330 research outputs found

    A Survey of Fault-Tolerance and Fault-Recovery Techniques in Parallel Systems

    Full text link
    Supercomputing systems today often come in the form of large numbers of commodity systems linked together into a computing cluster. These systems, like any distributed system, can have large numbers of independent hardware components cooperating or collaborating on a computation. Unfortunately, any of this vast number of components can fail at any time, resulting in potentially erroneous output. In order to improve the robustness of supercomputing applications in the presence of failures, many techniques have been developed to provide resilience to these kinds of system faults. This survey provides an overview of these various fault-tolerance techniques.Comment: 11 page

    Rollback recovery with low overhead for fault tolerance in mobile ad hoc networks

    Get PDF
    AbstractMobile ad hoc networks (MANETs) have significantly enhanced the wireless networks by eliminating the need for any fixed infrastructure. Hence, these are increasingly being used for expanding the computing capacity of existing networks or for implementation of autonomous mobile computing Grids. However, the fragile nature of MANETs makes the constituent nodes susceptible to failures and the computing potential of these networks can be utilized only if they are fault tolerant. The technique of checkpointing based rollback recovery has been used effectively for fault tolerance in static and cellular mobile systems; yet, the implementation of existing protocols for MANETs is not straightforward. The paper presents a novel rollback recovery protocol for handling the failures of mobile nodes in a MANET using checkpointing and sender based message logging. The proposed protocol utilizes the routing protocol existing in the network for implementing a low overhead recovery mechanism. The presented recovery procedure at a node is completely domino-free and asynchronous. The protocol is resilient to the dynamic characteristics of the MANET; allowing a distributed application to be executed independently without access to any wired Grid or cellular network access points. We also present an algorithm to record a consistent global snapshot of the MANET

    RADIC II : a fault tolerant architecture with flexible dynamic redundancy

    Get PDF
    The demand for computational power has been leading the improvement of the High Performance Computing (HPC) area, generally represented by the use of distributed systems like clusters of computers running parallel applications. In this area, fault tolerance plays an important role in order to provide high availability isolating the application from the faults effects. Performance and availability form an undissociable binomial for some kind of applications. Therefore, the fault tolerant solutions must take into consideration these two constraints when it has been designed. In this dissertation, we present a few side-effects that some fault tolerant solutions may presents when recovering a failed process. These effects may causes degradation of the system, affecting mainly the overall performance and availability. We introduce RADIC-II, a fault tolerant architecture for message passing based on RADIC (Redundant Array of Distributed Independent Fault Tolerance Controllers) architecture. RADIC-II keeps as maximum as possible the RADIC features of transparency, decentralization, flexibility and scalability, incorporating a flexible dynamic redundancy feature, allowing to mitigate or to avoid some recovery side-effects.La demanda de computadores más veloces ha provocado el incremento del área de computación de altas prestaciones, generalmente representado por el uso de sistemas distribuidos como los clusters de computadores ejecutando aplicaciones paralelas. En esta área, la tolerancia a fallos juega un papel muy importante a la hora de proveer alta disponibilidad, aislando los efectos causados por los fallos. Prestaciones y disponibilidad componen un binomio indisociable para algunos tipos de aplicaciones. Por eso, las soluciones de tolerancia a fallos deben tener en consideración estas dos restricciones desde el momento de su diseño. En esta disertación, presentamos algunos efectos colaterales que se puede presentar en ciertas soluciones tolerantes a fallos cuando recuperan un proceso fallado. Estos efectos pueden causar una degradación del sistema, afectando las prestaciones y disponibilidad finales. Presentamos RADIC-II, una arquitectura tolerante a fallos para paso de mensajes basada en la arquitectura RADIC (Redundant Array of Distributed Independent Fault Tolerance Controllers). RADIC-II mantiene al máximo posible las características de transparencia, descentralización, flexibilidad y escalabilidad existentes en RADIC, e incorpora una flexible funcionalidad de redundancia dinámica, que permite mitigar o evitar algunos efectos colaterales en la recuperación

