61,013 research outputs found

    A framework for automatic semantic video annotation

    Get PDF
    The rapidly increasing quantity of publicly available videos has driven research into developing automatic tools for indexing, rating, searching and retrieval. Textual semantic representations, such as tagging, labelling and annotation, are often important factors in the process of indexing any video, because of their user-friendly way of representing the semantics appropriate for search and retrieval. Ideally, this annotation should be inspired by the human cognitive way of perceiving and of describing videos. The difference between the low-level visual contents and the corresponding human perception is referred to as the ‘semantic gap’. Tackling this gap is even harder in the case of unconstrained videos, mainly due to the lack of any previous information about the analyzed video on the one hand, and the huge amount of generic knowledge required on the other. This paper introduces a framework for the Automatic Semantic Annotation of unconstrained videos. The proposed framework utilizes two non-domain-specific layers: low-level visual similarity matching, and an annotation analysis that employs commonsense knowledgebases. Commonsense ontology is created by incorporating multiple-structured semantic relationships. Experiments and black-box tests are carried out on standard video databases for action recognition and video information retrieval. White-box tests examine the performance of the individual intermediate layers of the framework, and the evaluation of the results and the statistical analysis show that integrating visual similarity matching with commonsense semantic relationships provides an effective approach to automated video annotation

    Video matching using DC-image and local features

    Get PDF
    This paper presents a suggested framework for video matching based on local features extracted from the DCimage of MPEG compressed videos, without decompression. The relevant arguments and supporting evidences are discussed for developing video similarity techniques that works directly on compressed videos, without decompression, and especially utilising small size images. Two experiments are carried to support the above. The first is comparing between the DC-image and I-frame, in terms of matching performance and the corresponding computation complexity. The second experiment compares between using local features and global features in video matching, especially in the compressed domain and with the small size images. The results confirmed that the use of DC-image, despite its highly reduced size, is promising as it produces at least similar (if not better) matching precision, compared to the full I-frame. Also, using SIFT, as a local feature, outperforms precision of most of the standard global features. On the other hand, its computation complexity is relatively higher, but it is still within the realtime margin. There are also various optimisations that can be done to improve this computation complexity

    DC-image for real time compressed video matching

    Get PDF
    This chapter presents a suggested framework for video matching based on local features extracted from the DC-image of MPEG compressed videos, without full decompression. In addition, the relevant arguments and supporting evidences are discussed. Several local feature detectors will be examined to select the best for matching using the DC-image. Two experiments are carried to support the above. The first is comparing between the DC-image and I-frame, in terms of matching performance and computation complexity. The second experiment compares between using local features and global features regarding compressed video matching with respect to the DC-image. The results confirmed that the use of DC-image, despite its highly reduced size, it is promising as it produces higher matching precision, compared to the full I-frame. Also, SIFT, as a local feature, outperforms most of the standard global features. On the other hand, its computation complexity is relatively higher, but it is still within the real-time margin which leaves a space for further optimizations that can be done to improve this computation complexity

    Predicting Future Instance Segmentation by Forecasting Convolutional Features

    Get PDF
    Anticipating future events is an important prerequisite towards intelligent behavior. Video forecasting has been studied as a proxy task towards this goal. Recent work has shown that to predict semantic segmentation of future frames, forecasting at the semantic level is more effective than forecasting RGB frames and then segmenting these. In this paper we consider the more challenging problem of future instance segmentation, which additionally segments out individual objects. To deal with a varying number of output labels per image, we develop a predictive model in the space of fixed-sized convolutional features of the Mask R-CNN instance segmentation model. We apply the "detection head'" of Mask R-CNN on the predicted features to produce the instance segmentation of future frames. Experiments show that this approach significantly improves over strong baselines based on optical flow and repurposed instance segmentation architectures

    Circulant temporal encoding for video retrieval and temporal alignment

    Get PDF
    We address the problem of specific video event retrieval. Given a query video of a specific event, e.g., a concert of Madonna, the goal is to retrieve other videos of the same event that temporally overlap with the query. Our approach encodes the frame descriptors of a video to jointly represent their appearance and temporal order. It exploits the properties of circulant matrices to efficiently compare the videos in the frequency domain. This offers a significant gain in complexity and accurately localizes the matching parts of videos. The descriptors can be compressed in the frequency domain with a product quantizer adapted to complex numbers. In this case, video retrieval is performed without decompressing the descriptors. We also consider the temporal alignment of a set of videos. We exploit the matching confidence and an estimate of the temporal offset computed for all pairs of videos by our retrieval approach. Our robust algorithm aligns the videos on a global timeline by maximizing the set of temporally consistent matches. The global temporal alignment enables synchronous playback of the videos of a given scene

    Search Tracker: Human-derived object tracking in-the-wild through large-scale search and retrieval

    Full text link
    Humans use context and scene knowledge to easily localize moving objects in conditions of complex illumination changes, scene clutter and occlusions. In this paper, we present a method to leverage human knowledge in the form of annotated video libraries in a novel search and retrieval based setting to track objects in unseen video sequences. For every video sequence, a document that represents motion information is generated. Documents of the unseen video are queried against the library at multiple scales to find videos with similar motion characteristics. This provides us with coarse localization of objects in the unseen video. We further adapt these retrieved object locations to the new video using an efficient warping scheme. The proposed method is validated on in-the-wild video surveillance datasets where we outperform state-of-the-art appearance-based trackers. We also introduce a new challenging dataset with complex object appearance changes.Comment: Under review with the IEEE Transactions on Circuits and Systems for Video Technolog

    Dublin City University at the TRECVid 2008 BBC rushes summarisation task

    Get PDF
    We describe the video summarisation systems submitted by Dublin City University to the TRECVid 2008 BBC Rushes Summarisation task. We introduce a new approach to re- dundant video summarisation based on principal component analysis and linear discriminant analysis. The resulting low dimensional representation of each shot offers a simple way to compare and select representative shots of the original video. The final summary is constructed as a dynamic sto- ryboard. Both types of summaries were evaluated and the results are discussed

    A time series feature of variability to detect two types of boredom from motion capture of the head and shoulders

    Get PDF
    Boredom and disengagement metrics are crucial to the correctly timed implementation of adaptive interventions in interactive systems. psychological research suggests that boredom (which other HCI teams have been able to partially quantify with pressure-sensing chair mats) is actually a composite: lethargy and restlessness. Here we present an innovative approach to the measurement and recognition of these two kinds of boredom, based on motion capture and video analysis of changes in head and shoulder positions. Discrete, three-minute, computer-presented stimuli (games, quizzes, films and music) covering a spectrum from engaging to boring/disengaging were used to elicit changes in cognitive/emotional states in seated, healthy volunteers. Interaction with the stimuli occurred with a handheld trackball instead of a mouse, so movements were assumed to be non-instrumental. Our results include a feature (standard deviation of windowed ranges) that may be more specific to boredom than mean speed of head movement, and that could be implemented in computer vision algorithms for disengagement detection

    Project SLOPE - Study of Lunar Orbiter Photographic Evaluation Final report

    Get PDF
    Quantitative measurement methods for evaluating ability of Lunar Orbiter photographs to detect topographic feature
    corecore