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Abstract

In biomedical applications, an experimenter encounters different potential sources of variation in data such as individual
samples, multiple experimental conditions, and multivariate responses of a panel of markers such as from a signaling
network. In multiparametric cytometry, which is often used for analyzing patient samples, such issues are critical. While
computational methods can identify cell populations in individual samples, without the ability to automatically match them
across samples, it is difficult to compare and characterize the populations in typical experiments, such as those responding
to various stimulations or distinctive of particular patients or time-points, especially when there are many samples. Joint
Clustering and Matching (JCM) is a multi-level framework for simultaneous modeling and registration of populations across
a cohort. JCM models every population with a robust multivariate probability distribution. Simultaneously, JCM fits a
random-effects model to construct an overall batch template – used for registering populations across samples, and
classifying new samples. By tackling systems-level variation, JCM supports practical biomedical applications involving large
cohorts. Software for fitting the JCM models have been implemented in an R package EMMIX-JCM, available from http://
www.maths.uq.edu.au/,gjm/mix_soft/EMMIX-JCM/.
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Introduction

Flow cytometry is widely used for single cell interrogation of

surface and intracellular protein expression by measuring fluores-

cence intensity of fluorophore-conjugated reagents. Recent tech-

nical advances have taken the field towards single cell proteomics

[1] and enabled highly multiparametric analysis [2] and compu-

tational cytomics [3]. Consequently, biomedical applications are

presenting new challenges to cytometric analysis. Increasingly such

studies involve cohorts with large numbers of patients, replicates,

and may also use multiplexing of marker staining panels for

probing large signaling networks [4]. Further, while typical flow

experiments assayed for 4–8 features, the recent development of

mass cytometry promises the ability to compare 50–100 features

per cell [5,6]. Owing to multiple reasons such as variation among

individuals in a cohort, simultaneous use of different stimulation

conditions and panels in a given experiment, biological and

technical replicates, the highly multivariate nature of the new

platforms’ measurements, etc., the resulting datasets are rich and

complex. Currently there exists no single standard procedure for

performing reproducible cohort-wide analysis while tackling

systems-level heterogeneity and noise in multiple samples.

Recently, we developed a platform (FLAME) for automated

analysis of high-dimensional flow data [7]. Each cell population

(henceforth simply called population) in a sample is modeled by

FLAME as a cluster of points with similar fluorescence intensities

in the multi-dimensional space of markers. FLAME’s heavy-tailed

and asymmetric distributions are especially appropriate for flow

data, since rare and interesting subpopulations tend to be

represented by the tail-subpopulations that are connected to

larger populations [8]. Notably, the field of computational

cytomics has witnessed rapid growth in the past few years, as

reviewed by Lugli et al. [3]

While modeling populations in flow data remains a difficult

problem, a second and even more important challenge appears

when there are many samples and conditions to compare – how to

efficiently match or ‘‘register’’ the corresponding populations

across a batch of samples. The difficulty of this problem arises from

(a) the high-dimensionality of data, which prevents visual matching

of populations, (b) large cohort or batch sizes, and (c) high inter-
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sample variation, all of which make the manual approach

challenging. Yet it is essential to determine the batch-wise

correspondence among populations with automation so that we

can register them i.e., identify them uniquely, in high-dimension,

which enables direct quantitative comparison of samples across

conditions, phenotypes or time points. Addressed with algorithmic

precision and rigor, automatic registration can facilitate clinical

applications with diagnostic or prognostic implications. For

instance, it can be useful for monitoring of specific cellular events

such as lymphocytic infiltration in tumors, immuno-profiling of

patients following treatment, etc. [9,10]. By creating parametric

models of the matched spatio-temporal profiles, we can use the

estimated model parameters to accurately classify new samples as

well as identify aberrant patterns (outliers).

A composite solution to these two complex problems –

modeling each population within a sample, and registering them

across samples – marks a significant improvement over FLAME

and the other predominantly clustering approaches [3] such as

flowClust [11] and SWIFT [12]. Currently, FLAME first models

the populations separately within individual samples, and then

tries to match these populations post hoc by running an external

module (using Partitioning Around Medoids or PAM) on the

model parameters. In our experience in running FLAME, this

alignment procedure has several limitations. For instance, meta-

clustering can be overly sensitive to the accuracy of the

comparison results of PAM, which may be low if there is high

inter-sample variation in a batch. Further, while PAM meta-

clustering matches population-features only pairwise, the overall

relationships among those features can be captured across all

samples, i.e., in a manner more robustly against inter-sample

variation, using batch-level modeling as in JCM. Finally, as the

whole batch was not modeled simultaneously, no overall consensus

template of the batch was formed by FLAME. In that sense,

FLAME and other algorithms that analyze single samples cannot

determine batch characteristics systematically.

The JCM approach
We present a new multi-level framework called Joint Clustering

and Matching (JCM) that operates on an entire batch of samples

across two levels: (1) at a sample-specific ‘‘lower’’ level, JCM

models every cell population as a cluster (i.e. a component of a finite

mixture model of multivariate t or skew t-distributions); and

simultaneously, (2) at a batch-specific ‘‘higher’’ level, JCM

constructs a parametric template, which models overall character-

istics of a batch. JCM achieves this by fitting a Random-Effects

Model (REM) that allows every sample in a given batch to be

modeled as an instance of an ‘‘original’’ template possibly

transformed with a flexible amount of variation. In Appendices

S1 and S2, we describe our Expectation-Maximization (EM)

algorithm for efficient fitting of the two-level JCM model, as

described in (1) and (2) above. Its multi-level design gives JCM the

ability to establish a direct parametric correspondence between

each cell population in the batch template and its counterpart

within an individual sample. Unlike FLAME, this allows JCM to

explicitly tackle inter-sample variation, a common concern for

flow data, and thus support both biological and clinical

applications. JCM’s template based mixture-model approach was

described originally in our unpublished working paper [13].

