40,380 research outputs found

    The discriminative functional mixture model for a comparative analysis of bike sharing systems

    Get PDF
    Bike sharing systems (BSSs) have become a means of sustainable intermodal transport and are now proposed in many cities worldwide. Most BSSs also provide open access to their data, particularly to real-time status reports on their bike stations. The analysis of the mass of data generated by such systems is of particular interest to BSS providers to update system structures and policies. This work was motivated by interest in analyzing and comparing several European BSSs to identify common operating patterns in BSSs and to propose practical solutions to avoid potential issues. Our approach relies on the identification of common patterns between and within systems. To this end, a model-based clustering method, called FunFEM, for time series (or more generally functional data) is developed. It is based on a functional mixture model that allows the clustering of the data in a discriminative functional subspace. This model presents the advantage in this context to be parsimonious and to allow the visualization of the clustered systems. Numerical experiments confirm the good behavior of FunFEM, particularly compared to state-of-the-art methods. The application of FunFEM to BSS data from JCDecaux and the Transport for London Initiative allows us to identify 10 general patterns, including pathological ones, and to propose practical improvement strategies based on the system comparison. The visualization of the clustered data within the discriminative subspace turns out to be particularly informative regarding the system efficiency. The proposed methodology is implemented in a package for the R software, named funFEM, which is available on the CRAN. The package also provides a subset of the data analyzed in this work.Comment: Published at http://dx.doi.org/10.1214/15-AOAS861 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    Joint Modeling and Registration of Cell Populations in Cohorts of High-Dimensional Flow Cytometric Data

    Get PDF
    In systems biomedicine, an experimenter encounters different potential sources of variation in data such as individual samples, multiple experimental conditions, and multi-variable network-level responses. In multiparametric cytometry, which is often used for analyzing patient samples, such issues are critical. While computational methods can identify cell populations in individual samples, without the ability to automatically match them across samples, it is difficult to compare and characterize the populations in typical experiments, such as those responding to various stimulations or distinctive of particular patients or time-points, especially when there are many samples. Joint Clustering and Matching (JCM) is a multi-level framework for simultaneous modeling and registration of populations across a cohort. JCM models every population with a robust multivariate probability distribution. Simultaneously, JCM fits a random-effects model to construct an overall batch template -- used for registering populations across samples, and classifying new samples. By tackling systems-level variation, JCM supports practical biomedical applications involving large cohorts

    Towards Real-Time Detection and Tracking of Spatio-Temporal Features: Blob-Filaments in Fusion Plasma

    Full text link
    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. On a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.Comment: 14 pages, 40 figure
    corecore