

Escola Tècnica Superior d’Enginyeria
Departament d’Arquitectura de Computadors

 i Sistemes Operatius

RADIC II: a Fault Tolerant
Architecture with Flexible Dynamic

Redundancy

Master thesis submitted by Guna
Alexander S. dos Santos in fulfillment
of the requirements for the degree of
Master per la Universitat Autònoma de
Barcelona.

Bellaterra, July 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13283061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dr. Dolores Isabel Rexachs del Rosario, from the Computer Architecture and

Operating Systems Department at Universitat Autònoma de Barcelona,

HEREBY CERTIFY:

That the work entitled “RADIC II: a Fault Tolerant Architecture with

Flexible Dynamic Redundancy” has been written under my supervision by Guna

Alexander Silva dos Santos, and that it constitutes the experimental work carried out

within the Postgraduate Program for Computer Architecture and Parallel Processing.

Bellaterra, July 10, 2007.

Dolores Isabel Rexachs del Rosario

To everyone who is
reading this work.

Acknowledgments

Almost two years ago, I was just arriving here: a foreign guy in a foreign land

facing a great challenge in his life. Today, I am here completing the middle step of

my challenge, and I must to thanks a lot of people for that.

First, I would to thank God and the Spirituality, They did help me and guide me

through this work, being present in the best and the worst moments.

Of course, I would like to thank my parents and family. Without them I would

not be here, without them, I would not acquire the knowledge necessary to be here

and without them, I would not be strong enough to facing this challenge.

I am very grateful to my great friend Eduardo Argollo, the man that made

possible my dream came true. Thank you by all of the tips about the doctorate,

research, etc. Thank you by the pleasant time playing “puein, puein” matches. Thanks

for has presented me this new world.

I can consider myself as a very lucky person. I had two incredible persons

advising me in this work. Indeed, this dissertation is result of their work too. I would

to thank you Emilio by all knowledge and expertise. Lola, as I said before, you did

overcome the advisor tasks, I would to thank you by your words of wisdom, care and

smiles.

Special thanks to my friend Angelo, I am so grateful by your RADIC lessons,

entertainment moments, kebab meetings and so. Thank you by has left me the future

of your work. Other special thanks to my friend and housemate Genaro, our “guru”.

Thanks for all tips about C programming, Linux concepts, ideas, etc. Thank you too

by to be an excellent housemate with your peculiar sense of humor. To all my friends,

the new ones, the old ones, here or in Brazil, I would to tell you as grateful I am

because all of your support, through words of incentive, positive thought and help.

There are two persons who I am in debt: Dani Ruiz and Jordi Valls. Thank you

guys by all technical support, solving all my problems with the cluster, BLCR and so.

viii

“The last ones will be the first ones”. I have no words to thank a special person,

whom was besides me through very bad moments, helping me, supporting me and

caring me. My life here became better and happier after to know her. Thank you

Natasha for that you it is.

Guna Alexander

Bellaterra, July 2007

Resumen

La demanda de computadores más veloces ha provocado el incremento del área

de computación de altas prestaciones, generalmente representado por el uso de

sistemas distribuidos como los clusters de computadores ejecutando aplicaciones

paralelas. En esta área, la tolerancia a fallos juega un papel muy importante a la hora

de proveer alta disponibilidad, aislando los efectos causados por los fallos.

Prestaciones y disponibilidad componen un binomio indisociable para algunos

tipos de aplicaciones. Por eso, las soluciones de tolerancia a fallos deben tener en

consideración estas dos restricciones desde el momento de su diseño.

En esta disertación, presentamos algunos efectos colaterales que se puede

presentar en ciertas soluciones tolerantes a fallos cuando recuperan un proceso

fallado. Estos efectos pueden causar una degradación del sistema, afectando las

prestaciones y disponibilidad finales.

Presentamos RADIC-II, una arquitectura tolerante a fallos para paso de mensajes

basada en la arquitectura RADIC (Redundant Array of Distributed Independent Fault

Tolerance Controllers). RADIC-II mantiene al máximo posible las características de

transparencia, descentralización, flexibilidad y escalabilidad existentes en RADIC, e

incorpora una flexible funcionalidad de redundancia dinámica, que permite mitigar o

evitar algunos efectos colaterales en la recuperación.

RADICMPI es el prototipo de RADIC que implementa un conjunto de las

funciones del patrón MPI-1. Este prototipo ha sido adaptado para realizar las tareas de

RADIC-II y ha sido usado para validar y evaluar la solución propuesta en varios

escenarios a través del uso de log de depuración y de un sistema de inyección de

fallos. También hemos expandido el conjunto de funciones disponibles en el

prototipo, incorporando las funciones no-bloqueantes de MPI, lo que nos ha permitido

ejecutar otros tipos de aplicaciones.

Los resultados han mostrado que RADIC-II opera correctamente y es una buena

opción para proveer alta disponibilidad a las aplicaciones paralelas sin sufrir la

x

degradación del sistema en ejecuciones pos-recuperación, re-estableciendo las

prestaciones originales del sistema.

Abstract

The demand for computational power has been leading the improvement of the

High Performance Computing (HPC) area, generally represented by the use of

distributed systems like clusters of computers running parallel applications. In this

area, fault tolerance plays an important role in order to provide high availability

isolating the application from the faults effects.

Performance and availability form an undissociable binomial for some kind of

applications. Therefore, the fault tolerant solutions must take into consideration these

two constraints when it has been designed.

In this dissertation, we present a few side-effects that some fault tolerant

solutions may presents when recovering a failed process. These effects may causes

degradation of the system, affecting mainly the overall performance and availability.

We introduce RADIC-II, a fault tolerant architecture for message passing based

on RADIC (Redundant Array of Distributed Independent Fault Tolerance Controllers)

architecture. RADIC-II keeps as maximum as possible the RADIC features of

transparency, decentralization, flexibility and scalability, incorporating a flexible

dynamic redundancy feature, allowing to mitigate or to avoid some recovery side-

effects.

RADICMPI is a RADIC prototype implementing a set of functions of the MPI-1

standard. This prototype was adapted to perform the RADIC-II tasks and used to

validate and evaluate RADIC-II in several scenarios through using a debug log and a

fault injection system. We also expanded the set of functions available in the

prototype incorporating the MPI non-blocking functions, which allows executing

other kind of applications.

The results has shown that RADIC-II operates correctly and becomes itself as a

good approach to provide high availability to the parallel applications without suffer a

system degradation in post-recovery execution, reestablishing the original system

performance.