In recent years, researchers have also started multiplexing many

staining panels to overcome limits on the numbers of markers that

can be accurately measured together using commercial cytometers

[4]. While the resulting data are more enriched, it can also

produce a large number of distinct features from every panel of

markers. Currently there exists no technique for systematic

integration of such features across panels into meta-features for

the common underlying sample. As part of JCM analysis, we

introduce a new technique to combine both univariate and

multivariate JCM features across multiplexed panels to construct

enriched meta-features (or feature-sets), and use these to improve

sample classification.

Using simulation as well as several real-world benchmark

datasets, we found that key performance attributes such as

classification accuracy and running time of JCM are quite

favorable compared to other methods. To illustrate the different

capabilities of JCM, we applied it to two sets of experiments

involving multiple markers, time points (or stimulations), staining

panels, and sample classes. In addition, the accuracy of JCM is

compared with FLAME and HDPGMM on a set of manually

analyzed benchmark DLBCL datasets from the flowCAP contest

[14]. Here, HDPGMM denotes the hierarchical Dirichlet process

Gaussian mixture model-based procedure proposed recently [15].

The procedure provides a strategy for the alignment of cells across

multiple samples by assuming the cell populations to have identical

location and shape across the samples, but their weights (or

proportions) may vary from sample to sample. Similar to JCM, the

HDPGMM is an alternative procedure that produces a template

or consensus model to represent the overall distribution of the

batch of samples. However, the assumption of identical mean and

covariance in the component normal distributions for all samples

may be too restrictive in some cases. We also compared JCM with

two other popular methods for the automated analysis of flow

cytometric data, namely flowClust and SWIFT. As a model-based

algorithm, flowClust also uses mixture models for density

estimation and clustering, but adopts a data transformation

approach to handle asymmetric clusters as an alternative to

merging Gaussian mixture components (HDPGMM) or adopting

a skew component distribution (FLAME and JCM). One

advantage of the former approach is a potentially faster run time

due to a simpler model fitting procedure. SWIFT is closely related

to HDPGMM in that they are both based on merged Gaussian

mixture models, but the former is also designed for scalability to

larger datasets by employing weighted down-sampling to speed up

model fitting. However, as these two methods do not have any

explicit facility for matching the output from a series of samples,

we applied them to each sample considered separately and to the

single sample consisting of all 16 samples pooled into one.

Concerning the setting of several parameters here in our

analyses, we note that it is in fact the biologist who decides the

number (and types) of markers necessary for characterizing the

populations of interest before the data are generated. Given the

generated data, the JCM algorithm allows automated estimation

of all the parameters of the fitted JCM model in an unsupervised

manner, that is, with no explicit need of manual setting of the

model parameters. In the two sets of experiments performed to

asses JCM, we applied JCM to obtain multi-parametric charac-

terization of different T cell subpopulations upon T cell receptor

(TCR) stimulation in a time course phosphorylation experiment.

This illustrates how a complex multi-class and multi-sample

experiment can be systematically analyzed in a fully automated

and reproducible manner to generate precise and objective profiles

for every class. Importantly, it is based on a comprehensive list of

rigorously estimated model parameters for each population, which

is output by JCM. As illustrated by our next application, such

unsupervised, thorough approach can also reveal new or subtle

expression phenotypes in specific subpopulations, which might

otherwise go undetected in manual gating. In the second

experiment, we applied JCM to understand differential patterns

of altered B cell receptor (BCR) signaling in human follicular
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lymphoma (FL) tumor samples. By combining JCM features from

multiplexed panels of 16 phospho-markers, we identified a novel

spatio-temporal signature of BCR signaling in a specific subpop-

ulation of the lymphoma B cells that improved the separation

between two classes of patients previously reported by Irish et al.

[9] to have markedly different survival. We also devised visual

means for overlaying expression templates to capture the variation

in data both within and across a batch. This highlights the

capability of JCM to distinguish complex biological contexts via

quantitative class-specific characteristics, which may be very useful

in new studies involving large cytometric cohorts.

Results

Spatio-temporal characterization of TCR activation
We analyzed phosphorylation patterns downstream of T cell

receptor (TCR) activation in naı̈ve and memory T cells across six

classes of samples corresponding to six time points: 0, 1, 3, 5, 15,

and 30 min originally measured by Maier et al. [16]. In that study,

human expertise played a key role in manually and visually

identifying each population in every sample at every time-point,

and then carefully comparing them based on selected features of

chosen populations. In the process, many manual decisions were

taken and highly supervised time-consuming operations were

performed repeatedly such as the applied sequence of gates, the

selection of useful parameters for comparing the subsets across

classes, etc. Traditionally, therefore, the results of manual gating

even on similar experiments can vary with such decisions, which in

turn depend on the experience of the human expert.

JCM, in contrast, produced the full sequence of spatio-temporal

expression phenotypes of phosphorylation in five distinct subsets of

T cells, which are matched across all samples. These five

populations were characterized in a fully unsupervised manner

in 4-dimensional marker-space, as well as in terms of the 5th

dimension of time. The model yielded a comprehensive list of

matched high-dimensional parameters, not just a few pre-

determined visual (i.e. 2-D) features. This list could be readily

used for exploratory statistical analyses (e.g. feature selection,

discriminant analysis) to accurately identify the changes in every

population over time. Since the cohort was modeled as a batch by

JCM, we can also compare the overall batch-templates computed

for every time-point, both statistically and visually, to capture the

longitudinal phenotypic trend starting from the activation of TCR

up to its de-activation. Thus the JCM framework is objective, fast,

quantitative and reproducible.

