of tabu list. Tabu list keeps track of the 

previously visited neighbourhoods and forbids moves toward them. Therefore, 

the moves of TS are only permitted towards solutions neighbourhoods of which 

have not yet been visited. At each iteration, based on the tabu list, via 

improvement local search TS forms a set of allowed solutions. After the set is 

formed, the best solution from this set is chosen as a current best one. Due to 

the dynamics of the search process, TS is considered to be a dynamic 

neighbourhood explorative method (Stutzle, 1999).  

Thomas and Salhi (1998) were the first to apply TS for the RCPSP. The most 

notable characteristic of the presented method is the utilisation of two diverse 

neighbourhood structures.  

Similarly, Nonobe and Ibaraki (2002) proposed a TS method for the RCPSP 

which operates on the Activity List (AL) solution representation scheme and uses 

specific rules for exploring solution search space and defining structure of the 

neighbourhood.  

Klein (2000) developed a so-called reactive TS for the RCPSP with time-

varying resource constraints. The algorithm is based on the AL representation 

and uses a serial Schedule Generation Scheme (SGS) to convert solution 

representation scheme into a schedule. The solution search space is explored by 

swap moves, which involve the relocation of predecessors or successors of the 

swapped activities, given all precedence constraints are satisfied. 
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Another implementation of the TS for project scheduling was presented by Pan 

et al. (2009). The original TS model is improved by optimising the neighbourhood 

exploration mechanism.  

Tsai and Gemmill (1998) developed a TS methodology for deterministic and 

stochastic variants of the RCPSP. To provide more diversified search, the 

presented adaptation of the TS that uses several tabu lists, randomised short-

term memory, and multiple starting schedules.  

One of the most recent applications of the TS for the RCPSP was done by 

Artigues et al. (2003). Their algorithm uses various insertion rules to estimate the 

structure of the neighbourhood and successfully explore the solution search 

space.  

Moreover, TS has been applied to most of the other combinatorial optimisation 

problems, such as QAP (Taillard, 1991), maximum satisfaction (MAXSAT) 

problem (Battitti & Protasi, 1997), assignment problems (Dell'Amico, Lodi, & 

Maffioli, 1999), JSSP (Nowicki & Smutnicki, 1996), and the vehicle routeing 

problem (VRP) (Gendreau, Laporte, & Potvin, 2001). 

2.3.1.3 Greedy Randomised Adaptive Search Procedure 

First introduced by Feo and Resende (1995), Greedy Randomised Adaptive 

Search Procedure (GRASP) is a simple metaheuristic that has been created by 

combining a constructive heuristics and local search operator. The solution 

search process of GRASP consists of two phases: solution construction and 

solution improvement. The first phase, namely solution construction, is 

responsible for building a solution on a step-by-step basis by adding one element 

at a time. The mechanism responsible for this consists of two components: 

dynamic constructive heuristic and randomisation. The second phase of the 

algorithm is a basic local search process. 

The basic versions of GRASP do not require to use any history of the search 

process. Therefore, the only memory requirement of this algorithm is to store the 

best solution found so far. This fact serves as the main reason for integration of 

GRAPS into other metaheuristics. Moreover, due to its simplicity, the GRASP is 

computationally fast and is capable of producing satisfactory results in a short 

amount of time. 

In the literature, there are not many examples of the application of GRASP for 

the RCPSP. The most prominent application of GRASP was done by Alvarez-
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Valdes et al. (2008). The authors studied a generalisation of the classical RCPSP 

which considers the new type of resource. For this problem, several pre-

processing techniques are developed which help to determine the existence of 

feasible solutions and reduce the number of variables and constraints. The 

developed techniques are applied in conjunction with the GRASP.  

Another application of the GRASP is proposed by Ballestin and Leus (2009), 

this time for the SRCPSP. The authors developed an integrated simulation-

optimisation framework, in which GRASP is applied to explore the solution search 

space, while the simulation is used to evaluate the solutions found in the local 

neighbourhood. 

Applications of the GRASP for other optimisation problems were proposed by 

Binato et al. (2000) for the JSSP, Resende and Ribeiro (2001) for the graph 

planarization problem (GPP), and Prais and Ribeiro (2000) for assignment 

problems. For more examples of GRASP applications refer to (Festa & Resende, 

2002). 

2.3.1.4 Variable Neighbourhood Search 

Variable Neighbourhood Search (VNS) is a metaheuristic proposed by Hansen 

and Mladenovic (1999). Its idea is based on the application of strategy that is 

based on a dynamically changing structure of the neighbourhood. The concept 

of the algorithm is very general and there are many degrees of freedom for 

designing its variants and instantiations. The basic versions of VNS begin its 

operation by the structure of the neighbourhood and generating the initial 

population. After this is done, the main cycle begins, which is composed of three 

phases: shaking, local search, and move. In the shaking phase a solution s` in 

the kth neighbourhood of the current solution s is randomly selected. The randomly 

selected solution then becomes the local search starting point. The local search 

then explored other neighbourhoods for a new solution. At the end of the local 

search process, the new solution s`` is compared with s and, if it is better, replaces 

it and the algorithm starts again with k = 1. Otherwise k is incremented and a new 

shaking phase is initiated. 

Fleszar and Hindi (2004) were the first to propose to solve the RCPSP by 

applying the VNS method. The proposed method uses enhanced move operator 

which relocates activities within the AL. To speed up the exploration of the search 

space, authors apply specific lower bounds calculations.  
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Another application of the VNS for the RCPSP is done by Kochetov and Stolyar 

(2011). The developed algorithm includes a new local search and moves 

operators, which greatly improve the performance of the method in comparison 

to other implementations of the VNS for the RCPSP. The method is tested on a 

set of benchmark instances. The results of testing are satisfactory; the algorithm 

shows competitive performance against other trajectory metaheuristics. 

Roshanaei et al. (2009) developed a variation of the VNS for the RCPSP. The 

fundamental difference of the presented method is the obviation of the notorious 

chaotic behaviour of local search-based metaheuristics by the means of insertion 

of several systematic neighbourhood structures. 

Moreover, other notable applications of the VNS and its variants for other 

optimisation problems were done by Fleszar et al. (2009) for the VRP, Fonseca 

and Santos (2014) for high-school timetabling, and by Abdelmaguid (2015) for 

the JSSP. 

2.3.1.5 Guided and Iterated Local Searches 

In contrast to other trajectory methods, which deal with the static neighbourhood, 

the Guided Local Search (GLS) (Voudoris & Tsang, 1999) and Iterated Local 

Search (ILS) (Martin, Otto, & Felten, 1991) dynamically change the structure of 

the neighbourhood space to provide more efficient and effective exploration. GLS 

explores the search space by dynamically changing the objective function, while 

ILS does it with the means of the perturbation (i.e. finds local optima, perturbs the 

solutions, and then restarts the process). Both of these variations of the local 

search most of the times serve as a framework for other metaheuristics or are 

integrated directly into them. 

For the RCPSP, local search methods are usually used in conjunction with 

other algorithms. Therefore, in the literature, there are not many examples of the 

application of non-hybrid local search metaheuristics.  

A local search algorithm for the RCPSP was developed by Pesek et al. (2007). 

Their method uses several improved neighbourhood structures that are identified 

by relocating a fixed amount of activities in the AL.  

Palpant et al. (2004) presented a local search strategy in which a subpart of 

the current solution is fixed and the other part defines a sub-problem which is 

solved by applying a heuristic or an exact method.  
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A complicated local search strategy for the RCPSP is presented by Ranjbar 

(2008). The method represents a filter and fan methodology which operates on 

the AL solution representation and consists of two major mechanisms: local 

search; and filter and fan strategy. The local search uses local move operators to 

estimate structure of the neighbourhood, while the filter and fan strategy uses a 

list of obtained local optima to evaluate the solution neighbourhood defined by 

the local search. 

Nevertheless, GLS, ILS and its variations were extensively applied to solve 

other optimisation problems. For example, Mills and Tsang (2000) applied GLS 

to solve the weighted MAXSAT, Kilby et al. (1999) used GLS to solve the VRP, 

Voudouris, and Tsang (1999) developed a variation of the GLS for the TSP. 

Further, ILS was applied to the TSP (Martin, Otto, & Felten, 1991), QAP 

(Lourenco, Martin, & Stutzle, 2001), and the single machine total weighted 

tardiness problem (Besten, Stutzle, & Dorigo, 2001). 

2.3.2 Population-Based Algorithms 

Rather than dealing with a single solution, population-based methods at every 

iteration deal with a set (i.e. population) of solutions (i.e. individuals). Because of 

this property, population-based metaheuristics explore the search space in a 

more natural and intrinsic way, while the final result of the operation strongly 

depends on the way the population is manipulated. The most studied group of 

population-based metaheuristics in the literature is the category of Evolutionary 

Computation (EC) (Back, Fogel, & Michalewicz, 1997). EC is a sub-field of 

algorithms that are inspired by the nature and capability of living beings to evolve 

and adapt to their environment. Therefore, the algorithms from that category can 

be characterised as computational models of the evolutionary process. 

2.3.2.1 Genetic Algorithm 

Genetic Algorithm (GA), inspired by the process of biological evolution, has been 

introduced by Holland (1975) and is one of the most widely used metaheuristics. 

The ideas of the GA are based on the survival of the fittest process when over 

consecutive generations individuals evolve and the strongest among them 

survive. Each generation consists of a population of individuals in which each 

individual represents a point in the search space and a possible solution to the 

problem at hand. Individuals in the population are made to go through a process 

of evolution which consists of selection, mating (crossover) and mutation. 
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Husbands et al. (1996) outlined the advances of GAs for scheduling and 

illustrated the resemblance between scheduling and sequence-based problems.  

One of the first implementations of GA for the RCPSP was presented by 

Hartmann (1998). He proposed to use a variation of GA where every gene 

composing a chromosome is a delivery rule. Later, Hartmann (2002) improved 

his original method by introducing a self-adapting mechanism. With the inclusion 

of this mechanism, the algorithm is capable of adapting to the problem instance 

by learning which of the decoding procedures is more successful.  

Alcaraz and Maroto (2001) proposed an improved version of the GA which 

includes a new solution representation scheme and advanced crossover 

technique. Further, Mori and Tseng (1997) have applied it to solve the multi-mode 

variant of RCPSP.  

Coelho and Tavares (2003) presented a GA which is based on the AL 

representation scheme and serial SGS. The authors proposed a new crossover 

operator for the AL called late join function crossover. The operator constructs 

new individuals by adopting the solution of the first parent and swapping each 

adjacent pair that is in reverse order in the second one. Similarly, the 

implementation of GA for the RCPSP developed by Hindi et al. (2002) is also 

based on the AL representation and serial SGS. However, in this method, the 

initial population is produced by a pure random mechanism.  

Tolku (2002) developed a GA which instead of using solution representation 

schemes, directly works with schedules (i.e. vectors of starting times). Since 

genetic operators (crossover and mutation) may produce infeasible schedules, 

the author developed a penalty function, which is used to evaluate the constraint 

violations. 

A slightly different approach for GA implementation was shown by Zhu et al. 

(2011). Unlike any other traditional GA implementations, the authors 

implemented a resource fragment mechanism that stores such information as 

starting times and resource distributions of the activities. In order to generate a 

feasible schedule and further improve it, a resource allocation and schedule 

enhancement methods are implemented. The quality of the constructed schedule 

is evaluated with the new fitness function.  

GAs have been extensively applied to most of the optimisation problems. 

Examples of such uses include the TSP (Grefenstette, Gopal, Rosmaita, & Gucht, 

1985) and QAP (Kratica, Tosic, Filipovic, & Dugosija, 2011) among all. For an 
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extensive collection of more examples of GA applications refer to the survey of 

Blum and Roli (2003). 

2.3.2.2 Particle Swarm Optimisation 

Particle Swarm Optimisation (PSO) was introduced by Kennedy and Eberhart 

(1995) and represents a population-based stochastic optimisation technique 

inspired by social behaviour of bird flocking or fish schooling. In a PSO, at each 

iteration, a group of individuals is adjusted closer to the fittest member of the 

population. This principle resembles a flock of birds who circle over an area where 

they can smell a hidden source of food. The one who is closest to the food chirps 

the loudest and the other birds swing around in his direction. If any of the other 

circling birds comes closer to the target than the first, it chirps louder and the 

others move toward him. This tightening pattern continues until one of the birds 

happens upon the food. 

One of the most notable applications of the PSO for the RCPSP was done by 

Chen et al. (2010). The authors proposed two scheduling rules: delay local search 

and bi-directional scheduling rule. To speed up the procedure of solution 

makespan evaluation, critical path calculations are used. Simulation results 

indicate the efficiency of the proposed algorithm in producing high-quality 

solutions. 

Another application of the PSO for the RCPSP was presented by Zhang 

(2005). In order to deal with permutation feasibilities and precedence constraints 

during particle flying, the hybrid particle-updating mechanism is introduced. The 

potential solutions represented by particles (or exact positions of the particles) 

either in the permutation form or in the priority form are transformed to feasible 

schedules. The transformation is done using a serial SGS. 

Linyi (2007)  presented an implementation of a PSO for the RCPSP with the 

one-point crossover. The author introduced a new method for calculating the 

crossover function based on the precedence feasibility list of the activities. 

Moreover, a new approach for representation of particle evolution is presented 

and explained. The computational experiments showed that the developed 

modification of the PSO outperformed several other non-hybrid heuristics. 

Moreover, applications of the PSO to other combinatorial optimisation 

problems are quite common. Few examples of such are TSP (Shi, Liang, Lee, 

Lu, & Wang, 2007) and JSSP (Surekha, Raajan, & Sumathi, 2010). 
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2.3.2.3 Ant Colony Optimisation 

Ant Colony Optimisation (ACO) is a population-based metaheuristic approach 

proposed by Dorigo (1999), the main source of inspiration of which is the foraging 

behaviour of the real ants. ACO is based on a parametrised probabilistic model 

– the pheromone model – which is used to model the chemical pheromone trails. 

In the ACO, the solutions are incrementally constructed by ants. This is achieved 

by adding opportunely defined solution components to a partial solution under 

consideration. For this, artificial ants perform randomised walks on a completely 

connected graph, vertices of which are solutions components. In the literature, 

this graph is commonly referred to as the construction graph. 

The first application of the ACO for the RCPSP was presented by Merkle et al. 

(2002). In the proposed approach, a single ant corresponds to one application of 

the serial SGS. The eligible activity to be scheduled next is selected using a 

weighted evaluation of the latest start time priority rule and so-called 

pheromones, which represent the learning effect of previous ants. A pheromone 

value describes how promising it seems to put a certain activity in the schedule. 

Further features of the approach include separate ants for forward and backwards 

scheduling and 2-opt-based local search phase at the end of the heuristic’s 

operation. 

An improved ACO for the RCPSP was introduced by Luo et al. (2003). The 

general ACO is improved by using the ant with backtracking capabilities and 

several kinds of heuristics for the construction of the solution. The combination of 

direct and summation pheromone evaluation methods and the pseudo-random-

proportional action choice rule are also used.  

Similarly, another implementation of the ACO was developed by Yuan et al. 

(2009). In the method, task duration and resources are considered as the 

heuristic information. This information is later used to calculate the accurate state 

transition probability and reach the scheduling optimisation.  

Successful adaptations of the ACO to other optimisation problems include the 

application to routeing in communication networks (Caro & Dorigo, 1998), 

sequential ordering problem (SOP) (Gambardella & Dorigo, 2000), JSSP (Dorigo 

& Stutzle, 2003). 



28 
 

2.3.2.4 Scatter Search 

Scatter Search (SS) and its more generalised form path relinking were developed 

by Glover et al. (2000). Their main difference from other ECs is the introduction 

of unifying principles for joining (or recombining) solutions based on the 

generalised path constructions in the Euclidean or neighbourhood spaces. 

Moreover, these methodologies also incorporate ideas that were originated from 

the TS, such as the use of adaptive memory and associated memory-exploiting 

mechanism. SS (as well as path relinking) is a search strategy that generates a 

set of solutions that are chosen from a set of reference solutions corresponding 

to the problem under consideration. Once the set of solutions is constructed, an 

improvement mechanism is applied. The improved solutions then form a set of 

dispersed solutions, which later is used as reference solutions at the next 

iterations. 

One of the first application of the SS for the RCPSP was done by Ranjbar and 

Kianfar (2009). The authors presented an improvement to their original local 

search method, this time, it was SS method with double justification technique. 

The method operates on the topologically ordered AL representation and uses 

double justification to perform backwards and forward shifts for further 

improvements of the schedules. In the same year, another SS variant was 

proposed by Mahdi-Mobini et al. (2009). Similarly to the previous method, the 

presented algorithm also operates on the AL representation and uses double 

justification technique. On the other hand, this approach incorporates two point 

crossover operator, a path relinking strategy, and a permutation-based operator. 

Another application of the SS for the RCPSP was proposed by Berthaut et al. 

(2014). The presented SS includes a new move operator and path relinking 

method which are used in conjunction together. The algorithm is tested on the 

PSPLIB test instances and demonstrated the best results among other compared 

metaheuristics. 

The most recent SS adaptation for the RCPSP is developed by 

Paraskevopoulos et al. (2012). Unlike other methodologies for the RCPSP, the 

presented approach is based on a new representation of a solution called the 

event list. This representation scheme is based on an ordered list of events that 

are sets of activities that start at the same time. Moreover, the algorithm 

incorporates a new improvement method and event list-based combination 

method. 
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Because of its relative newness, there has been an increasing interest in SS 

in recent years. Examples of its application are multi-objective assignment 

problems (Laguna, Lourenco, & Marti, 2000) and linear ordering problems (LOPs) 

(Campos, Glover, Laguna, & Marti, 2001) among all. For further SS applications 

refer to a survey done by Glover et al. (2005). 

2.3.2.5 Cuckoo Search 

Developed by Yang and Deb (2009), Cuckoo Search (CS) is one of the recently-

introduced metaheuristic algorithms. CS was inspired by the broom parasitism of 

some cuckoo species that lay their eggs in the nests of the birds of other species. 

In the basic version of CS, the cuckoos are illustrated as basic search agents. 

Eggs in nests serve as candidate solutions for the problem at hand and each egg 

is a metaphor for a new solution. The main goal is to use new and potentially 

better solution to replace a worse solution in the nest.  

Based on the work done in (Yang & Deb, 2010), CS has shown itself as a very 

efficient algorithm for finding the global optima with high success rate. Yang 

(2010) showed that in some cases CS was superior to both PSO and GA in terms 

of efficiency and success rate. Moreover, primarily because of its effectiveness 

and simplicity, CS has managed to attract the attention of many researchers from 

different application fields and domain, refer to (Nguyen, Truong, & Phung, 2016; 

Teymourian, V.Kayvanfar, Komaki, & Zadeha, 2016; Sekhar & Mohanty, 2016; 

Elazim & Ali, 2016) for examples.  

In terms of applications of CS to problems in the discrete domain, as of today 

there are not many cases. One of the first works that attempted to solve a discrete 

optimisation problem using CS was presented by Ouaarab et al. (2013). In their 

work, the authors used the basic and improved CSs to solve the travelling 

salesman problem. Further, CS has also found a recent and significant 

application to the NP-hard annual crop-planning problem by Chetty and Adewumi 

(2013). 

More recently, Yang (2012) proposed a generalised version of CS called 

Flower Pollination Algorithm (FPA). The algorithm is based on the principle of 

pollination of flowers, however, it bears a lot of similarities with the CS. The major 

difference between these two is the application of the crossover operator in FPA. 
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2.3.3 Hybrid Algorithms 

Nowadays, one of the biggest trends in the engineering optimisation is the 

hybridisation of metaheuristics. Hybrid algorithms exploit the complementary 

character of different optimisation strategies. As a result, choosing an adequate 

composition of several algorithmic concepts for hybridisation can be the key for 

achieving better performance in solving many hard optimisation problems. 

Several forms of hybridisation of metaheuristics exist. Talbi (2002) in his survey 

on hybrid metaheuristic proposed to classify hybridisation forms as follows: 

 Hybridising metaheuristics with (meta-) heuristics 

 Hybridising metaheuristics with constraint programming 

 Hybridising metaheuristics with tree search techniques 

 Hybridising metaheuristics with problem relaxation 

 Hybridising metaheuristics with dynamic programming 

The process of designing and implementing effective hybrid metaheuristic is 

rather complicated and requires broad knowledge of algorithmic techniques and 

specifics of the problem to which the algorithm is going to be applied. 

Nevertheless, despite such complexities, a large number of publications (Bluma, 

Puchingerb, Raidlc, & Roli, 2011) documents great success and benefits of 

various hybrid approaches.  

In the review done by Kolisch and Hartmann (2006) on the latest state-of-the-

art heuristics for the RCPSP, the best performance results were achieved indeed 

by a hybrid metaheuristic developed by Valls et al. (2003). This algorithm is based 

on the GA and introduces several changes to the original paradigm: a local 

improvement operator; a new selection mechanism; and new crossover operator 

specific for the RCPSP. The new crossover operator, called peak crossover, is 

designed to combine useful problem-specific information extracted from the 

parents for the purpose of generating high-quality offspring. 

Moreover, in the last decade, more researchers resorted to the development 

of the hybrid approaches for the RCPSP. One of the first of such methodologies 

was introduced by Valls et al. (2003). The presented algorithm is a population-

based method with a TS integrated into it that uses a topologically ordered 

random key (RK) as the representation of a solution. The solution neighbourhood 

is structured and explored by the application of three different types of local move 

operators. Likewise, Kochetov and Stolyar (2003) proposed an evolutionary 

algorithm that combines the GA, the path relinking and the tabu search. 



31 
 

In (2004), Valls et al. proposed another hybrid population-based methodology 

for the RCPSP. The authors applied a combination of scatter search (SS) and 

path relinking strategies. Moreover, for subsequent improvement of the results, 

the algorithm uses a forward and backwards schedule improvement technique, 

commonly referred to as double justification (Valls, Ballestıń, & Quintanilla, 2005). 

Tseng and Chen (2006) developed a hybrid metaheuristic which they applied 

to solve the RCPSP. The presented algorithm hybridises the ACO, GA and TS 

methods. In particular, ACO is used to create an initial population, GA to further 

improve it, and TS for supplementary modifications. 

A more complicated way of a solution search space exploration was proposed 

by Debels et al. (2006). The developed algorithm represents a hybrid 

metaheuristic which is implemented by combining SS and the ideas of the 

electromagnetism. For this method, the authors developed a specialised 

representation of a solution and new intensification procedure.  

Debels and Vanhoucke (2005) presented another hybrid methodology for the 

RCPSP, this time, based on the GA. The presented method deconstructs the 

RCPSP into various sub-problems which re further solved with the application of 

the GA. As the next step, the sub-solutions are assembled by the solution 

framework. In a similar fashion, Mendes et al. (2009) presented a GA that uses 

an RK as default representations of a solution.  

Another hybrid methodology was presented by Agarwal et al. (2011). The 

authors proposed a neurogenetic algorithm for the RCPSP. The algorithm works 

by hybridising a population-based strategy that is based on a GA and local search 

algorithms and principles of the neural networks. Similarly to previously reviewed 

algorithms, the presented algorithm also operated on the AL representation. 

Finally, an improved immune algorithm for the RCPSP was proposed by Wu 

et al. (2011). The presented approach is a population-based metaheuristic that 

emulates the immune system of living organisms. It uses an RK as solution 

representation scheme, random numbers of which are obtained by the chaotic 

generator, and incorporates a novel hypermutation mechanism. 

2.3.4 Multimodal Optimisation Algorithms 

One common characteristic of methodologies that were presented in this 

literature review so far is that they all focus on obtaining only one solution at the 

time. 
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Ikeda and Kobayashi (2000) examined fitness landscapes of the most popular 

combinatorial optimisation problems, such as JSSP and TSP, and demonstrated 

that these problems typically have deceptive multimodal landscapes (i.e. strong 

local optima exist far from the global optima). Moreover, the authors showed that 

the fitness landscapes of these problems have structures of a big valley (Boese, 

1995), meaning that one area of the solution space might contain many solution 

candidates that tend to be very similar to each other. Depending on the problem 

instance, its fitness landscape might consist of several big valleys. If valley that 

contains the global optimum covers a much smaller part of the domain that the 

other valleys, this topology poses considerable challenges for search heuristics, 

as most searches are drawn toward the bottom of suboptimal valley. Ikeda and 

Kobayashi (2000) referred such topologies as UV-valleys, primarily for their 

structural appearance as can be seen Figure 2.1. 

 

Figure 2.1 – Concept of U- and V-valleys 

Czogalla and Fink (2009) also independently analysed a fitness landscape of 

the RCPSP and provided a statistical analysis of their research. The authors 

proved that the solution space of the RCPSP, similarly to other combinatorial 

optimisation problems, has a big valley structure and showed that good solutions 

tend to be close to other good solutions (but not too close) and they are spread 

all around the solution search space. The statistical analysis indicated that the 

landscape of the RCPSP consist of several interior plateau meaning that one 

instance of the problem can have multiple optimal solutions. 

More recently, Pérez et al. (Pérez, Posada, & Lorenzana, 2015) applied Multi-

Modal Genetic Algorithm (MMGA) to solve the Resource-Constrained Multi-

Project Scheduling Problem (RCMPSP), which is the derivative of the standard 

RCPSP. In their work, the authors were able to prove that multiple optima can be 

obtained in the RCMPSP, as well as to demonstrate that multimodal techniques 
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provide better performance than other alternative commonly accepted 

methodologies for RCMPSP. Moreover, in his previous works (Pérez, Herrera, & 

Hernández, 2003; Pérez, Posada, & Herrera, 2012), Pérez successfully applied 

similar approach for solving the JSSP. 

From the above-mentioned works, it can be concluded that globally multimodal 

landscapes of these problems consist of plural big valleys, and each of them has 

its own important local or global optima. In the example presented in Figure 2.1, 

a sample fitness landscape of a two-dimensional problem contains two big 

valleys. It is worth mentioning that U- and V-valleys are not explicitly identified by 

heuristics in the search process, as these are just relative concepts. From the 

presented example, it can be noted that one of the valleys seems to have a 

relatively better fitness than the other one at the beginning of the search process. 

If the global optima are located in a V-valley, traditional heuristics are likely to fail 

to find it, because the search will go toward a more promising area (U-valley). As 

the result, the effect of premature convergence will occur. 

One of the possible ways of the diversification of a search process and 

elimination of possibilities of falling into local optima trap is to maintain the 

diversity of a population. This can be achieved by diverting the search process 

into various regions of the search space simultaneously. In the optimisation this 

is achieved by application of methods specifically designed for tackling 

multimodal optimisation problems. Every multimodal optimisation technique has 

to simultaneously fulfil two partially conflicting tasks: to locate multiple optima and 

to maintain a set of best solutions for diversity purpose. 

