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Abstract This chapter presents a suggested framework for video matching based
on local features extracted directly from the DC-image of MPEG compressed
videos, without full decompression. In addition, the relevant arguments and sup-
porting evidences are discussed. Several local feature detectors will be examined
to select the best for matching using the DC-image. Two experiments are carried to
support the above. The first is comparing between the DC-image and I-frame, in
terms of matching performance and computation complexity. The second exper-
iment compares between using local features and global features regarding com-
pressed video matching with respect to the DC-image. The results confirmed that
the use of DC-image, despite its highly reduced size, is promising as it produces
higher matching precision, compared to the full I-frame. Also, SIFT, as a local
feature, outperforms most of the standard global features. On the other hand, its
computation complexity is relatively higher, but it is still within the real-time
margin which leaves a space for further optimizations that could be done to
improve this computation complexity.
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1 Introduction

The volume of video data is rapidly increasing, more than 72 hours of video are
uploaded to YouTube every minute [1], and counters are still running fast. This is
attributed to recent advance in multimedia technology. The majority of available
video data exists in compressed format (e.g. MPEG), and the first step towards
efficient video content retrieval is extraction of low level features, directly from
compressed domain without full decompression to avoid the expensive compu-
tations and large memory requirement involved in decoding such compressed
videos. Working on compressed videos is beneficial because of its richness of
additional, pre-computed, features such as DCT coefficients, motion vectors and
macro blocks types. DC coefficients specifically could be used to reconstruct a
video frame with minimal cost [2]. However, most of the current techniques are
still inefficient in directly handling compressed videos, without decompressing
them first, which is a waste of valuable processing time and memory resources. All
those advantages of detecting similarity from compressed videos are also expected
to contribute to other higher-level layers of semantic analysis and annotation of
videos, among other fields. An MPEG video consists of ‘‘I’’, ‘‘P’’ and ‘‘B’’ frames
encoded using Discrete Cosine Transform (DCT) [3]. The DCT algorithm works
by dividing an input image into 8 9 8 blocks (default block size). For each block,
the DCT is computed and the result consists of one DC coefficient and 63 AC
coefficients per block. A DC-image of an I-frame is the collection of all its DC
coefficients, in their corresponding spatial arrangements. The DC image is 1/64
of its original I-frame size. Figure 1a shows an illustration of the DCT block
structure. Figure 1b depicts samples of DC-images reconstructed from different
I-frames.

The DC-image is usually an image of size around 40 9 30 pixels. However, the
DC-image was found to retain most of the visual features of its corresponding full
I-frame. It has also been found that human performance on scene recognition drops
by only 7 % when using small images relative to full resolution images [4], as
depicted in Fig. 2. This is very useful for computer vision algorithms, especially in
relation to computation complexity of achieving the same complex tasks on the
DC-image. Taking advantage of the this tiny size, fast reconstruction and richness
of visual content, the DC-image could be employed effectively alone or in con-
junction with other compressed domain features (AC coefficients, macro-block
types and motion vectors) to detect similarity between videos for various purposes;
as automated annotation [5] or copy detection or any other higher layer built upon
similarity between videos.

514 S. Bekhet et al.



2 Related Work

In this section, previous key work related to video matching in compressed domain
is reviewed, focusing on the DC-image since it is a powerful feature compared to
other MPEG features as depicted in Table 1. However, as the DC-image, is a small
or lower-resolution image, the relevant work on low-resolution small images will
also be reviewed. Initially the term ‘‘tiny image’’ was introduced in [4] during an
attempt to construct a database of 80 million tiny images of size 32 9 32, labeled
using non abstract English nouns, as listed in WordNet [6]. The aim of this work was
to perform object and scene recognition by fusing semantic information extracted
from WordNet with visual features extracted from the images, using nearest
neighbor methods. Image similarity was computed using two measures; the first is
the sum of squared differences (SSD), over the first 19 principal components of each
image pixel values. The second similarity measure accounts for the potential small
scaling (up to 10 pixels) and small translations (within a 5 9 5 window), by
performing exhaustive evaluation of all possible image shifts. The concept of tiny