The sequence starts at 0 min, prior to stimulation with an anti-

CD3 antibody (baseline measurement), reached peak levels of

phosphorylation at 3–5 min, then subsided by 30 min. JCM’s

multi-level modeling of the time course data is illustrated in

Figure 1 (for the time point of 3 min), where each sample is

modelled as an instance of the class template through an affine

transformation, thus inherently aligning the cell populations across

different samples. In particular, the transformation is governed by

a REM (see Methods). This allows JCM to flexibly accommodate

subtle variations between the samples and facilitates interpretabil-

ity of the results. The profile of each of the five populations

(denoted #1–5 in Figure S2) were distinguished apart, matched

across samples, summarized with templates and compared across

six time-points. The overall changes summarized as high-

dimensional templates for each of the successive classes can be

observed in Figure S2. Looking at the changes in the proportions

of the five clusters (denoted by p1 to p5; see Methods) over the six

time points, we can see from Figure S2 that the estimate of p3 is

relatively constant, while the estimates of p1 and p5 are on the

increase and the estimate of p4 is on the decrease. The overall

spatio-temporal differences both within and across classes may be

observed with JCM’s overlay plots (Figure S3). Specifically, the

alterations in the naı̈ve and memory T cell populations are

outlined in Figure S4, where a rise in the intensities of marker

ZAP70 can be observed soon after stimulation and then a gradual

decline over time. For details on the experiments, see Text S1.

Two markers in the staining panel, CD4 and CD45RA, were

used for characterizing the different populations, while two other

markers, SLP76 (p-Y128) and ZAP70 (p-Y292), were used to

measure the intensity of phosphorylation in these subsets. As

described in Maier et al. [16], we used the signatures CD4hi with

CD45RAhi and CD4hi with CD45RAlo to represent the

primarily naı̈ve and memory T cell subsets, respectively. Upon

fitting mixtures of t-distributions to each of the 6 classes, an overall

pattern for five matched populations emerged (indexed #1
through #5 in Figure S2A–E). As expected, a rapid rise in the

intensities of phosphorylation markers SLP76 and ZAP70,

especially the latter, was observed soon after stimulation for all

populations with the possible exception of #2. While both naı̈ve

(#3) and memory T cell subsets (#4) showed similar peak levels of

phosphorylation initially (Figure S2C–D), the former exhibited a

faster decline with time (Figure S2D–E), consistent with prior

results [1]. In fact, both CD45RAz populations (#1 and #3)

exhibited similar expression throughout. Upon p-CD3 (p-Y142)

normalization, higher phosphorylation in memory T cells com-

pared to naı̈ve T cells between 5 and 15 min – as observed

manually [16] – was recapitulated with help of JCM.

BCR signaling feature-sets distinguish FL subclasses
In a recent study based on human expert analysis, Irish et al. [9]

stratified follicular lymphoma (FL) patients into two classes with

markedly different overall survival depending on the presence or

absence of a Lymphoma Negative Prognostic (LNP) subset of B

cells in tumor. The LNP cells showed altered BCR signaling, and

were identified by the expressions of a multiplexed panel of

selected phospho-markers. The multiplexing of markers, used for

assaying each sample with a large set of markers (too large to be

contained in a single panel) that is distributed across multiple

panels, is described in detail in Irish et al. (Fig. 1A and

Supplementary Information in [9]). The signaling based stratifi-

cation of patients into LNPz and LNPlo classes is therefore of

clinical significance. We used JCM for (a) automation — to

systematically combine features from multi-panel data from FL

patients, and (b) discrimination — to identify features that could

separate the pre-defined FL patient classes as best as possible.

In the BCR signalling dataset, through automated analysis of

multiplexed data, JCM had identified a nuanced signature for

signaling alterations in high-dimensional marker-space that further

improved the stratification between the two FL patient classes, as

described in Irish et al. [9]. The difference between the two classes

was determined by comparing the class meansusing the t test. We

analyzed 28 pre-processed patient samples for two time points,

0 min and 4 min (i.e. pre- and post-BCR stimulation, respective-

ly). Further details of the samples and preprocessing are provided

in Text S1.2 and S2. At every time-point, and for all patients, the

data for each sample was available for eight multiplexed panels,

each with results for four markers, including two B cell markers

CD20 and BCL2 that were common to every panel. Signaling

responses were measured in terms of phosphorylation of 16

phospho-proteins from the BCR signaling network. By multiplex-

ing panels, the signaling for all these network components could be

measured in every sample. Each sample’s phenotype (or class

Joint Modeling and Registration
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label), LNPlo (18 samples) or LNPz (10 Samples), was assigned by

human expert analysis (Supplemental Methods of Irish et al. [9]).

For both unstimulated (0 min) and stimulated (4 min) condi-

tions, each class of patient samples was modeled with an overall

template produced by the JCM procedure using two-component

multivariate skew t-mixture models. The templates revealed the

class-specific features of two lymphoma B cell populations. For

convenience, let us call these two populations ‘‘mound’’ and

‘‘base’’ corresponding to higher and lower levels of stimulation

respectively. These are components of the JCM mixture model

that primarily represent populations in which BCR signaling is

intact (i.e. non-LNP cells) as opposed to altered (LNP cells). The

change between the corresponding features pre- and post-

stimulation provided a kind of baseline correction to the resting

level of signaling for each sample. This approach corresponds to

asking whether the response of lymphoma B cells to BCR

engagement was heterogeneous, but using the entire set of

continuous features for exploring tumor heterogeneity rather than

only median phosphorylation, the primary discretized feature in

the Irish et al. study [9].’’