Several attempts have been made to transform EC methods so that they could 

be applied in problems with globally multimodal landscapes (refer to (Eiben & 

Smith, 2003) for recent surveys). However, when tailoring such EC, there are a 

number of issues to be considered: 1) the division of a population into sub-

populations; 2) preservation of these sub-populations; 3) connection of these 

populations to the existing optima in the solution space. In the literature, the most 

popular and effective technique that managed to address all three issues is 

niching.  

In nature, an ecosystem consists of regions (niches). A niche represents a part 

of a habitat where a living thing makes its home. Each of these niches has a 

diverse set of characteristics and stimulates the formation and subsequent 

development of different types of species. Hence, species is a living thing that 
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lives in a niche. To allow the coexistence in their niches, the individuals that form 

a species share a set of similar biological features. Moreover, this set of biological 

species allows them to breed with each other, and, at the same time, makes the 

interbreeding among members of different species impossible. Usually, the 

individuals that form a species depend on the resources their niche provides to 

them. In the context of optimisation problems, each niche is represented by a 

region of a search space and is related to a peak of the fitness landscape. 

Species that inhabit that niche represent a solution candidates for the problem. 

In this respect, niching or speciation techniques have been proposed for the 

simultaneous evolution of subpopulations.  

Mahfoud (1995) undertook a detailed comparison of popular sequential and 

parallel niching methods. By applying reviewed techniques on various multimodal 

problems, the author concluded that parallel niching outperforms sequential 

niching in all problems with intermediate to high complexity. Sequential niching 

was only able to solve problems of low complexity. The most competitive 

sequential niching techniques are those of, Beasley et al. (1993), and Li et al. 

(2004). 

Many different parallel niching concepts and methodologies have been 

developed. The most prominent examples of such techniques are species 

conservation (SC) (Li, Balazs, & Parks, 2002), clustering (Yin & Germay, 1993), 

fitness sharing (FS) (Cavicchio, 1970), crowding (Jong, 1975), clearing 

(Petrowski, 1996), restricted tournament selection (RTS) (Harik, 1997), and 

niching memetic algorithm (NMA) (Moscato, 1989). 

2.3.4.1 Species Conservation 

Species Conservation (SC) is a recent technique that was introduced by Li et al. 

(2002) and it realises niching by utilising the idea of species. The technique is 

based on the concept of separation of the population into several species 

according to their similarity and the subsequent evolution of the species in 

parallel.  

In SC, a species represents a subset of finite population PN, which is composed 

of individuals that are considered to be similar enough to each other. The 

similarity is defined by calculating a distance d between individuals with respect 

to the species distance parameter σs. If a distance between two individuals is less 
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than half the species distance (i.e. σs/2), then they are assigned to the same 

species.  

To divide a population into species and determine which individuals will be 

preserved into the next generation later, a set of species seeds Xs is established. 

In the beginning of the procedure, the population is sorted in descending order of 

fitness of its members. Then. After sorting is completed, the fittest member is then 

added to the Xs as the first species seed. Then, for each member of the 

population, a distance is calculated between him and species seeds in the Xs. If 

the distance is greater than σs/2, the individual is added to the Xs.  

After all species have been established, the population is evolved by applying 

the usual genetic operators: selection, crossover, and mutation. Since some 

species may not survive the outcomes of these operations, they need to be 

copied into the next generation, thus prolonging their existence. To do so, the 

species seeds of the previous generation are replaced with the individuals of the 

same species in the next generation if their fitness is worse than of those in the 

previous generation. If no individuals of the same species are found in the next 

generation, the worst individual of the new population is replaced by the species 

seed. Since the species seeds are being taken from the previous generation, the 

number of species is always less than the population size. 

Li et al. (2002) integrated SC technique into simple GA and presented Species 

Conserving Genetic Algorithm (SCGA). The performance of the SCGA was 

successfully tested on various multimodal test functions. The test results proved 

this technique to be very effective in locating multiple global optima. One of the 

biggest advantages of the SCGA is that it makes no distinction between 

genotypes and phenotypes. Therefore, the genetic operators are applied directly 

to individuals represented by arrays of real numbers, thus increasing the 

simplicity of the technique. The results of further experiments ran by Li and Wood 

(2009) confirmed the effectiveness and efficiency of this technique. 

Parrot and Li (2004) and Li (2004) proposed a Species-based Particle Swarm 

Optimisation by applying SC concept to the basic PSO. The main strength of the 

basic PSO is the ability to adaptively adjust particles’ positions based on the 

dynamic interactions with other particles in the population. Because of that, the 

algorithm becomes very well suited for application in problems with the 

multimodal landscape. Using the SC technique, the presented algorithms 

determine the neighbourhood best particles and use them to guide different 
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portions of the swarm population towards different optima. The proposed 

methodologies were successfully tested on various multimodal problems from the 

literature. 

Analogously to the previous methodologies, Iwamatsu (2006) extended the 

original PSO with the SC technique. The algorithm works by dividing particle 

swarm into multiple species. Each species explores a different area of the search 

space independently by sharing information to its members. To provide 

information exchange between species, the immigration of particles from one 

species to another is implemented. The performance of the algorithm is 

compared with several other proposals on a set of multimodal test problems. 

Ando et al. (2005) incorporated SC into a GA to receive Adaptive Isolation 

Model algorithm. The presented approach applies SC to detect clusters in the 

population which are identified as attractors in the fitness landscape. The 

subpopulations, which make-up clusters, are then isolated and each is optimised 

independently, whereas the regions of these subpopulations are suppressed. 

The purpose of isolation is to increase comprehensiveness, i.e. the probability of 

finding stronger attractors, and the overall efficiency of the multimodal process. 

In comparison to other SC-based methodologies, the algorithm does not require 

to configure species distance parameter σs, as it is estimated from the 

variance/covariance matrix of the subpopulations. 

Stoean et al. (2010) presented a Topological Species Conservation Genetic 

Algorithm that integrates the conservation of the best successive local individuals 

with topological subpopulations separation, instead of the common radius-

triggered manner. The algorithm inherits the ideas of SC of establishing and 

conserving dominating individuals, and, at the same time, uses the principles of 

the multinational GA to establish sub-populations and distinguish between basins 

of attraction. Such approach allows to control seed dynamics even further, both 

as replication and exploration are concerned, and eliminates the requirement of 

the species distance σs. 

Dong et al. (2005) used SC technique in conjunction with mixed mutation 

strategy. The presented technique mixes Gaussian, Cauchy, Lévy, single-point 

and chaos mutations, which are then applied to the each individual in the 

population to generate an offspring according to a mixed strategy distribution. 

Mixed strategy distribution is dynamically adjusted based on the performance of 
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the mutation strategies. The addition of the SC eliminated the premature 

convergence. 

Shibasaka et al. (2007) presented a Species-based Differential Evolution 

(SDE). The presented method is the first attempt to integrate SC into DE. The 

method showed promising results in locating multiple global optima. 

2.3.4.2 Clustering 

To promote the formation of the niches and at the same time eliminate the need 

for estimation of the niche radius parameter σshare (needed in the majority of other 

niching techniques), Yin and Germay (1993) proposed clustering. 

In the original clustering technique, niches are formed using the adaptive 

Macqueen’s K-means clustering algorithm (MacQueen, 1967). The procedure of 

clustering (niches formation) is normally utilised in population-based 

metaheuristics and performed at each generation. The procedure begins with the 

initialisation of a fixed number (k) of seed points, referred to as the best k 

individuals. Using a minimum allowable distance dmin between niche centroids, 

the clusters are built around each seed point. Then, based on the values of dmin 

and dmax parameters, the remaining members of the population are added to these 

existing clusters or are used to form new ones. The final fitness of each individual 

is calculated using the following relation: 
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Where nc is the number of individuals in the niche containing the individual i 

and dmax is the maximum distance allowed between an individual and its niche 

centroid. As can be noted from (2), the estimation of a fitness is based on the 

distance di,c between the individual i and its niche centroid. Such method of 

estimation significantly reduces the time complexity.  

Yang et al. (2005) proposed Density Clustering technique. With the aim of 

preventing the loss of diversity, Yang et al. replaced the global selection 

procedure applied to the whole population with the local selection strategy which 

is applied to sub-populations instead. Thus, the species that are represented by 

sub-populations are dynamically identified using density-based clustering 

algorithm. The algorithm also includes a method for automatically calculating the 

clustering threshold. 
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Gan and Warwick (2001) proposed the Dynamic Niche Clustering. The 

developed technique represents an improvement to the original methodology and 

is a niching method that manages a separate population of overlapping fuzzy 

niches. Each of the fuzzy niches has independent radii which operate in the 

decoded parameter space and is maintained alongside the normal population. 

Moreover, the authors implemented a speedup process that is applied to the 

initial population with the goal of reducing the time complexity of the preliminary 

stages. It is demonstrated that the added process improves the overall 

robustness of the technique. 

Streichert et al. (2004) proposed a variation of the clustering strategy for the 

EC. The basic idea of the proposal is to transfer the biological concept of non-

interbreeding species living in separate ecological niches into EC. The technique 

artificially separates the initial population into species by locating the clusters of 

individuals in the search space, which naturally occur due to the general 

convergence of EC algorithms. These clusters are then separated into isolated 

subpopulations in which individuals compete and breed like in any traditional EC. 

Each of the subpopulations converges to a global/local optimum. The division of 

the population into species the diversity in the population. 

Jelasity et al. (2001) proposed the Abstract Clustering technique for 

multimodal optimisation. To accelerate and parallelise existing search methods, 

the authors proposed to create clusters with the application of the hill climber 

technique. The communication between clusters is minimal and as the search 

goes on, the volume of clusters decreases. The process of clusters decrease is 

implemented in the similar fashion as cooling in the SA. The reason for limited 

communication between clusters is to ensure that each hill is explored only by 

one hill climber. The authors embedded their technique into a GA and the results 

of the evaluation confirmed its effectiveness. 

Alamil et al. (2009) presented a fuzzy clustering-based PSO that does not 

require any prior information about the cluster radius σshare and a number of known 

optima. The basic idea of this technique is to maintain and promote the formation 

of the parallel sub-swarms using fuzzy clustering. Since σshare is dynamically 

adapted, a fine local tuning is used to improve the solution during the evolution 

of the process.  

Another method based on fuzzy clustering is proposed by Alami et al. (2007). 

In the presented approach, namely Multi-Population Cultural Algorithm, with the 



39 
 

application of the fuzzy clustering technique, the entire population is divided into 

smaller subpopulations. These sub-populations and their belief spaces are kept 

isolated and handled by their own local cultural algorithm. Therefore, to follow the 

principle of social environment, the cultural exchange concept is implemented. 

Experimental results indicate that proposed methodology performs better than 

normal fitness sharing technique and demonstrate that the method is capable of 

optimising high dimensional multimodal functions. 

Ling et al. (2008) utilised the clustering strategy into GA to eliminate the genetic 

drift that is introduced by the crowding strategy. To combine the clustering and 

crowding technique, the authors introduced a peak detection concept. The niches 

and clusters in the fitness landscape of a given problem are formed using the 

standard crowding strategy. Different niches can coexist in the same cluster and 

lead to the same optimal solutions. To remove the genetic drift caused by the 

tendency of crowding techniques to converge to numerous potential solutions 

simultaneously, the clustering operator is employed to stimulate exploration of 

the entire solution search space. 

Passaro and Starita (2008) used k-means clustering technique in the 

conjunction with PSO for identifying niches within the swarm and locating multiple 

global optima. 

2.3.4.3 Fitness Sharing 

Amongst all proposed niching techniques, Fitness Sharing (FS) is the first one 

that attempted to deal directly with the locations and preservations of multiple 

solutions. The original concept was proposed by Goldberg (1987) and was further 

improved by Goldberg and Richardson (1987). The main idea of FS is to divide 

the population into different sub-groups according to the similarity of the 

individuals and within each of the subgroups, its members will share the relevant 

information among them. 

FS works by modifying the search space and reducing the payoff in densely 

populated regions. As the outcome, the fitness of each individual within the 

subgroup is decreased by an amount nearly equal to the number of similar 

individuals. Typically, the shared fitness fi’ of an individual i with the fitness fi is 
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where mi is a niche count parameter which represents the number of members 

with whom the individual shares his fitness. The niche count is the sum of the 

sharing function of all individuals in the population: 


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where NP is the size of the population and di,j is the distance between individuals 

i and j. Therefore, the sharing function (sh) estimates the level of similarity 

between members of the population and is calculated as follows: 
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where σshare represents the threshold of dissimilarity and α is the constant 

parameter which regulates the shape of the sharing function. If α is set to one, 

the resulting sharing function is the triangular sharing function (1987). The 

distance di,j between two individuals is characterised by a similarity metric based 

on either genotypic or phenotypic similarity. Deb and Goldberg (1989) show that 

sharing based on phenotypic similarity may give slightly better results than 

sharing with genotypic similarity.  

Goldberg and Wang (1998) proposed an alternative sharing scheme known as 

the Evolutionary Sharing. The scheme surpasses limitations of the original FS 

scheme by letting niches adapt to complex landscapes, thus, promoting a better 

distribution of solutions for problems with many poorly spaced optima. The 

presented technique is based on the principles of Monopolistic Competition in 

economics. In accordance with this principle, two populations are utilised – a 

population of customers and population of businessmen. The individuals from 

both populations attempt to maximise their interests by evolving nearby spaced 

niches consisting of the fittest individuals. The solutions to the problem at hand 

are represented by the members of businessman population.  

Analogously, to overcome the limitations of the original technique, Della 

Cioppa et al. (2007) proposed Dynamic Fitness Sharing. The proposed method 

allows an explicit, dynamic identification of the species discovered at each 

generation. The authors implemented a species elitist strategy which consists of 

the localisation of species on the fitness landscape and application of the sharing 

mechanism to each of them. The performance of the method is assessed using 
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a set of standard multimodal test functions adopted from the literature. 

Experimental results confirm that the technique performs significantly better than 

original fitness sharing. 

Horn (2002) proposed a composite of resource sharing and FS named 

Resource-Based FS. Unlike traditional FS techniques, the presented method 

exploits principles of the resource sharing which are based on nature's way to 

induce speciation during evolution. The explicit use of resources keeps the 

calculations of equilibrium points simple, whereas the path to the equilibrium does 

not lose key species along the way. 

Thomsen (2004) integrated the FS concept with the DE to form the Sharing 

Differential Evolution. The sharing DE utilises the classical sharing technique 

described previously and uses the Euclidean distance for estimation of the 

similarity between individuals. At each iteration, the algorithm generates a 

number of offspring equal to the size of the parent population NP. After NP 

offspring is generated, the fitness of each individual is calculated using the 

sharing function and the worst half of the population is purged. The algorithm 

provides elitism by always preserving the individuals with the best un-scaled 

fitness. 

Salazar-Lechuga and Rowe (2005) introduced the algorithm that combines the 

concepts of PSO and FS to tackle the multimodal optimisation problems. Ideas 

of the PSO are extended with the FS function, allowing the algorithm to spread 

particles along the Pareto front and guide the search in right directions. Because 

of that, the FS function is used in the objective space. This promotes the diversity 

in the population, as particles within highly populated areas in the objective space 

are less likely be followed. At each iteration, the particles with the highest fitness 

are inserted into the repository. The particles from the repository are then used 

to guide the search for the next generations and conserve a set of non-dominated 

solutions until the end of the run. 

2.3.4.4 Crowding 

Crowding (Jong, 1975) is motivated by the analogy of the competition for limited 

resources among individuals of the same species in the natural population. Its 

ideas are based on the principle that dissimilar individuals tend to reside in 

different niches and, as the result, they do not compete. In the original proposal, 

De Jong (1975) proposed a simple method which replaces individuals with lower 
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fitness with the newly generated individuals, assuming they are similar enough. 

The similarity between individuals, likewise in other niching techniques, is defined 

by a distance d between them (i.e. the closer individuals are, the more similar 

they are). In genotypic distance sharing the distance function is simply the 

Hamming distance, whereas in phenotypic distance sharing the distance function 

is defined using some problem-specific knowledge, the most common choice of 

which is the Euclidean distance.  

The technique can be compared to a simple GA. The main difference between 

those two is that in crowding only a fraction of the global population (indicated 

generation gap G) reproduces and dies in each generation. As the result, in the 

crowding, new members of a particular species replace older members of that 

species. Such way the pre-existing diversity of the population is always 

maintained.  

Moreover, in contrast to other niching methods, crowding does not assign 

individuals to fitness peak. Instead, the number of individuals that is assembled 

on the peak is largely determined by the size of that peak’s basin of attraction. To 

estimate the size of a niche, a random sample of individuals is taken from the 

population, denoted by the crowding factor CF. If the value of CF is set too low, 

in some cases the individual from the population might be replaced by the new 

individual that is not similar enough, thus creating the replacement error. To 

overcome this problem, CF should be very large or equal to the number of 

individuals in the population. Because of the frequent occurrences of the 

replacement errors, the initial crowding of De Jong was shown to be of limited 

usefulness in multimodal optimisation (Deb & Goldberg, 1989). 

Mahfoud (1992) reviewed De Jong’s (1975) original crowding technique and 

proved its inability to maintain more than two peaks of a multimodal objective 

function, mainly due to the replacement errors that result from a genetic drift. As 

a solution to this issue, Mahfoud (1992) proposed the improvement of the original 

method called Deterministic Crowding. The objective of the deterministic 

crowding is to maintain diversity in the population, eliminate any parameters that 

require problem specific knowledge, reduce the occurrence of replacement 

errors, and improve selection mechanism. The proposed algorithm works by 

selecting two parents from the current population and randomly performing 

crossover and mutation on them. As the outcome of this procedure, two offspring 

are generated. Then the children replace the nearest parent if they have better 
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fitness. In the case of a tie, parents are preferred. The procedure is performed 

Np/2 times (where Np is the population size). Thus, deterministic crowding results 

in two sets of tournaments: (parent 1 against child 1 and parent 2 against child 2) 

or (parent 1 against child 2 and parent 2 against child 1). The set of tournaments 

that yields the closest competitions is held. 

With the aim of improving the performance of GAs for multimodal optimisation 

in ill-scaled and locally multimodal domains, Ando et al. (2005) developed a 

Sample-Based Crowding. In the presented scheme, the pairs for tournament 

selection are determined based on a statistical comparison of their fitness values. 

The technique takes into account ranks of the parents among the sampled values 

in the selection process which are used to determine their indispensability. These 

measurements are scale-invariant, thus enabling the proposed method to search 

a domain without presuming a distance between optima and eliminating the need 

for scaling and correlating the variables. 

Thomsen (2004) extended DE with a crowding technique to receive Crowding 

Differential Evolution. In crowding DE an offspring is generated by using the 

standard DE operators, which then competes against the most similar individuals 

in the current population. The individual is replaced if the value of his fitness is 

worse. To avoid a replacement error, the value of crowding factor CF is equal to 

the population size NP. 

Zaharie (2004) proposed a Multi-population Crowding Differential Evolution by 

integrating crowding technique into DE algorithm. Under this scheme, the 

initialisation of subpopulations is no longer necessary, as each subpopulation is 

now capable of locating multiple global optima. To avoid global processing, the 

use of crowding is only limited to the establishment of subpopulations. 

Similarly, another integration of crowding into DE is presented by Kundu et al. 

(2013). To avoid the use of niching parameters that require prior knowledge about 

the fitness landscape, the authors used local mutation for search the solution 

space. Moreover, a speciation-based memory archive is integrated for 

regeneration of population after an environmental change is detected. The 

experimental analysis and comparison with other peer algorithms confirmed the 

effectiveness of the proposed method. 

To handle multimodal optimisation problems, Angus (2009) incorporated the 

idea of crowding into ACO. The implementation of the crowding helps to maintain 

the diversity of the population, making the ACO more robust. During the 
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experimental evaluations, the algorithm was able to locate and maintain multiple 

spatially distributed near-optimal solutions for various multimodal test problems. 

2.3.4.5 Clearing 

Petrowski (1996) presented the clearing procedure. It draws inspiration from the 

principle of sharing of limited resources among the strongest members of the 

niche and elimination of weaker individuals of the same niche. 

Typically integrated into GAs, the clearing procedure is applied between the 

processes of the fitness evaluation of all members of population and selection for 

the crossover. Similarly to other niching methods, the clearing uses a dissimilarity 

measure between individuals to determine whether they belong to the same 

subpopulation or not. This value could be the Hamming distance for binary coded 

genotypes or the Euclidian distance for real-coded genotypes. Each 

subpopulation contains a dominant individual: the one that has the best fitness. 

If the individual belongs to a given subpopulation, then its dissimilarity with the 

dominant is less than a given threshold σc (clearing radius). 

In this method, each subpopulation contains a dominant individual: the one 

with the best fitness. The fact that an individual belongs to a subpopulation means 

that it is at less than a threshold σc from this subpopulation’s dominant. But, 

differently from sharing, in clearing the dominant’s fitness is preserved and all the 

other individuals have their finesses zeroed (in the case of maximisation 

problem). In other words, all resources of the niche are given to only one 

individual: the so-called winner. 

Petrowski (1996) generalised the basic clearing technique, stating that each 

niche can by dominated by more than one winner. The maximum amount of 

winners that can dominate the niche is defined by the capacity (k) parameter. The 

niche’s capacity can range from 1 to the population size, therefore, the niching 

effect can be, respectively, maximised or minimised as convenient. 

Dick (2010) developed an extension to the original clearing method called local 

clearing. The presented technique uses information gained during the course of 

evolution to accurately determine the correct niche radius in both real-parameter 

and discrete optimisation problems. This adaptability of the niche radius is based 

on the fact that the parallel instances of niching within local clearing allow each 

subpopulation to focus on different, yet partially overlapping, subsets of optima. 

When these subsets are combined, the system gets a clearer picture of the 
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location of optima within the total fitness landscape and subsequently can more 

accurately predict the correct niche radius. 

Variation of the clearing called Context-Based Clearing is presented by Fayek 

et al. (2010). The presented approach is a clearing procedure that makes use of 

a context information with the aim of preventing the elimination of candidates that 

may lead to significant optima. In the case of the technique, context refers to the 

fitness distribution within a certain area around pivot elements. Within the same 

area, if the candidate has similar fitness, it is assumed that all candidates 

converge to the same optima; hence, the whole area can be cleared. However, if 

candidates’ finesses differ significantly, clearing the whole set may cause a loss 

of important date. The procedure performs clearing according to the 

heterogeneity of the individuals within the subpopulation, whereas heterogeneity 

is measured using the standard deviation of individuals’ fitness. 

As a solution to the clearing’s main weakness – the estimation of the clearing 

radius – Sacco et al. (2004) proposed Fuzzy Clearing. While in the standard 

clearing a dominating individual dominates those that are within his clearing 

radius, in the proposed technique the population is divided into clusters, hence 

the use of radius parameter is no longer needed. To cluster the population, the 

authors proposed a fuzzy class separation algorithm. The algorithm borrows from 

a fuzzy logic a concept of pertinence that denotes a degree of association of an 

individuals to a given class. The proposed technique is successfully tested on a 

set of multimodal problems.  

Qu et al. (2012) embedded clearing into DE algorithm. In the presented 

method, the initial population is divided into three equal subpopulations. The 

value of clearing radius for each subpopulation is different and is related to the 

problem’s search range. During the selection phase, subpopulations exchange 

with the relevant information. 

In (2014), Sacco et al. proposed a clearing paradigm that is based on the works 

of Sacco et al. (2004) and Qu et al. (2012). The technique uses a clustering 

heuristic based on the topographical information on the objective function and 

new mutation operator, taken from the DE (Qu, Liang, Suganthan, & Chen, 2012). 

The presented clearing variant, namely topographical clearing, was applied to DE 

algorithm, however, as the authors state, it can be applied to any evolutionary or 

swarm-based technique. 
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2.3.4.6 Restricted Tournament Selection 

Restricted Tournament Selection (RTS), introduced by Harik (1997), is a modified 

tournament selection for multimodal optimisation and its main idea is to allow the 

GAs to choose which individuals will be replaced by a new pair of individuals.  

As in deterministic crowding, RTS randomly selects two parents from the 

population and creates two offspring by applying crossover and mutation 

operators. For each generated offspring, the algorithm randomly selects sample 

individuals from the population, the size of which is denoted by w (windows size, 

analogous to CF in crowding), and find the nearest one to the offspring, by 

applying the similarity distance measure. The distance can either be Euclidean 

(for real values) or Hamming (for binary-coded variables). The closest individual 

within the w sample competes with the offspring to determine the one with better 

fitness. If the offspring has higher fitness, the opponent is replaced. Such type of 

tournament restricts members of the population from competing with others that 

are not similar enough.  

Harik (1997) tests his model on several multimodal real-world problems with 

the number of peaks varying from 5 to 32. The algorithm proved to be capable of 

maintaining individuals at all peaks, even though some peaks increasingly lost an 

amount of individuals. Moreover, the algorithm managed maintained all global 

optima in all multimodal test problems.  

Roy and Parmee (1996) presented an Adaptive Restricted Tournament 

Selection integrated into a GA for tackling multimodal optimisation problems. The 

main difference between the standard RTS and its adaptive variant is that the 

former requires no prior knowledge about the distribution of the optima on the 

fitness landscape to distribute the final population on different peaks. 

Qu and Suganthan (2010) integrated the concept of the RTS into DE algorithm. 

The developed algorithm works by maintaining two different populations in 

parallel, where the size of each population is denoted by a windows size w. Each 

population generates a set of offsprings which then compete with members of 

both populations. Each offspring is compared against the closest to him a 

member of the population (based on the Euclidean distance). If the offspring has 

the higher fitness than the individual competing against him, offspring replaces 

this individual. 
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2.3.4.7 Niching Memetic Algorithm 

Niching Memetic Algorithm (NMA), first introduced by Moscato (1989), represents 

an extension of the sequential niching technique of Beasley et al. (1993) 

proposed for application in the multimodal optimisation problems. The algorithm 

incorporates a gradient-based local search process that makes use of a derating 

function along with niching and clearing techniques. To promote the exploration 

of previously unvisited regions of the search space, the added process is used to 

penalise the individuals that are residing in regions which contain the already 

located optima. Similarly to other niching techniques, the NMA requires the use 

of a niche radius. However, the performance of the algorithm is not highly 

sensitive to the value of this parameter. In problems where the number and 

distribution of the optima are unknown, this can be considered as an advantage. 

The process of NMA operation begins with the initialisation of the population 

of randomly or heuristically created individuals. After that, two additional 

parameters need to be configured: the total number of optimal solutions JTotal and 

niche radius σc. Then, at each iteration, a new generation is obtained by applying 

the usual genetic operators (i.e. evaluation, selection, crossover, and mutation). 