Fig. 1 a DCT block structure, showing the location of the DC coefficient, and b sample
reconstructed DC-images, of size 30 9 40 (images are stretched for illustration)

Fig. 2 Human eye
performances on scene
recognition as a function of
image resolution [4]
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image was then adopted and extended in [7–9] in an attempt to build a database of
tiny videos. Approximately 50,000 tiny videos were used, in conjunction with the 80
million tiny images database, to enhance object retrieval and scene classification.
Videos were collected with all their available metadata (e.g. title, description and
tags), also all video frames were resized to 40 9 30 pixels stored as one dimensional
vector that aggregates all the three color channels. Same similarity measures from
tiny images [4] were adopted. Later the work was extended for the purpose of video
retrieval using keyframes [7]. However, available video metadata were utilized,
which is not always available neither accurate, in addition videos were treated as a
set of unrelated images during the matching. Thus, our work is more focused on
videos before they could have any tags or meta-data available which can be seen as a
phase that can help in building such datasets for later use.

In the compressed domain, the DC-image has been used widely in shot-
boundary detection and video segmentation due to its small size [10–14]. It was
also utilized for keyframe extraction, instead of parsing the full frame [15–17], or
even for video summarization purpose [18, 19]. For video retrieval, in [20] the
DC-image was used to detect keyframes, then attention analysis is carried out on

Table 1 MPEG compressed stream features

Feature Type Pros. Cons.

DC coefficients Spatial • Partial decompression
needed to extract from I
frames [37]

• Cannot generate interest points
easily due to its small size [37]

• Used as a replacement of I
frames [37]

• Full decompression needed to be
extracted from P & B frames

• Fast in applying complex
operations

• Could be extracted either
in grayscale or full color

• DC image of I frame
could be used as a key
frame of the entire GOP

AC coefficients Spatial • Partial decompression
needed to extract it

• Do not reveal any visual
information unless reconstructed
[3]

Motion vectors Temporal • Describe movement of a block
• Partial decompression

needed to extract
• Do not encode motion information

across GOP’s [38]
• A pre-computed motion

feature
• Only available for P & B frames
• Do not encode visual information

Macroblock
types

Spatial • Partial decompression
needed to extract

• Encodes only metadata about
block compression information
(eg. intra coded, skipped) [39]

• Suitable for copy
detection and
fingerprinting [39]

• Do not encode visual information
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full I-frames, to detect salient objects. SIFT [21] is applied to detect interest points
and track them in successive spatial salient regions to build their corresponding
trajectories. Color and texture were used to describe each salient region for
matching purpose. But this method fails when either the visual features of the
foreground object is not distinct or when video background contain rich details as
it will produce meaningless salient regions which is not distinctive for a given
video. An approach to match video shots and cluster them into scenes proposed in
[22], the idea was taking into account variable number of frames to represent a shot
(instead of only one keyframe). They utilized frame-to-frame matching based on
color histograms computed for every DC or DC ? 2AC depending on frame size,
for frame of size 320 9 240 DC-image is selected and for frame size of
160 9 120DC ? 2AC is selected, this makes representative frame images are
always of size 40 9 30 and contains sufficient information for extraction, but with
more full decompression for smaller size frames which affects the real-time pro-
cessing. Regarding generating video signatures using the DC-image, in [23]
matching between video clips was done using signatures built by extracting color
values (Y-U-V) from DC-images sequence to form three different quantized his-
tograms per each frame. The similarity between two videos is computed using
sliding window technique, trying to find the best set of matching frames using
histogram intersection. The approach of ordinal measures were applied on
DC-images of each color component (Y-U-V) separately to generate fingerprint
features for each frame which are accumulated to form video signature for later
video matching [24]. Dimitrova et al. [25] demonstrated using DC coefficients of
(Y-U-V) components separately and motion vectors to build signature for video
retrieval. Signature was extracted from every frame and concatenated to form full
video signature where hamming distance used to rank videos based on sliding
window technique to determine the set of frames to compute signature from. A
noticeable remark is that such approach used the DC-image as a set of numeric
values leaving all the visual information behind, in addition to the slow operation
of the sliding window technique as it applies an exhaustive search process to align
two signatures together.

