11,975 research outputs found

    Gene regulatory networks elucidating huanglongbing disease mechanisms.

    Get PDF
    Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter asiaticus (CaLas), especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy. Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for all four categories of trees. A predicted protein - protein interaction network identified HLB-regulated genes for sugar transporters playing key roles in the overall plant responses. Gene set and pathway enrichment analyses highlight the role of sucrose and starch metabolism in disease symptom development in all tissues. HLB-regulated genes (glucose-phosphate-transporter, invertase, starch-related genes) would likely determine the source-sink relationship disruption. In infected leaves, transcriptomic changes were observed for light reactions genes (downregulation), sucrose metabolism (upregulation), and starch biosynthesis (upregulation). In parallel, symptomatic fruits over-expressed genes involved in photosynthesis, sucrose and raffinose metabolism, and downregulated starch biosynthesis. We visualized gene networks between tissues inducing a source-sink shift. CaLas alters the hormone crosstalk, resulting in weak and ineffective tissue-specific plant immune responses necessary for bacterial clearance. Accordingly, expression of WRKYs (including WRKY70) was higher in fruits than in leaves. Systemic acquired responses were inadequately activated in young leaves, generally considered the sites where most new infections occur

    Study of Combined Cleaning Process of Sunroot Tubers

    Full text link
    Elaboration and improvement of the process of raw material cleaning is an urgent scientifically technical process. The one of most prospective directions of vegetables cleaning process intensification is the elaboration of combined methods of their cleaning. The improvement of tubers cleaning process is based on the combination of thermal processing of sunroot tubers by steam and the process of further mechanical additional cleaning.The experimental studies of the influence of parameters of the process of sunroot thermal processing by steam on a tuber surface layer transformation were carried out. The influence of the steam pressure and the duration of the process of tubers thermal processing on the depth of the thermal processing of tuber surface layer and also on the effectiveness of the peel separation were studied. At the same time there were realized the studies as to the influence of the duration of tubers mechanical additional cleaning process on cleaning quality parameters. The experimental apparatus and correspondent method that allow to carry out investigations of the combined process of sunroot tubers cleaning with a possibility to determine the influence of all its parameters on the percent of raw material losses and cleaning quality were elaborated. Rational regimes of the combined process of sunroot tubers cleaning were established

    Tailoring bilberry powder functionality through processing: effects of drying and fractionation on the stability of total polyphenols and anthocyanins.

    Get PDF
    Bilberries are a rich natural source of phenolic compounds, especially anthocyanins. The press cake obtained during the processing of bilberry juice is a potential source of phytochemicals. The objective of this study was to evaluate different drying techniques and the fractionation of bilberry press cake powder toward obtaining phenolic-rich ingredients for incorporation into value-added food products. The derived powders were dispersed in water and dairy cream, to investigate the effects of drying and fractionation on the dispersibility and solubility of phenolic compounds. The drying techniques, hot air drying and microwave drying, applied on bilberry press cake reduced the content of total phenolics and anthocyanins. The degradation was, however, consistently small and similar for both techniques. The major anthocyanins detected in the samples were stable during drying and fractionation treatments. Fractionation of the press cake powder affected the total apparent phenolic content and composition of the different fractions. The highest phenolic content (55.33 ± 0.06 mg g−1 DW) and highest anthocyanin content (28.15 ± 0.47 mg g−1 DW) were found in the fractions with the smallest particle size (<500 μm), with delphinidin-3-O-galactoside being the most abundant anthocyanin. Dispersibility of all dried powder samples was higher in dairy cream than water, and the highest level of anthocyanins was measured in samples from the powder with the smallest particle size (<500 μm), dispersed in cream. The application of drying, milling and fractionation was found to be a promising approach to transform bilberry press cake into stable and deliverable ingredients that can be used for fortification of food products with high levels of phenolic compounds

    A New Phytochemical Screening Programme used for Crops grown with Organic and Conventional Methods