Table of Contents

CHAPTER 1 INTRODUCTION..19
1.1 OVERVIEW ..19
1.2 GOALS...21
1.3 ORGANIZATION OF THIS DISSERTATION ...24

CHAPTER 2 FAULT TOLERANCE ..25
2.1 WHAT IS FAULT? ...25
2.2 AVAILABILITY...26

2.2.1 Availability Metrics... 26
2.3 FAULT TOLERANCE APPLIED IN MESSAGE PASSING SYSTEMS27
2.4 ROLLBACK-RECOVERY ...29

2.4.1 Basic Concepts.. 30
2.5 CHECKPOINT BASED PROTOCOLS..33

2.5.1 Uncoordinated checkpointing... 34
2.5.2 Coordinated Checkpointing .. 35
2.5.3 Communication-Induced Checkpointing (CIC) 36
2.5.4 Comparing the checkpoint protocols .. 37

2.6 LOG-BASED PROTOCOLS..38
2.6.1 Pessimistic log-based protocols.. 39
2.6.2 Optimistic log-based protocols ... 40
2.6.3 Causal log-based protocols .. 42

2.7 COMPARING THE ROLLBACK-RECOVERY PROTOCOLS......................................42
2.8 CURRENT RESEARCHES ...44

CHAPTER 3 THE RADIC ARCHITECTURE..48
3.1 RADIC ARCHITECTURE MODEL...48

3.1.1 Failure pattern.. 49
3.2 RADIC FUNCTIONAL ELEMENTS ...50

3.2.1 Protectors ... 50
3.2.2 Observers.. 52
3.2.3 The RADIC controller for fault tolerance... 53

3.3 RADIC OPERATION...55
3.3.1 Message-passing mechanism .. 55
3.3.2 State saving task.. 56
3.3.3 Failure detection task ... 59
3.3.4 Recovery task .. 63
3.3.5 Fault masking task .. 66

3.4 RADIC FUNCTIONAL PARAMETERS...72
3.5 RADIC FLEXIBILITY ...73

3.5.1 Concurrent failures... 73
3.5.2 Structural flexibility .. 74

CHAPTER 4 PROTECTING THE SYSTEM ..78
4.1 RECOVERY SIDE-EFFECTS ...78

xiv

4.1.1 System Configuration Changes... 78
4.1.2 Performance Degradation .. 79

4.2 PROTECTING THE SYSTEM ...83
4.2.1 Avoiding System Changes ... 85
4.2.2 Recovering Using Spare Nodes .. 89
4.2.3 Restoring the System Configuration ... 94
4.2.4 Avoiding Faults... 95

CHAPTER 5 IMPLEMENTING THE RADIC II ARCHITECTURE97
5.1 RADICMPI...97
5.2 THE NEW SPARE NODES FEATURE ..99
5.3 NEW MPI FUNCTIONS ...104

5.3.1 The Non-Blocking Functions .. 104
5.3.2 The Collective Functions .. 106

CHAPTER 6 RADIC II EXPERIMENTS ..107
6.1 EXPERIMENTS ENVIRONMENT ...107
6.2 VALIDATION EXPERIMENTS ..108
6.3 EVALUATION EXPERIMENTS..112

6.3.1 Evaluating According with the Fault Moment 115
6.3.2 Evaluating According with the Number of Nodes............................. 117
6.3.3 Evaluating the Throughput in Continuous Applications................... 119

CHAPTER 7 CONCLUSIONS...121
7.1 OPEN LINES...124

List of Figures

FIGURE 2-1: A MESSAGE PASSING WITH THREE PROCESSES INTERCHANGING MESSAGES.

.. 28
FIGURE 2-2: DOMINO EFFECT .. 32
FIGURE 2-3: DIFFERENT CHECKPOINT APPROACHES. ... 34
FIGURE 3-1: THE RADIC LEVELS IN A PARALLEL SYSTEM .. 49
FIGURE 3-2: AN EXAMPLE OF PROTECTORS (T0-T8) IN A CLUSTER WITH NINE NODES.

GREEN ARROWS INDICATE THE ANTECESSOR←SUCCESSOR COMMUNICATION. ... 51
FIGURE 3-3: A CLUSTER USING THE RADIC ARCHITECTURE. P0-P8 ARE APPLICATION

PROCESS. O0-O8 ARE OBSERVERS AND T0-T8 ARE PROTECTORS. O→T ARROWS

REPRESENT THE RELATIONSHIP BETWEEN OBSERVERS AND PROTECTOR AND T→T

ARROWS THE RELATIONSHIP BETWEEN PROTECTORS. .. 54
FIGURE 3-4: THE MESSAGE-PASSING MECHANISM IN RADIC...................................... 55
FIGURE 3-5: RELATION BETWEEN AN OBSERVER AND ITS PROTECTOR. 57
FIGURE 3-6: MESSAGE DELIVERING AND MESSAGE LOG MECHANISM.......................... 59
FIGURE 3-7: THREE PROTECTORS (TX, TY AND TZ) AND THEIR RELATIONSHIP TO

DETECT FAILURES. SUCCESSORS SEND HEARTBEATS TO ANTECESSORS. 60
FIGURE 3-8: PROTECTOR ALGORITHMS FOR ANTECESSOR AND SUCCESSOR TASKS...... 61
FIGURE 3-9: RECOVERING TASKS IN A CLUSTER. (A) FAILURE FREE CLUSTER. (B) FAULT

IN NODE N3. (C) PROTECTORS T2 AND T4 DETECT THE FAILURE AND REESTABLISH

THE CHAIN, O4 CONNECTS TO T2. (D) T2 RECOVERS P3/O3 AND O3 CONNECTS TO

T1.. 65
FIGURE 3-10: (A) A FAILURE FREE CLUSTER; (B) THE SAME CLUSTER AFTER THE

MANAGEMENT OF A FAILURE IN NODE N3. ... 68
FIGURE 3-11: FAULT DETECTION ALGORITHMS FOR SENDER AND RECEIVER OBSERVERS

.. 69
FIGURE 3-12: A CLUSTER USING TWO PROTECTORS’ CHAIN... 75
FIGURE 3-13: THE MINIMUM STRUCTURE FOR A PROTECTORS’ CHAIN. 76
FIGURE 4-1: THE CLUSTER CONFIGURATION AFTER THREE SEQUENTIAL RECOVERED

FAILURES. .. 80

xvi

FIGURE 4-2: EXECUTION TIMES OF A MATRIX PRODUCT PROGRAM IMPLEMENTED

UNDER THE SPMD PARADIGM USING A CANNON ALGORITHM. OCCURRENCE OF

ONE FAILURE PER EXECUTION.. 81
FIGURE 4-3: MESSAGE PATTERN OF A MATRIX-MULTIPLICATION USING A) M/W

PARADIGM AND B) SPMD PARADIGM. ... 82
FIGURE 4-4: EXECUTION TIMES OF A MATRIX PRODUCT PROGRAM IMPLEMENTED

UNDER THE MASTER/WORKER PARADIGM USING A STATIC DISTRIBUTION.