In each generation, individuals in the population move toward the nearest peak 

following a hill-climbing gradient-based algorithm. If at some point during this 

process an individual leaves the pre-specified region of the search space, the 

corresponding variables take the boundary value assigned. If J optimal solutions 

have been already located (with J < JTotal), the distances from each individual in 

the population to their nearest optimal solutions are determined. These distances 

together with the niche radius σc are used to assign an effective fitness function 

to each individual in the population. Therefore, the closer the individuals are to 

previously located optima, the lower his effective fitness is. Once the individuals 

in the population have been ordered in accordance to their effective fitness, the 

selection begins. Individuals with the high effective fitness value have an 

advantage over others individuals in the form of larger survival probabilities, 

which are assigned following the order position. Because of that, the individuals 

that lie within a niche radius of located optima are eliminated, thus promoting the 

occupation of yet unvisited niches. 

The performance of NMA is not highly sensitive to the choice of the σc 

parameter. Moreover, in comparison to other niching methods, NMA does not 
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need to maintain permanent subpopulations around each found optima, as it only 

requires to store locations of the found peaks. 

Vitela and Castano (2008) extended NMA to propose Sequential Niching 

Memetic Algorithm. The authors incorporated a Gaussian derating function with 

clearing in a real-coded memeting algorithm into a single point local search 

technique to accurately locate all optima (both local and global) in pre-specified 

regions of the solution space. Moreover, at each iteration, a local improvement 

algorithm as applied to every member of the population, substituting the original 

population members with the resulting solutions. The proposed algorithm uses 

the parent-centric real-parameter crossover operator which together with 

exploration and intensification phases efficiently searches the solution space. 

Performance measurements with test functions used by other authors show a 

high level of success in locating all optima and outperforming several other 

methodologies. 

Sheng et al. (2008) integrated NMA into a GA. The authors suggested a unified 

criterion for simultaneous clustering and feature selection based on a scatter 

separability index, which is then optimised by the proposed algorithm. In order to 

allow simultaneous clustering and feature selection without the number of the 

cluster being known a priori, a composite representation is devised to encode 

both feature selection and cluster centres with a variable number of clusters. As 

a consequence, the crossover and mutation operators are suitably modified to 

tackle the concept of composite chromosomes with variable length. Additionally, 

the authors hybridised the proposed procedure with additional local search 

operators, where are introduced to refine the feature selection and clusters 

centres. These local searches move solutions toward local optima and allow a 

significant improvement in the computational efficiency. Finally, a niching method 

is integrated with the resulting hybrid GA to preserve the population diversity and 

prevent premature convergence. 

 

2.4 Summary 

Various strategies and methodologies have been proposed for dealing with 

standard deterministic RCPSPs, starting with simple exact methods, like a branch 

and bound algorithm (Brucker, Knust, Schoo, & Thiele, 1998), and ending with 

more advanced hybrid heuristics, like neurogenetic algorithm (Agarwal, Colak, & 
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Erenguc, 2011) and chaos-based improved immune algorithm (Wu, Wan, Shukla, 

& Li, 2011). Despite the variety of the proposed methodologies, the best 

performance results were achieved by algorithms belonging to a class of hybrid 

metaheuristics. In particular, in the survey on latest state-of-the-art 

methodologies for the RCPSP (Kolisch & Hartmann, 2006), the algorithm with the 

best performance is hybrid GA (Valls, Ballestin, & Quintanilla, 2003). In more 

recent years, more competitive heuristics for the RCPSP have been proposed. 

The most prominent examples of those are SS (Paraskevopoulos, Tarantilis, & 

Ioannou, 2012) and GA (Zhu, Li, & Shen, 2011).  

In comparison to the deterministic RCPSP, the amount of methodologies 

proposed for solving SRCPSP is significantly lower. In the literature, there are 

two types of strategies recognised: use of scheduling policies, and use of 

heuristics. Scheduling policies are computationally fast and relatively easy to 

implement, however, they are only effective for small scale SRCPSP instances. 

Therefore, in this regard, application of the heuristic methods remains as the only 

reasonable approach. Out of all found heuristics for the SRCPSP, the best 

performance results were achieved by a two-phase GA developed by Ashtiani et 

al. (2011). However, the main drawback of this method is its static nature. To 

contradict this issue, several DP methodologies have been proposed for the 

RCPSP (Choi, Realff, & Lee, 2004; Haitao & Womer, 2015), however, their 

performance evaluation did not show any significant improvements. 

The majority of algorithms for both of these problems either operate on the AL 

or RK representations or use customised adaptations of these two. For local 

search, were incorporated such mechanisms as double justification (Valls, 

Ballestıń, & Quintanilla, 2005), local moves and activity swaps (Bouleimen & 

Lecocq, 2003). For crossover, the most commonly used are single-point or two-

point crossover operators (Hartmann, 1998). 

Nevertheless, despite the variety of the proposed methodologies, all of them 

deal with locating only one global optimum. The statistical analysis of the RCPSP 

fitness landscape, done by Czogalla and Fink (2009), indicated that the 

landscape of this problem is filled with a relatively high amount of interior plateau, 

meaning that for one problem there might be several global solutions. In the 

optimisation point of view, it is highly desirable to locate multiple optima: as it 

helps to maintain a diversity in the population, thus reducing chances of falling 
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into local optima trap and increasing chances of finding a global solution; and can 

provide an alternative, potentially better and more innovative, outcome result.  
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Chapter 3 Optimisation Model 

 

The problem considered in this thesis, namely HARNet project management 

problem (HPMP), can be characterised as a special case of the RCPSP and it 

represents an optimisation model for scheduling projects in uncertain 

environment.  

The chapter is split into five parts. The first part outlines the need for a new 

optimisation model. 

In the second part, basic mathematical definitions of the proposed model are 

provided. These are standard definitions that coincide with definitions of the 

standard deterministic RCPSP. 

The third section of this chapter gives a formal explanation of the nature of 

variability of activity durations and shows how it can be influenced by resources 

through them gaining experience. 

The fourth section of the chapter outlines two objectives (primary and 

secondary) that are to be optimised. 

Lastly, the overall problem statement is presented, which includes explanation 

of how the solution is obtained and what type of methodology needs to be applied 

to find it. 

 

3.1 Problem Statement 

Even though SRCPSP has received some portions of attention in the literature 

(Herroelen & Leus, 2005), in many cases the analysis of sources and causes of 

possible variabilities and their relation to the stochastic nature of activity durations 

has been avoided. Because of that, in the majority of publications on the 

SRCPSP, the stochastic durations of all activities follow predefined distributions. 

Examples of applied distributions are the triangular (Cho & Eppinger, 2005), 

uniform (2009), exponential (Vonder, Demeulemeester, & Herroelen, 2007), beta 

(Lamas & Demeulemeester, 2015), and normal (Bui, Michalewicz, Parkinson, & 

Abello, 2012).  

In the real world, however, stochastic nature of durations can be reliant on 

many factors, such as the time period when activity is executed and efficiency of 

the allocated resource. For instance, quite often organisations have to initiate 
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new and arduous projects that would require the collaboration of many technical 

and managerial groups of people and, in some cases, some of the groups that 

participate in the project execution might have no relevant experience of working. 

However, as the execution of the project progresses, by participating in the 

completion of some of the project’s activities, the maturity and efficiency of these 

groups are improving. As the result, the groups’ capabilities to execute 

successive activities are expected to improve as well. Therefore, under such 

circumstances, the mean duration of an activity will reduce if it is started later in 

time and is allocated more efficient resources. In project scheduling with 

uncertainties, there are cases which also consider other external factors of 

influence on the activity duration (Davenport & Beck, 2001), however, for a long-

term period planning these factors are very hard to predict and, thus, may create 

a high level of duration variability. Because of that, optimisation model proposed 

in this chapter only considers two things: period of time when activity is executed 

and experience of the allocated resource. 

Various proposals have been made to address the above-described issues. 

Drezet and Billaut (2008) studied a variant of RCPSP that considers allocation of 

labour resources to the activities with varying in time resource requirements. The 

authors provide an integer linear formulation of the problem and use greedy 

algorithm to solve it. Talbot (1982) surveyed generalised version of the RCPSP 

in which activity durations and resources can be balanced by each other. Such 

variant of RCPSP can also be regarded as a special case of the multimode 

RCPSP (Mori & Tseng, 1997), in which modes represent different combinations 

of activity durations and resource requirements. Golenko-Ginzburg and Gonik 

(1997) were one of the first who studied the issue of duration/resource trade-off 

in the SRCPSP. In the problem described by the authors, activities have 

stochastic durations, nature of which is linearly dependent on the number of 

allocated resources. 

Nevertheless, the common trait of the above-mentioned proposals is that for 

the duration/resource trade-off only the only consider amount of allocated 

resources. Other factors that can influence the duration of activities, such as 

efficiencies of resources, are not taken into account. To reflect this issue, Xiong 

et al. (2016) proposed an alternative probability distribution model that considers 

a case where durations of activities depend on the efficiency of the distributed 

resource, its ability to learn, and execution environment. In the context of the 
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proposed probability distribution model, efficiency of a resource influences the 

speed at which an activity is implemented, whereas the learnability reflects the 

rate at which the efficiency is gained. Unlike the traditional SRCPSPs, where 

stochastic durations are modelled using deterministic distributions, to incorporate 

the above-described effects, (Xiong, Leusb, Yanga, & Abbass, 2016) propose to 

use the mean of the durations that may decrease as the resource efficiency has 

improved via experience. The mean of the durations, in this case, reflects the 

overall capability to execute an activity. Such classification of the stochastic 

distribution has allowed the authors to model the resource efficiency and level of 

uncertainty as functions of time, which may affect the durations of activities, 

making them time- and resource-dependent. Therefore, following the above-

described concept, it is now possible to create a special version of the RCPSP 

which will take into account the variable nature of activity durations.   

 

3.2 Basic Definitions 

Basic definitions of the proposed optimisation model, named HARNet project 

management problem (HPMP), coincide with those that formalise the 

deterministic RCPSP. Following the same mathematical definitions as defined in 

Chapter 2, a project is denoted by V = {0, 1, …, n, n + 1}, consisting of  1 to n non-

dummy (active) activities and activities 0 and n+1 are dummy activities . Activity 

processing times are defined by a set p = {p0, p1, …, pn, pn+1}, whereas activity 

starting and completion times are denoted by S = {S0, S1, …, Sn, Sn+1} and C = {C0, 

C1, …, Cn, Cn+1}, respectively. If no volatilities are assumed, deterministic duration 

and starting time of an activity j are respectively denoted by pj and Sj. Each of the 

project’s activities requires resources for its execution. Resources are 

represented by a set 𝓡𝜌 , which consists of k resource types. During its 

execution, for each period of duration t, activity j requires 𝑟𝑗𝑘
𝜌

 units of resource k, 

total availability of which is 𝑅𝑘
𝜌
. Since resources are renewable, after the 

execution of an activity is completed, the capacities of previously used resources 

are restored. Limited resource capacities imply that during certain periods of time 

several activities may require the same type of resource, which, due to its limited 

availability, can only be used by one of them at a time. A set of active activities, 

denoted by Vt, during period t in the schedule S can be formalised as follows: 
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Vt = { j  V  | Sj   t < Cj}     j =  1, … n   (6) 

Following the above definitions, the resource constraints of resource type k are 

expressed as follows: 





tVj

kjk Rr 
   

kR   0t   (7) 

where both 𝑟𝑗𝑘
𝜌

 and 𝑅𝑘
𝜌

 are integers which represent resource requirement and 

resource capacity, respectively.  

For their execution, activities may require different types of resources, 

examples of which can include manpower, specialised equipment or premises.  

Some of the activities in the project might be inter-related with each other. In 

project scheduling, the most widely considered kind of relationships between 

activities is “end-to-start” relation. Such relationship implies that execution of 

activity can begin only after execution of all of its predecessors has been 

completed. The precedence relationship is characterised by a binary relation E 

and is presumed to be irreflexive and transitive. Notation (i, j) ∈ E means that 

activity j can only be started once the i is completed. Notation (0, i) ∈ E with i>0 

means that dummy activity 0 is predecessor of all project activities. Analogously, 

notation (i, n+1) ∈ E, with i<n+1 means that n+1 is successor of all project 

activities. A precedence graph (commonly known as project network) G = {V, E} 

is inferred. The nodes in the graph correspond to activities and arcs that are 

connecting the nodes correspond to precedence relationships between them. 

Following the above definitions, the precedence constraints are expressed as 

follows: 

iij pSS    Eji  ),(   (8) 

 

3.3 Variable Activity Durations 

Following the concept proposed in (Xiong, Leusb, Yanga, & Abbass, 2016), the 

activity durations for the proposed optimisation model can be described 

mathematically as follows. An activity i has a duration pi and for its execution it 

requires resources k. HPMP differentiates between two types of resources:  

 Improvable resources - the ones that can gain experience and improve 

over time (e.g. manpower)  
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 Invariant resources – the ones that have constant efficiency factors (e.g. 

specialised equipment) 

The main difference between the improvable and invariant resources is the 

ability of the former ones to influence the duration of activities to which they are 

currently assigned through the experience that they have gained from the 

execution of previous activities. To accommodate the effect of experience gain, 

in addition to resource capacities, improvable resources have two additional 

parameters: 

 Efficiency coefficient ek - represents the maximum efficiency gain that 

can be achieved by unexperienced resource 

 Learning coefficient lk - quantifies how long it will take for a resource to 

achieve its maximum efficiency through learning 

where ek ∈ [0, 1]. Value ek = 0.25, for instance, would mean that a highly 

experienced resource Rk can be up to 25% more efficient than a starter, whereas 

a higher value for lk would indicate more time is needed for resource k to reach 

the maximal potential. In the context of the proposed optimisation model, 

efficiency of a resource is the amount of experience that it currently has that can 

be used to reduce the duration of an activity. At the start of the project, when 

resources have no experience and their efficiencies are at the lowest levels, the 

duration of an activity i is pi
*. As resources gain more experience, durations of 

activities to which they are assigned reduce. Therefore, the duration of an activity 

i at given moment of time pi(t) can be defined as follows: 

)(

*
)(

tg

p
tp

i

i
i      (9) 

where t is the starting time of an activity i and gi(t) is the function for estimating 

resource efficiency or operating speed (Golenko-Ginzburg & Gonik, 1997). It is 

worth noting, that gi(t) is a non-decreasing function of t that depends on the 

resources allocated for activity i. 

Efficiency of each resource type k is represented as Ek(t). To represent the time 

that resource Rk has been working until the current time instance t, the notation 

Wk(t) is used which is calculated as: 


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where 𝑟𝑘𝑚
𝜌

 is the availability of resource k at given moment of time m with total 

capacity  𝑅𝑘
𝜌
. 

The relationship between Ek(t) and Wk(t) is a non-increasing function that relies 

on the specifics of the project’s setting and characteristics. Moreover, it has to 

obey the following rule: when Wk(t)=0, the experience of resource k is at the 

lowest level, hence it does not contribute to any reduction of the activity duration. 

Thus, the relationship Ek(t) and Wk(t) relationship is formalised as follows: 
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where ek and lk are efficiency and learning coefficients of a resource Rk, 

respectively. Further, from (11) it can be also noted that the value of Ek(t) is 

always in the range of [1, 1 + ek].  

In the real-life, the value of parameters ek and lk can be estimated through a 

managerial statement that will be based on relevant experience and knowledge 

gained through working with these resources (i.e. people) on previous projects. 

For example, a managerial statement like “100% of the maximum learning effect 

for resource type k can be achieved after 25 weeks of work” can be be 

mathematically interpreted as 100% = exp(-lk / 25), which yields that lk = 25 * (-

ln(1.0)).  

Given that activity i is going to be started at time t, its overall efficiency can be 

estimated as the average efficiency of all required types of resources over 

required resource units and is defined as follows: 
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Following the above definition, the function for operating speed estimation is 

now defined as 
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Function gi(t) is time-based and depends on the decision variables for resource 

allocation at given instant of time t. The received value can then be used in (9) 
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for estimating how the duration activity i is going to be affected if it is scheduled 

to be executed at time t.   

The min and max processing times (i.e. durations) of activity i, denoted 

respectively by pi
min

 and pi
max

, are calculated as: 

*)1(min

iki pep                       *max

ii pp     (14) 

 

3.4 Optimisation Objectives 

In practice, successful completion of a project may be subject to optimisation of 

several objectives. In the context of optimisation, these objectives are used to 

assess quality of the schedules that are produced to plan the execution of the 

project. The optimisation model proposed in this thesis considers optimisation of 

two objectives: makespan minimisation (primary objective) and resource 

efficiency balancing (secondary objective). 

3.4.1 Makespan Minimisation 

The main objective of the majority of problems that are derivatives of the RCPSP 

is the minimisation of the project’s duration (i.e. the makespan). Similarly, for 

problems which consider project scheduling with variable activity durations the 

minimal makespan is also used as a primary measure to assess a quality of the 

produced schedule. Analytical evaluation of the expected project duration is 

typically highly intractable and is usually estimated by means of simulations. 

Therefore, the first objective is to minimise f1, which is defined as follows: 

P
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1     (15) 

 CP
n+1 is the completion time of the last dummy activity achieved in the p-th 

simulation replication. In project scheduling, the number of simulations P typically 

is in the ranges between 25 (Stork, 2001) and 1000 (Ballestin & Leus, 2009). 

3.4.2 Resource Efficiency Balancing 

For successful completion of complex projects, stable and robust groups of staff 

(i.e. resources) are required to tackle future complex activities. If some members 

of staff of the project team have very high efficiency, while others lack experience, 

then the ability of the project team to perform activities efficiently is under risk. If, 
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for example, activity requires participation of two groups of staff out of the project 

team, then the group of more experienced personnel would need to wait for 

another group to finish their part. In an ideal scenario, the competency and 

maturity of all staff needs to be at similar levels.  

In order to assess stability and robustness of the produced schedule, a 

variance index is used, which has been successfully utilised in other scheduling 

and planning problems, such as military capability planning problem (Abbass, et 

al., 2008). Therefore, the second objective is to minimise f2 (i.e. estimation the 

balance of resource efficiency) which is defined as follows: 


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where σk is the standard deviation of the efficiency of resource type Rk and   is 

mean of standard deviations. σk  can estimated as follows: 
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where E  is the average efficiency of all resource types. Lower values of f2 signify 

better balance of resource efficiencies among different types of resources. The f2 

= 0 corresponds to a perfect balance, meaning that all resources have equal 

efficiency.   

In the nutshell, (16) represents a fairness measure which ensures that 

experience gain between all resources is on equal level. Another way of 

measuring fairness would be via chi-squared test (Greenwood & Nikulin, 1996) 

which examines the differences with categorical variables and compares the 

actual observations with expectations 

 

3.5 Optimisation Problem 

Herein, for optimisation of the objectives, the problem exploits multimodal 

properties of the RCPSP. First, the problem is solved via optimisation of the 

objective f1 by finding a set of best solutions with minimal makespan. Then, for 

each of the solutions in this set, the second objective f2 is calculated. 

Therefore, the best way of approaching this problem is via application of a 

metaheuristic algorithm specifically designed for tackling multimodal optimisation 
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problems and that is capable of obtaining multiple global solutions. For the 

reasons of having multiple objectives (one primary and one secondary), first, the 

algorithm will obtain a set of best schedules with minimal makespan, thus 

completing objective f1. Then, out of this set, the most efficient schedule is going 

to be chosen, satisfying objective f2.  

Following the above definition, the problem can be formalised as follows: 
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where Vt is as defined in section 3.2.  

The presented problem is a variation of the RCPSP and can be regarded as a 

NP-hard combinatorial optimisation problem (Blazewicz, Lenstra, & Kan, 1983) 

with a complex multimodal fitness landscape (Czogalla & Fink, 2009).  

 

3.6 Summary 

Optimisation model, namely HPMP, presented in this chapter represents a 

special case of the RCPSP in which activity durations follow probability 

distribution model that is dependent on resource efficiency, experience, and 

learnability of resources, where resource in the HPMP case refers to human 

resource, i.e. members of the project team. Resource efficiency reflects the 

speed at which an activity can be implemented by the project team; experience 

is the total amount of time that members of the project team have previously spent 

on working on a similar problem; and learnability is the reflection of how quickly 

resource acquires its experience. As the result, the duration of an activity may be 

shortened with the increase of resource efficiency. 

 The HPMP considers optimisation of two objectives: minimisation of 

makespan (primary) and balance of resource efficiency (secondary). 
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Optimisation of these objectives exploited multimodal properties of RCPSPs and 

is achieved via application of metaheuristic algorithm tailored specifically for 

multimodal optimisation problems and that is capable of obtaining multiple 

solution candidates. First, the algorithm obtains set of best solutions with minimal 

makespan. Then, from this set, the algorithm selects the most efficiently balanced 

one. 

Being variation of the RCPSP, the problem is NP-hard combinatorial 

optimisation problem with a complex multimodal fitness landscape. Therefore, 

the application of metaheuristic algorithms for multimodal optimisation problems 

is justified. 
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Chapter 4 Methodologies 

 

This chapter presents four new algorithms developed during the course of this 

PhD study, namely 

 Discrete Cuckoo Search (DCS) algorithm 

 Discrete Flower Pollination Algorithm (DFPA) 

 Improved Discrete Cuckoo Search (IDCS) algorithm 

 Discrete Species Conserving Cuckoo Search (DSCCS) algorithm 

The Discrete Cuckoo Search (DCS) and Discrete Flower Pollination Algorithm 

(DFPA) are population-based metaheuristic algorithms adapted from the Cuckoo 

Search (CS) (Yang & Deb, 2009) and Flower Pollination Algorithm (FPA) (Yang 

X.-S. , 2012). Previously, in the majority of cases CS and FPA had only been 

applied to problems in the continuous domain and demonstrated to be very 

effective in finding global optima with high success rate and, in some cases, even 

managed to outperform such popular metaheuristics as Genetic Algorithm (GA) 

and Particle Swarm Optimisation (PSO) in terms of efficiency and success rate. 

Nevertheless, at the time of writing this thesis, CS and FPA had only limited 

number of applications to optimisation problems in the discrete domain (Yang X. 

, 2010). The most prominent examples are the travelling salesman problem (TSP) 

(Ouaarab, Ahiod, & Yang, 2013) and the annual crop-planning problem (Chetty 

& Adewumi, 2013). In both of these examples, the algorithms showed competitve 

levels of performance, which validated their applicability for optimation problems 

in the discrete domain. 

Performance of DCS and DFPA is evaluted using benchmark instances from 

Project Scheduling Problems Library (PSPLIB) (Kolisch & Sprecher, 1997). The 

results of evaluation can be regarded as satisfactory as the algorithms were able 

to outperform such heuristics as GA and Simulated Annealing (SA). 

Nevertheless, their performance can be furtherly improved by addressing some 

of the limitations that these algorithms have: inefficienct solutions representaions 

scheme and use of context-free operators. To address these limitations, the 

Improved Discrete Cuckoo Search (IDCS) is introduced in the next section. IDCS 

introduces several changes to the original DCS paradigm:  

 addition of a new mechanic aimed at improving the quality of received 

results but with less iterations;  
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 new solution representation scheme specific for RCPSP and its 

stochastic variant; and  

 novel local search and crossover operators, based on the newly-

introduced solution representation scheme. 

Similarly to DCS and DFPA, performance of IDCS is testing using benchmark 

instances from PSPLIB. This time, the results of performance evaluation are 

compared against state-of-the-art heuristics for RCPSP where IDCS was able to 

appear in top ranks. Nevertheless, one of the limitations of IDCS is the inability 

to obtain multiple solutions candidates at once, hence Discrete Species 

Conserving Cuckoo Search (DSCCS) is introduced in the next section. 

DSCCS is the result of integration of the Species Conservation (SC) (Li, 

Balazs, & Parks, 2002) technique into IDCS. SC technique is a method of 

evolving parallel sub-populations integration of which allows the algorithm to 

obtain multiple global solutions. The technique is based on distributed elitism, 

achieved by identifying in each generation a set of prime individuals that are 

considered to be worth preserving into the next generation. The formation of 

species allows to divide the search space into smaller regions, making each 

species focused on searching for solutions within the specified region. This 

creates an opportunity for a finer search for a local best optimum, provides higher 

chances of finding global optima, as well as enables the algorithm to obtain 

multiple solution candidates, thus making it suitable for applications in multimodal 

scenarios. 

 

4.1 Discrete Cuckoo Search 

Out of all reviewed metaheuristics during the literature review, the one that has 

not been applied, as of yet, to the RCPSP is the CS. In the previous works of 

Yang and Deb (2010) CS has demonstrated to be a very efficient algorithm for 

solving continuous optimisation problems and in some cases it was shown to be 

superior to both PSO and GA in terms of efficiency and success rate. However, 

as of today, CS has been primarily used in optimisation of problems with 

continuous domain (Nguyen, Truong, & Phung, 2016; Teymourian, V.Kayvanfar, 

Komaki, & Zadeha, 2016; Sekhar & Mohanty, 2016). One of the first attempts to 

apply CS to solve a problem with a discrete domain was done by Ouarrab et al. 

(2013). In their work, the authors applied CS to solve the TSP. 
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4.1.1 Cuckoo Search 

CS is a metaheuristic search algorithm, which has been recently proposed by 

Yang and Deb (2009). The ideas of the algorithm take inspiration from the 

reproduction strategy of some cuckoo species that lay their eggs in the nests of 

other host birds of different species. The host birds in their turn may discover that 

the eggs are not their own and either destroy the egg or abandon the nest. To 

translate this into an optimisation tool, Yang and Deb used three idealised rules: 

1. Each turn cuckoo lays one egg (i. e. a potential solution) and dumps it in 

a randomly chosen nest (i. e. member of population) 

2. A fraction of the nests containing the best eggs (i. e. the fittest members 

of population) will carry over to the next generation 

3. The number of nests (i. e. population size) is constant and there is a 

probability (pa) that a host can discover an alien egg, which can result in 

the abandoning of the nest 

The last principle can be understood as follows. If the abandonment rate 

parameter pa is set to 0.2, then 20% of worst nests will be replaced with the newly 

generated ones. 

The steps involved in the CS are derived from the above-mentioned rules and 

are shown in Figure 4.1. 

 

Cuckoo Search 

Initialise a population P of m individuals xi, Pm = (x1, x1, …, xm) 

 

For all xi do 

    Calculate fitness Fi = f(xi) 

End for 

While (ObjectiveEvaluationNumber < MaxEvaluationNumber) 

    Create individual (xj) via Lévy Flight 

    Calculate fitness Fj = f(xj) 

    Choose random individual xi from population Pm 

    If (Fj >Fi) then 

        Replace xi with xj 

    End if 

    Abandon a fraction pa of individuals with worst fitness 

    Generate new random individuals 

End while 

Find the fittest individual 

Figure 4.1 – CS pseudo-code 
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As can be noted from the above pseudo-code, an important aspect of the CS 

is the use of Lévy flight for both local and global searching. The Lévy flight 

process, which has previously been used in other search heuristics 

(Pavlyukevich, 2007), is a random walk that is characterised by a series of 

instantaneous moved chosen from a probability density function which has a 

power law tail. This process represents the optimum random search pattern and 

is frequently found in nature (Viswanathan, 2008). 