We introduced a new strategy for a combined analysis of

multiplexed markers probing different parts of the BCR signaling

network. The JCM features of 16 phospho-markers distributed

across all 8 panels were pooled to form an enhanced meta-feature,

or a feature-set, that is analogous to the concept of a gene-set

(GSEA [17]). Thus we applied Gene Set Enrichment Analysis

(GSEA [17]) to every feature-set to test their abilities to distinguish

between LNPlo and LNPz samples. Notably, Irish et al. [9] had

previously discovered that the size of the LNP population could be

used to distinguish FL patients into two classes with different

outcomes. However, these results were based on manual

demarcation of the LNP subset, and therefore based on low-

dimensional gating of data. Interestingly, in our feature-set

enrichment analysis, the single most significantly enriched

feature-set (at P-value level 0.05 by Kolmogorov-Smirnov test of

GSEA [17]), i.e. the most distinctive meta-feature across these two

patient classes, was skewness (d) of the mound at 5 min. (P-value

0.0144, q-value 0.058; Figure S5). Across LNPlo and LNPz

classes, this spatial signature (i.e. stimulated mound skew) is

distinctive both visually (Figure 2A and 2B) and statistically (the

average of posterior log-odds ratios in Figure 2C, computed using

Bayesian methods described in [18], particularly for markers such

as p-PLCg2, p-BLNK, and p-SFK (Figure S6). In particular, we

draw attention to Figure 2A, outlining the asymmetric expression

of the mound in LNPlo samples, which contrasts with their more

spherical counterparts (i.e. lower skew) in the LNPz samples. The

distinction is in fact statistically significant even after controlling

for the corresponding base (LNP) LNPz population sizes (e.g. for

p-SFK the GLM based p-value after controlling is 0.0079).

The skewness, given by the parameter vector d, of the

stimulated mound in LNPz samples is expressed in the form of

a heavy left tail (Figure 2B). This suggests the likely presence of a

subpopulation of primarily non-LNP cells with partially altered

signaling at a given time-point. Whether it is of real prognostic

value needs to be tested in future studies. Our main point is that

JCM’s automatic feature detection can reveal new spatio-temporal

states and their characteristics. State transitions can be numerically

measured and monitored even if they are subtle across classes. For

instance, if the alteration in BCR signaling happens in a way that

is gradual and not sharp, then it can be difficult to demarcate or

determine the size of the LNP component accurately, and yet the

skew feature can be used for nuanced understanding of the change

Figure 1. JCM model and application. The multi-level model is illustrated using the samples (bottom) and the template (top) for the samples of
the 3 min class, along 3 out of 4 dimensions in the TCR activation data. Actual values of the JCM parameters were used to construct the 50th

percentile multivariate t density contour (ellipsoid) depicting every population. The overall class template is computed by fitting a random effects
model on all the samples, which in turn are fitted with sample-specific finite mixture models of multivariate t’s. Under the JCM framwork, each sample
can be described as an affine transformation of the template, where each population in a sample corresponds to its counterpart in the class template,
as shown by the matched colors and labels (# 1–5).
doi:10.1371/journal.pone.0100334.g001
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in the same population thus providing mechanistic insights into the

biology of the system in action.

Cell population identification and alignment across
DLBCL batch samples

We compared JCM with two other flow analysis methods that

compute cluster correspondence, namely, FLAME and the

HDPGMM procedure. As with JCM, FLAME is based on

mixtures of skew t-distributions, while HDPGMM uses mixtures of

normal distributions. Note that although the HDPGMM model

adopts the multivariate normal distribution as component

distributions, it has some flexibility in handling clusters that are

not distributed normally in that it can use more than one normal

distributions to model the distribution of observations in a cluster.

Based on a real-world benchmark dataset from the flowCAP1

contest [14], we compare the performance of JCM with several

other competing procedures in cell population identification and

alignment across a batch of samples. In the original dataset, 30

samples were collected from patients diagnosed with diffuse large

B-cell lymphoma (DLBCL). For this illustration, we use the subset

of 16 samples which were manually analyzed and were determined

to have the same number of clusters. With JCM, we first created a

template across the batch of 16 samples. Then the cluster

membership labels given by JCM for each sample are compared

with the results given by manual gating. The results are given in

Table 1, along with the corresponding results for FLAME and

HDPGMM procedures.

In 14 of the 16 samples, JCM achieved the lowest misclassifi-

cation rate (MCR) among the methods. This MCR is calculated

for each permutation of the cluster labels of the clustering result

under consideration against the class labels given by manual

expert gating and the rate reported is the minimum value over all

such permutations. For reference, we have included in Table S1

the corresponding results using the F-measure as reported in [14],

Figure 2. Distinct spatial characteristics of phospho-marker expression in samples from two classes of patients with different
outcomes. (A) Heatplots provide insight into the distribution of phospho-proteomic expression of p-PLCg2 and p-STAT5 (panel 4) for LNPlo (top 2
rows) and LNPz (bottom row) samples. The mound (high CD20 and BCL-2) populations are shown here. In contrast to the more symmetrically

distributed, well-rounded LNPz mounds, the skewness in the LNPlo mounds is clearly visible. (B) The stimulated mound (light brown histogram) of

a LNPlo sample is shown in contrast with the corresponding population prior to stimulation (greyish blue histogram). (C) The ability of the mound

skew parameters (d) for 16 phospho-markers to distinguish samples across the LNPlo and LNPz classes (green and pink labels respectively) is
shown with a heatmap based on the corresponding posterior log-odds scores. The higher the score, the darker the corresponding entry in red/blue.
Each marker name and its average posterior log-odds score over all samples are marked on the sides of the heatmap.
doi:10.1371/journal.pone.0100334.g002
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which is given by the harmonic mean of precision and recall. Our

discussions here will focus on the MCR, which is the standard rate

used in statistics to assess the performance of classifiers and also

clustering procedures in studies where the true labels are known.