From a high level perspective, techniques that utilize the DC-image could be
classified based on feature extraction level, feature types and applications as
depicted in Fig. 3. For feature extraction level, there are two levels. The first;
where every frame in video is being processed to extract low level features for
later retrieval or signature building. The Second type is more compact and tries to
reduce the amount of features being extracted by using keyframes only. Both
approaches have disadvantages as they ignore the temporal dimension of a video
and handles video as a bag of still images. Moreover, window alignment tech-
niques will be needed in this case, which is based on exhaustive search among
frames to find the best matching frames sequence. Regarding video signature built
on those approaches it will be large and includes redundant information due to the
concatenation of individual frames/keyframes signatures which violates the
compactness of the signature. Furthermore for keyframe based schemes, there is

DC-Image for Real Time Compressed Video Matching 517



no fixed selection criteria for those keyframes which could be applied to all videos;
some techniques uses the first and last frames within a shot as keyframes, while
others uses the middle frame so, the resultant video signature may differ for same
video with different keyframe selection criteria’s.

For feature types that could be extracted from DC-images, exists: histogram
[26] which is a global feature computed on frame level or video level (less
common) where similarity between videos depends on the similarity of underlying
histograms. Disadvantages of histograms are: (1) relatively high computational
cost (pixel level processing) (2) high dependency on underlying color space as
each one exhibit significant variations in color representation (3) histogram as a
global feature don’t capture neither spatial nor temporal information. The second
common feature is ordinal measures [27], which also a global feature originally
used for stereo matching and later adopted for video retrieval. The idea works by
partitioning an image into equal-sized sub-images (blocks), then those sub-images
are ranked based on their respective average color. Then, the finial ordering
represents the ordinal matrix of the image. Ordinal measures are invariant to
luminance change and histogram equalization effects within frame level only, but
it is not invariant to geometric transformations, also it is based on color infor-
mation only which is not robust against color format change. In addition, as a type
of global feature it does not capture neither spatial nor temporal information.
Recently it has been extended to capture the temporal dimension of videos, as the
blocking process could be extended across video frames [28].

3 Proposed Approach

In this section, our proposed DC-image based system for video matching is intro-
duced. The proposed idea is to utilize local features, such as SIFT [21] and SURF
[29] on the small DC-images and track them across consecutive frames to compare

Fig. 3 DC images usage techniques
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the similarity between videos. This idea introduces some challenges regarding local
features extracting in such small size images, as discussed later. Figure 4 shows
block diagram of the proposed system. The main stages of the system are:

1. Decoding video and extracting grayscale DC-image sequence.
2. Extracting SIFT keypoints and their descriptors, in each DC-image.
3. Video matching, using the extracted features.

The following sub-sections describe those stages, including challenges and our
contribution to facilitate the video matching using small DC-images, without
performing full decompression.

3.1 Extracting the DC Image Sequences

The process starts by decoding a video and extracting luminance DC-images
sequence from I-frames only. Following Table 1, there are extra reasons for
focusing on the DC-image, includes:

• I-frame’s DC-image is the quickest part that could be extracted from a com-
pressed video without performing full decompression of video stream.

• I-frames in GOPs (Group Of Pictures) are inserted by the encoder when there is
large residual change (residual is the amount of motion estimation error accu-
mulated at the end of GOP), this could be analogous to keyframes within a scene,
in other words as a keyframe is reprehensive to a scene, DC-image of an I-frame
could be used as representative of a GOP. In addition, GOPs could be merged to
specific length to limit number of DC-images and map them to be key frames like.