When generating a new individual, a Lévy flight is performed starting at the 

position of the fittest individual of the population. If the objective function (i.e. 

fitness) of the new individual is better than the objective function of another 

randomly selected one, the new individual replaces it. The scale of this random 

search is controlled by multiplying the generated Lévy flight by a step size α: 
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For example, setting α = 0.1 could be beneficial for problems with a small 

domains, whereas setting it to a larger values makes the algorithm suitable for 

problems with bigger domains. Yang and Deb (2009) did not discuss the 

boundary handling in their formulation. Instead, they use an approach similar to 

PSO boundary handling (Yilmaz & Kuzuoglu, 2009): when a Lévy flight results in 

the generation of an individual outside the bounds of the objective function, the 

fitness and position of the original individual would not change. 

One of the advantages of CS over other popular metaheuristics such as PSO 

and GA is that it needs only adjust one parameter – the abandonment rate pa. 

Yang and Deb (2010) found that the convergence rate was not strongly affected 

by the value of pa and they suggested setting it to pa = 0.25. Moreover, as the 

result of experimental evaluations (Yang & Deb, 2010), the CS has been shown 

to perform well in comparison to GA and PSO. 

4.1.2 Discrete Cuckoo Search for RCPSP 

The areas of application of the original CS, as was intended by its creators, were 

problems in the continuous optimisation domain. Because of that, this version of 

the algorithm cannot be directly utilised to solve the RCPSP, as it is a 

combinatorial optimisation problem. In order to do so, the ideas of CS need to be 

extended to the discrete domain, thus DCS is presented. 
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One of the major goals of extending CS to solve the RCPSP is to retain its key 

advantages, such as little amount of parameters to configure and efficiency, and 

incorporate them into the discrete version of the algorithm. The adaptation of CS 

to the RCPSP primarily emphasises the reinterpretation of its key elements: 

1. Solution representation scheme 

2. Objective evaluation 

3. Lévy flight 

4.1.2.1 Solution Representation Scheme 

The efficiency of a representation scheme is expected to be an important factor 

for performance of any algorithm. For the RCPSP it is more convenient to operate 

on an encoded solution (i. e. indirect form) rather than work with its direct form, 

as it is difficult to consider both precedence and resource constraints 

simultaneously when new individual is generated. In the scope of the RCPSP, 

the direct form of a solution is the resulted schedule of a project, whereas the 

indirect form of a solution is the encoded version of a schedule, designed to 

eliminate complexities of schedule manipulation for an algorithm. 

According to Palmer and Kershenbaum (1994), in order for a metaheuristic 

algorithm to function properly, the ideal solution representation scheme must 

possess the following properties: 

1. Computationally fast transformation of a representation into a solution 

2. Each solution in the original space has a solution in the encoded space 

3. Each encoded solution corresponds to one feasible solution in the 

original space 

4. All solutions in the original space are represented by the same amount 

of encoded solutions 

5. Small changes in the encoded solution result in the small changes in 

the original solution 

Kolisch and Hartmann (1999) reviewed popular solution representation 

schemes and their appropriate operators for the RCPSP and outlined the two 

most commonly implemented and used ones: Activity List (AL) and Random Key 

(RK).  

The AL representation scheme is a vector of size n, elements of are activities. 

Index of each of the AL’s elements depicts the order in which an activity is going 

to be scheduled; hence, activities in the AL are scheduled in the same order as 
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they presented. The RK, on the other hand, encodes a solution as a vector of n 

numbers where the ith number relates to the ith activity. RK is transformed into a 

schedule by successively scheduling activities with highest random keys (random 

numbers). Based on computational experiments conducted on sets of benchmark 

instances from PSPLIB, Kolisch and Hartmann (2006) concluded that AL is more 

efficient than the RK and algorithms that operate on this representation scheme 

tend to produce better results. In the performance evaluation of more than 20 

heuristics for the RCPSP, top 8 algorithms operated on AL representation 

scheme. 

In order to demonstrate how AL representation scheme of a sample schedule 

would look like, an example project  is taken from (Debels & Vanhoucke, 2005), 

as shown in Figure 4.2. The project consists of 19 non-dummy activities and 

single resource with capacity of 10 units. In the upper part of the figure, a project 

network is displayed. Under each node, a duration and resource request of the 

corresponding activity are provided respectively. In the lower part of the figure, a 

feasible schedule of makespan 47 is represented in the form of an extended 

Gantt chart. The horizontal axis of the chart shows time when each activity is 

executed, while the vertical axis shows a number of resources are taken. Each 

block on the chart corresponds to an activity from the sample project.  

 

 

Figure 4.2 - Sample project network and schedule 
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The AL representation of the above schedule is presented in Figure 4.3. In the 

figure, an array consisting of 19 elements is shown. Each element in the array 

has a number which depicts the activity’s number in the project. Further, below 

each element, its starting time is given.  

 

Figure 4.3 - Activity List representation of a sample schedule 

4.1.2.2 Objective Evaluation 

In the RCPSP, in order to convert the solution representation scheme (i.e. AL) 

into schedule and estimate its makespan, the procedure called Schedule 

Generation Scheme (SGS) is applied. SGS constructs a schedule by scheduling 

each activity, one at a time, according to the sequence defined by the 

representation scheme. Kolisch (1996) divided SGS into two kinds: serial and 

parallel.  

Serial SGS works as follows: at each iteration, an eligible activity is selected 

according to its priority (i.e. their position in the AL) and inserted inside a partial 

schedule at the earliest possible time (respecting the project precedence and 

resource constraints), while keeping unchanged the starting times of the already 

scheduled activities. An activity is eligible if all its predecessors have been 

scheduled. Parallel SGS, on the other hand, schedules a set of activities at each 

iteration. With each iteration i it associates schedule time ti, which equals to the 

latest finishing time of the already scheduled activities at time ti-1. The activities, 

which are available for scheduling with respect to precedence and resource 

constraints, are scheduled at ti one by one with respect to their priority order. 

Once this is done, the next schedule time and related set of eligible activities are 

computed. This is repeated until activities are scheduled. 

As was demonstrated by Sprecher et al. (1995), schedules that are generated 

by serial SGS are referred to as active, whereas schedules that are created by 

parallel are referred to as non-delay. Kolisch (1996) has shown that a set of active 

schedules will always contain an optimal schedule (hence the name). On the 

other hand, the schedules produced by parallel SGS are able to utilise resources 

as early as possible (without delays), leading to schedules that are more 

compact. Further, in his study of both variants of SGS, Kolisch concluded that on 

average, in terms of obtaining optimal results and overall success rate, serial 
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SGS performs better than parallel SGS, espcially on instances which consists of 

many activities and/or scarce resource capacties.  

Based on the above-mentioned research and conclusion from the author 

(Kolisch R. , 1996), serial SGS is selected as the main measure of evaluation of 

the objective. The pseudo-code of serial SGS is presented in Figure 4.4. 

 

Serial Schedule Generation Scheme 

Initialise activity list A of size n, An = (a1, a2, …, an) 

Initialise empty set of activity starting times S 

 

For all ai do 

    Find earliest possible starting time si by checking finishing time 

        of its predecessors 

    While(resourceConstraintsNotSatisfied(ai, si)) 

        si++ 

    End while 

    S[ai] = si 

End for 

Figure 4.4 - Serial Schedule Generation Scheme pseudo-code 

Serial SGS converts given activity list A by scheduling each of its activities as 

early as possible in the same order as they appear. Concretely, the whole 

process can be broken down into the following steps: 

 Pick first unscheduled activity ai from A 

 If ai has any predecessors, find the latest finishing time si 

 Check resource availabilities at time si. If starting activity ai is not 

possible, increment si until resource constraints are not satisfied 

 Once ai is scheduled, proceed with the next activity in A 

4.1.2.3 Lévy Flight 

Yang and Deb (2009) have demonstrated that Lévy flights improve search for 

solutions in continuous optimisation problems and enhance the overall 

performance of the algorithms. Moreover, they were able to show that Lévy flights 

are characterised by intensive search around local solution followed by 

occasional big steps in the long run.  

Several ways of Lévy flight implementations exist. Leccardi (2005) compared 

different approaches for generation of Lévy flight values and as the conclusion of 

his experiments, he estimated that the algorithm developed by Mantegna (1994) 
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is the most efficient method. Mantegna’s (1994) algorithm produces random 

noise according to a symmetric Lévy distribution, which is ideal for Lévy flight. 

In the Mantegna’s (1994) algorithm, the Lévy distribution is calculated as 
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where the distribution parameter λ ∈ [0.3, 1.99] and Γ denotes Gamma function. 

To adapt Lévy flight to a problem in the discrete domain, the Lévy distribution 

number generated by Mantegna’s algorithm is associated with the amount and 

types of operations (i.e. steps) that will be performed on an individual from the 

population in an attempt to transform it into a better one. 

Depending on the range to which the received value belongs, the following 

operations can be performed: 

1. [0, i] – perform one small step 

2. [(k-1) *i, k * i] – perform k amount of small steps 

3. [k * i, 1] -  perform big step 

where the value of i in this process is i = 1/(s+1), s is a configurable parameter 

representing the max number of steps that can be performed and k ∈ [2, .., s].  

For example, assume that s = 4, hence i = 0.2, therefore the whole interval is 

divided into five parts: 

1. Lévy in [0, 0.25] – small step 

2. Lévy in [0.25. 0.5] – 2 small steps 

3. Lévy in [0.5, 0.75] – 3 small steps 

4. Lévy in [0.75, 1] – big step 

The step of a movement represents a distance in the search space that will be 

travelled to obtain a new solution by application of mutation operators.  

To mimic a small step, the simple shift operator (Della Croce, 1995) is applied. 

The simple shift operator randomly selects an activity ai inserts it immediately 
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after another activity ai, given that precedence constraints are not violated. In the 

example in Figure 4.5, sample AL from Figure 4.3 is used to demonstrate how 

this operator works: here Activity 14 is selected and inserted right after Activity 

17. 

 

 

Figure 4.5 - Shift operator example 

To mimic a large step, pairwise interchange operator (Hartmann, 1998) is 

applied. Pairwise interchange is defined as swapping two randomly-picked 

activities ai and aj if in the resulting activity list precedence constraints are not 

violated. In the example shown in Figure 4.6, Activity 16 is swapped with Activity 

12. 

 

 

Figure 4.6 - Pairwise Interchange operator example 

4.1.3 Computational Performance 

To evaluate the performance of the DCS, various numerical experiments are 

conducted on sets of benchmark instances from PSPLIB (Sprecher, Kolisch, & 

Drexl, 1995) designed specifically for testing RCPSP methodologies. PSPLIB 

contains instances of scheduling problems with varying difficulty, which are 

grouped into sets in accordance to the amount of activities each project contains. 

The following sets are available: 

 J30 – 480 instances of scheduling problems, each consisting of 30 

activities and 4 resource types 

 J60 – 480 instances of scheduling problems, each consisting of 60 

activities and 4 resource types 
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 J120 – 600 instances of scheduling problems, each consisting of 120 

activities and 4 resource types 

Due to the complexity of the problem, the optimal solutions are only available 

for J30 set, whereas for J60 and J120 instances only best-known solutions are 

given.  

In order to assess performance of an algorithm after running each of the 

benchmark instances, a deviation from optima is calculated: 
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where msr is the makespan of received solution, whereas mso is the makespan of 

optimal solution. 

For J30 instances, deviation is calculated with respect to optimal solutions, 

while for J60 and J120 instances deviation is calculated with respect to the length 

of the critical path (CP). CP is obtained by computing the makespan of a project 

by relaxing the resource constraints of the problem (Hartmann & Briskorn, 2010). 

4.1.3.1 Experimental Setup 

Before the performance of the algorithm can be evaluated and compared with 

others, it is necessary to configure it and find the most appropriate parameters 

setting. To do this, the irace package (Birattari, Yuan, Balaprakash, & Stützle, 

2010) is utilised in the experimental setup. 

The irace package is an automatic configuration tool for tuning optimisation 

algorithms, that is, automatically finding good configurations for the parameters 

values. Irace works by receiving a list of algorithm’s parameters as input and uses 

a set of training instances to find the optimal levels for each of the parameters. 

This is achieved by searching in the parameter search space for good performing 

algorithm configurations by executing the target algorithm on different instances 

with different parameter configurations. 

In this experimental setup, irace is set to use benchmark instances from 

PSPLIB to tune the algorithm. In this setup benchmark instance from J30, J60, 

and J120 sets have been utilised for tuning of the target algorithm: 

 J30 set – every tenth instance starting from number 1, 48 instances total 

 J60 set – every tenth instance starting from number 1, 48 instances total 
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 J120 set – every tenth instance starting from number 1, 60 instances 

total 

The stopping criterion for running each of the instances was set to 5000 

objective evaluations. 

After the algorithm is configured and optimal parameters are identified, its 

performance can be evaluated and compared against other methodologies. It is 

assumed that these other methodologies would have already gone through the 

same parameter fine-tuning process. Typically, performances of algorithms for 

the RCPSP are evaluated by running all benchmark instances from J30, J60, and 

J120 sets from PSPLIB. In order to provide the basis for comparison with other 

algorithms, Hartmann et al. (2000) suggested to limit the execution of algorithms 

to the amount of times the objective function is evaluated (i. e. the number of 

generated schedules). The advantage of this stopping criterion is that it is 

independent of the computer platform. Therefore, all heuristics can be tested 

using the original implementation and the best configuration. Moreover, such 

tests are independent of compilers and implementation skills, thus the concept of 

algorithm is evaluated, rather than its program code. Hence, in order to evaluate 

the performance of an algorithm, three sets of experiments have been conducted 

in which the algorithm will have to run all benchmark instances from J30, J60, 

and J120 sets for the three stopping criteria (maximum of 1000, 5000, and 50000 

objective function evaluations). 

4.1.3.2 Parameters Settings 

The DCS has three configurable parameters: 

 Population size m 

 Abandonment rate pa 

 Max amount of steps s 

In order to find the optimal values for these parameters, a sensitivity analysis 

has been carried out using the irace package. Ranges of parameters value 

selected for the analysis are summarised in Table 4.1. 

Table 4.1 - DCS parameter values for sensitivity analysis 

Parameter Values Range 

Population size (m) [10, 200] 

Abandonment rate (pa) [0, 0.9] 

Max amount of steps (s) [1, 10] 
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As the result of the algorithm tuning, the optimal parameters values identified 

by irace are summarised in Table 4.2. 

Table 4.2 - DCS optimal parameters values 

Parameter Value 

Population size (m) 18 

Abandonment rate (pa) 0.8 

Max amount of steps (s) 4 

 

During the tuning process, irace iteratively updated the sampling models of the 

parameters to focus on the best regions of the parameter search space. The 

frequency of the sampling of parameters values in the regions of the specified 

parameters search space for m, pa and s is presented in graphs in Figure 4.7, 

Figure 4.8 and Figure 4.9. 

 

Figure 4.7 - Population size sampling frequency 

 

Figure 4.8 - Abandonment rate sampling frequency 
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Figure 4.9 - Max amount of steps sampling frequency 

The graph in Figure 4.10 displays the interaction between parameters and their 

dependencies on one another on the example of 100 best parameters 

configurations obtained by irace package during fine-tuning. 

 

 

Figure 4.10 - DCS parameters correlations 

During the fine-tuning process, irace iteratively updated the sampling models 

of the algorithm’s parameters to focus on the best regions of the parameter 

search space. The frequency of the sampled configurations presented in Figure 

4.7, Figure 4.8 and Figure 4.9 provide insights on the parameter search space of 

DCS. From these graphs it is possible to understand what the optimal parameters 

are and how changing their value might affect the overall performance of the 

algorithm.  
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Graph in Figure 4.10 is a parallel coordinates plot in which each of its axes 

corresponds to the algorithm’s parameter, whereas green lines on the plot 

correspond to the parameter configurations that were obtained by irace package. 

The presented graph helps to visualise what kind of parameter configurations 

where used the most during the algorithm fine-tuning. In this particular example, 

the values of 100 best-obtained parameter configurations are plotted. From the 

presented in it is easy to see that parameter values of all best configurations are 

in regions of [10; 20] for m, [0.8; 0.9] for pa and [3; 4] for s, meaning that there is 

almost no ambiguity between the best-obtained configurations 

As can be observed from the above-presented graphs, the optimal levels of 

DCS parameters were in the following ranges: 

 m – [10; 20] 

 pa – [0.8; 0.9] 

 s – [3; 4] 

Due to high abandonment rate, the overall population is constantly updated 

with new individuals, hence, there is no need for having maintaining high 

population. By keeping max amount of step parameter s values between 2 and 

4, the algorithm provides perfect balance between usage of pairwise interchange 

and shift operators.  

4.1.3.3 Comparative Analysis 

The computational results of the performance evaluation of DCS are presented in Table 4.3, 

Table 4.4, and  

Table 4.5 for J30, J60 and J120 instance sets, respectively. The first column 

“Algorithm” reports abbreviations of the algorithms considered for comparison. 

Column “Author(s)” reports the name(s) of the original author(s) and reference to 

the work in which the algorithm at hand was previewed. The last column refers to 

the average deviation % for three stopping conditions: 1000, 5000 and 50000 

objective evaluations. For the J30 instances, the average deviation is shown with 

respect to optimal solutions, while for J60 and J120 instances the average 

deviation % is calculated with respect to the CP length. Computational 

performance of other presented algorithms was taken from (Hartmann & Kolisch, 

2000) and (Kolisch & Hartmann, 2006). 
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 Table 4.3 - DCS performance comparison for J30 set 

Algorithm Author(s) Dev (%) 

  1000 5000 50000 

DCS Bibiks et a. 0.52 0.16 0.05 

TS Nonobe and Ibaraki (2002) 0.46 0.16 0.05 

GA Hartmann (1998) 0.38 0.22 0.08 

Sampling + BF Tormos and Lova (2001) 0.30 0.17 0.09 

ANGEL Tseng and Chen (2006) 0.22 0.09 n/a 

Table 4.4 - DCS performance comparison for J60 set 

Algorithm Author(s) Dev (%) 

  1000 5000 50000 

DCS Bibiks et al. 12.89 12.46 11.18 

GA Hartmann (1998) 12.21 11.70 11.21 

Sampling + BF Tormos and Lova (2001) 11.88 11.62 11.36 

ANGEL Tseng and Chen (2006) 11.94 11.27 n/a 

TS Nonobe and Ibaraki (2002) 12.97 12.18 11.58 

 

Table 4.5 - DCS performance comparison for J120 set 

Algorithm Author(s) Dev (%) 

  1000 5000 50000 

DCS Bibiks et al. 37.91 35.29 33.20 

GA Hartmann (1998) 37.19 35.39 33.21 

Sampling + BF Tormos and Lova (2001) 36.24 35.56 34.77 

ANGEL Tseng and Chen (2006) 36.39 34.49 n/a 

TS Nonobe and Ibaraki (2002) 40.86 37.88 35.85 

 

The performance evaluation of DCS algorithm can be regarded as satisfactory. 

By being capable of outperforming GA and TS, among others, DCS shows 

acceptable level of performance which can be compared with other non-hybrid 

metaheuristics. 

 

4.2 Discrete Flower Pollination Algorithm 

Flower pollination algorithm (FPA) is a metaheuristic algorithm developed by 

Yang (2012) and it represents a generalised version of the CS. Similarly to CS, 

FPA is a population-based metaheuristic that uses Lévy flight to explore solution 
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search space. The main different between the two is the inclusion of the 

crossover operator in the latter one. As with CS, FPA originally was developed 

for application in continuous optimisation problems. Thus, the modification, 

namely discrete flower pollination algorithm (DFPA), for application in the RCPSP 

is proposed. The main reason for the implementation of this algorithm in the 

context of this PhD project is to analyse the impact of addition crossover operator 

to the original paradigm of CS. 

4.2.1 Flower Pollination Algorithm  

As witch the CS, the ideas of FPA were inspired by a nature process, which in 

this case is the reproduction of flowers. Based on the characteristics of flower 

pollination process in nature, Yang (2012) based the algorithm on the following 

rules: 

1. Two types of pollination processes are considered: local pollination and 

global pollination 

2. Switching between local and global pollination is controlled by 

probability ps ∈ [0, 1] 

3. During local pollination, a new solution is generated via Lévy flight 

4. During local pollination, a new solution is generated via application of 

crossover operator 

Based on the above definition, the algorithm’s pseudo-code is summarised in 

Figure 4.11. 
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Flower Pollination Algorithm 

Initialise a population P of m host flowers xi, Pm = (x1, x1, …, xm) 

 

For all xi do 

    Calculate fitness Fi = f(xi) 

End for 

While (ObjectiveEvaluationNumber < MaxEvaluationNumber) 

    Generate random number r in range [0, 1] 

    If (r < ps) then 

        Create individual (xj) via Lévy flight 

    Else 

        Create individual (xj) via crossover operator 

    End if 

    Calculate fitness Fj = f(xj) 

    Choose random individual xi from population Pm 

    If (Fj >Fi) then 

        Replace xi with xj 

    End if 

End while 

Rank all individuals and find the fittest nest 

Figure 4.11 – FPA pseudo-code 

As can be noted from the pseudo-code in Figure 4.11, FPA offers two ways of 

creation of new individuals. If the value of a randomly drawn number r in the range 

of [0, 1] is less than the value of switching probability ps, then, as in CS, a new 

individual xj is generated via application of Lévy flight in accordance to (21). 

Otherwise, a crossover operator is utilised. 

4.2.2 Discrete Flower Pollination Algorithm for RCPSPs 

Previously, FPA have not been applied to problems in the discrete domain. 

Similarly to DCS, application of FPA to such problems focuses on the 

reinterpretation of its key elements and operators: 

 Solution representation scheme 

 Objective evaluation 

 Lévy flight 

 Crossover operator 

In DFPA, the reinterpretation of solution representation scheme, objective 

evaluation and Lévy flight follow the same procedure as described in sections 

4.1.2.1, 4.1.2.2 and 4.1.2.3, respectively.  
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To implement global pollination in a discrete domain, two-point crossover 

operator is used (Hartmann, 1998), also known as Davis order crossover. Given 

that there are two parents (parent 1 and parent 2), two-point crossover works by 

drawing two random integers q1 and q2 with 1 < q1 < q2 < n, where n is the total 

amount of activities in the AL. Further the offspring is created by taking the activity 

sequence of position i = q1, …, q2 from parent 1 and the remaining activities from 

parent 2 in the same order as they appear. An example of this procedure is 

demonstrated in Figure 4.12 on the sample AL from Figure 4.3. 

 

 

Figure 4.12 - Two-point Crossover example 

4.2.3 Computational Performance 

Similarly to DCS, performance of DFPA has been evaluated by running each of 

the benchmark instances from PSPLIB. The results of evaluation are then 

compared with other heuristic for RSPCP from (Hartmann & Kolisch, 2000) and 

(Kolisch & Hartmann, 2006). Description of the full experimental setup for 

parameters tuning and performance evaluation can be found in Section 4.1.3.1. 

4.2.3.1 Parameters Settings 

The DFPA has three configurable parameters: 

 Population size m 

 Switching probability ps 

 Max amount of steps s 

In order to find the optimal values for these parameters, a sensitivity analysis 

has been carried out using the irace package. The ranges of parameters values 

selected for the analysis are summarised in . 
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Table 4.6. 
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Table 4.6 – DFPA parameter values for sensitivity analysis 

Parameter Values Range 

Population size (m) [10, 200] 

Switching probability (ps) [0, 0.9] 

Max amount of steps (s) [1, 10] 

 

As the result of the algorithm tuning, the optimal parameters values identified 

by irace are summarised in Table 4.7. 

Table 4.7 - DFPA optimal parameters values 

Parameter Value 

Population size (m) 116 

Switching probability (ps) 0.8 

Max amount of steps (s) 8 

 

During the tuning process, irace iteratively updated the sampling models of the 

parameters to focus on the best regions of the parameter search space. The 

frequency of the sampling of parameters values in the regions of the specified 

parameters search space for m, ps and s is presented Figure 4.13, Figure 4.14 

and Figure 4.15. 

 

Figure 4.13 - Population size sampling frequency 
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Figure 4.14 - Switching probability sampling frequency 

 

Figure 4.15 - Max amount of steps sampling frequency 

The graph in Figure 4.16 displays the interaction between parameters and their 

dependencies on one another on the example of 100 best parameters 

configurations obtained by irace package during fine-tuning. 
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Figure 4.16 - DFPA parameters correlations 

Unlike with DCS, by looking at the graph in Figure 4.16 it is easy to see that 

DFPA permits more combinations of optimal parameters settings. The optimal 

levels of DFPA parameters identified by irace package were in the following 

regions: 

 m – [10; 50] & [100; 150] 

 ps – [0.4; 0.9] 

 s – [7; 10] 

4.2.3.2 Comparative Analysis 

The computational results of the performance evaluation of DFPA are 

presented in   
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Table 4.8, Table 4.9 and Table 4.10 for J30, J60 and J120 instance sets, 

respectively. The first column “Algorithm” reports abbreviations of the algorithms 

considered for comparison. Column “Author(s)” reports the name(s) of the original 

author(s) and reference to the work in which the algorithm at hand was 

previewed. The last column refers to the average deviation % for three stopping 

conditions: 1000, 5000 and 50000 objective evaluations. For the J30 instances, 

the average deviation is shown with respect to optimal solutions, while for J60 

and J120 instances the average deviation % is calculated with respect to the CP 

length. Computational performance of other presented algorithms was taken from 

(Hartmann & Kolisch, 2000) and (Kolisch & Hartmann, 2006). 
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Table 4.8 - DFPA performance comparison for J30 set 

Algorithm Author(s) Dev (%) 

  1000 5000 50000 

TS Nonobe and Ibaraki (2002) 0.46 0.16 0.05 

DFPA Bibiks et a. 0.46 0.19 0.06 

GA Hartmann (1998) 0.38 0.22 0.08 

Sampling + BF Tormos and Lova (2001) 0.30 0.17 0.09 

ANGEL Tseng and Chen (2006) 0.22 0.09 n/a 

 

Table 4.9 - DFPA performance comparison for J60 set 

Algorithm Author(s) Dev (%) 

  1000 5000 50000 

DFPA Bibiks et al. 13.01 12.90 11.20 

GA Hartmann (1998) 12.21 11.70 11.21 

Sampling + BF Tormos and Lova (2001) 11.88 11.62 11.36 

ANGEL Tseng and Chen (2006) 11.94 11.27 n/a 

TS Nonobe and Ibaraki (2002) 12.97 12.18 11.58 

 

Table 4.10 - DFPA performance comparison for J120 set 

Algorithm Author(s) Dev (%) 

  1000 5000 50000 

GA Hartmann (1998) 37.19 35.39 33.21 

DFPA Bibiks et al. 37.82 35.55 33.46 

Sampling + BF Tormos and Lova (2001) 36.24 35.56 34.77 

ANGEL Tseng and Chen (2006) 36.39 34.49 n/a 

TS Nonobe and Ibaraki (2002) 40.86 37.88 35.85 

 

As can be noted from the above-presented results, the addition of the 

crossover operator to the algorithm’s paradigm did not have much of an impact 

on its overall performance. In all tests, DFPA has showed weaker results than 

DCS. 