    Reliability -aware optimal checkpoint /restart model in high performance computing

    Get PDF
    Computational power demand for large challenging problems has increasingly driven the physical size of High Performance Computing (HPC) systems. As the system gets larger, it requires more and more components (processor, memory, disk, switch, power supply and so on). Thus, challenges arise in handling reliability of such large-scale systems. In order to minimize the performance loss due to unexpected failures, fault tolerant mechanisms are vital to sustain computational power in such environment. Checkpoint/restart is a common fault tolerant technique which has been widely applied in the single computer system. However, checkpointing in a large-scale HPC environment is much more challenging due to complexity, coordination, and timing issues. In this dissertation, we present a reliability-aware method for an optimal checkpoint/restart strategy. Our scheme aims to address the fault tolerance challenge, especially in a large-scale HPC system, by providing optimal checkpoint placement techniques derived from the actual system reliability. Unlike existing checkpoint models, which can only handle Poisson failure and a constant checkpoint interval, our model can perform a varying checkpoint interval and deal with different failure distributions. In addition, the approach considers optimality for both checkpoint overhead and rollback time. Our validation results suggest a significant improvement over existing techniques

    Extensions of Task-based Runtime for High Performance Dense Linear Algebra Applications

    Get PDF
    On the road to exascale computing, the gap between hardware peak performance and application performance is increasing as system scale, chip density and inherent complexity of modern supercomputers are expanding. Even if we put aside the difficulty to express algorithmic parallelism and to efficiently execute applications at large scale, other open questions remain. The ever-growing scale of modern supercomputers induces a fast decline of the Mean Time To Failure. A generic, low-overhead, resilient extension becomes a desired aptitude for any programming paradigm. This dissertation addresses these two critical issues, designing an efficient unified linear algebra development environment using a task-based runtime, and extending a task-based runtime with fault tolerant capabilities to build a generic framework providing both soft and hard error resilience to task-based programming paradigm. To bridge the gap between hardware peak performance and application perfor- mance, a unified programming model is designed to take advantage of a lightweight task-based runtime to manage the resource-specific workload, and to control the data ow and parallel execution of tasks. Under this unified development, linear algebra tasks are abstracted across different underlying heterogeneous resources, including multicore CPUs, GPUs and Intel Xeon Phi coprocessors. Performance portability is guaranteed and this programming model is adapted to a wide range of accelerators, supporting both shared and distributed-memory environments. To solve the resilient challenges on large scale systems, fault tolerant mechanisms are designed for a task-based runtime to protect applications against both soft and hard errors. For soft errors, three additions to a task-based runtime are explored. The first recovers the application by re-executing minimum number of tasks, the second logs intermediary data between tasks to minimize the necessary re-execution, while the last one takes advantage of algorithmic properties to recover the data without re- execution. For hard errors, we propose two generic approaches, which augment the data logging mechanism for soft errors. The first utilizes non-volatile storage device to save logged data, while the second saves local logged data on a remote node to protect against node failure. Experimental results have confirmed that our soft and hard error fault tolerant mechanisms exhibit the expected correctness and efficiency

    Fault tolerance at system level based on RADIC architecture

    Get PDF
    The increasing failure rate in High Performance Computing encourages the investigation of fault tolerance mechanisms to guarantee the execution of an application in spite of node faults. This paper presents an automatic and scalable fault tolerant model designed to be transparent for applications and for message passing libraries. The model consists of detecting failures in the communication socket caused by a faulty node. In those cases, the affected processes are recovered in a healthy node and the connections are reestablished without losing data. The Redundant Array of Distributed Independent Controllers architecture proposes a decentralized model for all the tasks required in a fault tolerance system: protection, detection, recovery and masking. Decentralized algorithms allow the application to scale, which is a key property for current HPC system. Three different rollback recovery protocols are defined and discussed with the aim of offering alternatives to reduce overhead when multicore systems are used. A prototype has been implemented to carry out an exhaustive experimental evaluation through Master/Worker and Single Program Multiple Data execution models. Multiple workloads and an increasing number of processes have been taken into account to compare the above mentioned protocols. The executions take place in two multicore Linux clusters with different socket communications libraries