PRESENCE OF ONE FAULT PER EXECUTION ... 83
FIGURE 4-5: A CLUSTER USING THE RADIC II ARCHITECTURE WITH TWO SPARE NODES

(N9 AND N10). .. 87
FIGURE 4-6: HOW A PROTECTOR IN SPARE MODE ANNOUNCES ITSELF TO THE OTHER

PROTECTORS.. 88
FIGURE 4-7: THE RECOVERY TASK USING SPARE NODES .. 90
FIGURE 4-8: RECOVERING TASKS IN A CLUSTER USING SPARE NODES.......................... 91
FIGURE 4-9: THE NEW FAULT MASK PROCEDURE... 92
FIGURE 4-10: HOW A SPARE IS USED TO REPLACE A FAULTY NODE.............................. 94
FIGURE 5-1: HOW A PROTECTOR IN SPARE MODE DISCOVER AND CONNECTS WITH AN

APPLICATION NODE.. 100
FIGURE 5-2: THE RECOVERY RADICMPI PROTOCOL USING SPARE........................... 103
FIGURE 6-1: FLOW REPRESENTING THE VALIDATION PROCESS 109
FIGURE 6-2: DEBUG LOG EXCERPT OF A PROTECTOR CONTAINING THE NEW SPARE

EVENTS.. 110
FIGURE 6-3: DEBUG LOG EXCERPT OF A SPARE NODE PROTECTOR PERFORMING A

RECOVERY ... 111
FIGURE 6-4: DEBUG LOG EXCERPT OF THE PROTECTOR COMMANDING THE RECOVERY

IN A SPARE NODE ... 112
FIGURE 6-5: THE N-BODY PARTICLE SIMULATION FLOW... 114
FIGURE 6-6: RESULTS OF MATRIX PRODUCT USING A MASTER-WORK STATIC

DISTRIBUTED PROGRAM... 115
FIGURE 6-7: RESULTS OF MATRIX PRODUCT USING A SPMD PROGRAM BASED IN THE

CANNON ALGORITHM... 116

 xvii

FIGURE 6-8: RESULTS OF MATRIX PRODUCT USING A MASTER-WORKER PROGRAM WITH

LOAD DYNAMICALLY BALANCED RUNNING IN DIFFERENT CLUSTER SIZES 117
FIGURE 6-9: RESULTS OF MATRIX PRODUCT USING A MASTER-WORKER PROGRAM WITH

STATIC LOAD DISTRIBUTION RUNNING IN DIFFERENT CLUSTER SIZES................. 118
FIGURE 6-10: RESULTS OF AN N-BODY PROGRAM RUNNING CONTINUOUSLY AFTER

THREE FAULTS IN DIFFERENT SITUATIONS.. 119

List of Tables

TABLE 2-1: AVAILABILITY METRICS ... 27
TABLE 2-2: COMPARISON BETWEEN ROLLBACK RECOVERY PROTOCOLS [ELNOZAHY, ET

AL., 2002] .. 43
TABLE 2-3: A COMPARISON OF SOME FAULT-TOLERANT MPI SOLUTIONS BASED ON

FIVE RELEVANT FEATURES... 46
TABLE 3-1: THE KEY FEATURES OF RADIC... 48
TABLE 3-2: AN EXAMPLE OF RADICTABLE FOR THE CLUSTER IN FIGURE 3-3 56
TABLE 3-3: THE RADICTABLE OF EACH OBSERVER IN THE CLUSTER IN FIGURE 3-3....... 62
TABLE 3-4: RECOVERY ACTIVITIES PERFORMED BY THE EACH ELEMENT IMPLICATED IN

A FAILURE.. 64
TABLE 3-5: THE RADICTABLE OF AN OBSERVER IN THE CLUSTER IN FIGURE 3-3........... 67
TABLE 3-6: PART OF THE ORIGINAL RADICTABLE FOR THE PROCESSES REPRESENTED IN

FIGURE 3-10A.. 70
TABLE 3-7: PART OF HE UPDATED RADICTABLE OF A PROCESS THAT HAS TRIED TO

COMMUNICATE WITH P3 AFTER IT HAS RECOVERED AS SHOWN IN FIGURE 3-10B.71
TABLE 3-8: THE RADICTABLE OF AN OBSERVER FOR A CLUSTER PROTECTED BY TWO

PROTECTORS’ CHAINS LIKE IN FIGURE 3-12. .. 76
TABLE 4-1: THE SPARE TABLE OF EACH OBSERVER IN THE CLUSTER IN FIGURE 3-3. 86
TABLE 6-1: FIELDS OF THE DEBUG LOG ... 108

Chapter 1

Introduction

1.1 Overview

Since its creation, computers play an important and increasing role solving

complex problems. Following the computers evolution, new and more complex

problems can be solved each day. Indeed, it seems that despite how much more

powerful are the computers, always will be more applications needing long periods of

time to be executed.

This demand for computational power has been leading the improvement of the

High Performance Computing (HPC) area, generally represented by the use of

distributed systems like clusters of computers running parallel applications. Following

there are typical examples of applications areas commonly executed in computer

clusters.

• Fluid-flow simulation. Consists in simulate the interaction of large three

dimensional cells assemblage between themselves, like the weather and climate

modelling.

• Natural behaviour simulation. A notoriously complex area, that makes

computers simulate the real world and its interactions. Good examples are the

simulation of forest fire and simulation of individuals.

• Medicine research. Studies like of protein folding require petaflops of

computing power in order to predict the structure of the protein complete from a

known sequence of the protein, being applied in many disease treatments.

• .Astronomy. Simulation of N bodies under the influence of physical forces,

usually gravity and sometimes other forces. Normally used in cosmology to

study the process of galaxy cluster formation.

20 Chapter 1

For those applications, the correctly finish and the spent time of their executions

become major issues when planning to perform their tasks in computer based

solutions. Therefore, it is reasonable to say that those applications commonly have

two basic constraints: performance and availability (also known as performability

[Meyer, 1980]).

However, the complexity of the actual computers, particularly the cluster of

computers, left them more susceptible to occurrence of failures. How much

components they have, more probable that one of components will fail. This

perception is even worse when applied in distributed system like the computer

clusters. Each individual fault probability increases the susceptibility of failures in the

whole system.

Since the failures affect directly the system availability and indirectly the system

performance, these two major requirements may be quantified basing on the mean

time to failure (MTTF) and the mean time to repair (MTTR) [Nagajara et al. 2005]. A

computer cluster configures itself as a system formed by a combination of

independent components, and generally needs all of them to produce desirable results,

therefore the MTTF of such system will be smaller that each component, in this case

the computer nodes.

 Nowadays, the supercomputers usually have more than 1000 nodes and at least

dozen of them have more than 10000 processors [Top500.Org, 2006], dramatically

increasing the fault probability. In order to avoid or mitigate the effects related with

the MTTF/MTTR, fault management plays an important task in those systems,

providing ways to allow the system tolerates some kind of failures in certain levels.

Many researches proposing fault tolerant solutions for parallel systems has been

presented involving different techniques to detect and recovery from faults. Some

proposals allows to perform these activities automatically (transparent) like MPICH-

V [Bouteiller, et al., 2006], which consists in a communication library developed for

the MPICH MPI implementation, or the recovery solution with hierarchical storage

proposed in ScoreD [Kondo, M., et al. 2003; Gao et al, 2005]. Other solutions try

combine recovery and failures prediction like the approach of FT-PRO [Li and Lan,

2006]. Moreover, some works base in manual operating, needing some user

intervention like LAM/MPI [Burns et al, 1994; Squyres and Lumsdaine, 2003], this

Introduction 21

solution uses a coordinated checkpoint scheme activated either by the user application

or by an external controller. Since increasing the MTTF is a hard task, these solutions

commonly deal with MTTR reduction, making essential a transparent fault

management.