However, we note that the relative ranking of the methods remains

similar using Table S1.

JCM’s average MCR of 0.0711 is well below the average rates

of 0.2038 and 0.4618 for HDPGMM and FLAME, respectively. It

can observed from Table 1 that JCM had a lower MCR than

FLAME for all 16 samples, and also in 14 of the 16 samples when

compared to HDPGMM. For the two samples, Sa001 and Sa006,

on which it does not have the lowest MCR, its performance is well

below what it is for the other 14 samples. Given the presence of

these two samples with atypically high MCRs, we computed the

median MCR of JCM for these 16 samples. It was only 0.0333,

being just under half the average MCR. As mentioned in the

introduction, FLAME adopts a single-sample based approach to

the analysis of multiple samples, and so it does have its limitations

in registering the individual results across the samples. This is

clearly evident in Table 1, where the MCR for FLAME is quite

high relative to JCM and HDPGMM which analyse the samples

simultaneously.

We have also listed in Table 2 the MCR for each of the 16

samples clustered according to FLAME-I and FLAME-P, where

FLAME-I denotes the procedure with FLAME applied to each

individual sample considered separately and FLAME-P denotes

FLAME based on the single sample formed by pooling the 16

samples together. If there were little inter-sample variation, then

one would expect FLAME-P to be similar or even superior in

performance to JCM. But it can be seen from Table 2 that JCM

has a lower MCR than FLAME-P except for only three samples

that include the aforementioned two samples (Sa001 and Sa006)

on which JCM performs poorly. The MCR for JCM is also lower

than that for FLAME-I except for only three samples (apart from

Sa001 and Sa006). For these three samples, the differences

between the MCR for JCM and FLAME-I is zero up to the fourth

decimal place.

For comparative purposes, we have also included in Table 2 the

corresponding MCR for these 16 samples clustered according to

two other methods in flow cytometry, SWIFT and flowClust. As

these two methods do not have any explicit facility for matching

the output from a series of samples, we reported the MCR for

SWIFT-I and flowClust-I corresponding to SWIFT and flowClust

applied individually to each sample and for SWIFT-P and

flowClust-P corresponding to SWIFT and flowClust based on

the pooled sample. It can be seen from Table 2 that for the 16

samples FLAME-I and flowClust-I have similar performances for

most of them as do FLAME-P and flowClust-P. For example,

FLAME-I has a lower MCR than flowClust-I in 9 of the 16

samples, with there being one tie between FLAME-I and

flowClust-I. The flowClust method fits mixtures of t-distributions

after first applying a Box-Cox transformation. We note that if the

transformation is sample-specific, then this approach of first

transforming each sample considered separately makes it difficult

to compare the differences between the fitted distributions for a

series of samples corresponding, for example, to different patients

or to the one patient monitored over a series of time points.

Concerning the SWIFT procedure, it can be seen from Table 2

that SWIFT-I has a higher MCR than FLAME-I and flowClust-I

for most of the samples. However, the average MCR (AMCR) for

SWIFT-P is much closer to that for FLAME-P and flowClust-P.

Indeed, SWIFT-P has a lower MCR than JCM for three of the

samples, including the two samples for which FLAME-I and

FLAME-P was performing better than JCM. On comparing

flowClust and SWIFT with JCM, it can be observed from Table 2

that JCM had a lower MCR for all samples than SWIFT-I, and in

Table 1. Classification error rates of three methods on DLBCL data.

Sample JCM HDPGMM FLAME

Sa001 0.3045 0.2046 0.5143

Sa002 0.0339 0.1044 0.4300

Sa003 0.0694 0.0946 0.5931

Sa004 0.0659 0.0946 0.5459

Sa005 0.0089 0.1230 0.4440

Sa006 0.2947 0.0611 0.5987

Sa007 0.0208 0.0510 0.2584

Sa008 0.0683 0.0719 0.3719

Sa009 0.0249 0.1343 0.2417

Sa010 0.0121 0.3828 0.5413

Sa011 0.0236 0.4082 0.4792

Sa012 0.0096 0.1148 0.2456

Sa013 0.0326 0.3247 0.5947

Sa014 0.0062 0.2959 0.6000

Sa015 0.1283 0.4110 0.3927

Sa016 0.0361 0.4437 0.5372

AMCR 0.0711 0.2038 0.4618

Samples from 16 patients diagnosed with Diffuse Large B-cell Lymphoma (DLBCL) were clustered using JCM, HDPGMM, and FLAME. For both JCM and HDPGMM, a class
template is computed for the entire batch of samples, while FLAME performs post hoc alignment of the results given by FLAME-I, where FLAME-I denotes the procedure
with FLAME applied to each individual sample considered separately. The final row shows the average misclassification rate (AMCR) for each method. Clearly, JCM
shows overall superior performance.
doi:10.1371/journal.pone.0100334.t001
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13 and 14 of the 16 samples compared to flowClust-P and

flowClust-I, respectively. Overall, JCM is clearly favoured by both

MCR and the F-measure in this dataset, as evidenced by it being

ranked first or second in 13 of the 16 samples among the five

methods based on both MCR and the F-measure.