 

4.3 Improved Discrete Cuckoo Search 

Since DCS and DFPA structurally are very similar algorithms, they share the 

same common pitfalls and limitations, which are specific to the chosen solution 
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representation scheme, namely AL, and utilised operators. These limitations can 

be summarised as follows:  

 Representation of one schedule by several structurally different ALs 

 Random and context-unaware operators 

The first limitation described above is only specific to the AL. Due to the 

characteristics of this solution representation scheme, for one schedule several 

different representations can exist. Because of that, in some cases, modification 

of one AL can result in the generation of exactly the same schedule, hence, the 

wasted objective evaluation. Eliminating this limitation will allow an algorithm to 

perform better and with less iterations. 

The second limitation is specific to the operators used in both algorithms: shift 

operator, pairwise exchange, and two-point crossover. Even though these 

operators are easy to implement, their operation is purely based on a random 

factor and it does not take into consideration any specifics of the problem setting. 

Improving these algorithms by adding some elements of intelligence to them will 

most certainly increase the algorithm’s efficiency and success rate. 

As an attempt of addressing the above-mentioned inefficiencies of DCS and 

DFPA and improving their overall performance the improved discrete cuckoo 

search (IDCS) is proposed.  

4.3.1 Improved Discrete Cuckoo Search for RCPSPs 

IDCS represents a modified version of the earlier-presented DCS and its main 

objective is to resolve the weaknesses that were described earlier. The main 

additions to the original paradigm of the DCS are shown in bold in Figure 4.17 

and can be summarised as follows:  

 New solution representation scheme 

 Improved Lévy flight 

 Improvement of fraction of individuals via local search 

 Use of crossover operator 
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Improved Discrete Cuckoo Search 

Initialise a population P of m host nests xi, Pm = (x1, x1, …, xm) 

 

For all xi do 

    Calculate fitness Fi = f(xi) 

End for 

While (ObjectiveEvaluationNumber < MaxEvaluationNumber) 

    Create individual (xj) via Lévy flight 

    Calculate fitness Fj = f(xj) 

    Choose random individual xi from population Pm 

    If (Fj >Fi) then 

        Replace xi with xj 

    End if 

    Improve fraction pc of individuals via local search 

    Abandon a fraction pa of individuals with worst fitness 

    Generate new random individuals 

End while 

Find the fittest individual 

Figure 4.17 - IDCS pseudo-code 

 

4.3.1.1 Solution Representation Scheme 

Both AL and RK schemes can have several representations for a single schedule. 

Because of that property, the solution space contains worthless representations 

that can be converted into identical schedules, thus reducing efficiency of an 

algorithm and resulting in wasted objective evaluations. The essential issues of 

the discussed representation schemes can be summed up as follows: 

1. If two different RK schemes represent a linear combination of each 

other, then both schemes may result in the same solution 

2. RK does not take into consideration precedence constraints 

3. If two activities have identical starting times, then interchanging their 

position (for AL) and priority values (for RK) will not bring any changes 

to a solution 

4. Because of the precedence constraints, activity positions (for AL) or 

priority values (for RK) will not have an effect on the starting time 

Several attempts in the literature have been made to resolve the 

aforementioned inefficiencies. Debels et al. (2006) proposed a specialised RK 

representation scheme to tackle the above deficiencies by applying a 

transformation mechanism. To address the first issue, the authors utilised a 
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scaling of the Euclidian space, whereas for the second issue they created a 

repairing mechanism that considered the precedence constraints. Moreover, to 

address the third issue, activities with the same starting times were assigned the 

same priority values. To overcome the last issue, the activities were scheduled in 

topological order. 

Moumene and Ferland (2008) proposed to decode solutions in a form of 

activity set list (ASL). ASL represents an ordered list of different non-empty 

subsets of activities. Each subset is comprised of activities that share common 

project characteristics, such as predecessors and successors. Because of the 

properties of ASL, the search space is significantly reduced, its exploration is 

more efficient and optimal solutions are never excluded. 

Paraskevopoulos et al. (2012) proposed an alternative to ASL, called event list 

(EL). Similarly to ASL, the authors proposed to group activities in the EL with the 

same starting times into sets referred to as events. The EL representation 

scheme does not use any adjustments and repairing mechanisms and at the 

same time manages to effectively resolve the aforementioned inefficiencies of 

other representation schemes. Two different ELs can be differentiated by the 

distinct events that they contain, both in terms of structure and starting times. 

Thus, that way two different ELs cannot result in the same schedule. Moreover, 

the EL has been developed to allow local moves of sets of activities, enabling 

local search methodologies to generate newly enriched solution neighbours.  

Figure 4.18 demonstrates solution representations of a sample schedule from 

Figure 4.2 using both AL and EL encodings in parts a) and b) of the image, 

respectively.  

 

Figure 4.18 - Comparison of Activity List and Event List representations 

As can be noted from the presented example, in EL activities with the same 

starting times are grouped together and the resulting groups are ordered by their 
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starting times. Each group of activities (with the same starting times) is 

considered as an event. Therefore, a schedule (or a solution) is a set of events 

ordered by their starting times.  

4.3.1.2 Improved Lévy Flights 

As in the original implementation of Lévy flight, the step of a movement 

represents a distance in the search space that will be travelled to obtain a new 

solution. However, this time small steps are proportional to a number of events 

that will be relocated by event move operator, whereas big step is mimicked by 

applying event crossover operator. When an event move is performed on an 

individuals, a new solution is obtained by relocation of its randomly picked events. 

The number of relocated events is proportional to the amount of small steps that 

needs to be performed (e.g. 1 step corresponds to the relocation of 1 event). 

When event crossover is performed, a new solution is obtained by merging two 

individuals from the population together. Since the application of event crossover 

symbolises a big step, the current individual is crossed with the one that is farthest 

from it. 

To facilitate a control of movement through the search space, the amount of 

steps to be performed is associated with the Lévy distribution value generated by 

Mantegna algorithm, details of which are presented in Section 4.1.2.3. 

Event move. The idea of event move operator, first proposed by 

Paraskevopoulos et al. (2012), is based on the utilisation of properties of the EL 

representation scheme. An event in EL represents a set of activities with equal 

starting times. Moreover, these activities can also share the same project 

characteristics (i. e. have matching predecessors and/or successors) and thus 

can be considered as one entity. However, this conjecture is not always true. In 

some situations, activities might be started at the same time because of the 

restrictions on the resource loads. Nevertheless, cases where activities have 

common network characteristics can be taken as an advantage, as this would 

allow to move a whole event throughout the schedule to a different position and, 

thus, generating a new, possibly better, solution. In that case, a larger amount of 

moves is permitted, which enriches the solution search space with more valuable 

solutions. If activities that form an event do not have any common network 

characteristics, then permitted local moves will be limited. The algorithm of event 

move is summarised in pseudo-code in Figure 4.19. 
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Event Move 

Initialise event list E of size k, Ek = (e1, e2, …, ek) 

 

Randomly pick an event ei = (a1, a2, …, an) from Ek 

For all aj in ei do 

    Find allowable range of positions for relocation for aj 

    Relocate aj to new position 

End for 

Apply SGS for objective evaluation 

Figure 4.19 - Event Move pseudo-code 

When event move is performed on an EL, a number of random events is picked 

for relocation. The number of picked events is proportional to the amount of steps 

that will be performed and one step corresponds to the relocation of one event. 

For each activity in the chosen event(s), a range of possible positions for 

relocation is calculated. The range of positions is formulated in accordance with 

the precedence relations between activities: positions of the latest starting 

predecessor and the earliest starting successor. Further, all activities that 

comprise the chosen event are moved independently from each other to a 

random positions within their allowable ranges. Depending on the situation, these 

activities might be added to already existing events or form a new event, if no 

suitable event exists. Note that events that consist only of one activity are 

considered for relocation as well.  

After relocating events to new positions is complete, serial SGS is utilised to 

convert it into a schedule and calculate its makespan. It is worth mentioning that 

relocating event to a particular position in the EL does not guarantee that it will 

inherit its starting time. Instead, all of its activities will be rescheduled 

independently as early as possible and, as the result, starting times might 

change. 

Figure 4.20 and Figure 4.21 demonstrate a schedule that has resulted from 

the event move. The project from Figure 4.2 is used as the initial solution. 
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Figure 4.20 - Event Move example. Part 1 

 

 

Figure 4.21 - Event Move example. Part 2 

The process of event move begins with a selection of random event and 

estimation of feasible positions for relocation for each of the activities in the 

selected event. In the example shown in Figure 4.20a, the candidate event for 

relocation is highlighted and consists of Activities 9, 14 and 16. Further, the event 

is removed from the EL and all events that were scheduled before the chosen 

event remained at the same time slots. Subsequently, the activities from the 

removed event are inserted into the sub-solution at random positions within the 

allowable ranges. In the presented example, Activity 9 is inserted between 

Activities 8 and 10, while Activities 14 and 16 were inserted between Activities 10 

and 12. As mentioned earlier in this section, even though local move relocates 

the events, during conversion of the EL into a schedule each activity is scheduled 

independently. Finally, the remaining activities are scheduled and the resulting 
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EL is given in Figure 4.21a, while its schedule is presented in Figure 4.21b. As 

can be noted, after activities of the picked event have been rescheduled to 

different positions, the makespan of the schedule changed from 47 to 45. 

Event crossover. The proposed event crossover method operates on the EL 

representation. Instead of using random activity chains of solution parts to be 

recombined (i.e. the approach followed in AL-based methodologies), the 

proposed operator treats events as the solutions’ elements for recombination.  

From the example project in Figure 4.2 and its EL representation in Figure 4.18 

it can be observed that the presented EL consists of four events, each of which 

contains more than one activity. These events correspond to the peaks of the 

highest activity, when multiple activities are being started at the same time. At 

that time, more resources are needed and these periods are considered as 

periods of high productivity. For the crossover process, such periods in a 

schedule serve as a desirable characteristic that can be transferred to the 

offsprings.  

Therefore, given two solutions, Parent 1 and Parent 2, the event crossover 

operator generates an offspring, in such way, that events with the highest amount 

of activities are inherited from Parent 1, whereas the positions and order of the 

remaining activities is determined by Parent 2. The algorithmic procedure of event 

crossover is summarised in Figure 4.22. 

 

Event Crossover 

Initialise 2 event lists, Ex and Ey, each consisting of n activities 

 

Sort all events ek in Ex by size in descending order 

Start picking largest ek from Ex until total amount of picked activities  

    is >= n/2 

Pick remaining activities from Ey in the same order as they appear 

Form new Ez from picked events 

Apply SGS for objective evaluation 

Figure 4.22 - Event Crossover pseudo-code 

Assume Parent 1 and Parent 2, presented in part a) and b) of Figure 

4.23Error! Reference source not found., are two EL representations in the 

current population that are going to be used to generate a new offspring. The 

makespan of Parent 1 is 47, while makespan of Parent 2 is 62.  
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Figure 4.23 - Event Crossover example 

The event crossover process begins by ordering events in Parent 1 in 

descending order by their sizes. Then the events are picked one by one from the 

largest to the smallest until the number of activities that comprise the picked 

events is 50% from the total number of activities. For Parent 1, three events are 

selected for the crossover, each of which consists of three activities. The 

remaining activities are then taken from Parent 2 in their respective order. 

The procedure shown in Figure 4.23 builds an offspring and assigns activities 

to their respective positions one by one in a growing position order. At each 

moment, an activity is a candidate if it does not belong to any existing event and 

has not been assigned, while all its predecessor have already been added. It is 

worth noting that during its creation, the offspring is represented in a form of AL. 

The resulting AL, shown in Figure 4.23c, with the application of serial SGS is then 

converted into EL (Figure 4.23d) by scheduling each activity. Finally, a schedule 

with the makespan of 45 is produced, as demonstrated in Figure 4.23e. 
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4.3.1.3 Local Search 

Ouaarab et al. (2013) proposed to further improve the original paradigm of CS by 

adding additional means of creation solutions. In their improvement of the basic 

CS, the authors added additional mechanism that during each iteration randomly 

selects fraction of solutions and improves them via local search. The amount of 

solutions selected for improvement is controlled via smart cuckoo parameter pc. 

The name of this parameter is based on the analogy on some cuckoos that are 

capable of engaging a form of surveillance on an area around nests that are likely 

to become a host (Payne & Sorenson, 2005). 

With the inclusion of the aforementioned mechanism, each turn the improved 

CS now can create new solutions as follows: 

1. Generation of new solution via Lévy flight; 

2. A fraction pc of solutions that are improved via local search 

3. A fraction pa of randomly created solutions 

The added process can be illustrated as follows. Suppose that the value of pc 

is set to 0.5, then 50% of randomly selected solutions from the population will be 

modified via one application of event move operator.  

4.3.2 Computational Performance 

Similarly to previous algorithms in this chapter, performance of IDCS is going to 

be evaluated by running each of the benchmark instances from PSPLIB. The 

results of evaluation are then compared with other state-of-the-art heuristic for 

RSPCP from (Hartmann & Kolisch, 2000) and (Kolisch & Hartmann, 2006). 

Description of the full experimental setup for parameters tuning and performance 

evaluation can be found in Section 4.1.3.1. 

4.3.2.1 Parameters Settings 

The IDCS has four configurable parameters: 

 Population size m 

 Abandonment rate pa 

 Max amount of steps s 

 Portion of smart cuckoos pc 

In order to find the optimal values for these parameters, a sensitivity analysis has 

been carried out using the irace package. The ranges of parameters’ values 

selected for the analysis are summarised Error! Reference source not found.. 
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Table 4.11 - IDCS parameter values for sensitivity analysis 

Parameter Values Range 

Population size (m) [10, 200] 

Abandonment rate (pa) [0, 0.9] 

Max amount of steps (s) [1, 10] 

Portion of smart cuckoos (pc) [0, 0.9] 

 

As the result of the algorithm tuning, the optimal parameters values identified 

by irace are summarised in Table 4.12. 

Table 4.12 - IDCS optimal parameters values 

Parameter Value 

Population size (m) 18 

Abandonment rate (pa) 0.7 

Max amount of steps (s) 4 

Portion of smart cuckoos (pc) 0.2 

 

During the tuning process, irace iteratively updated the sampling models of the 

parameters to focus on the best regions of the parameter search space. The 

frequency of the sampling of parameters values in the regions of the specified 

parameters search space for m, pa, s and pc is presented in Figure 4.24, Figure 

4.25, Figure 4.26 and Figure 4.27, respectively. 

 

Figure 4.24 - Population size sampling frequency 
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Figure 4.25 - Abandonment rate sampling frequency 

 

Figure 4.26 - Max amount of steps sampling frequency 

 

Figure 4.27 - Portion of smart cuckoos sampling frequency 

As can be noted from the above-presented tuning results, with the utilisation 

of more efficient solution representation scheme, the use of new solution 

generation operators and addition of new mechanics for solution improvement, in 
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comparison with DCS, the levels of optimal parameters for IDCS almost have not 

changed. While values for population size and max amount of steps parameters 

remain the same, the value of abandonment rate parameter reduced from 0.8 to 

0.7. Further, Figure 4.28 displays the interaction between parameters and their 

dependencies on one another on the example of 100 best parameters 

configurations obtained by irace package during fine-tuning. 

 

 

Figure 4.28 - IDCS parameters correlations 

From the above-presented results, it is possible to tell that addition of new 

configurable parameter (pc) had very little effect on the optimal values of the 

algorithm’s parameters. In comparison to DCS, total variability of optimal 

parameter combinations has increased, however parameter values of these 

configurations remained in the same regions: 

 m – [10; 30] 

 pa – [0.7; 0.9] 

 s – [3; 4] 

 pc – [0.1; 0.3] 

4.3.2.2 Comparative Analysis 

The computational results of the performance evaluation of IDCS are presented in Table 4.13,  

Table 4.14 and Table 4.15 for J30, J60 and J120 instance sets, respectively. The 

first column “Algorithm” reports abbreviations of the algorithms considered for 

comparison. Column “Author(s)” reports the name(s) of the original author(s) and 

reference to the work in which the algorithm at hand was previewed. The last 

column refers to the average deviation % for three stopping conditions: 1000, 

5000 and 50000 objective evaluations. Computational performance of other 

presented algorithms was taken from (Hartmann & Kolisch, 2000) and (Kolisch & 

Hartmann, 2006). 
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Table 4.13 - IDCS performance comparison for J30 set 

Algorithm Author(s) Dev (%) 

  1000 5000 50000 

SAILS Paraskevopoulos et al. (2012) 0.03 0.01 0.00 

GA, TS-PR Kochetov and Stolyar (2003) 0.10 0.04 0.00 

SS-PR Mahdi-Mobini et al. (2009) 0.05 0.02 0.01 

GAPS Mendes et al. (2009) 0.06 0.02 0.01 

IDCS Bibiks et al. 0.09 0.04 0.01 

ACOSS Chen et al. (2010) 0.14 0.06 0.01 

SS-FBI Debels et al. (2006) 0.27 0.11 0.01 

GA Debels and Vanhoucke (2005) 0.15 0.04 0.02 

GA-hybrid FBI Valls et al. (2003) 0.27 0.06 0.02 

TS Nonobe and Ibaraki (2002) 0.46 0.16 0.05 

GA Hartmann (1998) 0.38 0.22 0.08 

Sampling + BF Tormos and Lova (2001) 0.30 0.17 0.09 

ANGEL Tseng and Chen (2006) 0.22 0.09 n/a 

 

Table 4.14 - IDCS performance comparison for J60 set 

Algorithm Author(s) Dev (%) 

  1000 5000 50000 

SAILS Paraskevopoulos et al. (2012) 11.05 10.72 10.54 

SS-PR Mahdi-Mobini et al. (2009) 11.12 10.74 10.57 

GAPS Mendes et al. (2009) 11.72 11.04 10.67 

IDCS Bibiks et al. 11.78 10.99 10.67 

ACOSS Chen et al. (2010) 11.72 10.98 10.67 

GA Debels and Vanhoucke (2005) 11.45 10.95 10.68 

SS-FBI Debels et al. (2006) 11.73 11.10 10.71 

GA-hybrid FBI Valls et al. (2003) 11.56 11.10 10.73 

GA, TS-PR Kochetov and Stolyar (2003) 11.71 11.17 10.74 

GA Hartmann (1998) 12.21 11.70 11.21 

Sampling + BF Tormos and Lova (2001) 11.88 11.62 11.36 

ANGEL Tseng and Chen (2006) 11.94 11.27 n/a 

TS Nonobe and Ibaraki (2002) 12.97 12.18 11.58 
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Table 4.15 - IDCS performance comparison for J120 set 

Algorithm Author(s) Dev (%) 

  1000 5000 50000 

IDCS Bibiks et al. 33.87 32.74 30.47 

ACOSS Chen et al. (2010) 35.19 32.48 30.56 

SAILS Paraskevopoulos et al. (2012) 33.32 32.12 30.78 

GA Debels and Vanhoucke (2005) 34.19 32.34 30.82 

GA-hybrid FBI Valls et al. (2003) 34.07 32.54 31.24 

GAPS Mendes et al. (2009) 35.87 33.03 31.44 

SS-PR Mahdi-Mobini et al. (2009) 34.51 32.61 31.37 

SS-FBI Debels et al. (2006) 35.22 33.10 31.57 

GA, TS-PR Kochetov and Stolyar (2003) 34.74 33.36 32.06 

GA Hartmann (1998) 37.19 35.39 33.21 

Sampling + BF Tormos and Lova (2001) 36.24 35.56 34.77 

ANGEL Tseng and Chen (2006) 36.39 34.49 n/a 

TS Nonobe and Ibaraki (2002) 40.86 37.88 35.85 

 

The results indicate that the proposed IDCS shows itself as a competitive 

algorithm and performs better or on the same level than more advanced 

methodologies. IDCS produces the best results regarding the 1000, 5000 and 

50000 performance modes for J120 problem set. Considering the 50000 

schedules DCS remains one of the most efficient algorithms for solving RCPSP 

achieving a 30.78% deviation from CP lower bounds. 

 

4.4 Discrete Species Conserving Cuckoo Search 

The IDCS presented in the previous section, demonstrated a satisfactory level of 

performance, comparable to other state-of-the-art methodologies for RCPSPs. 

However, despite its satisfactory performance, the algorithm cannot be applied 

to solve the optimisation model formulated in Chapter 3 as it can only obtain one 

solution candidate at a time. To address this issue, the discrete species 

conserving cuckoo search (DSCCS) is developed.  

The presented DSCCS relies on the species conservation (SC) technique in 

obtaining multiple global solutions. SC technique, added to the IDCS, is a method 

of evolving parallel sub-populations. First introduced by Li et al. (2002), this 
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technique is based on distributed elitism, achieved by identifying in each 

generation a set of prime individuals that are considered to be worth preserving 

into the next generation. By running tests on various multimodal optimisation 

problems from the literature, Li et al. (2002) were able to demonstrate that with 

the application of SC the algorithm is able to reliably find all possible optimal 

solutions for all problems under test, as well as achieve competitive performance. 

The amount of examples of integration of SC into other metaheuristics (Parrot & 

Li, 2004; Li X.-D. , 2004; Ando, Sakuma, & Kobayashi, 2005; Iwamatsu, 2006; 

Dong, He, Huang, & Hou, 2005; Stoean, Preuss, Stoean, & Dumitrescu, 2010; 

Shibasaka, Hara, Ichimura, & Takahama, 2007) only confirms its effectiveness 

and competitiveness over other multimodal techniques. 

The main goal of integration of the SC technique into the IDCS is to divide the 

whole population into several smaller sub-populations (i.e. species), and each 

sub-population consists of solutions with similar characteristics. The formation of 

sub-populations allows the search space to be divided into multiple smaller 

regions, where each sub-population is responsible for searching for solutions 

within their specified region. This creates an opportunity for a finer search for a 

local best optima and provides higher chances of finding global optima. Moreover, 

multiple solution candidates can be obtained, making the algorithm suitable for 

application in multimodal scenarios. 

4.4.1 Discrete Species Conserving Cuckoo Search for RCPSPs 

DSCCS is the result of the integration of SC technique to the original paradigm 

of the IDCS. As an extension to the IDCS, SC technique is based on the species 

concept. Species can be defined as a group of individuals (solutions) in a 

population with similar characteristics that are grouped around individuals with 

the highest fitness called the species seeds. In the context of the IDCS, the whole 

population is divided into various sub-populations. Each sub-population consists 

of solutions that belong to the same species and is centred on the species seed. 

After all species seeds have been defined and species have been formed, each 

species seed moves towards a new solution using Lévy flights. 

The DSCCS is based on the structure of IDCS and its pseudo-code is shown 

in Figure 4.29. Changes to the original structure of the algorithm are highlighted 

in bold. 
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Discrete Species Conserving Cuckoo Search 

Initialise a population P of m host nests xi, Pm = (x1, x1, …, xm) 

Set species distance σs as the average distance between all xi 

 

For all xi do 

    Calculate fitness Fi = f(xi) 

End for 

While (ObjectiveEvaluationNumber < MaxEvaluationNumber) 

    Identify species seeds Xs 

    For all xi in Xs do 

        Create individual (xj) via Lévy flight 

        Calculate fitness Fj = f(xj) 

        Choose random individual xi from population Pm 

        If (Fj >Fi) then 

            Replace xi with xj 

        End if 

    End for 

    Improve fraction pc of individuals via local search 

    Conserve species seeds Xs 

    Abandon a fraction pa of individuals with worst fitness 

    Generate new random individuals 

End while 

Return species seeds with the highest fitness 

Figure 4.29 - DSCCS pseudo-code 

The most significant changes to the IDCS are the following: 

 After a population initialisation, a species distance parameter σs is set 

 Within the generation loop, a set Xs of species seeds is determined 

 In contrast to the IDCS, where Lévy flights were applied only to the best 

individual, in the DSCCS the Lévy flights are performed on each species 

seed 

 After execution of a Lévy flights and local search procedures, the 

species conservation process is performed 

 After the operation of the algorithm has ended, multiple solution 

candidates are identified 

4.4.1.1 Definition of Species 

Species in the DSCCS are represented by a group of solutions from population 

that have a set of common characteristics with each other. Goldberg and 

Richardson (1987) proposed to divide the population into smaller sub-populations 
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based on the similarity of its members. To estimate the similarity between 

individuals, they used the Euclidean distance. 

The distance between two members of the population xi = [x1, x2, x3, …, xn] and 

xj = [x1, x2, x3, …, xn] was estimated as: 
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The Euclidian distance represents just one of the possible ways of estimating 

the dissimilarity between two solutions. Moreover, depending on the problem and 

its setting, different kinds of metrics of distance calculations, hence dissimilarity, 

need to be applied. Czogalla and Fink (2009) in their analysis of the RCPSP 

fitness landscape reviewed various distance measure techniques. The reviewed 

techniques were derived from the interpretation of the permutation 

representation. In these techniques, the distance between two solutions was 

calculated in relation to the elements of the permutation, the relative order of the 

elements, or the absolute position of the elements. 

The adjacency distance (Marti, Laguna, & Campos, 2005) is defined as the 

number of times a pair of activities is adjacent to both solutions xi and xj: 
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The precedence distance (Jones, 1995) is the number of times npre one activity 

is preceded by another activity in both solutions xi and xj: 
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The absolute position distance (Ronald, 1998) is the number of exact position 

matches of activities in both solutions xi and xj: 
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The deviation distance (Reeves, 1999) is the difference between starting times 

S of the activities in both solutions xi and xj: 
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In order to analyse applicability of the above-mentioned similarity measures 

for the RCPSP, Czogalla and Fink (2009) conducted a series of experiments on 

the sets of benchmark instances from the PSPLIB. As the conclusion of their 

analysis, the authors noted that algorithms that operated on the deviation 

distance measure tend to produce better results. Moreover, Chen et al. (2010) 

and Paraskevopoulos et al. (2012)  used the abovementioned distance measure 

in their algorithms, which confirms its applicability and effectiveness. 

In the DSCCS the species are defined in accordance with the species distance 

parameter σs, which signifies the upper bound on the distance between two 

solutions (i.e. individuals in the population). If a distance d(xi, xj) is lower than σs, 

then solutions xi and xj are considered to be belonging to the same species. 

Moreover, σs is also used to determine solutions that are going to be preserved 

into the next generation. 