Some fault tolerant solutions, in order to assure the correct application ending,

may generate system configuration changes during the recovery process. This

behavior happens because those ones manage the faults just using the own active

cluster resources, in other words, the application continues executing with one less

node, but keeping the number of processes, causing a unplanned process distribution.

RADIC (Redundant Array of Distributed Independent Fault Tolerance

Controllers) [Duarte, 2007] is a transparent architecture that provides fault tolerance

to message passing based parallel systems. RADIC acts as a layer that isolates an

application from the possible cluster failures. This architecture does not demand extra

resources to provide fault tolerance, because of this, after a failure the controller

recovers the faulty process in some existent node of the cluster. As mentioned before,

this behavior may leads to system performance degradation in the post-recovery

execution.

 RADIC has two kinds of processes working together in order to perform the

fault tolerance tasks: Observers and Protectors. Each cluster’s node has one Protector,

and each application’s process has one Observer attached. Each Observer

communicates with at least one Protector, and each Protector may attend to several

Observers. The Observers are in charge of: a) manage the inter-process message

passing communication, b) send the log of received messages and c) take and transmit

the associated process checkpoints. While the Protectors perform failure detection,

diagnosis and creation of a fully distributed stable storage virtual device.

1.2 Goals

Parallel systems are designed intending to achieve certain performance level. In

order to satisfy this performance level, the process distribution through the nodes ta-

kes in consideration factors like load balance, CPU power, or memory availability.

22 Chapter 1

Whenever this distribution is changed, may lead to system performance degradation,

due to processes having an unplanned sharing of the computing power of a node.

All kind of applications cited in the initial of this chapter demands as more

computing power as possible, and may not tolerate performance slowdown. In

systems ruled by time constraints, it is so critical finish correctly the application as it

is finish it before a time limit, which may invalidate the results of the execution.

Moreover, the “never stop” systems generally requires high cost special devices,

because they cannot support a continuous reduction of the nodes quantity caused by

failures, but this requirement may left impracticable the use of those systems

maintaining high availability.

In this work we developed RADIC II, incorporating a dynamic redundancy

[Koren and Krishna, 2007, p. 25; Hariri, et al., 1992] feature that enables RADIC, via

a spare nodes use, to protect the system configuration from the changes that a

recovery process may generate. Furthermore, this feature may be also used to restore

the initial system process distribution and for maintenance purposes too.

The major premise of RADIC II is to keep as maximum as possible all the

features of RADIC referred before. Thus, the dynamic redundancy provided by

RADIC II is transparent, decentralized, flexible and scalable too.

The RADIC transparency must be maintained in RADIC II allowing us to

manage the entire process of request and use of spare nodes without need any user

intervention, or application’s code changes. It must be able to find automatically a

spare if exists, to discover its state, to request use and to send all information needed

to recovery and re-spawn the process in this node.

In order to keep the fully distributed operational mode from RADIC, RADIC II

has to remain all information about the spares decentralized. All nodes should to work

independently, exchanging information as needed just with a few neighbor nodes. The

spare nodes presence must be spread using techniques that do not compromise the

RADIC scalability, keeping the low overhead produced by RADIC.

Introduction 23

RADIC II needs to preserve the flexibility of RADIC from the point of view of

allowing different structures and relationships between its operational elements and of

the RADIC parameters tuning. Moreover, RADIC II aims to be more flexible through

allowing dynamic insertion of spare nodes, including during the application execution

without need to stop it. The dynamic redundancy must be flexible in order to enable

the original process distribution reestablishment by faulty nodes replacement. Finally,

the flexibility of RADIC II should allow us to try to avoid failures by permitting to

use the dynamic redundancy as a mechanism to perform cluster’s nodes maintaining

tasks, replacing fault-probable nodes for healthy ones.

Others challenges to RADIC II are: a) to impose a negligible overhead in relation

to RADIC during failure-free executions. b) To provide a quick recovery process

must be when applying spare nodes.

RADIC II, in the same way than RADIC, bases on rollback-recovery techniques,

implementing an uncoordinated checkpoint with pessimistic event log. This choice

was one of the RADIC keys to maintain the independence between processes. Thus,

RADIC II also does not need any coordination process that may increase the overhead

in large clusters. It should be noted that RADIC II implements an event log, instead

adopts the usual message log simplification, which may be not enough to assure a

correct recovery process.

RADICMPI is the RADIC prototype developed for test the architecture,

implementing a set of functions of MPI standard [MPI Forum, 2006]. As secondary

goal of this work, we extended the set of implemented MPI functions of the

RADICMPI. We included the set of non-blocking functions and all tasks needed to

provide fault tolerance to these functions. As we will see in this dissertation, these

functions allow us to enlarge the set of possible applications to be executed in

RADICMPI, i.e. new benchmark programs. We also used RADICMPI to test the

spare nodes functionality and the MPI functions implemented too.

We performed several experiments with RADIC II in order to validate its

functionality and to evaluate its appliance in different scenarios. We used the debug

log provided by the RADICMPI original implementation for validate the RADIC II

24 Chapter 1

operation, inserting new events related with the spare nodes usage. For this validation

we used a ping-pong program due to its simplicity. We applied the same approach in

order to validate the non-blocking function.

The evaluation of our solution was made comparing the effects of recovery

having or not available spare nodes. These experiments observed two measures: the

overall execution time, and the throughput of an application. We applied different

approaches for a matrix product algorithm, using a static distributed Master/Worker

and a SPMD approach implementing a Cannon algorithm and we executed a N-Body

particle simulation using a pipeline paradigm.

1.3 Organization of this dissertation

This dissertation contains eight chapters. In the next chapter, we discuss

theoretical concepts about fault tolerance, including availability, usual strategies for

provide fault tolerance in message-passing systems and current research in this area.

Chapter 3 presents the concepts and describes the operation and the elements of

the RADIC Architecture. Chapter 4 talks about possible side effects that some fault

tolerant architectures may cause that affect the post-recovery execution of

applications and explains the RADIC II proposal for the system protection, the

methods to achieve that protection, concepts related, and changes made in the RADIC

architecture.

In chapter 6, we talk about RADICMPI and the new functions implemented,

including considerations about to implement MPI non-blocking functions under the

fault tolerance concept.

Chapter 7 presents the experiments conducted with RADICMPI in order to

perform a functional validation and evaluation of the solution. Finally, in Chapter 7

we state our conclusions and remained open lines.

Chapter 2

Fault Tolerance

In this chapter, we will discuss theoretical concepts involving fault tolerance, its

appliance in message passing systems and current implementations.

2.1 What is fault?

Before starts to discuss about fault tolerance concepts, it is important to define

what exactly a fault is. Generally, the terms fault, error and failure are mentioned

interchangeably. By definition, failure is the perception of undesirable behavior of a

system, meaning that the system do not produce the expected results, as example a

software abnormal ending. An error is the generating event which leads to a

subsequent failure, unless it exists some corrective actions, as example an

programming error leads to an abnormal end except if this error was caught and

treated avoiding the failure. Finally, fault it is a system defect with potential to

generate errors. Thus, a fault may cause an error, which may cause a failure.