Discussion

High-dimensional computational analysis of flow data is

receiving increasing attention with the rapid rise in the number

of markers that can be used to probe each cell in parallel [3,6]. By

mirroring the perception of a flow sample as a mixture of cell

populations, finite mixture of Gaussians has long been an

attractive modeling mechanism [19]. Recently, robust mixture

models with multivariate t and skew t distributions were

introduced for analyzing flow data with non-Gaussian features

such as outliers, heavy-tailed densities, and asymmetric shapes

[7,20–22]. In addition to modeling the cell populations, Pyne et al.

[7] also highlighted the importance of registering them across

samples. Recent studies have noted that for re-structuring of cell

populations, the optimal algorithmic strategy is to do so in

conjunction with population modeling [20,22].

The key contribution of JCM is its joint approach to address two

challenges with a single composite model. It is a two-level

framework for simultaneous mixture modeling and registration of

populations in an entire batch of flow samples. That allows JCM to

meet a key need of cytomics – reproducible analysis of data from

many samples and conditions simultaneously. Notably, in the field

of pattern recognition, alignment of images and curves in lower-

dimensional space have emerged as active areas of research in

recent years [23–25]. Thus, JCM provides an important extension

from Gaussian mixture regression models [24] to multivariate t-

and skew t-models, which can be fitted via the EM algorithm. This

algorithm is an effective generic technique for parameter

estimation [25], and we have extended it for the JCM-specific

application of EM (Appendices S1 and S2). Thus the JCM

framework is objective, fast, quantitative and reproducible.

As demonstrated in the previous section, automated population

registration of JCM marks a significant technical improvement

over FLAME. Unlike the post-hoc meta-clustering approach of

FLAME, matching of populations by JCM is intrinsic to its

modeling strategy. It is achieved by fitting a random-effects model

(REM), a meta-analytic approach for estimating the mean of a

distribution of effects [26]. Rare past usage of REM in cytomics

was limited to measuring variability of very specific features, e.g.,

CD4 expression [14]. JCM is perhaps the first framework that

incorporates REM for comprehensive batch characterization in

flow data analysis (Figure 1). In particular, our REM uses affine

transformation parameters to explicitly learn relationships among

every population in a batch even in the presence of flexible

amounts of cross-sample variation. In theory, were JCM to be

reduced to its lower level, i.e., to perform clustering only and

restricted to just a single sample input, then it would be equivalent

to FLAME clustering. FLAME was ranked by rigorous bench-

marking and expert analysis to be among the top performing

unsupervised algorithms at a recent international contest on flow

analysis FlowCAP1 organized in NIH [14]. This signifies that

JCM has much greater potential with its more flexible approach

compared to FLAME.

A technical advantage of JCM’s REM-based registration is that

it accounts for the populations’ scaling and shifting transforma-

tions without explicitly ‘‘correcting’’ them. Some programs may

shift populations in order to apply a common gate or filter on an

entire cohort, without considering inter-sample variation. How-

ever, for precise modeling of the populations, we want to identify

those spatio-temporally distinctive high-dimensional features,

which may actually be characteristic of each individual sample’s

phenotype. Whereas we do not want to homogenize population

features by aligning them, at the same time, we do want to register

the populations – as they appear in high-dimensional space – with

precision and rigor. This makes registration more challenging than

just matching (as in FLAME meta-clustering [7]) or alignment (as

in channel normalization [27]). In fact, we compared the

performances of JCM and FLAME meta-clustering on benchmark

data and, as shown in Table 1 JCM with its use of a template keeps

classification error rates low in the face of increasing inter-sample

variation in batches derived from real cytometric cohorts.

Perhaps the most attractive feature of REM is an overall

consensus template that emerges from connecting both levels of

the JCM model (Figure 1). Thereby JCM establishes a direct

parametric correspondence between each population in the

batch’s template and its counterpart within every sample. Further,

the template allows JCM to capture across-sample inter-relation-

ships that may exist among populations and are useful for accurate

registration. For instance, if a certain population A usually

appeared in between two populations B and C, then it is useful

to learn about such relative positioning of A even if its actual

location varied from sample to sample. It makes JCM more robust

to common transformations (such as shifting or scaling of

populations – to which these relationships are generally invariant)

compared to FLAME meta-clustering, which can handle only

limited variation in actual locations. Thus the JCM template

provides a ‘‘ground truth’’ while the REM transformation

parameters quantify each individual instance’s deviation from

that reference structure. From classification standpoint, given that

the JCM templates are defined by parametric distributions, they

allow direct statistical comparison of batches which could

represent, say, different subclasses of patients or successive

longitudinal observations. We also present overlay plots for visual

comparison of overall batch-structures along every dimension both

within and across different classes in Figures S3 and S4. Moreover,

any new patient sample can be easily classified with the group that

has the most similar template (as determined by, say, Kullback-

Leibler distance). Finally, a JCM template provides the user with a

visually convenient yet parametrically precise ‘‘snapshot’’ summa-

rizing a cohort’s overall population structure. Studies of large

cohorts, such as for finding associations between genotypes and

immuno-phenotypes in human populations, can be performed

systematically with our two-level approach. Thus large population-

wide immune cytome databases can be created.