    Get PDF
    A broad screening programme, covering the most general phytochemical groups of compounds, was developed on the basis of Thin Layer Chromatography (TLC). A total of 46 TLC systems, comprising 26 derivatization reagents, 3 stationary phases, and 4 mobile phases, were included. The TLC systems were classified according to the groups of phytochemical compounds detected: Alcohols and phenolic compounds; Carbohydrates; N-containing compounds; Organic acids and lipids; P-containing compounds; S-containing compounds, and Terpenoids. Furthermore, one group of TLC systems detected compounds from several of the mentioned groups. The screening programme was applied in the screening of potatoes (S. tuberosum L.), peas (P. sativum L.), kale (B. oleracea L.), carrots (D. carota L.), and apples (M. domestica Borkh.), cultivated with combinations of organic and conventional methods for plant protection and nutrient supply, for phytochemical differences (biomarkers). Distinctive phytochemical differences were found between the differently cultivated samples of these crops. In peas and carrots only one biomarker was found. In peas the biomarker was related to the soil conditions, while the biomarker in carrots was related to the use of pesticides. In potato, two biomarkers related to the use of pesticides were found. Three biomarkers were found in kale. Two of these could be related to the use of pesticide, while the last was related to either fertiliser or soil conditions. Several biomarkers were found apples, but a relation to the cultivation methods was not clear. Three of the biomarkers in apples could be related to either the use of pesticides or fertiliser, while no conclusions could be drawn from the other biomarkers found. The results of the screening programme form the basis for a potential development of a kit to detect whether crops are organically- or conventionally cultivated. Furthermore, the results from this part and other parts of the project "Organic food and health – a multigenerational animal experiment" provide basis for the selection of which secondary compounds to quantify by specific chemical analysis, isolate, and/or structure elucidation

    The aerodynamic effects of wing–wing interaction in flapping insect wings

    Get PDF
    We employed a dynamically scaled mechanical model of the small fruit fly Drosophila melanogaster (Reynolds number 100–200) to investigate force enhancement due to contralateral wing interactions during stroke reversal (the 'clap-and-fling'). The results suggest that lift enhancement during clap-and-fling requires an angular separation between the two wings of no more than 10–12°. Within the limitations of the robotic apparatus, the clap-and-fling augmented total lift production by up to 17%, but depended strongly on stroke kinematics. The time course of the interaction between the wings was quite complex. For example, wing interaction attenuated total force during the initial part of the wing clap, but slightly enhanced force at the end of the clap phase. We measured two temporally transient peaks of both lift and drag enhancement during the fling phase: a prominent peak during the initial phase of the fling motion, which accounts for most of the benefit in lift production, and a smaller peak of force enhancement at the end fling when the wings started to move apart. A detailed digital particle image velocimetry (DPIV) analysis during clap-and-fling showed that the most obvious effect of the bilateral 'image' wing on flow occurs during the early phase of the fling, due to a strong fluid influx between the wings as they separate. The DPIV analysis revealed, moreover, that circulation induced by a leading edge vortex (LEV) during the early fling phase was smaller than predicted by inviscid two-dimensional analytical models, whereas circulation of LEV nearly matched the predictions of Weis-Fogh's inviscid model at late fling phase. In addition, the presence of the image wing presumably causes subtle modifications in both the wake capture and viscous forces. Collectively, these effects explain some of the changes in total force and lift production during the fling. Quite surprisingly, the effect of clap-and-fling is not restricted to the dorsal part of the stroke cycle but extends to the beginning of upstroke, suggesting that the presence of the image wing distorts the gross wake structure throughout the stroke cycle

    Non-destructive soluble solids content determination for ‘Rocha’ Pear Based on VIS-SWNIR spectroscopy under ‘Real World’ sorting facility conditions

    Get PDF
    In this paper we report a method to determine the soluble solids content (SSC) of 'Rocha' pear (Pyrus communis L. cv. Rocha) based on their short-wave NIR reflectance spectra (500-1100 nm) measured in conditions similar to those found in packinghouse fruit sorting facilities. We obtained 3300 reflectance spectra from pears acquired from different lots, producers and with diverse storage times and ripening stages. The macroscopic properties of the pears, such as size, temperature and SSC were measured under controlled laboratory conditions. For the spectral analysis, we implemented a computational pipeline that incorporates multiple pre-processing techniques including a feature selection procedure, various multivariate regression models and three different validation strategies. This benchmark allowed us to find the best model/preproccesing procedure for SSC prediction from our data. From the several calibration models tested, we have found that Support Vector Machines provides the best predictions metrics with an RMSEP of around 0.82 ∘ Brix and 1.09 ∘ Brix for internal and external validation strategies respectively. The latter validation was implemented to assess the prediction accuracy of this calibration method under more 'real world-like' conditions. We also show that incorporating information about the fruit temperature and size to the calibration models improves SSC predictability. Our results indicate that the methodology presented here could be implemented in existing packinghouse facilities for single fruit SSC characterization.Funding Agency CEOT strategic project UID/Multi/00631/2019 project OtiCalFrut ALG-01-0247-FEDER-033652 Ideias em Caixa 2010, CAIXA GERAL DE DEPOSITOS Fundacao para a Ciencia e a Tecnologia (Ciencia)info:eu-repo/semantics/publishedVersio