Fault tolerance may be defined as the ability to avoid failures despite existence of

errors generated by some fault. Fault tolerance has two basic goals: To increase the

overall reliability of a system (despite individual faults of its components) and to

increase the system availability [Jalote, 1994, p. 30].

26 Chapter 2

2.2 Availability

Availability is one of the major requirements when using parallel computers. Any

user of the applications exemplified in the Chapter 1 expects to have the system

available during the entire execution of its work. The equation 1 represents

mathematically the meaning of availability [Koren and Krishna, 2007, p. 5].

MTTRMTTF
MTTFA
+

= 1

According with the equation 1, the availability is a ratio between the component

mean time to failure (MTTF) and the MTTF itself adding the mean time to repair the

component (MTTR). In actual literature, there are some definitions about the MTTF

or MTBF (mean time between failures) metrics, according with each need. We decide

consider the approach given by [Koren and Krishna, 2007, p. 5] that is the same given

by [Jalote, 1994, p. 38] and [Nagajara]. Indeed, [Koren and Krishna, 2007, p. 5]

consider that MTBF includes the time needed to repair the component, resulting

MTBF = MTTF+MTTR.

The MTTF metrics commonly assigns a reliability measure. From the equation 1

we can deduce that there are two ways to increase the availability of a system: either

by increasing the reliability of its components or by decreasing the time for repair. To

increase the components reliability generally implies to use high cost equipments,

which sometimes makes not viable its implementation. Therefore, fault tolerance

plays its role by reducing the MTTR. Indeed, we only achieve a theoretical 100%

availability by having MTTR to zero, once a component with infinite MTTF is

unachievable by now.

2.2.1 Availability Metrics

In order to measure the availability, the industry generally adopts the “nines”

concept. This approach quantifies the availability by the uptime percentage. As we

see in the Table 2-1, many “nines” means lower downtimes in a specific period of

time.

Fault Tolerance 27

Table 2-1: Availability Metrics
Percentage

Uptime Downtime per Year Downtime per week

98% 7.3 days 3.37 hours

99% 3.65 days 1.67 hours

99.9% 8.75 hours 10.09 minutes

99.99% 52.5 minutes 1 minute

99.999% 5.25 minutes 6 seconds

99.9999% 31.5 seconds 0.6 seconds

Most of fault tolerant systems aims achieve a “five nines” availability level, been

considered as high availability, although the notion about high availability be relative.

In order to achieve referred level, just playing with the MTTR reduction, it is

imperative that the fault tolerant system can automatically detect, diagnose and repair

the fault.

2.3 Fault Tolerance Applied in Message Passing Systems

Message passing in a strict sense is a common technique used in parallel

computers in order to provide communication between concurrent processes. This

technique takes the following assumptions:

• The processes have and only access its own local memory

• All communications between the process are sending and receiving

messages

28 Chapter 2

• The data interchange requires cooperative actions in each process,

meaning that a message sending needs a correspondent receive in the

other process.

With these simple assumptions, message passing is widely used for parallel

computing because fits well in cluster of workstations or supercomputers, which are

interconnected by a network. The figure 2-1 exemplifies the functioning of a simple

message passing system with three processes sending and receiving messages

(diagonal arrows) trough the timeline (horizontal arrows)

P0

P1

P2

Input
Result

m1

m2

m3

m4 m5

Message passing system

Outside

Figure 2-1: A message passing with three processes interchanging messages.

Parallel computers using message passing are more susceptible to the effects of a

failure. In these architectures, a fault may occur in a node or either in the

communication network. If the fault occurs in the network, the behavior of the

systems depends if the implementation provides or not mechanisms like timeout and

if the fault is transient or not. When a node fails, the processing assigned to it will be

lost and may incur in the inaccurate, useless or incorrect result of the parallel

application.

There are many techniques developed to increase the overall reliability and

provide high availability for message passing distributed systems including

Fault Tolerance 29

replication protocols, self-stabilizing protocols and rollback-recovery protocols

[Bouteiller, et al., 2006]. Rollback-recovery is widely studied and used in order to

provide fault tolerance for message passing systems.

2.4 Rollback-Recovery

Rollback-recovery is a protocol or technique to provide fault tolerance basing in

backs the program execution to a point before the failure and in some ways, retry the

computation. According Shooman [Shooman, 2002, p.270] there are four basic types

of rollback-recovery techniques:

Reboot/restart techniques – It is the simplest recovery technique, but the weakest

too. This approach consists in restart the system or the application from the beginning.

It is acceptable when the time spent in computation is still small and the time needed

to restart the system or application is satisfactory. When the restart procedure is made

automatically, this technique is generally referred as recovery.

Journaling techniques – It bases in periodically stores all inputs to the system. In

failures cases, the processing may be repeated automatically. This technique is a usual

feature in most word processors.

Retry techniques – This technique is more complex and supposes that the failure

is transient and in a subsequent moment, the system can operates normally. It bases

on stay performing the action repeatedly until achieve a maximum of attempts or

achieve a correct result. Disk controllers are a good example of retry use.

Checkpoint techniques – It can be said that the checkpoint technique is a

improvement of the reboot one. In this approach, the system state is saved

periodically, so the application or the system just needs to back to most recent

checkpoint before the failure.

Due to the characteristics of the applications running in parallel systems, usually

executing during a long time, the checkpoint approach becomes more suitable for

these systems. Performing checkpoint is a more difficult task in distributed systems

compared with centralized ones [Kalaiselvi and Rajaraman, 2000]. This difficult is

30 Chapter 2

because distributed systems are compound by a set of independent processors with

individual lines of execution, and there is not a global synchronized clock between

them, which allows starting a checkpoint at same time, saving the global state of the

parallel application.

2.4.1 Basic Concepts

Before continuing discussing about rollback-recovery and checkpoint, we should

introduce some important concepts involving the rollback-recovery in distributed

systems. These concepts will be useful to understand how works our solution.

Checkpoint

Chekpoints, also known as recovery points, may be considered as the state saving

of a process. In this procedure, all information needed to re-spawn the process is

stored in a stable storage. This information is compounded by variable and register

values, control point, thread states, etc. In failure case, the fault tolerant system use

this saved state to recover the process. In single machines, the checkpoint process is

not a complex issue, but when applied in a distributed context it is not quite simple.

As the processes communicate between themselves, each checkpoint must to reflect

all relevant communication exchanged.

Stable Storage

The use of checkpoints to perform rollback-recovery generally requires that

system state must be available after the failure. In order to provide this feature the

fault tolerance techniques suppose the existence of a stable storage, which survives to

any failures occurred in the system, when all system will be saved. Although stable

storage is usually confused with physical disk storage, it is just an abstract concept

[Elnozahy, et al., 2002]. A stable storage may be implemented in different ways:

a) It may be a disk array using RAID, allowing tolerates any number of non-

transient failures;

b) If using a distributed system, a stable storage may be performed by the

memory of a neighbor node;

Fault Tolerance 31

c) If just it needs tolerate transient faults, a stable storage may be implemented

using a disk in the local machine.