Parametric characterization of cohorts in terms of their high-

dimensional spatio-temporal features can reveal complex and

dynamic biological contexts and present them for further

investigation. Dissecting and monitoring the parameters of

individual cellular species as they evolve over time — such as

our time course profiling of TCR stimulation (Figure S2) — could

be useful in many biomedical applications. The JCM models

supporting asymmetric and heavy-tailed distributions of events are

uniquely suited for detecting features that appear dynamically as

hard-to-separate transitional features, such as asymmetric or tail

subpopulations [8], that are otherwise difficult to distinguish via

automation. Further, by pooling features across staining panels

that are multiplexed, JCM can detect complex biological contexts

involving multiple markers from a signaling pathway or network

[9], which is a new application in computational cytomics.

JCM can serve as a practical framework that is suitable for

clinical applications. Here, its main objective is to learn the specific

target populations’ parameters for large numbers of samples

Joint Modeling and Registration

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e100334



precisely and quickly. Yet, in clinical applications, the modeling

must also be robust enough to allow a reliable parameter-driven

classification of patient samples. This is of particular concern for

flow data which may contain high inter-sample variation due to

the presence of complex, biologically interesting subpopulations,

along with noise, within the target pool of primary cells. In the

BCR signalling dataset, through automated analysis of multiplexed

data, JCM had identified a nuanced signature for signaling

alterations in high-dimensional marker-space that further im-

proved the stratification between the two FL patient classes, as

described in Irish et al. [9]. Explicit detection of variation by REM

is useful for batch characterization, QA/QC, as well as

downstream analysis.

Moreover, JCM produces an array of insightful plots. For

instance, the overlay plot can reveal within-class variation along

any dimension (Figure S3), while the intensity heatplots take

advantage of REM to allow monitoring of spatio-temporal

changes in individual populations that are matched across the

cohort (Figure 2). Another attractive practical feature of JCM is its

representation of output in the form of a generic feature-by-sample

matrix, which can be analyzed with common bioinformatic

pipelines. Thus, here we used the well-known GSEA algorithm

[17] to create a new technique for combining JCM features into

enriched meta-features across multiplexed staining panels. The

simple new technique may become highly effective as more

multiplexed staining data begin to appear [4].

By accounting for sample-specific variation, in essence REM

also performs cohort-wide meta-analysis. Indeed, JCM framework

can be further generalized to include an even higher level of

parameterization for representing class-specific information such

as time points or patient subtype (including clinico-pathological

variables, genotypes, etc.). This makes JCM well suited for

integrative cytomics, such as for large population immunome

studies. In fact, our simulations show that besides being efficient in

batch mode analysis, JCM is also robust against both class-size and

the amount of inter-sample variation it can handle (Figure S7). In

particular, we conducted an extensive set of simulation studies to

determine the performance of JCM under different settings,

including Simulations A to D reported in Figure S7 which focus on

the performance of JCM with different number of sample sizes,

markers, populations, and samples (in a cohort), respectively.

Simulation shows that the run time performance is linearly

proportional to the number of samples, the number of observa-

tions per sample, and the number of clusters. For instance, the

running time for JCM modeling of a sample in our phosphory-

lation data averaged 33.7 sec per sample on a standard desktop

PC (again using only a single-threaded implementation of JCM).

This contrasts sharply with the hours of manual analysis

performed over weeks by multiple researchers in the original

study. With increasing multi-parameterization and multiplexing of

cytometric data, JCM can facilitate automated, quantitative,

scalable and objective investigation of complex hypotheses about

different conditions and cohorts of biomedical interest.

Methods

Following is the description of the JCM workflow and details of

the models and methods, also continued in Text S2.

Overview of JCM
JCM is run in the following sequence of steps (flowchart in

Figure S1) –

(1) Obtain the expression matrices from an input batch of

preprocessed samples.

(2) Fit a two-level model (as illustrated in Figure 1) to these data

such that —

(1) (2a) an overall parametric template for the batch is

constructed by modeling the affine transformations that may

exist among the corresponding populations across samples,

and simultaneously

(2) (2b) every sample is modeled with its own mixture of skewed

and heavy-tailed multivariate probability distributions, which

characterizes the high-dimensional populations while regis-

tering them using the batch template.

(3) Output files are produced containing the fitted models for the

batch template and all samples – in formats suitable for

visualization and downstream analysis programs. Overlay

plots are produced for visual comparison of all class-templates.

There are two options for constructing the parametric models

with JCM: the default using mixtures of multivariate skew t-

distributions and its symmetric counterpart using a mixture of

multivariate t-distributions.

Mixtures of multivariate t- and skew t-distributions
A two-level model is fitted to an input batch or class C of m

samples where each sample is represented by its own nk|p
expression matrix, where k indexes the sample (k~1, . . . , m).
The problem is to simultaneously (a) model all m samples in a

batch while (b) creating a p-dimensional template of g components

for matching the corresponding populations across all samples.

Below we describe the JCM model, for both symmetric and

asymmetric components, which are fitted with the JCM-specific

EM algorithm for maximum likelihood (ML) estimation as

described in detail in Appendices S1 and S2.