Species are formed from all members of a population Pm = {x1, x2, x3, …, xm}. 

This implies that species are comprised of actual solutions and by no means is 

just a region of search space.  

In DSCCS species are denoted by a set Si. The Si consists of solutions from 

population Pm distance between which is less than the σs. The species Si is formed 

around prime individuals that are called dominating individuals (or species seeds) 

and denoted as x* ∈ Si. 

A solution x* is called dominating if for every other solution x ∈ Si in its species 

)(*)( xfxf      (31) 

The equality in (31) signifies that one species might be dominated by several 

individuals. 

A species Si is constructed around a dominating individual x* if, for every other 

individual x ∈ Si, 

2/)*,( sxxd      (32) 

It is worth mentioning that even though species Si is constructed around the 

dominating individual x* ∈ Si, this does not mean that all solutions x ∈ Pm within a 

radius σs / 2 of x* will be appointed to the same species. An illustration presented 

in Figure 4.30 shows an example of a distribution of species. Here, members of 

the population are partitioned into four species. Moreover, it can be noted that as 

the result of such partition, some solutions were allocated to more than one 
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species (e.g. solutions in species 1, 2 and 3 in the example). Hence, it can be 

concluded that several species may be dominated by one dominating individuals, 

as well as one individual can belong to several species. 

 

Figure 4.30 - Example of species distribution in a two-dimensional domain 

4.4.1.2 Setting of Species Distance 

The species distance parameter σs plays the most important role in the formation 

of species and identification of species seeds. If the value of the parameter is set 

too small, this will result in the formation of too many species and will increase 

the computational overhead, thus reducing the efficiency of the algorithm. 

Similarly, a too large value of σs will result in too few species being identified.  

Deb and Goldberg (1989) in their work implied that each species is enclosed 

by an n-dimensional hypersphere with radius σs. Based on this implication, the 

authors proposed to estimate the species distance parameter as 
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where Ng is the known number of global optima and r is the radius of smaller 

hypersphere containing a feasible space, which can be calculated as 
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where xk
u and xk

l represent the upper and lower bounds, respectively.  

As can be noted from (34), the presented approach will only work if the 

following conditions are satisfied:  



105 
 

 the number of global optima needs to be known;  

 all global optima need to be evenly distributed over the feasible search 

space.  

In most practical applications satisfaction of these conditions is impossible for 

obvious reasons. To overcome this limitation, Li et al. (2002) proposed to select 

σs such that if the distance between newly found solutions that are significantly 

different compared to each other is d, then σs need to be σs ≥ 2d.  This approach 

will guarantee that all members of the population are sufficiently diverse and 

selected species seeds are adequately different. 

Further, in the literature, a variety of techniques with adaptive niche radius has 

been proposed. The most prominent examples are dynamic fitness sharing 

(Cioppa, Stefano, & Marcelli, 2007), spatially-structured clearing (Dick, 2010), 

dynamic niche clustering (Gan & Warwick, 2001), and adaptive co-evolutionary 

sharing (Goldberg & Wang, 1998). Nevertheless, despite the variety of such 

techniques, all of them are applied to problems with continuous optimisation 

domain; therefore, their methods for automatic identification of the niching radius 

are not applicable to problems with discrete domain. As the compromise to this 

situation, in DSCCS the species distance parameter is set during the initialisation 

phase as the average distance value between all members of the initial 

population. 

4.4.1.3 Species Determination 

In order to split the population into species and determine which individuals will 

survive into the next generation, a set of dominating species needs to be 

identified from the current population. The species determination algorithm 

developed by Li et al. (2002), shown in Figure 4.31, demonstrates how this is 

accomplished in the DSCCS. In the presented algorithm, XS denotes a set of 

species seeds found in generation G(t). 
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Species Seeds Determination Algorithm 

XS = 0 

While (no more unmarked individuals in G(t)) 

    Search for the best unmarked x*∈ G(t) 

    Mark x* as processed 

    found = FALSE 

    For all x ∈ XS do 

        If (d(x*, x) ≤  σs/2) then 

            found = TRUE 

            Break 

        End if 

    End for 

    If (found==FALSE) then 

Figure 4.31 - Species Seeds Determination Algorithm pseudo-code 

The algorithm presented in Figure 4.31 builds the set XS by going through each 

individual in the current generation G(t) and checking its fitness value against the 

species seeds found so far. All individuals in G(t) are ordered in decreasing order 

of their fitness, hence the algorithm starts its way from the fittest individual. If 

during the comparison XS does not contain any species seeds that are closer than 

half the species distance (σs / 2) to the considered solution, then this solution will 

be added to XS. 

The procedure outlined in Figure 4.31 is performed for every generation, and, 

as result, it creates additional computational overhead. The computational 

complexity of this operation can be characterised in terms of the number of 

distance evaluations performed when determining the species seeds in one 

generation Ts(m) and can be summarised by the following relation: 


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Therefore, the number of distance evaluations performed for each generation 

is O(N2). 

4.4.1.4 Species Conservation 

Once all species have been identified, a new population is built by applying the 

usual IDCS operators. Some species may not survive the outcomes of these 

operations, therefore, they need to be copied (conserved) into the next 

generation, thus prolonging their existence and maintaining the diversity of a 
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population. The SC process, developed by Li et al. (2002), is presented in Figure 

4.32. 

 

Species Conservation Algorithm 

Mark all individuals as unprocessed 

For all x ∈ XS do 

    Select the worst unmarked y ∈ S’(x, σs) 

    If (y exists) then 

        If (f(y) < f(x)) then 

            y = x 

        End if 

    Else 

        Select the worst unmarked y ∈ G(t+1) 

        y = x 

    End if 

End for 

Figure 4.32 - Species Conservation Algorithm pseudo-code 

The SC process shown in Figure 4.32 works as follows: 

 New generation G(t+1) is searched for solutions that belong to the same 

species (S(x, σs)) that have been identified in generation G(t); i.e. 

individual  y ∈ G(t+1) for which d(x,y) < σs /2 

 If species seed x* is better than the worst of these “similar” solutions, it 

will replace it 

 If x* is the only member of its species in G(t+1), x* replaces the worst 

unmarked solution in G(t+1) 

 The species seeds are always carried from the previous generation, 

hence the total amount of species seeds NS is always smaller than the 

population size m, and unmarked solutions will always exist 

All species seeds are either conserved or replaced by superior individuals of 

the same species. It is worth mentioning that a scenario when none of the species 

will be selected for the conservation into the next generation is also possible. 

However, such a scenario can only happen if the new generation is created by 

applying operators that contain at least one individual from each of the species 

defined by the seeds in XS, and if each of these individuals has higher fitness than 

the corresponding species seed. 
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SC adds an additional computational overhead. The complexity of this process 

can be characterised by the amount of distance computations performed when 

conserving species seeds in one generation Tc(m): 
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   (36) 

Differentiating the above expression for Tc(m) with respect to ms, it is easily 

shown that Tc(m) is maximised when ms = m + 0.5. In practice, ms must be an 

integer, and, as the species seeds are identified from the population, cannot 

exceed m. Hence, substituting ms = m in (35) leads to: 
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    (37) 

Combining the results in (31) and (33), the total computational overhead 

introduced by species conservation technique, as measured by the number of 

distance calculations performed per each generation, Tsc(m) = Ts(m) + Tc(m) is: 

mmmmmTm SSC *2*2)(2      (38) 

Thus, the complexity of the number of distance computations performed for 

each generation is between O(N) and O(N2). If the species distance σs is set small, 

this results in greater amount of species in each generation, hence the complexity 

tends to increase towards O(N2). On the other hand, if σs is sufficiently large, there 

are few species seeds, thus the complexity tend to decrease towards O(N). 

4.4.1.5 Global Optima Identification 

When stopping condition is met, the DSCCS terminates its operation. At the end 

of its operation, the algorithm produces the last set XS of species seeds, e.g. the 

best solutions that were sufficiently different from each other. This suggests that 

XS should contain the found representative solutions, if any. Unfortunately, XS 

may contain both low fitness individuals that were stored because they were 

sufficiently different from all the other individuals in previous generations and high 

(but not necessarily equal) fitness individuals. Therefore the only solution would 

be to select from XS those individuals that have a high enough fitness. 

In the presented implementation of the DSCCS, the representative solutions 

to the problem at hand are considered to be the fittest individuals in XS, which are 
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all individuals in XS that have a fitness equal to the fitness fmax of the fittest species 

seed.  

4.4.2 Computational Performance 

Similarly to previous algorithms in this chapter, performance of DSCCS is going 

to be evaluated by running each of the benchmark instances from PSPLIB. The 

results of evaluation are then compared with other state-of-the-art heuristic for 

RSPCP from (Hartmann & Kolisch, 2000) and (Kolisch & Hartmann, 2006). 

Description of the full experimental setup for parameters tuning and performance 

evaluation can be found in Section 4.1.3.1. 

4.4.2.1 Parameters Settings 

Similarly to IDCS, DSCCS has four configurable parameters: 

 Population size m 

 Abandonment rate pa 

 Max amount of steps s 

 Portion of smart cuckoos pc 

In order to find the optimal values for these parameters, a sensitivity analysis 

has been carried out using the irace package. Ranges of parameters value 

selected for the analysis are summarised Table 4.16. 

Table 4.16 – DSCCS parameter values for sensitivity analysis 

Parameter Values Range 

Population size (m) [10, 200] 

Abandonment rate (pa) [0, 0.9] 

Max amount of steps (s) [1, 10] 

Portion of smart cuckoos (pc) [0, 0.9] 

As the result of the algorithm tuning, the optimal parameters values identified 

by irace are summarised in Table 4.17. 

Table 4.17 – DSCCS optimal parameters values 

Parameter Value 

Population size (m) 180 

Abandonment rate (pa) 0.7 

Max amount of steps (s) 4 

Portion of smart cuckoos (pc) 0.5 
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During the tuning process, irace iteratively updated the sampling models of the 

parameters to focus on the best regions of the parameter search space. The 

frequency of the sampling of parameters values in the regions of the specified 

parameters search space for m, pa, s and pc is presented Figure 4.33, Figure 4.34, 

Figure 4.35 and Figure 4.36. 

 

Figure 4.33 - Population size sampling frequency 

 

Figure 4.34 - Abandonment rate sampling frequency 

 

Figure 4.35 - Max amount of steps sampling frequency 
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Figure 4.36 - Portion of smart cuckoos sampling frequency 

Further, Figure 4.37 displays the interaction between parameters and their 

dependencies on one another on the example of 100 best parameters 

configurations obtained by irace package during fine-tuning. 

 

Figure 4.37 – DSCCS parameters correlations 

As can be observed from the presented results, with the integration of the 

species conservation technique into the IDCS, the optimal value for the 

population size has increased from 18 to 180. This is due to the fact that now for 

successful operation the algorithm needs to maintain high population of 

individuals which is divided into species. Having several species allows the 

algorithm to multiple regions of the solution search space simultaneously, 

however, in order to do this effectively, high population of diverse individuals is 

required. With an increase of optimal population size, the optimal value of portion 

of smart cuckoos parameter pc increased as well from 0.2 to 0.5. This is explained 

by the fact that now each turn a set of prime individuals is conserved into the next 

generation and with the higher pc there are more chances to improve this 

individual further. 

Moreover, the ambiguity of final best parameter combinations has increased 

as well. Parameter values of the best configurations were in the following regions: 
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 m – [160; 200] 

 pa – [0.7; 0.9] 

 s – [4; 8] 

 pc – [0.1; 0.9] 

4.4.2.2 Comparative Analysis 

The computational results of the performance evaluation of DSCCS are presented in Table 4.18, 

Table 4.19, and  

Table 4.20 for J30, J60 and J120 instance sets, respectively. The first column 

“Algorithm” reports abbreviations of the algorithms considered for comparison. 

Column “Author(s)” reports the name(s) of the original author(s) and reference to 

the work in which the algorithm at hand was previewed. The last column refers to 

the average deviation % for three stopping conditions: 1000, 5000 and 50000 

objective evaluations. Computational performance of other presented algorithms 

was taken from (Hartmann & Kolisch, 2000) and (Kolisch & Hartmann, 2006). 

 

Table 4.18 - DSCCS performance comparison for J30 set 

Algorithm Author(s) Dev (%) 

  1000 5000 50000 

SAILS Paraskevopoulos et al. (2012) 0.03 0.01 0.00 

GA, TS-PR Kochetov and Stolyar (2003) 0.10 0.04 0.00 

SS-PR Mahdi-Mobini et al. (2009) 0.05 0.02 0.01 

DSCCS Bibiks et al. 0.05 0.02 0.01 

GAPS Mendes et al. (2009) 0.06 0.02 0.01 

ACOSS Chen et al. (2010) 0.14 0.06 0.01 

SS-FBI Debels et al. (2006) 0.27 0.11 0.01 

GA Debels and Vanhoucke (2005) 0.15 0.04 0.02 

GA-hybrid FBI Valls et al. (2003) 0.27 0.06 0.02 

TS Nonobe and Ibaraki (2002) 0.46 0.16 0.05 

GA Hartmann (1998) 0.38 0.22 0.08 

Sampling + BF Tormos and Lova (2001) 0.30 0.17 0.09 

ANGEL Tseng and Chen (2006) 0.22 0.09 n/a 

 

Performance wise, the DSCCS showed the third best result for J30 and J60 

sets. For J120 set the DSCCS placed eighth amongst all compared algorithms.  
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Table 4.19 - DSCCS performance comparison for J60 set 

Algorithm Author(s) Dev (%) 

  1000 5000 50000 

SAILS Paraskevopoulos et al. (2012) 11.05 10.72 10.54 

SS-PR Mahdi-Mobini et al. (2009) 11.12 10.74 10.57 

DSCCS Bibiks et al. 11.73 11.01 10.62 

GAPS Mendes et al. (2009) 11.72 11.04 10.67 

ACOSS Chen et al. (2010) 11.72 10.98 10.67 

GA Debels and Vanhoucke (2005) 11.45 10.95 10.68 

SS-FBI Debels et al. (2006) 11.73 11.10 10.71 

GA-hybrid FBI Valls et al. (2003) 11.56 11.10 10.73 

GA, TS-PR Kochetov and Stolyar (2003) 11.71 11.17 10.74 

GA Hartmann (1998) 12.21 11.70 11.21 

Sampling + BF Tormos and Lova (2001) 11.88 11.62 11.36 

ANGEL Tseng and Chen (2006) 11.94 11.27 n/a 

TS Nonobe and Ibaraki (2002) 12.97 12.18 11.58 

 

Table 4.20 - DSCCS performance comparison for J120 set 

Algorithm Author(s) Dev (%) 

  1000 5000 50000 

ACOSS Chen et al. (2010) 35.19 32.48 30.56 

SAILS Paraskevopoulos et al. (2012) 33.32 32.12 30.78 

GA Debels and Vanhoucke (2005) 34.19 32.34 30.82 

GA-hybrid FBI Valls et al. (2003) 34.07 32.54 31.24 

GAPS Mendes et al. (2009) 35.87 33.03 31.44 

SS-PR Mahdi-Mobini et al. (2009) 34.51 32.61 31.37 

SS-FBI Debels et al. (2006) 35.22 33.10 31.57 

DSCCS Bibiks et al. 36.81 33.10 31.96 

GA, TS-PR Kochetov and Stolyar (2003) 34.74 33.36 32.06 

GA Hartmann (1998) 37.19 35.39 33.21 

Sampling + BF Tormos and Lova (2001) 36.24 35.56 34.77 

ANGEL Tseng and Chen (2006) 36.39 34.49 n/a 

TS Nonobe and Ibaraki (2002) 40.86 37.88 35.85 

 

The relatively lower performance in J120 set (in comparison to J30 and J60) 

can be explained by the fact that benchmark instances with 120 activities have a 
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lot wider search space, therefore the influence of such parameters as population 

size m and species distance σs is much higher. In order to provide better results, 

the algorithm needs to be able to adapt and estimate the optimal values for 

population size m and species distance σs automatically. Nevertheless, these 

results indicate that DSCCS is capable of finding solutions of high quality with 

fewer iterations. The DSCCS shows itself as a competitive algorithm and 

performs better or on the same level than other advanced solutions 

methodologies. 

As the final conclusion, it should be noted that for smaller problem instances 

with 30 and 60 activities the performance of DSCCS in comparison to the IDSC 

has improved. However, when solving problems of larger scale, the performance 

of the algorithm has noticeably degraded. As was stated earlier, this is explained 

by the fact that the solution search space of problems with larger scale becomes 

too big, hence setting species distance, as the average distance between all 

individuals will not work. Therefore, in order to improve the performance, a 

mechanism for automatic adaptation to the specifics of the problem need to be 

introduced. 

4.4.2.3 Multiple Solutions 

One of the features of the DSCCS is the ability to obtain multiple solution 

candidates for any given RCPSP problem instance. During algorithm testing, 

depending on the test instance, the amount of found candidate solutions varied 

from 1 to 22, 1 to 60, and 1 to 21 for J30, J60, and J120 test instances, 

respectively. It is also worth mentioning that the DSCCS was able to find optimal 

(or best known) solutions in the majority of all test instances with high rate.  

Some feasible solutions for J305_1 test instance are shown in Table 4.21. The 

optimal makespan (denoted by the starting time of the last activity in the EL) of 

the test instance is 53. The presented examples indicate that the search space 

of the RCPSP is indeed filled with a large amount of global optima, as well as 

prove the capability of DSCCS obtaining multiple solutions. 
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# Event list representation 

1 0          20        

1      5    22        

2  4   10 9  11 17 25 23    21   

3 8 7 12 6 16 15 13 14 18 27 26 30 19 24 29 28 31 

0 1 5 6 7 11 15 18 22 23 27 30 36 37 40 45 50 53 
 

2 0                    

1                    

2  6   10  5  17 11 20   23 19  21   

3 8 7 12 4 16 9 15 13 18 14 22 25 27 26 30 24 29 28 31 

0 1 5 6 7 11 13 17 18 21 24 27 28 29 30 38 40 46 50 53 
 

3 0                    

1                    

2 4  8 6 5    11 20 17 23  25  21    

3 7 16 12 10 15 13 13 9 14 22 18 27 19 26 24 30 29 28 31 

0 5 6 10 11 15 18 18 20 22 27 28 30 34 39 40 42 47 50 53 
 

4 0                  

1      5    20        

2  4   10 9  11 17 22 19 26 21     

3 8 7 12 6 16 15 13 14 18 27 23 30 25 24 29 28 31 

0 1 5 6 7 11 15 18 22 23 27 30 36 38 40 44 50 53 
 

5 0                   

1                   

2 4  8 6 5   11 20 17 23  25  21    

3 7 16 12 10 15 13 9 14 22 18 27 19 26 24 30 29 28 31 

0 5 6 10 11 15 18 20 22 27 28 30 34 39 40 42 47 50 53 
 

6 0                    

1              21      

2 6  4 8 9   17 20 11    25      

3 7 12 16 10 15 13 5 18 22 14 23 19 27 26 24 30 29 28 31 

0 5 6 7 11 17 18 21 25 27 28 30 31 33 39 40 42 47 50 53 
 

7 0                  

1           27       

2 4  8 6 5   11 20 17 25   24 21   

3 7 16 12 10 15 13 9 14 20 18 23 26 19 30 29 28 31 

0 5 6 10 11 15 18 20 22 27 28 30 34 39 40 47 50 53 
 

8 0                    

1        5      21      

2  6   4   15  20 11 19  25      

3 8 7 12 16 10 9 13 17 18 22 14 23 27 26 24 30 29 28 31 

0 1 5 6 7 11 13 18 21 24 27 28 30 33 38 40 42 46 50 53 
 

9 0                    

1              21      

2 5  4   8  5  20 11 19  25      

3 6 12 16 10 9 15 13 17 18 22 14 23 27 26 24 30 29 28 31 

0 5 6 7 11 13 17 18 21 23 27 28 30 33 38 40 42 46 50 53 
 

10 0                    

1          17          

2 4  8 6 5   11  18 20      21   

3 7 16 12 10 15 13 9 14 22 27 23 25 26 19 24 30 29 28 31 

0 5 6 10 11 15 18 20 22 27 28 30 33 34 37 40 42 45 50 53 
 

Table 4.21 - Example event list representations of found solutions of J30 test instance 

 

4.5 Summary 

In the first two sections of this chapter two novel algorithms, CS and FPA, are 

modified and applied to solve the RCPSP. The ideas of CS and FPA are extended 
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to a discrete domain, resulting in the development of DCS and DFPA, 

respectively. As the original versions of these algorithms were specifically 

designed for the application in continuous optimisation problems, in order to apply 

them for solving RCPSPs, the algorithms’ key components and elements are 

reinterpreted. These include solution representation and encoding scheme; 

exploration and exploitation of the solution search space; and crossover operator 

in the case of DFPA.  

Some preliminary computational experiments were carried out to test the 

suitability of the algorithms when applied to solve RCPSPs on the sets of 

benchmark instances from PSPLIB and the results of tests were compared with 

the performances of other non-hybrid algorithms for RCPSPs from the literature. 

The comparative analysis showed that both algorithms have a competitive level 

of performance. Nevertheless, DCA and DFPA have many areas for 

improvement, which include: inefficient solution representation scheme, use of 

randomisation-reliant and context-free operators, and the creation of random 

individuals. 

To address and fix the limitations of the DCS and DFPA, the IDCS was 

proposed. The IDCS represents an improved version of the DCS and it introduces 

the following changes to the original paradigm of DCS:  

 use of the EL as more efficient solution representation scheme;  

 addition of a new mechanism for improvement individuals in the current 

population via local search;  

 use of the event move operator that takes into account properties of the 

activities (successors and predecessors) to improve the current 

solution; and  

 the event crossover which is designed to combine useful problem-

specific information extracted from the parent for the purpose of 

generating high quality children.  

The performance of the IDCS was evaluated using all benchmark instances 

from J30, J60, and J120 sets from PSPLIB and the performance evaluation 

results are compared against other state-of-the-art algorithms for RCPSPs from 

literature. The results show that IDCS outperforms most of the chosen state-of-

the-art algorithms for the instance sets J30, J60, and J120.  

Nevertheless, due to the specifics of the optimisation model proposed in this 

thesis, one of the areas of improvement of the algorithm is its adaptation for 
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application in multimodal scenarios. Thus, by combining the IDCS and SC 

technique, a new metaheuristic algorithm DSCCS was subsequently proposed. 

The application of the species conserving technique to the IDCS has made 

this algorithm suitable for the use in multimodal scenarios. The main difference 

between the IDCS and DSCCS is the introduction of two new additional 

operators: species determination and species conservation processes. 

Moreover, in contrast to the IDCS where Lévy flight is only applied on the fittest 

individual, in the DSCCS the Lévy flight is applied to all species seeds. 

The computational results show that DSCCS is a high-quality algorithm which 

is capable of achieving high performance comparable to other state-of-the-art 

heuristics for the RCPSP, as well as obtaining multiple solution candidates. 
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Chapter 5 Case Studies 

 

This chapter focuses on the application of the DSCCS, presented in Chapter 4, 

to the HPMP, proposed in Chapter 3. For this, two sets of experiments are 

conducted: activity scheduling and resource allocation of the real-world project, 

and the algorithm’s performance evaluation on the set of benchmark instances.  

For the first experiment, the DSCCS is applied to schedule activities of the 

real-life software development project. The project consists of 51 different 

activities with complex precedence relationships and 6 types of resources.  

For the second experiment, several of the most popular methodologies for the 

RCPSP are implemented and then applied to solve the benchmark instances 

from PSPLIB, which were edited to feature additional parameters for resource 

efficiency and learnability.  

 

5.1 HARNet Automated Testing System Project 

Harmonised Antennas and Radio Networks (HARNet) represents a large-scale 

aeronautical R&D project and is characterised by a complex structure, reliance 

on intensive high-tech, a collaboration of many partner companies, and exposure 

to considerable uncertainties and risks. Because of that, the development of 

HARNet was split into smaller work packages (WPs) that were distributed among 

the partners as follows: 

 WP1: Identification and management of the project transversal activities 

 WP2: Next generation antennas design study and development 

 WP3: Next generation communication environment development 

 WP4: Design and synthesis of the harmonised amplifier sets 

 WP5: Design and synthesis of the harmonised transceiver 

 WP6: Design and synthesis of an I/Q baseband bus system 

 WP7: Design and development of the baseband processing system 

 WP8: Design and development of system capable of providing high 

burst capacity data transfers for entertainment and system upgrades 

 WP9: Design and development of the automated testing environment 

The WP1 is a managerial project objective of which is to identify, assess and 

manage the wide range of general risks and requirements subject to all 
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development stages of the HARNet. WPs ranging from WP2 to WP8 are 

hardware related projects, main concern of which is the study, design and 

development of the certain HARNet elements, which, when combined together, 

will form the entire system. The last WP in the list, WP9, in comparison to other 

WPs, represents a software project. Its objective is to produce an overarching 

automated test system that will cooperate with external and third-party testing 

mechanisms to carry out the testing of the HARNet components at different 

stages of the development cycle. 

Due to the previous experiences of being involved only with hardware-related 

projects, planning and scheduling of the design and development stages of the 

WP9 (HARNet automated testing system (HATS)) were new for the HARNet 

project managers. The management of such project required more efficient tools 

and models. Without such tools, the managers had to face the following 

managerial challenges: 

 Resource allocation and scheduling – the development cycle of WP9 

consisted of set of activities which required collaboration of different 

teams with various specialities and from different departments 

 Uncertain activity durations – most of the activities in the WP9 were new 

for the project managers and developers. This created the difficulty of 

the evaluation durations of activities 

 Time dependency – as the development of the project went ahead, 

related factors might evolve with time, influencing the duration of the 

activities. For instance, as experience accumulated and technological 

maturity grown, technology risks tended to decrease 

 Conflicting objectives – WP9 involved multiple conflicting objectives, 

such as minimisation of makespan and maximisation of the competency 

of selected group members 

For the development of WP9, focus on the above-mentioned challenges could 

provide managers with effective candidate solutions to shorten the development 

cycle, save costs and improve efficiency. This could be achieved by designing 

efficient optimisation and decision support models. 

5.1.1 Project Description 

The main outcome of the WP9 was envisioned to be the overarching automated 

testing system that would aim to cooperate with external and third-party testing 



120 
 

mechanisms to carry out testing and validation of many different radio 

components. Moreover, because of its generic and extensible design, it could 

also be used to test other software and hardware components. Support for testing 

of new components could be easily added due to the extensible nature of the 

system. Further, HATS was projected to allow interfacing with existing testing 

tools, so that all testing can be carried out and orchestrated from one overarching 

system.   