Consistent System State

The major goal of a rollback-recovery protocol is bring back the system working

and producing the expected results. Rollback-recovery is a quite simple to implement

in a single process application, but in distributed systems, with many processes

executing parallel, it becomes a hard task. In the parallel applications using message

passing, the state of the system comprises the state of each process running in

different nodes and are communicating between them. Therefore, take a checkpoint of

a process individually may not represent a snapshot of the overall system.

Hence, we can define consistent system state as one which each process state

reflects all interdependences with the other processes, in other words, if a process

accuses a message receipt, the sender process must be accuses the message sending

too. We can say that during a failure-free execution, any global state taken is a

consistent system state.

Domino Effect

The domino effect [Koren and Krishna, 2007] may occur when the processes of a

distributed application take their checkpoints in an uncoordinated manner. When a

failed process rollbacks to its most recent checkpoint, its state may not reflect a

communication with other processes, forcing these processes to roll back to

checkpoint prior this communication. This situation may continue happening until

reach the initial of the execution. Following, we exemplify this happening by the

situation depicted in Figure 2-2 that shows an execution in which processes take their

checkpoints (represented by blue circles) without coordinating with each other.

We consider the process starts as an initial checkpoint. Suppose that process P0

fails and rolls back to checkpoint A. The rollback of P0 invalidates the sending of

message m6, and so P1 must roll back to checkpoint B in order to “invalidate” the

receipt of the message m6. Thus, the invalidation of message m6 propagates the

rollback of process P0 to the process P1, which in turn invalidates message m5 and

32 Chapter 2

forces P2 to roll back as well. Because of the rollback of process P2, process P3 must

also rollback to invalidate the reception of m4. Those cascaded rollbacks may

continue and eventually may lead to the domino effect, which forces the system to roll

back to the beginning of the computation, in spite of all saved checkpoints.

The amount of rollback depends on the message pattern and the relation between

the checkpoint placements and message events. Typically, the system restarts since

the last recovery line. However, depending on the interaction between the message

pattern and the checkpoint pattern, the only bound for the system rollback is the initial

state, causing the loss of all the work done by all processes. The dashed line shown in

Figure 2-2 represents the recovery line of the system in case of a failure in P0.

Figure 2-2: Domino effect

In-transit messages

A message that is in the state of the sender but is not yet in the state of the

receiver is an example of an in-transit message. A message that appears in the

receiver state but not in the sender state is an orphan message. The in-transit message

generally is not a problem. If the model presumes a reliable communication channel,

this one guarantees the delivery of all messages. However, in systems that do not

provide a reliable communication, the rollback-recovery relies that the application

been executed provides the mechanisms in order to guarantee the message delivery.

Fault Tolerance 33

Logging Protocols

Log-based rollback recovery is a strategy used to avoid the domino effect caused

by uncoordinated checkpoints. Logging protocols is a set of protocols whose take

message logs besides checkpoints. Such protocols base on the piecewise deterministic

(PWD) assumption [Strom and Yemini, 1985]. Under this assumption, the rollback

recovery protocol can identify all the nondeterministic events executed by each

process. For each nondeterministic event, the protocol logs a determinant that

contains all needed information to replay the event should it be necessary during

recovery. If the PWD assumption holds, a log-based rollback-recovery protocol can

recover a failed process and replay the determinants as if they have occurred before

the failure.

The log-based protocols require only that the failed processes roll back. During

the recovery, the messages that were lost because of the failure are “resent” to the

recovered process in the correct order using the message logs. Therefore, log-based

rollback-recovery protocols force the execution of the system to be identical to the

one that occurred before the failure. The system always recovers to a state that is

consistent with the input and output interactions that occurred up to the fault.

2.5 Checkpoint Based Protocols

The goal of rollback-recovery protocols based on checkpoint is to restore the

system to the most recent consistent global state of the system, in other words, the

most recent recovery line. Since such protocols do not rely on the PWD assumption,

they do not care about nondeterministic events, that it means, they do not need to

detect, log or replay nondeterministic events. Therefore, checkpoint-based protocols

are simpler to implement and less restrictive than message-log methods.

34 Chapter 2

CChheecckkppooiinntt AApppprrooaacchheess

AAccccoorrddiinngg wwiitthh DDiissttrriibbuutteedd
AAccccoorrddiinngg wwiitthh SSttaattee SSaavviinngg

Uncoordinated Communication
Induced Coordinated Application Level System Level

CCoooorrddiinnaattiioonn

Figure 2-3: Different checkpoint approaches.

The Figure 2-3 shows a classification scheme for checkpoint approaches, basing

on where is performed, application level or system level, or in the coordination

strategy, uncoordinated, communication induced or coordinated. The next topics

explain the three categories of the checkpointing strategies used by the checkpoint-

based protocols: uncoordinated, coordinated and communication-induced.

2.5.1 Uncoordinated checkpointing

In this method, each process has total autonomy for making its own checkpoints.

Therefore, each process chooses to take a checkpoint when it is more convenient to it

(for instance, when the process’s state is small) and does not care about the

checkpoints of the other processes. Zambonelli [Zambonelli, 1998] makes an

evaluation of several uncoordinated checkpoint strategies.

The uncoordinated strategy simplifies the checkpoint mechanism of the

rollback-recovery protocol because it gives independence for each process manage its

checkpoint without any negotiation with the other processes. However, such

independence of each process comes under a cost expressed as follows:

a) There is the possibility of domino effect and all its consequences;

Fault Tolerance 35

b) A process can take useless checkpoint since it cannot guarantee by itself that

a checkpoint is part of a global consistent-state. These checkpoint will

overhead the system but will not contribute to advance the recovery line.

c) It is necessary to use garbage collection algorithm to free the space used by

checkpoints that are not useful anymore.

d) It is necessary a global coordination to compute the recovery line, what can

be very expensive in application with frequent output commit.

2.5.2 Coordinated Checkpointing

In this approach, the processes must synchronize their checkpoint in order to

create a consistent global state. A faulty process always will restart from its most

recent checkpoint, so the recovery is simplified and the domino effect avoided.

Furthermore, as each process only needs to maintain one checkpoint in stable storage,

there is no the need of a garbage collection scheme and the storage overhead is

reduced.

The main disadvantage is the high latency involved when operating with large

systems. Because of this, the coordinated checkpoint protocol is barely applicable to

large systems.

Although straightforward, this scheme can yield in a large overhead. An

alternative approach is to use a non-blocking checkpoint scheme like the proposed in

[Chandy and Lamport, 1985] and in [Elnozahy, et al., 1992]. However, non-blocking

schemes must prevent the processes from receiving application messages that make

the checkpoint inconsistent.

The scalability of coordinated checkpointing is weak because all processes must

to participate in every checkpoint and transmits their checkpoints to a stable storage

that generally is centralized, this activity may cause a communication bottleneck.