Let y denote a p-dimensional vector denoting the values of the p

markers in a sample. Then JCM provides a method for

constructing a template density of y for a class of m samples,

where we let yk denote the data observed in the kth sample

(k~1, . . . ,m). For the construction of the template density, we use

a mixture of g component distributions, where the latter are

members of the t-family of distributions [28] or of a skew-extension

of this family [7]. In order to define these component distributions,

we consider first the g-component normal mixture density, which

can be expressed as

f (y;Y)~
Xg

h~1

phf (y; hh), ð1Þ

where f (y; hh)~w(y; mh,Sh) and w(y; mh,Sh) denotes the p-variate

normal density with mean mh and covariance matrix

Sh (h~1, . . . , g); ph, . . . , pg denote the mixing proportions which

are non-negative and sum to one. The optimal value of g can be

specified directly by the user. Alternatively, it can be determined in

an unsupervised msanner by the Bayesian Information Criterion

(BIC); see Text S2. The vector hh denotes the elements of mh and

the elements of Sh known a priori to be distinct. The vector of

unknown parameters is given by Y~(ph, . . . , pg{1,hT
1 , . . . , hT

g ),

where the superscript T denotes vector transpose. In (1), f is being

used generically to denote a density function.

In the present context where the tails of the normal distribution

are heavier or the parameter estimates are affected by atypical

observations (outliers), the fitting of mixtures of multivariate t-

Joint Modeling and Registration
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distributions provides a more robust approach to the fitting of

normal mixture models [28]. The t-component density with

location parameter mh, positive-definite scale matrix Sh, and nh

degrees of freedom is given by

tp(y; mh,Sh,nh)~
C(

nhzp

2
)DShD{1=2

(pnh)p=2C(nh=2)f1zdh(y)=nhg(nhzp)=2
, ð2Þ

where dh(y)~(y{ h)T P{1
h (y{mh) denotes the Mahalanobis

squared distance between y and mh (with Sh as the scale matrix),

and C(:) denotes the Gamma function. The parameter nh acts as a

robustness tuning parameter, which can be inferred from the data

by computing its maximum likelihood estimate.

In order to reliably model the clusters that are not elliptically

symmetric but are skewed, we shall adopt component densities

that are a skewed version of the t-distribution. Over the years, a

number of proposals have been put forward with increasing level

of generality for a skew form of the t-distribution. We shall adopt

the version proposed by Sahu et al. [29], which is quite general.

Accordingly, we let Dh be a diagonal matrix with diagonal

elements given by the vector dh~(d1h, . . . , dph)T of skewness

parameters. Suppose that conditional on a gamma random

variable w and membership of the hth component, the joint

distribution of the random vectors U0 and U is given by

U0

U

� �
*N

mh

0

� �
,

Sh=w Op

Op Ip

�
w

 ! !
, ð3Þ

where w is distributed according to the gamma (nh=2,nh=2)
distribution. In the above, we let 0 denotes the p-dimensional null

vector, Op denotes the p|p null matrix, and Ip denotes the p|p

identity matrix.

Then

Y~DhDU DzU0 ð4Þ

defines a p-dimensional multivariate skew t-distribution with

location mh, scale matrix Sh, skew (diagonal) matrix Dh, and nh

degrees of freedom. Here DU D denotes the vector whose ith element

is equal to the magnitude of the ith element of the vector U . The

density of can be expressed as

f (y; mh,Sh,Dh,nh)~2ptp(y; mh,Vh,nh)Tp(y�; mh,Vh,nhzp), ð5Þ

where Vh ~ShzDhD
T
h , Lh~Ip{DT

h V
{1
h Dh, y�~½(nhzp)=

fnhzdh(y)g�1=2DT
h V

{1
h (y{mh). In (5), tp(y; mh,Sh,nh) denotes the

p-variate t-density with location mh, scale matrix Vh, and degrees of

freedom nh, and Tp denotes its (p-variate) distribution function.

Multi-level modeling
We represented the class template by fitting the g-component

mixture model in (1) to all the m samples considered simulta-

neously, using (2) to represent the t-component densities in the

symmetric case and (5) in the case of skewed t-component

densities. If there were no inter-sample variation, then we could

proceed to fit the same t- or skew t-mixture sss to all the m samples

observed. But here the second-level of JCM model allows for inter-

sample variation based on the concept of random-effects, which is

often used for combining data from batches containing different

amounts of variation. We propose to do so by introducing

random-effects terms and using them to specify how the sample-

specific component distributions vary from those in the t- or skew

t-mixture model representing the template.

Let yijk denote the measurement on the ith variable for the jth

observation in the kth sample (i~1, . . . , p; j~1, . . . , nk;
k~1, . . . , m). Then conditional on its membership of the hth

component of the mixture model and conditional on the random-

effects terms, we specify the distribution of yijk as

yijk~ahikmhizbhikzehijk, ð6Þ

where ehijk is the error term and where ahik and bhik are random-

effects terms with

ahik*N(1,j2
1hi) and bhik*N(0,j2

2hi): ð7Þ

Here mhi is the hth component mean of the ith variable in the g-

component mixture model representing the template for class C.

The terms ehijk, ahik and bhik are taken to be independent and this

independence assumption extends over all variables and all

samples. The sample-specific terms, ahik and bhik, allow for scaling

and translation, respectively, of the sample-component means

from the component-means of the template. Estimation of the

random-effects model (6) can be performed using the JCM-specific

implementation of the EM algorithm described in detail in

Appendices S1 and S2.
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Figure S1 The workflow of JCM.

(TIF)

Figure S2 Spatio-temporal characterization of popula-
tions using JCM class templates.

(TIF)
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(TIF)

Figure S4 Spatio-temporal profiling of populations
representing naı̈ve and memory T cells.
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Figure S5 Enrichment of cross-panel meta-features.

(TIF)

Figure S6 Differences in mound skewness.
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Figure S7 Running time analysis of JCM.
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Table S1 The F-measure values of various methods on
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Text S1 Data and experiments.
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