    Towards Ad Hoc Recovery for Soft Errors

    Get PDF
    The coming exascale era is a great opportunity for high performance computing (HPC) applications. However, high failure rates on these systems will hazard the successful completion of their execution. Bit-flip errors in dynamic random access memory (DRAM) account for a noticeable share of the failures in supercomputers. Hardware mechanisms, such as error correcting code (ECC), can detect and correct single-bit errors and can detect some multi-bit errors while others can go undiscovered. Unfortunately, detected multi-bit errors will most of the time force the termination of the application and lead to a global restart. Thus, other strategies at the software level are needed to tolerate these type of faults more efficiently and to avoid a global restart. In this work, we extend the FTI checkpointing library to facilitate the implementation of custom recovery strategies for MPI applications, minimizing the overhead introduced when coping with soft errors. The new functionalities are evaluated by implementing local forward recovery on three HPC benchmarks with different reliability requirements. Our results demonstrate a reduction on the recovery times by up to 14%.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 708566 (DURO). This research is also supported by the Ministry of Economy and Competitiveness of Spain and FEDER funds of the EU (Projects TIN2016-75845-P and the predoctoral grant of Nuria Losada ref. BES-2014-068066), and by the Galician Government (Xunta de Galicia) under the Consolidation Program of Competitive Research (ref. ED431C 2017/04).Peer ReviewedPostprint (author's final draft

    Scalable Techniques for Fault Tolerant High Performance Computing

    Get PDF
    As the number of processors in today’s parallel systems continues to grow, the mean-time-to-failure of these systems is becoming significantly shorter than the execu- tion time of many parallel applications. It is increasingly important for large parallel applications to be able to continue to execute in spite of the failure of some components in the system. Today’s long running scientific applications typically tolerate failures by checkpoint/restart in which all process states of an application are saved into stable storage periodically. However, as the number of processors in a system increases, the amount of data that need to be saved into stable storage increases linearly. Therefore, the classical checkpoint/restart approach has a potential scalability problem for large parallel systems. In this research, we explore scalable techniques to tolerate a small number of process failures in large scale parallel computing. The goal of this research is to develop scalable fault tolerance techniques to help to make future high performance computing appli- cations self-adaptive and fault survivable. The fundamental challenge in this research is scalability. To approach this challenge, this research (1) extended existing diskless checkpointing techniques to enable them to better scale in large scale high performance computing systems; (2) designed checkpoint-free fault tolerance techniques for linear al- gebra computations to survive process failures without checkpoint or rollback recovery; (3) developed coding approaches and novel erasure correcting codes to help applications to survive multiple simultaneous process failures. The fault tolerance schemes we introduce in this dissertation are scalable in the sense that the overhead to tolerate a failure of a fixed number of processes does not increase as the number of total processes in a parallel system increases. Two prototype examples have been developed to demonstrate the effectiveness of our techniques. In the first example, we developed a fault survivable conjugate gradi- ent solver that is able to survive multiple simultaneous process failures with negligible overhead. In the second example, we incorporated our checkpoint-free fault tolerance technique into the ScaLAPACK/PBLAS matrix-matrix multiplication code to evaluate the overhead, survivability, and scalability. Theoretical analysis indicates that, to sur- vive a fixed number of process failures, the fault tolerance overhead (without recovery) for matrix-matrix multiplication decreases to zero as the total number of processes (as- suming a fixed amount of data per process) increases to infinity. Experimental results demonstrate that the checkpoint-free fault tolerance technique introduces surprisingly low overhead even when the total number of processes used in the application is small
    corecore