36 Chapter 2

2.5.3 Communication-Induced Checkpointing (CIC)

The communication-induced checkpointing protocols do not require that all

checkpoints be coordinated and do avoid the domino effect. There are two kinds of

checkpoints for each process: local checkpoints that occur independently and forced

checkpoints that must occur in order to guarantee the eventual progress of the

recovery line. The CIC protocols take forced checkpoints to prevent the creation of

useless checkpoints, that is, checkpoints that will never be part of a consistent global

state (and so they will never contribute to the recovery of the system from failures)

although they consume resources and cause performance overhead.

As opposed to coordinated checkpointing, CIC protocols do not exchange any

special coordination messages to determine when forced checkpoints should occur;

instead, they piggyback protocol specific information on each application message.

The receiver then uses this information to decide if it should take a forced checkpoint.

The algorithm to decide about forced checkpoints relies on the notions of Z-path and

Z-cycle [Alvisi, et al., 1999]. For CIC protocols, one can prove that a checkpoint is

useless if and only if it is part of a Z-cycle.

Two types of CIC protocols exist: indexed-based coordination protocols and

model-based checkpointing protocols. It has been shown that both are fundamentally

equivalent [Helary, et al., 1997a], although in practice they have some differences

[Alvisi, et al., 1999].

Indexed-based coordination protocols

These protocols assign timestamps to local and forced checkpoints such that

checkpoints with the same timestamp at all processes form a consistent state. The

timestamps are piggybacked on application messages to help receivers decide when

they should force a checkpoint [Elnozahy, et al., 2002].

In CIC, each process has a considerable autonomy in taking checkpoint.

Therefore, the use of efficient policies in order to decide when to take checkpoints can

lead to a small overhead in the system. Since these protocols do not require processes

Fault Tolerance 37

to participate in a globally coordinated checkpoint, they can, in theory, scale up well

in systems with a large number processes [Elnozahy, et al., 2002].

Model-based protocols

These schemes prevent useless checkpoint using structures that avoid patterns of

communications and checkpoints that could lead to useless checkpoints or Z-cycles.

They use a heuristic in order to define a model for detecting the possibility that such

patterns occur in the system. The patterns are detected locally using information

piggybacked on application messages. If such a pattern is detected, the process forces

a checkpoint to prevent that the pattern occurs [Elnozahy, et al., 2002].

Model-based protocols are always conservative because they force more

checkpoints than could be necessary, once each process does not have information

about the global system state because there is no explicit coordination between the

application processes.

2.5.4 Comparing the checkpoint protocols

It is reasonable to say that the major source of overhead in checkpointing

schemes is the stable storage latency. Communication overhead becomes a minor

source of overhead as the latency of network communication decreases. In this

scenario, the coordinated checkpoint becomes worthy since it requires less accesses to

stable storage than uncoordinated checkpoints. Furthermore, in practice, the low

overhead gain of uncoordinated checkpointing do not justify neither the complexities

of finding the recovery line after failure and performing the garbage collection nor the

high demand for storage space caused by multiple checkpoints of each process

[Elnozahy, et al., 2002].

CIC protocol, in turn, does not scale well as the number of process increases. The

required amount of storage space is also difficult to predict because the occurrence of

forced checkpoints at random points of the application execution.

38 Chapter 2

2.6 Log-based protocols

These protocols require that only the failed process to roll back. During normal

computation, the processes log the messages into a stable storage. If a process fails, it

will recover from a previous state and the system will lose the consistency since there

may be missed messages or orphan messages related to the recovered

process[Elnozahy and Zwaenepoel, 1994]. During the process’s recovery, the logged

messages will be recovered properly from the message log, so the process can resume

its normal operation and the system will reach a consistent state again [Jalote, 1994].

Log-based protocols consider that a parallel-distributed application is a sequence

of deterministic state intervals, each starting with the execution of a nondeterministic

event [Jalote, 1994]. Each nondeterministic event relates to a unique determinant. In

distributed systems, the typical nondeterministic event that occurs to a process is the

receipt of a message from another process (message logging protocol is the other

name for these protocols.) Sending a message, however, is a deterministic event. For

example, in Figure 2-2, the execution of process P3 is a sequence of three

deterministic intervals. The first one is the process’ creation and the other two starts

with the receipt of m2 and m4. The initial state of the process P3 is the unique

determinant for sending m1.

During failure-free operation, each process logs the determinants of all the

received messages onto stable storage. Additionally, each process also takes

checkpoints to reduce the extent of rollback during recovery. After a failure occurs,

the failed processes recover by using the checkpoints and logged determinants to

replay the corresponding nondeterministic events precisely as they occurred during

the pre-failure execution. Because the execution within each deterministic interval

depends only on the sequence of received messages that preceded the interval’s

beginning, the recovery procedure reconstructs the pre-failure execution of a failed

process up to the first received message that have a no logged determinant.

Log-based protocols guarantee that upon recovery of all failed processes, the

system does not contain any orphan process. A process is orphan when it does not fail

and its state depends on the execution of a nondeterministic event whose determinant

Fault Tolerance 39

cannot be recovered from stable storage or from the volatile memory of a surviving

process [Elnozahy, et al., 2002].

The way a specific protocol implements the no-orphan message condition affects

the protocol’s failure-free performance overhead, the latency of output commit, and

the simplicity of recovery and garbage collection schemes, as well as its potential for

rolling back correct processes. These differences lead to three classes of log-based

protocols: pessimistic, optimistic and causal.

2.6.1 Pessimistic log-based protocols

Despite all efforts in order to provide fault tolerance, in reality, failures are rare.

Although this, these protocols assume a pessimistic behavior, supposing that a failure

may occur after any nondeterministic event in the computation. In their most simple

form, pessimistic protocols log the determinant of each received message before the

message influences in the computation. Pessimistic protocols implement a property

often referred to as synchronous logging, i.e., if an event has not been logged on

stable storage, then no process can depend on it [Elnozahy, et al., 2002]. Such

condition assures that orphan processes will never exist in systems using pessimistic

log-based protocol.

Processes also take periodic checkpoints in order to limit the amount of work that

the faulty process has to repeat during recovery. If a failure occurs, the process

restarts from its most recent checkpoint. During the recovering procedure, the process

uses the logged determinants to recreate the pre-failure execution, without needing

any synchronization between the processes. The checkpoint period implies directly in

the overhead imposed by fault tolerance, creating a dilemma: if checkpoints is taken

in short periods, it will cause greater overhead during a failure-free execution, but less

expensive will be the recovery process.

Synchronous logging enables that the observable state of each process is always

recoverable. This property leads to four advantages at the expense of a high

computational overhead penalty [Elnozahy, et al., 2002]:

40 Chapter 2

e) Recovery is simple because the effects of a failure influences only the

processes that fails.

f) Garbage collection is simple because the process can discard older

checkpoints and determinants of received messages that are before the most

recent checkpoint.

g) Upon a failure, the failed process restarts from its most recent checkpoint

what limits the extent of lost computation.

h) There is no need of a special protocol to send messages to outside world.

Due to the synchronism, the log mechanism may enlarge the message latency

perceived by the sender process, because it has to wait until the stable storage

confirms the message log writing in order to consider the message as delivered. In

order to reduce the overhead caused by the synchronous logging, the fault tolerance

system may applies a Sender Based Message Logging model that stores the log in the

volatile memory of the message sender, supposing as a reliable device. In this case,

the recovery process is more complex, needing to involve each machine that has

communicated with the failed process.