    Data Mining a Medieval Medical Text Reveals Patterns in Ingredient Choice That Reflect Biological Activity against Infectious Agents

    Get PDF
    We used established methodologies from network science to identify patterns in medicinal ingredient combinations in a key medieval text, the 15th-century Lylye of Medicynes, focusing on recipes for topical treatments for symptoms of microbial infection. We conducted experiments screening the antimicrobial activity of selected ingredients. These experiments revealed interesting examples of ingredients that potentiated or interfered with each other’s activity and that would be useful bases for future, more detailed experiments. Our results highlight (i) the potential to use methodologies from network science to analyze medieval data sets and detect patterns of ingredient combination, (ii) the potential of interdisciplinary collaboration to reveal different aspects of the ethnopharmacology of historical medical texts, and (iii) the potential development of novel therapeutics inspired by premodern remedies in a time of increased need for new antibiotics.The pharmacopeia used by physicians and laypeople in medieval Europe has largely been dismissed as placebo or superstition. While we now recognize that some of the materia medica used by medieval physicians could have had useful biological properties, research in this area is limited by the labor-intensive process of searching and interpreting historical medical texts. Here, we demonstrate the potential power of turning medieval medical texts into contextualized electronic databases amenable to exploration by the use of an algorithm. We used established methodologies from network science to reveal patterns in ingredient selection and usage in a key text, the 15th-century Lylye of Medicynes, focusing on remedies to treat symptoms of microbial infection. In providing a worked example of data-driven textual analysis, we demonstrate the potential of this approach to encourage interdisciplinary collaboration and to shine a new light on the ethnopharmacology of historical medical texts

    Mutations in the SmAPRR2 transcription factor suppressing chlorophyll pigmentation in the eggplant fruit peel are key drivers of a diversified colour palette

    Full text link
    [EN] Understanding the mechanisms by which chlorophylls are synthesized in the eggplant (Solanum melongena) fruit peel is of great relevance for eggplant breeding. A multi-parent advanced generation inter-cross (MAGIC) population and a germplasm collection have been screened for green pigmentation in the fruit peel and used to identify candidate genes for this trait. A genome-wide association study (GWAS) performed with 420 MAGIC individuals revealed a major association on chromosome 8 close to a gene similar to APRR2. Two variants in SmAPRR2, predicted as having a high impact effect, were associated with the absence of fruit chlorophyll pigmentation in the MAGIC population, and a large deletion of 5.27 kb was found in two reference genomes of accessions without chlorophyll in the fruit peel. The validation of the candidate gene SmAPRR2 was performed by its sequencing in a set of MAGIC individuals and through its de novo assembly in 277 accessions from the G2P-SOL eggplant core collection. Two additional mutations in SmAPRR2 associated with the lack of chlorophyll were identified in the core collection set. The phylogenetic analysis of APRR2 reveals orthology within Solanaceae and suggests that specialization of APRR2-like genes occurred independently in Cucurbitaceae and Solanaceae. A strong geographical differentiation was observed in the frequency of predominant mutations in SmAPRR2, resulting in a lack of fruit chlorophyll pigmentation and suggesting that this phenotype may have arisen and been selected independently several times. This study represents the first identification of a major gene for fruit chlorophyll pigmentation in the eggplant fruit.This work has been funded by grants RTI-2018-094592-BI00 and PID2021-128148OB-I00 funded by MCIN/AEI/10.13039/501100011033/and by "ERDF A way of making Europe", and by European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops). AA is grateful to Spanish Ministerio de Ciencia, Innovacio ' n y Universidades for a predoctoral (FPU18/01742) contract. PG is grateful to Spanish Ministerio de Ciencia e Innovacion for a post-doctoral grant (FJC2019-038921-I/AEI/10.13039/501100011033). Funding for open access charge: Universitat Politecnica de Valencia.Arrones-Olmo, A.; Mangino, G.; Alonso-Martín, D.; Plazas Ávila, MDLO.; Prohens Tomás, J.; Portis, E.; Barchi, L.... (2022). Mutations in the SmAPRR2 transcription factor suppressing chlorophyll pigmentation in the eggplant fruit peel are key drivers of a diversified colour palette. Frontiers in Plant Science. 13:1-14. https://doi.org/10.3389/fpls.2022.10259511141
    corecore