Fig. 4 Proposed system structure to measure videos similarity based on DC image
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• I-frames will give about 10:1 initial compaction ratio assuming 10 frames per
GOP [30] on average which means lower computations and faster results.

• Human eye is sensitive to small changes in luminance rather than chrominance [4].
Thus we can rely on luminance DC-image only.

3.2 Extracting Keypoints and Descriptors

The second stage in the proposed framework is extraction of keypoints and their
respective descriptors. During our experiments we used SIFT and SURF for
extracting keypoints, as they are the mostly reported effective feature detectors
algorithms. While a typical full image of size 500 9 500 could generate more than
2,000 interest points [21]. However, most of the DC-images would generate less
than three SIFT key points, which is not enough for matching [21]. We did an
experiment using TRECVID BBC RUSHES [31] dataset to investigate the amount
of local features a DC-image could generate. Figure 5a, c shows that *63 % of
frames generate less than three keypoints for SIFT and SURF respectively. Since
SIFT was reported for better keypoints localizing than SURF [32–34] we adapted
SIFT by iteratively adjusting sigma value (the amount of gaussian blurring applied
to an image) to generate a minimum of six keypoints in each DC-image. Figure 5b
shows number of SIFT points per frame after our adjustment and enforcing the
minimum of six SIFT keypoints per each DC-image. With this enforcement, we
facilitated for the DC-image to be used for video matching. Regarding the pre-
cision of matching videos, using DC-images compared with the full I-frame, it will
be presented later in Sect. 4.

Fig. 5 a Number SIFT points per frame before adjusting sigma value. b Number SIFT points per
frame after adjusting sigma value. c Number SURF points per frame
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3.3 Video Matching Using DC-Images and SIFT

The third and final stage in our proposed framework is the actual matching
between videos. For simplicity, we adopted the frame-to-frame matching, as for
each video pair; we compute a similarity measure between SIFT keypoints taking
into account the temporal order of video frames. This is done by searching for the
longest optimal matching frames sequence between two videos using dynamic
programming. Optimality in this case, means finding the best matching video
frames that maximizes the overall similarity score with respect to the temporal
order of frames. Figure 6 shows a sample confusion matrix of given two videos
and the optimal matching values for their respective frames are highlighted in
grey. Following is the pseudo-code of the dynamic programming algorithm used to
compute the optimal matching cost:

Fig. 6 Finding matching similarity score between two videos
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Where DISTANCE is the confusion matrix between both video frames, computed
based on the number of underlying matched SIFT keypoints, and OPT_MATCH
is the matrix which will contain the finial matching score, this value will be located
in location (M - 1, N - 1) and MAX is function returns the maximum value of a
given group of numbers. The algorithm works by scanning the confusion matrix
from left to right and from up to bottom trying to find the highest match for each
frame taking into account the previous and next frames matching scores, in
addition to the sequence of frames.

We can see that our proposed dynamic programming algorithm performs one to
one mapping as each video frame will be matched to only one frame in the other
video. Since the matching is one-to-one some frames may not be matched at all, for
two reasons; the first that it might reduce the overall matching value between videos
(e.g. frames 1, 4 in video 1). The second case happens if the currently matching
videos are of different number of frames (e.g. frames 6, 7, 13 and 16 in video 1).

4 Experiments and Results

In this section we explain the experiments and present the results that support our
work explained earlier. This section presents two experiments; the first is
regarding comparing the DC-image to I-frame, in terms of matching performance
and computation complexity. The second experiment compares between using
local features and global features in compressed video matching, with respect to
the small size images. We used the TRECVID BBC RUSHES [31] standard data
set for video retrieval which contains diverse set of challenging videos; mainly
man-made moving objects (cars, tanks, planes and boats). But, since the videos
were only available in uncompressed format; all the videos were re-encoded to
MPEG-2 format with frame size (352 9 240), so that all the DC-images are of
equal size (44 9 30 pixels). The experiments ran on Intel Core i3-3.30 GHZ
computer with 4 Gb of RAM.