5.1.1.1 Project Background 

The main content of the WP9 included the design and development of the HATS 

prototype system and its subsequent integrations and system tests. The overall 

project’s lifetime could be divided into the following stages: 

 Stage 1: Review of the testing technologies and identification of the 

functional requirements 

 Stage 2: System architecture design 

 Stage 3: Synthesis of the test prototype system 

 Stage 4: Testing and verification of the final system 

The functional requirements of the HATS prototype were identified in 

collaboration with partners from other WPs and covered only the bare minimal 

set of functionalities that needed to be implemented. 

Because of the HATS’ generality and extensibility, the system architecture had 

a modular structure and was based on the principles of the service-oriented 

architecture (SOA) and modular programming.  

The functionality of HATS was separated into independent, interchangeable 

modules, such that each contained everything necessary to execute only one 

aspect of the desired functionality. As the development process went further, the 

core functionality of HATS could be expanded by the addition of new modules. 

Moreover, such approach has also helped to split the project activities equally 

between all groups of developers, making each group capable to independently 

develop and test their assigned module.  

5.1.1.2 Project Network 

The development cycle of HATS consisted of 51 activities, which are listed in Table 5.1,  

Table 5.2,   
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Table 5.3 and   



122 
 

Table 5.4. Project networks presented in Figure 5.1 and Figure 5.2 characterise 

the precedence relations of all activities that are comprised in the project. 

Activities A0 and A52 are dummy activities that signify the start and the end of the 

project, respectively, and have a deterministic duration of 0. The preliminary 

duration estimations pi* of all other non-dummy activities Ai can be found in the 

last column of the respective tables and are expressed in weeks. 

Table 5.1 - WP9 Stage 1 activities 

Ai Name pi* 

A1 Review of tools, techniques, and methodologies 4 

A2 Review of automated testing technologies 4 

A3 Selection of tools and technologies 2 

A4 Determination of operating environment and preconditions 3 

A5 Determination of HATS components and subcomponents 4 

A6 Definition of testing scopes and interfaces 2 

A7 Definition of functional requirements 6 

 

Table 5.2 - WP9 Stage 2 activities 

Ai Name pi* 

A8 Identification of functional components 2 

A9 Identification of system specification 2 

A10 Software architecture design 7 

A11 Hardware architecture design 6 

A12 Graphical user interface (GUI) design 7 

A13 Component design 5 

A14 Database design 3 

A15 Definition of test cases 5 

A16 Definition of physical and logical interfaces 3 

A17 Definition of test flow diagrams 9 
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Table 5.3 - WP9 Stage 3 activities 

Ai Name pi* 

A18 Core engine development 8 

A19 Communication manager development 2 

A20 User manager development 2 

A21 Component manager development 4 

A22 Test scenario manager development 6 

A23 Test scheduling manager development 10 

A24 Test execution manager development 9 

A25 Test results manager development 2 

A26 Maintenance manager development 2 

A27 Adaptation manager development 5 

A28 System configuration manager development 3 

A29 Utility manager development 2 

A30 System under test adapters development 4 

A31 GUI core engine development 6 

A32 GUI test designer and planner development 6 

A33 GUI results processor and reporter development 2 

A34 GUI component configuration panel development 3 

A35 GUI system configuration panel development 3 

A36 GUI user configuration panel development 2 

 

  



124 
 

Table 5.4 - WP9 Stage 4 activities 

Ai Name pi* 

A37 Backend integration testing 6 

A38 Frontend integration testing 5 

A39 Whole system integration testing 7 

A40 Component interfaces testing 5 

A41 System performance testing 4 

A42 Compatibility testing 3 

A43 Scalability testing 3 

A44 Maintenance testing 5 

A45 GUI testing 5 

A46 Usability testing 3 

A47 Security testing 3 

A48 Regression testing 3 

A49 Testing among different stations 2 

A50 Joint testing and verification 7 

A51 Operational acceptance testing 4 
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Figure 5.1 – WP9 project network of stages 1 and 2 
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Figure 5.2 – WP9 project network of stages 3 and 4 

As can be observed from the project networks presented in Figure 5.1 and 

Figure 5.2, stages 1 and 2 are relatively sequential and consist of the activities 
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with easy-to-follow relationships. However, stages 3 and 4 contain activities with 

complex dependency networks scheduling which is a challenging task. 

5.1.1.3 Project Resources 

For execution of all planned activities of the WP9 project several types of 

resources were needed. All resources that are considered in this case study have 

limited capacities, therefore, inappropriate scheduling and allocation may cause 

conflicts among the tasks. The total number of resources that are available for 

completion of the case study and their efficiencies are presented in Table 5.5. 

Table 5.5 - WP9 Resource capacities 

Rk Description RCk  ek lk 

R1 Researchers in the frontend department 4 0.55 15 

R2 Researchers in the backend department 9 0.40 15 

R3 Researches in the design department 5 0.35 20 

R4 Researchers in the system engineering department 5 0.25 25 

R5 Network analyser 2 n/a n/a 

R6 Network router 1 n/a n/a 

 

Resource requirements of each of the case study’s activities are shown in Table 5.6,  
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Table 5.7,  

Table 5.8 and  

Table 5.9. 

Table 5.6 - WP9 Stage 1 resource requirements 

Ai R1 R2 R3 R4 R5 R6 

A1 3 3 1 1 0 0 

A2 1 1 3 3 0 0 

A3 2 2 2 2 0 0 

A4 0 0 2 3 0 0 

A5 1 1 2 2 0 0 

A6 0 0 2 4 0 0 

A7 2 2 1 1 0 0 

 

  



127 
 

Table 5.7 - WP9 Stage 2 resource requirements 

Ai R1 R2 R3 R4 R5 R6 

A8 0 0 2 2 0 0 

A9 0 1 1 3 0 0 

A10 1 3 3 1 0 0 

A11 0 1 2 3 0 0 

A12 4 0 2 0 0 0 

A13 0 2 2 2 0 0 

A14 0 2 2 0 0 0 

A15 3 3 0 0 0 0 

A16 0 0 2 3 0 0 

A17 3 3 0 0 0 0 

 

Table 5.8 - WP9 Stage 3 resource requirements 

Ai R1 R2 R3 R4 R5 R6 

A18 0 4 2 1 0 0 

A19 0 1 1 3 1 1 

A20 0 2 2 0 0 0 

A21 0 3 1 2 1 0 

A22 0 3 3 1 0 0 

A23 0 4 2 0 0 0 

A24 0 4 2 2 1 1 

A25 1 2 1 0 0 0 

A26 0 1 1 3 0 0 

A27 0 2 2 3 1 0 

A28 1 1 0 3 1 1 

A29 0 2 2 1 0 0 

A30 0 0 2 4 1 0 

A31 4 0 3 0 0 0 

A32 3 1 3 0 0 0 

A33 3 0 1 1 0 0 

A34 2 0 1 2 0 0 

A35 2 0 1 3 0 0 

A36 3 0 1 0 0 0 
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Table 5.9 - WP9 Stage 4 resource requirements 

Ai R1 R2 R3 R4 R5 R6 

A37 0 4 1 2 0 0 

A38 4 0 1 2 0 0 

A39 3 3 2 2 2 0 

A40 0 2 0 3 1 1 

A41 1 3 1 3 0 0 

A42 2 0 3 2 0 0 

A43 2 0 3 2 0 0 

A44 0 0 3 3 0 0 

A45 4 0 1 2 0 0 

A46 2 1 2 1 0 0 

A47 0 1 2 2 0 1 

A48 2 2 2 1 0 0 

A49 2 2 0 3 2 0 

A50 3 3 2 2 1 0 

A51 2 2 3 3 0 0 

 

Resources R1, R2, R3, and R4 represent people, i.e. departments in which each 

unit of these resources corresponds to one researcher or developer. In this case 

study, four groups of researchers are considered, corresponding to different 

areas of expertise and different levels of experience: frontend, backend, design, 

and system engineering. Depending on the activity’s requirement, several units 

(researchers) of a particular resource type might be needed for its execution. If 

so, the researchers will work in cooperation as a group and support the design 

specification, organisation of the interface, review, technical consulting, etc. 

Consequently, activities are completed by different groups of researchers under 

a higher-level global plan. Resources R5 and R6 represent special equipment 

needed for completion of some of the activities. In contrast to resources R1, R2, 

R3, and R4, resources R5 and R6 cannot gain any experience, thus, they cannot 

influence the duration of activities. 

Since the actual data of the WP9 project is confidential, the values ek and lk in 

this case study have been chosen artificially for the purpose of illustrating 

properties of the proposed optimisation model. In the context of this work, value 

ek represents the maximum efficiency gain that can be achieved by resource type 
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by learning and gaining relevant experience. Value e1 = 0.25, for example, 

denotes that a highly experienced group of researchers can be up to 25% more 

efficient than it was before the project started. The learnability coefficient lk 

measures the learning effect through experience: a higher value of this parameter 

suggests that the experience gain effect will require more time. A simple method 

to estimate lk in the real-world project would be via a management report. For 

example, statement like “90% of the maximum experience gain effect for the 

resource Rk can be accomplished after 30 weeks of practice” can lead to the 

following: 

)
30

exp(%90 kl     (39) 

which yields the value lk = 30*(-ln(0.9)) = 3.1608. The lk-values selected for this 

case study in Error! Reference source not found. are much higher and they 

correlate to a rather slow learning effect. 

5.1.2 Algorithm Application 

Application of any algorithm for the RCPSP-kind of problem mainly focuses on 

the reinterpretation of its key elements, which include solution representation, 

objective function, and genetic operators. Additionally, application of techniques 

for multimodal optimisation would also require reinterpretation of metrics of 

similarity estimation between members of the population. 

To test the validity of the proposed optimisation model and solve the presented 

case study, the DSCCS is going to be utilised. For more detailed description of 

the DSCCS refer to Section 4.4. The experimental evaluation of the DSCCS on 

sets of benchmark instances from PSPLIB for the standard RCPSP 

demonstrated the capability of the algorithm to confidently handle RCPSP 

instances of various sizes, ability to find multiple optimal solutions and 

competitiveness against other state-of-the-art methodologies for the deterministic 

RCPSP.  

As DSCCS was specifically developed for solving the derivatives of RCPSPs, 

in order to apply it to the proposed optimisation model the only element that needs 

to be reinterpreted is the objective function. The considered optimisation model 

considers optimisation of two objectives: makespan minimisation and resource 

efficiency balancing. In the standard RCPSP, the makespan of a schedule is 
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estimated by assigning starting time to each of the schedule’s activities using 

serial or parallel schedule generation scheme (SGS). Due to the specifics of the 

proposed model, the standard variations of the SGS are not applicable here, 

hence a new scheme needs to be introduced that will take into account the 

varying durations of the activities. The estimation of resource efficiency balancing 

will follow the procedure described in Section 3.4.2. The reinterpretation of other 

algorithm’s key elements is not necessary and they will remain as follows: 

 Solution representation – event list, presented in Section Error! 

Reference source not found. 

 Lévy flight and local search – event move, described in Section 4.3.1.2 

 Generation of new individuals – event crossover, proposed in Section 

4.3.1.2 

 Similarity estimation – deviation distance, described in Section 4.4.1.1 

5.1.2.1 Makespan Estimation 

In the standard deterministic RCPSP, the schedule’s makespan is estimated by 

converting a solution into a schedule by successively scheduling activities one by 

one in the same order as they appear in the solution. Once the schedule is 

created, the makespan is equal to the starting time Sn+1 of the last dummy activity 

An+1. The conversion of a solution into a schedule is accomplished by applying 

SGS. For the traditional RCPSPs, Kolisch (1996) outlined two types of SGS: 

serial and parallel.  

Serial SGS uses the activity incrimination approach and schedules one activity 

at a time as early as possible while satisfying precedence and resource 

constraints. This is achieved by producing the list of activities and selecting at 

each stage the next activity from the list to schedule it at its first possible starting 

time without violating both the precedence and resource constraints. 

Instead of iterating over the activity list, parallel SGS iterates over the time 

horizon of the project and schedules the eligible activities. The scheme starts at 

time point t = 0 and attempts to schedule all activities eligible for scheduling at 

this time point. Once this is done, the time pointer is increased. At each decision 

point, the eligible activities are scheduled with a starting time equal to the decision 

point. Activities that cannot be scheduled due to the resource conflict are skipped 

and become eligible to schedule at the next decision point. 
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Due to the properties of these SGSs, the schedules that are generated using 

serial SGS are called active schedules, meaning their activities are scheduled as 

early as possible and rescheduling them to earlier starting times will violate the 

precedence or resource constraints. The schedules that are created by parallel 

SGS are called non-delay schedules. Non-delay schedule is a schedule where 

no resources were kept idle at a time when it could begin processing an activity. 

Kolisch (1996) in his experimental evaluation of both scheduling modes showed 

that in the majority of conducted experiments serial SGS produced better results, 

mainly due to the inability of parallel SGS to reach an optimal solution in some 

cases.  

The SGS for the proposed optimisation model is based on the serial SGS, 

primarily because of its superiority over parallel SGS. The pseudo-code of the 

algorithm used for converting activity sequence A of the EL representation into 

the schedule and estimating its makespan Sn+1 is shown in Figure 5.3. 

 

Makespan Estimation Algorithm 

checkFeasibility(A) 

For all Ai ∈ A do 

    Find the earliest possible starting time t 

    Calculate duration pi
m for time t 

    While(checkSchedulability(Ai, pi, t) == false) 

        t = t + 1 

        Calculate duration pi
m for new starting time t 

    End while 

    Set Si = t 

    Update resource usage matrix 

End for 

Figure 5.3 – Makespan estimation algorithm pseudo-code 

The makespan estimation process shown in Figure 5.3 begins with checking 

the feasibility of the inputted activity sequence. Two conditions are checked here: 

the sequence has to start and end with the starting and ending dummy activities, 

respectively; activities in the sequence need to be placed after their respective 

predecessors. If one of these conditions is not satisfied, the algorithm will not 

proceed. Once the feasibility of the sequence is verified, for each subsequent 

activity in the given sequence the following is performed: 

 Taking into consideration the information about activity Ai predecessors, 

estimate its earliest possible starting time t. In this case, it is equal to 
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the latest finishing time of one of its predecessors. At this step the 

resource availabilities are not considered 

 Calculate new activity duration pi(t) at time t taking into account 

resource experience 

 Check resource availabilities for a time period [t, t + pi
m]. If scheduling 

at this time period is not possible, increment time by 1 and recalculate 

new duration for a new time. This step is repeated until the feasible time 

is found 

 Set starting time Si of activity Ai to t and update resource usage matrix 

for subsequent operations 

After all activities have been scheduled, the schedule duration is equal to the 

starting time of the last dummy activity Sn+1. 

The procedure of makespan estimation is applied to each new EL after its 

creation. 

5.1.2.2 Resource Efficiency Balancing 

In order to provide stable and consistent execution of a project, resource 

efficiency balance is necessary. If some resources have very high experience 

while others are lacking it, then the execution of some activities might be 

necessarily prolonged. Moreover, this might also leave some resources idle for 

some periods of time. 

The majority of traditional RCPSPs only consider makespan minimisation is 

their primary and the only one objective. For the proposed optimisation model, 

the resource efficiency balancing is combined with the process of best solution 

identification which is performed at the end of DSCCS operation. The pseudo-

code of this procedure is shown in Figure 5.4. In the context of given problem, 

resource efficiency balancing takes into account the fairness measure which 

ensures that all resources are distributed equally and fairly among all activities 

and receive similar amount of experience. 

 

Resource Efficiency Balancing Algorithm 

Find the smallest f1(x) ∈  Xs; rref = f1(x) 

Filter Xs to include only individuals with makespan of rref 

For all x ∈ Xs do 

    Estimate f2(x) 

End for 
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Find the smallest f2(x) ∈  Xs; 

Figure 5.4 – Resource efficiency balancing algorithm 

The resource efficiency balancing begins with the search of the species seed 

from the species seeds set Xs with the lowest makespan. The value of the found 

species seed is then used as a reference to filter all other species seeds which 

have higher makespan. As was shown by previous researches and experiments 

(Czogalla & Fink, 2009; Ikeda & Kobayashi, 2000; Pérez, Posada, & Lorenzana, 

2015), RCPSPs have multimodal landscapes which correspond to the existence 

of multiple global solutions. Therefore, when species seeds set Xs is filtered to 

contain only individuals with the best makespan, it is expected that multiple 

individuals will remain. After it is done, for each of the remaining species seeds 

the resource efficiency balance is estimated. At the end, the algorithm selects the 

individuals with the best balancing. 

The procedure outlined in Figure 5.4 is only performed once as the very last 

stage of the algorithm’s operation. 

5.1.3 Experiment Setup and Parameter Choices 

As was shown by previous experiments, the algorithm’s parameters have a 

significant impact on its performance, quality of the received solutions, 

computational time and the success rate. The DSCCS has four parameters that 

can be configured: population size m, abandonment rate pa, a portion of smart 

cuckoos pc, max amount of steps s and configurable species distance σs. The 

effects of these parameters and their influence on the quality and amount of 

received solutions are studied in Section Error! Reference source not found.. 

For the proposed case study, the performance is going to be examined by 

applying different algorithmic settings for all parameters. The values of these 

parameters are summarised in Table 5.10, where σs* represents the average 

distance between all individuals in the population and is calculated automatically 

by the algorithm. 

Table 5.10 - DSCCS parameter choices for the case study 

Parameter Value 

Population size (m) 180 

Abandonment rate (pa) 0.7  

Portion of smart cuckoos (pc) 0.5 

Max amount of steps (s) 4 
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Species distance (σs*) σs* 

Stopping criterion [5000, 50000] 

 

Values of the DSCCS parameters for this experiment are going to be set to the 

values specified in the table above. These values were obtained through 

automatic fine-tuning of the algorithm via application of irace package on 

benchmark test instances from experimental setup described in Section 4.1.3.1. 

The main reason for using several combinations of parameters for stopping 

criterion is to analyse the behaviour of the DSCCS on the presented case study, 

see what kind of impact its parameters will have when applied to solve a practical 

example, and identify the minimal value sets required to find the optimal solution 

for given scenario. 

In order to experimentally validate the proposed optimisation model and see 

how efficiency and learnability coefficients affect the durations of activities, two 

sets of experiments will be carried out: deterministic scheduling, which assumes 

that activity durations are constant, and stochastic scheduling in which activity 

durations can change depending on the experience of the applied resources and 

execution time. Before applying DSCCS to solve the instances of the problem, 

10000 randomly-generated schedules are created and their properties are 

examined. This step is required so later it would be possible to analyse the 

performance of the algorithm and visualise how effective it was in scheduling the 

case study. For both experiments, the algorithm is going to be applied 1000 times 

to solve the presented case study. The results of these are then averaged and 

presented in the subsequent sections. 

In order to avoid the impact of randomness, 100 independent runs for each 

experiment are carried out and the results of these runs are averaged. 

5.1.4 Experimental Analysis 

The results presented in this section pertain to the case study presented in 

Section 5.1.1. Three criteria for the performance evaluation are considered: 

 Makespan of the final solution(s); 

 Amount of obtained optimal solutions; 

 Computational time. 

It is worth mentioning that for the amount of obtained optimal solutions criterion 

solutions are accounted if they are considered to be different enough and their 
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makespan is equal to the makespan of the reference solution. In this experiment, 

the reference solution is the best solution that was obtained by the algorithm 

throughout all experiments. The similarity of the solutions is identified with respect 

to the value of species distance parameter σs via application of deviation distance 

measure (Reeves, 1999). 

5.1.4.1 Deterministic Scheduling 

Randomly-generated schedules. Before any assessment of the algorithm’s 

performance can begin, first, it is necessary to identify the durations of randomly 

generated schedules. This is required as later these durations can be compared 

with the results received by the algorithm to evaluate its performance and to see 

whether there are any improvements in the schedules obtained by the algorithm 

and how effective these improvements are, if any. To identify these values, for 

statistical purposes four sets of randomly generated feasible deterministic 

schedules are created. The received data is summarised in Table 5.11, where 

size denotes the number of random schedules in each set, σs* is the average 

distance between every pair of solutions, min. ms. is the minimal makespan, 

mean ms. – mean value of the makespan, median ms – median of the makespan, 

max. ms. – maximum makespan and st. dev. – standard deviation. 

Table 5.11 - Durations of randomly-generated deterministic schedules 

Size σs* Min. ms. Mean ms. Median ms. Max. ms. St.dev. 

100 2148 134 141.1 140.2 148 44.4 

250 2150 133 140.3 139.6 149 43.8 

1000 2146 130 139.9 137.9 153 43.5 

10000 2151 128 139.8 137.4 155 43.4 

 

As can be observed from Table 5.11, the best schedule that was obtained by 

randomly placing activities in the precedence feasible order is the one with the 

makespan of 128 weeks. On average, the duration of randomly generated 

schedules in all cases varied from 135 to 145 weeks. The worst schedule that 

was generated randomly had the makespan of 155 weeks. 

Optimised schedules. The results of deterministic scheduling experiments 

are summarised in Table 5.12. It is worth mentioning that in the given table the 

optimal solution is the one that has the same makespan as referral solution. In 
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the context of this experiment, “optimal solution” is the one with a makespan of 

113 weeks. 

 

 

Table 5.12 - Summary of DSCCS performance results for deterministic scheduling 

Parameter Min. Mean Median Max. 

Makespan 113 116 115 120 

Number of found optimal solutions 0 3 3 5 

Computational time (s) 23.9 26.4 25.2 31.3 

 

On average, the proposed case study was relatively easy to solve for the 

algorithm, as it managed to find the reference solution with a makespan of 113 

weeks in roughly of 75% of the total amount of runs. The worst schedule that was 

obtained by the DSCCS during this experiment had a makespan of 120 weeks. 

Moreover, in some runs, the algorithm was not able to obtain solution with referral 

makespan, hence the number “0” in Table 5.12. The average amount of found 

best solutions has not changed and its values are the same as they were in the 

previous experiment. 

As can be seen in Table 5.12, in some cases the algorithm was not able to 

obtain solution with referral makespan. Nevertheless, the number of found 

solutions with the makespan of reference solution (if any were found at all) varied 

from 1 to 4. 

5.1.4.2 Stochastic Scheduling 

Randomly-generated schedules. Similarly to what was done in Section 5.1.4.1, 

performance evaluation of the algorithm on the proposed optimisation model and 

case study in stochastic scheduling mode begins with the generation of randomly-

created feasible schedules. Results of this procedure are summarised in Table 

5.13. 

Table 5.13 - Durations of randomly-generated stochastic schedules 

Size σs* Min. ms. Mean ms. Median ms. Max. ms. St. dev. 

100 988 119 127.1 124.8 139 37.2 

250 1001 117 126.9 124.3 137 39.9 

1000 1009 112 126.5 122.9 140 41.8 
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10000 1015 112 126.5 122.1 146 42.4 

 

Makespan of the randomly-generated schedules in stochastic mode 

demonstrate that due to the abilities of the resources to influence the durations 

of activities, given they have enough experience, the average makespan of 

random schedules in comparison to the deterministic mode has decreased from 

~140 to ~127, which is equal to roughly 10%. The shortest makespan of the 

randomly-generated schedule is 112 weeks, a 12.5% improvement in 

comparison to standard deterministic schedules. This is due to the fact that in 

deterministic scheduling experiments learnabilities and efficiencies of resources 

are not taken into account, hence durations of activities are always constant. 

Optimised schedules. For optimisation in stochastic mode, same parameter 

configurations were used as in deterministic mode. The results of these 

experiments are summarised in Table 5.14. It is worth mentioning that in the given 

table the optimal solution is the one that has the same makespan as referral 

solution. In the context of this experiment, “optimal solution” is the one with a 

makespan of 97 weeks. 

Table 5.14 - Summary of DSCCS performance results for stochastic scheduling 

Parameter Min. Mean Median Max. 

Makespan 97 103 101 108 

Number of found optimal solutions 0 3 3 5 

Computational time (s) 43.4 56.9 51.2 69.1 

Resource efficiency 0.0658 0.2224 0.284 0.4219 

 

The best-optimised schedules of the case study project in stochastic mode had 

the makespan of 97 weeks. In comparison to the best schedules received in 

deterministic scheduling mode, the makespan of which was 113 weeks, the total 

duration decreased by 15%.  

Similarly to deterministic experiment, in some runs, the algorithm was not able 

to obtain solution with referral makespan, hence the number “0” in Table 5.14. 

The average amount of found best solutions has not changed and its values are 

the same as they were in the previous experiment. 

Due to the additional operations that algorithm had to make, such as 

calculations of new activity durations and resource efficiency balancing, DSCCS 
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computational time has doubled and in some cases even tripled. On average, it 

has increased from 26.4s to 56.9s. 

The resource efficiency of final solutions in the majority of cases varied in the 

range of 0.2 to 0.25. The most well-balanced solution had the total resource 

efficiency of 0.0658. 

5.1.4.3 Parameters Influence 

Lastly, to conclude this case study, this section analyses how the variance of the 

DSCCS parameters affects the performance criteria considered in both 

deterministic and stochastic scheduling modes. 

Effect of the population size. Graphs presented in Figure 5.5, Figure 5.6, 

and Figure 5.7 demonstrate the influence of the population size m on the quality 

of the obtained solutions, the amount of obtained reference solutions and 

computational time, respectively, in deterministic and stochastic modes. The 

value of m in the presented results is set in the range of [10, 250]. The values of 

other parameters are set to optimal values that were identified by irace package 

from Table 5.10. 

 

Figure 5.5 – Effect of m on the solution makespan 
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Figure 5.6 – Effect of m on the amount of obtained results 

 

Figure 5.7 – Effect of m on the total computational time 

As can be observed from the above-presented graphs, the population size m 

has a direct impact on all performance criteria. Its increase has a positive impact 

on the performance and success rate of the algorithm, and negative impact on 

total computation time, as with higher population the algorithm has to do more 

operations. The minimal value of m, which the DSCCS was able to obtain with 

the reference solution (in combination with other parameters), was 125 in 

deterministic mode and 150 in stochastic mode. 

Effect of the species distance. Graphs presented in Figure 5.8, Figure 5.9, 

and Figure 5.10 show the influence of the species distance σs on the quality of 
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obtained solutions, the amount of obtained optimal solutions and computational 

time, respectively, in deterministic and stochastic scheduling modes. The values 

of σs in the presented graphs are set in the range of [σs*/5, σs*]. The stopping 

criterion was set to 50000 objective evaluations, whereas the values of other 

parameters coincide with those in Table 5.10. 

 

Figure 5.8 – Effect of σs on the solution makespan 

 

Figure 5.9 – Effect of σs on the amount of obtained results 
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Figure 5.10 – Effect of σs on the total computational time 

The effect of σs in this experimental setup coincides with the results of the 

DSCCS experimental evaluation conducted in Section Error! Reference source 

not found.. The smaller values of σs result in more species formed in the overall 

population in which leads to greater chances of finding the reference solution. As 

can be noted from Figure 5.8 and Figure 5.9, with smaller σs values, the algorithm 

is capable of finding more solutions with the best-known makespan. However, all 

of this also results in higher computational overhead, which is confirmed by the 

graphs. 

Effect of the stopping criterion. Graphs presented in Figure 5.11, Figure 

5.12, and Figure 5.13 demonstrate the influence of the stopping criterion on the 

quality of obtained solutions, the amount of obtained optimal solutions and 

computational time, respectively, in deterministic and stochastic scheduling 

modes. The values of stopping criterion in the presented graphs are set in the 

range of [1000, 10000]. The values of other parameters coincide with those in 

Table 5.10. 
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Figure 5.11 – Effect of stopping criterion on the solution makespan 

 

Figure 5.12 – Effect of stopping criterion on the amount of obtained results 
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Figure 5.13 – Effect of stopping criterion on the total computational time 

From the above-presented results, it is easy to see that the effect of stopping 

criterion on the performance evaluation criteria is very similar to the one of the 

population size m. The higher value of stopping criterion results in the better 

quality of received solutions and higher computational overhead. 

5.1.4.4 Comparative Analysis 

For the comparative analysis two solutions s1 and s2 with reference makespans of 

113 and 97 weeks from deterministic and stochastic experimental setups, 

respectively, are selected for further analysis and investigation of the change of 

activity durations. A complete description of solutions is provided in Figure 5.14 

and Figure 5.15, where each figure depicts execution schedule of the respective 

solution. Each of the figures is divided into six sections, where each section 

corresponds to a particular resource type. Resources are aligned in the same 

order as they appear in Table 5.5 (i.e. section 1 of each of the figures corresponds 

to R1). In each of the sections, rows represent available resource units and each 

block in the row stands for an activity, each colour shade corresponding to a 

particular activity. Each of the sections shows the consumption of resource units 

by activities over the time scale. The ELs of the selected solutions are presented 

in Table 5.15. EL of s1 consists of 41 events, while EL of s2 consists of 36 events.
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Figure 5.14 – Sample optimal deterministic schedule 
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Figure 5.15 – Sample optimal stochastic schedule
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Table 5.15 - Event list representations of sample solutions 

# Event list representation 

s1 {[4, 5] [2] [1] [6] [3] [7] [8, 9] [10, 11] [13] [12] [14] [17] [16] [15] [31, 24] 

[35] [32, 30] [18] [36, 28] [22] [34] [19, 25] [33, 29] [21] [47, 46] [38, 20] 

[27] [23] [45] [26] [40] [43] [41] [42] [48] [49] [44] [50] [37] [51] [39]} 

s2 {[4, 5] [2] [1] [6] [3] [7] [8, 9] [10, 13] [14] [12] [11] [17, 16] [15] [24, 31] 

[32] [30] [18] [28, 22] [33, 25] [20] [34, 35] [29, 19, 36] [21, 47, 46] [38, 

23] [27] [45] [26] [40] [43] [41, 48] [42] [49] [44, 50] [37] [51] [39]} 

 

Both solutions have optimal makespan for their respective scheduling modes 

and, as the result, their activity sequences bear many similarities. The first halves 

of both schedules (i.e. execution of stage 1 and stage 2 activities), due to the 

linearity of these stages, are almost identical and the overall activity sequencing 

and resource allocation can be regarded as the same. Moreover, from the 

presented examples, it is easy to see that the majority of work that was done by 

the algorithm in terms of scheduling was during the sequencing of stage 3 and 

stage 4 activities, mainly due to their complex precedence relationships and 

variety of possible scheduling combinations. Throughout the execution of the 

project, resources were used sparsely, i.e., not each unit was needed during each 

time period. Nevertheless, for each of the resource types, there are also periods 

of very high activity and intense use. 

Lastly, Figure 5.16 displays the decrease of activity durations in percentage 

throughout the execution of the project on the example of s2. 

 

Figure 5.16 – Activity durations decrease throughout the project execution 
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From the presented results it can be observed that as the execution of project 

goes on, activities that were started at later time periods benefited more than 

those that were started earlier. As can be noted from the presented graph, due 

to the fact that resources have different efficiency and learnability coefficients, 

and imperfect resource efficiency balancing, some of the activities have benefited 

more than the others. For example, at time period 11 duration of one of the 

activities was shortened by 4%, however, the duration of activity that was started 

at later time period 17 remained the same. Towards the end of project’s 

execution, activity durations were shortened on average by 20%. The biggest 

decrease in the activity duration was by 24%. 

 

5.2 Further Performance Comparison 

In order to furtherly assess performance of the DSCCS on the proposed 

optimisation model, several among the most popular algorithms in the literature 

for the deterministic RCPSP have been implemented. Each of the implemented 

algorithms, along with DSCCS, were used to run edited RCPSP benchmark 

instances from PSPLIB (Kolisch & Sprecher, 1997). The obtained results are then 

compared and analysed. 

5.2.1 Algorithms 

For the selection of the algorithms for this experiment, the following criteria has 

been considered: 

 Type of the applied SGS 

 Computational performance 

 The simplicity of implementation 

Due to the specifics of the optimisation model to which these algorithms are 

going to be applied, the standard variations of SGS are not applicable for this 

scenario. Instead, a variation of the serial SGS is going to be used to produce 

schedules with time- and resource-dependant activity durations. For further 

description of the applied SGS refer to Section 5.1.2.1. Since the proposed SGS 

is a derivative of serial SGS, it is desirable that the algorithm selected for the 

comparison would also be based on the serial SGS. 

As the result of the selection process, the following algorithms have been 

chosen to implement: 

 SA, implementation developed by Bouleimen and Lecocq (2003) 
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 GA, version of Hartmann (1998) 

 TS, version of Nonobe and Ibaraki (2002) 

In the past, these algorithms were demonstrated to be very effective and 

competitive in solving the deterministic RCPSP. In the experimental evaluation of 

multiple heuristics for the RCPSPs, done by Kolisch and Hartmann (2006), the 

above-mentioned algorithms were applied to solve sets of benchmark instances 

from PSPLIB. As the result of evaluations, the algorithms ended up being in top 

10 among 60 different heuristics. The key characteristics of these algorithms are 

summarised in Table 5.16. For more detailed information refer to the original 

works. 

Table 5.16 - Brief summary of implemented algorithms 

Name SGS Solution 

representation 

Genetic operators 

SA Serial with FBI AL Shift move operator 

GA Serial AL 
Two-point crossover, activity 

swap 

TS Serial with FBI AL Shift move operator 

 

The application of these algorithms for the proposed optimisation model will 

only result in the change of SGS. Other key elements will remain the same. 

5.2.2 Experiment Setup and Parameter Choices 

To evaluate performance of DSCCS on the proposed optimisation model and 

compare its performance against other algorithms, subsets of the standard 

benchmark instances from PSPLIB are used. For this experiment, four datasets 

are created, where each dataset contains benchmark instances from J30 (total 

of 480 instances), J60 (total of 480 instances), J60 (total of 480 instances), and 

J120 (total of 600 instances) sets and consists of problem instances with 30, 60, 

90, and 120 activities, respectively. Due to the large variety of available problem 

instances, in order to fully test algorithms on problems with different structural 

parameters, from each of the PSPLIB problem sets event 10th benchmark 

instance is selected. Therefore, in total 204 instances are selected: 48 instances 

from J30 set, 48 instances from J60 set, 48 instances from J90 set and 60 

instances J120 set. 
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Such approach ensures that all combinations of structural parameters are 

covered and all aspects of the algorithm performance are tested. To model the 

effect of resource learnability and experience, for each of the resource types, the 

following is assumed: 

 R1: ek = 0.15, lk = 35 

 R2: ek = 0.20, lk = 25 

 R3: ek = 0.20, lk = 25 

 R4: ek = 0.15, lk = 15 

The remaining parameters of each of the benchmark instances remain 

unchanged. 

In the experiments, each algorithm was used to run each of the benchmark 

instances 25 times and the results for each instance will be averaged. For this 

procedure, the stopping criterion is going to be set to 50000 objective evaluations. 

Other parameters of the implemented algorithms are going to be set to the same 

values as were used in the original experiments performed by their respective 

authors. The DSCCS parameters for this evaluation are going to be set to those 

that are in Table 4.17. 

For the performance evaluation in this experiment two criteria are considered: 

 Deviation from CP 

 Computational time 

The first criteria, deviation from CP, reflects the difference in the duration of 

the obtained schedule from its CP, which is obtained by scheduling all activities 

ignoring the resource constraints and is obtained as follows: 

%100*
CP

CPresult
dev


     (36) 

The second criteria, computational time, reflects the total amount of time that 

was required for the algorithm to solve the benchmark instance. In traditional 

evaluations of the RCPSP algorithms, the computational time is never taken into 

account, primarily because of the different experimental setups and algorithm 

implementations. However, since in this experiment all algorithms are going to be 

run on the same machine and will follow the same procedure of performance 

evaluation, their computational time can be adequately measured. 
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Due to the inability of the implemented algorithms to obtain multiple solutions, 

the resource efficiency balancing objective in this procedure is not going to be 

optimised. 

5.2.3 Comparative Analysis  

The experimental results of the algorithm’s performance evaluation are 

summarised in Table 5.17, Table 5.18, Table 5.19, and Table 5.20 for J30, J60, 

J90, and J120 sets, respectively. The first column denotes the name of the 

algorithm, column “Author(s)” shows the name of the original author. Column 

“Dev. (%)” shows average deviation of solutions from the critical path (CP). 

Column “Comp. time” displays the average computational time required to solve 

each of the benchmark instances. All results in the tables are sorted with respect 

to the average deviation. In accordance to standard RCPSP performance 

evaluation experiments, here as the main performance factor is only considered 

deviation from optimal solutions, whereas computational time is left out and 

provided strictly as a reference. 

Table 5.17 - Experimental evaluation results for J30 dataset 

Algorithm Author(s) Dev. (%) Comp. time 

DSCCS Bibiks et al. 0.00 29.7 

TS Nonobe and Ibaraki (2002) 0.06 21.3 

SA Bouleimen and Lecocq (2003) 0.08 17.5 

GA Hartmann (1998) 0.09 23.6 

Table 5.18 - Experimental evaluation results for J60 dataset 

Algorithm Author(s) Dev. (%) Comp. time 

DSCCS Bibiks et al. 4.36 63.1 

SA Bouleimen and Lecocq (2003) 6.81 38.6 

TS Nonobe and Ibaraki (2002) 7.25 41.2 

GA Hartmann (1998) 7.49 45.3 

Table 5.19 - Experimental evaluation results for J90 dataset 

Algorithm Author(s) Dev. (%) Comp. time 

DSCCS Bibiks et al. 13.93 95.5 

GA Hartmann (1998) 15.85 74.1 

TS Nonobe and Ibaraki (2002) 16.01 71.9 

SA Bouleimen and Lecocq (2003) 16.13 64.4 
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Table 5.20 - Experimental evaluation results for J120 dataset 

Algorithm Author(s) Dev. (%) Comp. time 

DSCCS Bibiks et al. 25.14 130.9 

GA Hartmann (1998) 29.18 113.3 

TS Nonobe and Ibaraki (2002) 30.01 112.9 

SA Bouleimen and Lecocq (2003) 32.38 101.2 

 

The above-presented results show that by managing to obtain lowest deviation 

from optimal solution in all experiments, DSCCS achieves the highest 

performance between all compared algorithms for all datasets. The performances 

of other implemented algorithms are in line with the performance evaluations that 

were by done by Kolisch and Hartmann [22]. These results demonstrate that the 

application of the algorithm to the proposed model does not impact its 

performance. It also was worth mentioning that in all experiments DSCCS was 

able to obtain from three to six solution candidates, whereas other algorithms, 

due to their limitations, could obtain only one solution. 

Computational time, however, shows a different picture. Here, DSCCS 

demonstrated the worst result, mainly due to the additional computational 

overhead that is caused by the species conservation procedure. Among all tested 

algorithms, the fastest to solve all benchmark instances was SA. The main reason 

for such fast computational speed is the work only with one solution and reduced 

amount of operations that it makes at each iteration. The computational time of 

TS is close to the one of the SA, primarily because of the fact that both these 

methods are trajectory-based. Computational time of GA is somewhere in the 

middle between the ones of SA and DSCCS. 

 

5.3 Summary  

The work in this chapter focused on the application of the DSCCS on the 

optimisation model proposed in Chapter 3 and activity scheduling with varying 

resource efficiencies. For this, two sets of experiments are carried out: scheduling 

and sequencing of the activities of the real practical project, and execution of the 

edited PSPLIB benchmark instances and subsequent comparison of the received 

results with the results obtained by other implemented algorithms. 

For the first experiment, the HARNet project is selected as the practical 

example, which is then used to demonstrate the applicability of the proposed 
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optimisation model for scheduling development projects, and analyse the 

behaviour of the DSCCS when applied to the real-world project. HARNet 

represents a large-scale aeronautical project which relied on the collaboration of 

many partners and consisted of many subprojects (WPs). In this case study, the 

DSCCS is applied to schedule the activities of the WP9, mainly due to the 

reasons that people who have worked on this sub-project had very little of 

relevant experience and as the project went on, their effectiveness improved. The 

WP9 consisted of 51 activities and 6 resource types. The resource from 1 to 4 

represent a group of researchers, whereas resources 5 and 6 represent 

specialised equipment. Because of that, only resources 1-4 can impact the 

activity durations. To analyse the difference between deterministic and stochastic 

scheduling, and study the resource experience gain and its effect on the activity 

durations, the DSCCS is applied to solve two instances of the case study: 

deterministic, in which activity durations do not vary, and stochastic, in which the 

activity durations depends on the execution time and applied resources. The 

reference schedule received in deterministic mode had the makespan of 113 

weeks. The reference makespan of stochastic schedule was 97 weeks. Further, 

two best schedules (one from the deterministic mode and one from stochastic) 

are selected for comparative analysis. The analysis has shown close to the end 

of the project’s execution, the duration of the activities has reduced on average 

by 20%. 

For the second experiment, three among the most popular methodologies for 

the deterministic RCPSP are implemented and are applied to solve the PSPLIB 

benchmark instances. To correlate the benchmark instances to the proposed 

optimisation mode, the instances are modified to include additional parameters 

for resource efficiency and learnability. In total 204 instances are selected and 

are divided into four datasets. Implemented algorithms, along with the DSCCS, 

are applied to solve each of the benchmark instances. To evaluate the 

performances of the algorithms, two criteria are considered: average deviation 

from CP, and average computational time. As the result of the experimental 

evaluation, the DSCCS showed the best level of performance among all 

algorithms, however, at the same time, it had the worst computational time, 

mainly due to the additional computational overhead that was caused by the 

application of the species conservation technique. 
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Chapter 6 Conclusions and Future Work 

 

This chapter of the thesis concludes the work that was done during this PhD 

study, summarises the main achievements and accomplishments, and identifies 

possible areas for further improvement. 

 

6.1 Conclusions 

This PhD work builds on Cuckoo Search (CS) and Flower Pollination Algorithms 

(FPA) algorithms and extends them to address challenges in optimising large-

scale project schedule in an uncertain environment, subject to multiple 

constraints such as limited resource capacities and strict precedence 

relationships between activities. Several novel concepts have been proposed, 

implemented and tested during this PhD study. 

a) Derivation of Discrete Cuckoo Search (DCS) and Discrete Flower Pollination 

Algorithm (DFPA), respectively, to solve RCPSP in discrete domain 

DCS and DFPA were derived by adapting CS and FPA to solve discrete 

RCPSP rather than RCPSP in the continuous domain, which CS and FPA were 

originally developed, through reinterpretation of their key elements: solution 

representation scheme, solution improvement operators and Lévy flight.  For the 

solution representation scheme activity list was chosen, as it is the most common 

representation scheme for the RCPSP and a large variety of operators has been 

developed. In the review on state-of-the-art heuristics for the RCPSP by Kolisch 

and Hartmann (2006) 23 out of 27 algorithms operated on activity list solution 

representation scheme. For solution improvement operators, pairwise exchange 

and shift operators were selected, as combination of these operators seemed to 

work best when integrated into Lévy flight: for smaller Lévy number (i.e. small 

step) a number of shift operations was performed on a solution, whereas for big 

numbers (i.e. large step) pairwise exchange was executed.  

Both algorithms were evaluated in accordance to the standardised tests 

defined by Hartmann et al. (2000) by running all benchmark instances of J30, J60 

and J120 sets from PSPLIB for 1000, 5000 and 50000 objective evaluations. 

Results showed that both algorithms were capable of solving discrete problems 

and both showed relatively good performance and managed to outperform some 

non-hybrid metaheuristics against which they were compared, such as Tabu 
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Search (TS) and Genetic Algorithm (GA). In particular, DCS appeared in top 1 for 

J30, J60, and J120 sets, whereas DFPA was outperformed by TS in J30 tests by 

0.01% and by GA in J120 by 0.25%. However, both algorithms suffered from 

several drawbacks that affected their performance: reliance on inefficient solution 

representation scheme (activity list) and utilisation of random-based solution 

improvement operators (pairwise exchange and shift operators). This leads to the 

development of the IDCS algorithm. 

b) Improved Discrete Cuckoo Search (IDSC) algorithm  

The main disadvantage of the activity list solution representation scheme in 

DCS and DFPA is the representation of a single schedule by multiple 

representation schemes. Because of that, if two activities have identical starting 

times, then interchanging their positions will not bring any changes to a solution, 

which, in turn, results in wasted operation. To address this issue, IDCS replaced 

activity list by event list. The main distinctive feature of event list from other 

solution representation scheme is that activities with identical starting times are 

grouped into events. In some circumstances, such events can comprise activities 

sharing common project characteristics, such as having the same predecessors 

and/or successors. Moreover, the introduction of the new solution representation 

scheme resulted in smarter and less random operators to be used to their 

advantages: event move exploits shared network characteristics of events for 

more efficient perturbations, whereas event crossover was used to combine 

useful problem-specific information extracted from the parents for generating 

high-quality offspring. The performance of IDCS was again evaluated on sets of 

benchmark instances from PSPLIB and compared against other algorithms for 

the RCPSP. The results showed that IDCS greatly improved the performance of 

DCS and DFPA. In addition, IDCS outperformed all other metaheuristics for J120 

sets and its performance was among the top five for J30 and J60 sets. 

During the validation of IDCS on single benchmark instances, it was found that 

IDCS is able to obtain multiple solutions for one problem instance. In fact other 

researchers, for example Czogalla and Fink (2009), also pointed out that 

RCPSPs exhibit complex multimodal fitness landscapes; hence, for one instance 

of the problem, several optimal solutions might exist. Multiple solutions are 

beneficial in that they can eliminate premature convergence to local optima and 

can sometimes lead to more innovative outcomes, such as more efficient or well-

balanced schedules. Nevertheless, at the time of writing, this property had only 
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been addressed in one publication (Pérez, Posada, & Lorenzana, 2015). As a 

result, research effort thereafter was devoted to explore multimodal optimisation 

techniques such as the Species Conservation (SC) technique to combine with 

IDCS to obtain multimodal solutions for RCPSPs. 

c) Development of Discrete Species Conserving Cuckoo Search (DSCCS)  

In order to explore the potential of IDCS to obtain multimodal solutions, 

techniques for multimodal optimisation were reviewed. Among the different 

techniques, SC was chosen for its simplicity and effectiveness as it only relies on 

distance metric (Euclidean distance) to estimate the similarity between solutions. 

However, due to the specifics of the RCPSP and its discrete search space, SC 

could not be directly applied. Therefore, in order to be adapted, the Euclidian 

distance metric needed to be replaced with a similarity metric specific for the 

RCPSP. Czogalla and Fink (2009) in their analysis of the RCPSP fitness 

landscape reviewed various distance measure techniques. The authors 

conducted a series of experiments on the sets of benchmark instances from 

PSPLIB. As the conclusion of their analysis, the authors noted that algorithms 

that operated on the deviation distance measure (Reeves, 1999) tend to produce 

better results. Moreover, Chen et al. (2010) and Paraskevopoulos et al. (2012)  

used the abovementioned distance measure in their algorithms, which confirms 

its applicability and effectiveness. As the conclusion of these analyses, deviation 

distance measure was chosen as the main method of similarity measure in 

adaptation of SC to the RCPSP. 

SC technique was then integrated into IDCS to form DSCCS. In DSCCS the 

whole population was divided into smaller subpopulations (i.e. species). Each 

subpopulation had devoted region of search space and was centred on the fittest 

solution (i.e. dominating individual). Having multiple sub-population ensures that 

diversity of population is kept high at all stages and significantly reduces chances 

of falling into local optima trap.  

Similarly to other developed algorithms, the performance of DSCCS is 

assessed on the sets of benchmark instances for RCPSP. In comparison to 

IDCS, the performance was slightly degraded for J120 and the algorithm moved 

from top 1 to top 5. For J30 and J60 sets its performance stayed on the same 

level. The lower performance can be explained by the fact that due to having a 

need to maintain several sub-populations in parallel and being restricted by the 

amount of objective evaluations that can be performed, the amount of times Lévy 
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flight can be applied to improve one solution has decreased. Nevertheless, such 

trade-off in performance is understandable and has been discussed in many 

publications (Wolpert & Macready, 1997). However, DSCCS achieved what other 

algorithms could not achieve in finding multiple solutions for RCPSPs. 

During algorithm testing, depending on the test instance, the number of 

candidate solutions varied from 1 to 22, 1 to 60, and 1 to 21 for J30, J60, and 

J120 test instances, respectively. The number of solutions primarily depended on 

the value of the species distances σs: for smaller value of σs the algorithm was 

capable to obtain more solutions and vice versa. It is also worth mentioning that 

the DSCCS was able to find multiple optimal (or best-known) solutions in the 

majority of all test instances with high success rate. 

d) Extension of the RCPSP by introduction of efficiency and learnability factors 

to resources 

In order to take advantage of the RCPSP multimodal properties, the HARNet 

Project Management Problem (HPMP) is proposed. HPMP can be characterised 

as a special case of the RCPSP and it represents a model for scheduling large 

and complex projects that are new to their execution environment. The main 

difference of HPMP from other variants of the RCPSPs is that throughout the 

project execution, as the resources are consumed by activities, the resources 

gain experience which then can influence the durations of activities. The rate at 

which resources acquire experience is defined by their learnability coefficient. 

The maximum amount of time by which the duration of the activity can be reduced 

is defined by the effectiveness coefficient. To take the advantage of RCPSP’s 

multimodal property, for successful completion HPMP considers optimisation of 

two objectives: primary – makespan minimisation, and secondary – resource 

efficiency balancing. The optimisation of these objectives is achieved as follows: 

firstly, the applied algorithm acquires a set of candidate solutions with the shortest 

makespan; secondly, out of the acquired set, the algorithm chooses the most 

suitable solution with the lowest resource efficiency-balancing coefficient. 

Nevertheless, HPMP can also be solved by the methodology developed for 

standard RCPSP; however, in this case, only one objective can be optimised at 

a time.  

A application scenario HPMP was devoted to the planning and management 

of the large-scale projects (i.e. software development) where activities were 

executed  through different resources (i.e. groups of researchers and developers) 



157 
 

that have no, or have very little of, relevant experience. In the beginning of the 

execution of such projects, there is a high level of uncertainties caused by the 

lack of knowledge and expertise. However, as the project goes on, people 

practice relevant skills and, as the result, the level of uncertainties vanishes and 

the duration of activities reduces.  

To assess applicability of the proposed optimisation model in real-life scenario 

and further evaluate performance of the DSCCS two case studies are created. 

First case study represents a scheduling of the practical project. The considered 

project is the real-world project that was undertaken a year ago. It consisted of 

51 interrelated activities execution of which required 6 types of resources. Four 

of these resources are groups of people, other two types of resources are 

specialised equipment. For this case study, two sets of experiments are 

conducted, which cover the production of normal deterministic and variable 

stochastic schedules. The results of these experiments are then compared and 

analysed. For the second case study, several most popular methodologies for the 

RCPSP are implemented. Further, the performances of the implemented 

methodologies, along with the DSCCS are evaluated on sets of the edited 

benchmark instances. The main difference of these benchmarks from their 

standard variants is the inclusion of two additional parameters needed for the 

proposed optimisation model: learnability and effectiveness coefficients. As the 

results of evaluation, the DSCCS has greatly outperformed all other implemented 

algorithms, however, its computational time the worst among all. Nevertheless, 

these case studies demonstrated the operability and effectiveness of the 

proposed optimisation model: showed how the activity durations may decrease 

depending on the time of execution and applied resource, and verified the relative 

ease of application RCPSP methodologies to it. Moreover, they confirmed the 

great performance of the DSCCS, its capability to obtain multiple solutions, and 

its applicability in scheduling of real-life projects. 

 

6.2 Future Work 

Even though the case studies conducted in Chapter 5 demonstrated the 

effectiveness of the proposed optimisation model and great performance of the 

DSCCS, there are still areas for the possible improvements. 
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6.2.1 Performance Improvement 

By managing to outperform the majority of state-of-the-art heuristics in 

benchmark tests, IDCS and DSCCS showed competitive level of performance. 

Nevertheless, despite this, there still were several methodologies with better 

performance results, which shows that there is still some room for improvement 

left. 

6.2.2 Optimisation of Additional Objectives 

Traditional RCPSPs consider optimisation of only one objective: makespan 

minimisation. The optimisation model proposed in this thesis introduces 

optimisation of the second objective: resource efficiency balancing. However, in 

the real-world project, sometimes optimisation of these two objectives is not as 

vital as the minimisation of the overall cost of the project. In order to introduce the 

objective of cost minimisation to the problem, several conditions need to be 

introduced: 

 With the execution of each of the activities needs to be associated new 

parameter that will specify the cost of execution of this activity at certain 

period of time; 

 The durations of activities need to follow new probability distribution 

which can randomly reduce or increase their durations; 

 Generation of a baseline deterministic schedule, which will be used as 

the reference for establishing the planned costs of the project. 

6.2.3 DSCCS Adaptability to the Problem-Specific Setting 

A possible area of improvement for the DSCCS include automatic identification 

of the key parameters. As the computational experiments have shown, the 

species distance and population size parameters have very significant impact on 

the performance of the algorithm and the amount of obtained global optima. The 

solution search space varies from problem to problem; hence, the optimal values 

for key parameters will vary as well. To provide the optimal performance, the 

algorithm has to be able to adapt to the problem at hand and automatically 

estimate the optimal values for the parameters. 

6.2.4 Application of the DSCCS to Other Combinatorial Problems 

When applied to solve the RCPSP, DSCCS showed competitive level of 

performance results as it managed to outperform the majority of the compared to 
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state-of-the-art methodologies and obtain multiple global solutions for each of the 

problem instances. However, RCPSP is just one of the combinatorial optimisation 

problems with multimodal fitness landscape. Examples of other problems include 

JSSP and TSP, among all. The application of the DSCCS to these problems will 

primarily consist of the reinterpretation of its key elements: solution 

representation scheme, genetic operators, and objective function. 
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