4.1 DC-Image Versus I-Frame

The purpose of this experiment is to evaluate the performance of the DC-image, in
terms of matching and computational complexity, compared to the corresponding
I-frame. The experiment used the framework explained in Fig. 4. Regarding
matching time based on the DC-image with SIFT [21] features; it took a total of
58.4 min for all videos in the dataset, while it took a total of 166.6 h for the same
dataset using the full I-frame. The average time (per frame) is 0.017 s for the
DC-image, compared to 1.05 s for the I-frame (time includes reconstruction, SIFT
keypoints extraction and matching). This shows that the computation complexity
using the DC-image is only 1.6 % of the corresponding I-frame, which means a
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total reduction of 98.4 % in processing time. Figure 7b shows the timing details
for the DC-image and the I-frame respectively. To compare the matching preci-
sion, we adopted the precision-over-N [35] standard measure over ranks 1, 5 and
10. The DC-image, despite its highly reduced size, was found to have a slightly
higher precision than the I-frame at all ranks, as depicted in Fig. 7a.

4.2 Local Versus Global Features

The purpose of this experiment is to evaluate the performance of using local and
global features, on the DC-image, in terms of matching precision and computa-
tional complexity. The experiment also used the framework described earlier in
Fig. 5. For local features, we utilized SIFT [21] as a local feature descriptor, in
addition to dense SIFT [36] to verify the results for a larger number of keypoints.
For global features, we applied matching based on the luminance histogram,
ordinal measures [27] and the pixel difference [8].

The results, presented in Fig. 8a, shows that SIFT as a local feature descriptor
outperforms dense SIFT, in addition SIFT outperforms global feature descriptors
by 15.4 % (compared to ordinal matching as the highest precision global feature
method). However, SIFT’s computation complexity was the highest, as depicted in
Fig. 8b. SIFT took 16.43 ms to match two DC-image frames, compared to only
2 ms in pixel difference matching (maximum time in case of global features). But
SIFT still works within real-time margin, while producing better matching per-
formance. Knowing that all measures are being used in their generic form, using
dynamic programming to incorporate the temporal dimension based on the finial
fame-to-frame confusion matrix. We also developed results visualization software,
a snapshot is depicted in Fig. 9 based on real example of SIFT matching using the
BBC RUSHES dataset.

Fig. 7 a DC-image versus I-frame retrieval precision, and b DC-image versus I-frame timing
performance
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5 Conclusion and Future Work

In this paper, we presented a framework for video matching based on local features
extracted only from the DC-images of MPEG compressed videos, without full
decompression. Also, supporting experiments regarding DC-image precision and
complexity versus the full I-frame were presented. But we had to address the issue
of using SIFT on such small-size images, before it could be used. The results show
that the DC-image, despite its small size, produces similar (if not better) similarity
precision scores, compared to its corresponding I-frame. But using the DC-image
has dramatically improved the computational performance (*62 times faster),
which makes it a high candidate for more sophisticated use. Also, local features,
such as SIFT, were compared to standard global features for the purpose of video
similarity. The results shows that using SIFT, on DC-image only, slightly

Fig. 8 a DC image retrieval precision-over-N curves using SIFT-luminance histogram-ordinal
measures-pixel difference, and b DC timing analysis using SIFT-luminance histogram-ordinal
measures-pixel difference

Fig. 9 Snapshot of visualization software based on SIFT matching
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outperformed the accuracy of the global features. On the other hand, the com-
putational complexity of using SIFT is relatively higher than those for the global
features. But SIFT extraction and matching is still within the real-time margins,
and still we have a number of optimizations to be introduced to reduce this
computation complexity. We also plan to introduce more complex matching,
instead of the frame-to-frame approach, and better incorporate the temporal
information actively.
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