2.6.2 Optimistic log-based protocols

In opposition, these protocols suppose that failures occurs rarely, relaxing the

event log, but allowing the orphans processes appearing caused by failures in order to

reduce the failure-free performance overhead. However, the possibility of appearing

orphans processes lefts the recovery process more complex, garbage collection and

output commit [Jalote, 1994]. In optimistic protocols as in pessimistic protocols,

every process take checkpoint and message log asynchronously [Alvisi and Marzullo,

1998]. Furthermore, a volatile log maintains each determinant meanwhile the

application processes continue their execution. There is no concern if the log is in the

stable storage or in the volatile memory. The protocol assumes that logging to stable

storage will complete before a failure occurs (thence its optimism).

If a process fails, the determinants in its volatile log will be lost, and the state

intervals started by the nondeterministic events corresponding to these determinants

Fault Tolerance 41

are unrecoverable. Furthermore, if the failed process sent a message during any of the

state intervals that cannot be recovered, the receiver of the message becomes an

orphan process and must roll back to undo the effects of receiving the message. To

perform these rollbacks correctly, optimistic logging protocols track causal

dependencies during failure-free execution [Elnozahy, et al., 2002; Jalote, 1994].

Upon a failure, the dependency information is used to calculate and recover the latest

global state of the pre-failure execution in which no process is in an orphan. Since

there is now a dependency between processes, optimistic protocols need to keep

multiple checkpoints what complicates the garbage collection policy.

The recovery mechanism in optimistic protocol can be either synchronous or

asynchronous. Each one is explained bellow [Elnozahy, et al., 2002] and detailed

bellow:

Synchronous recovery

During failure free operation, each process updates a state interval index when a

new state interval begins. The indexes serve to track the dependency between

processes using two distinct strategies: direct or transitive. In synchronous recovery,

all processes use this dependency information and the logged information to calculate

the maximum recovery line. Then, each process uses the calculated recovery line to

decide if it must roll back.

In direct tracking strategy, each outgoing message contains the state interval

index of the sender (piggybacked in the message) in order to allow the receiver to

record the dependency directly caused by the message. At recovery time, each process

assemblies its dependencies to obtain the complete dependency information.

In transitive tracking, each process maintains a size-N vector V, where V[i] is the

current state interval index of the process Pi itself, and V[j], j ≠ i, records the highest

index of any state interval of a process Pj on which Pi depends. Transitive dependency

tracking generally incurs a higher failure-free overhead because of piggybacking and

maintaining the dependency vectors, but allows faster output commit and recovery.

42 Chapter 2

Asynchronous recovery

In this scheme, a recovery process broadcasts a rollback announcement to start a

new incarnation. Every process that receives a rollback announcement checks if it has

become an orphan because of the announcement and then, if necessary, it rolls back

and broadcasts its own rollback announcement.

Asynchronous recovery can produce a situation called exponential rollbacks.

Exponential rollbacks occur when a process rolls back an exponential number of

times because of a single failure. The asynchronous protocol eliminates exponential

rollbacks by either distinguishing failure announcements from rollback

announcements or piggybacking the original rollback announcement from the failed

process on every subsequent rollback announcement that it broadcasts.

2.6.3 Causal log-based protocols

These protocols avoid the creation of orphan processes by ensuring that the

determinant of each received message, which causally precedes a process’s state,

either is in stable storage or is available locally to that process [Elnozahy, et al.,

2002]. Such protocols dispense synchronous logging, which is the main disadvantage

of pessimistic protocols, while maintaining their benefits (isolation of failed

processes, rollback extent limitation and no apparition of orphan processes).

However, causal protocols have a complex recovery scheme.

In order to track causality, each process piggybacks the non-stable determinants

that are in its volatile log on the messages it sends to other processes. On receiving a

message, a process first adds any piggybacked determinant to its volatile determinant

log and then delivers the message to the application.

2.7 Comparing the rollback-recovery protocols

Table 2-2 summarizes the differences among the rollback-recover protocols. The

decision about which one is best suited for a given system than another is not

straightforward. It depends on diverse factors like probability of failures, message

pattern among application processes, the resources consumed, etc.

Fault Tolerance 43

Using the four basic requirements as reference (scalability, transparency,

decentralization and flexibility,) we compared the protocols described in Table 2-2 in

order to choose the ones that could best attend to these requirements. We immediately

discarded the uncoordinated, the CIC and the optimistic protocol because they allow

the creation of orphan processes.

We defined that, in order to be scalable, the number of computational elements of

the parallel computer must not influence the operation of the protocol. To satisfy such

requirement, the recovery mechanism must be independent of the number of elements

present in the system. For this, it is necessary that the process recovering rest only on

local information, i.e, it cannot rests on the information about other process.

Looking again at Table 2-2, one can see that the only protocol that allows local

decision during the recovery phase is the pessimist message-log. This protocol also

increases the efficiency in terms of storage space because each process only needs to

store its last checkpoint in order to recover. Additionally, this feature greatly

simplifies the implementation of the garbage collection mechanism.

The pessimistic rollback-recovery protocol does not restrict the other features. It

may operate in the system level so the application is not aware about it (transparency).

It has an intrinsic decentralization because each process only needs local information

to recover from faults.

Table 2-2: Comparison between rollback recovery protocols [Elnozahy, et al., 2002]

 Checkpointing Message logging

 Uncoord. Coordinated CIC Pessimistic Optimistic Causal

PWD
assumed No No No Yes Yes Yes

Checkpoint
per process Several 1 Several 1 Several 1

Domino
effect Possible No No No No No

Orphan
processes Possible No Possible No Possible No

44 Chapter 2

Rollback
extent Unbounded Last global

checkpoint
Possibly

several local
checkpoints

Last
checkpoint

Possibly
several

checkpoints
Last

checkpoint

Recovery
data Distributed Distributed Distributed Distributed or

Local
Distributed or

local
Distributed

Recovery
protocol Distributed Distributed Distributed Local Distributed Distributed

Output
commit

Not
possible

Global
coordination

required

Global
coordination

required
Local

decision
Global

coordination
required

Local
decision

Finally, the pessimistic message log protocol is very flexible because the

operation of the fault tolerance mechanism is restricted to each process, allowing the

building of several different arrangements in order to attend to the performance or

efficiency requirements of the system. For example, each process may have its own

checkpoint interval in order to reduce the overall cost of the checkpoint procedure.

2.8 Current Researches

Fault tolerance becomes a major issue in the high performance computing area.

Hence, many works has been developed in order to provide fault tolerance for parallel

systems. Following, there are some of the current researches in this area.

MPICH-V [Bouteiller, et al., 2006] is a framework that aims to compare

different approaches for fault tolerance over the MPICH-1 implementation of MPI. It

is an evolution of other three implementations. This framework is a MPICH channel

library implementation associated with a runtime environment. The MPICH-V

runtime environment is formed by some components: Dispatcher, Channel memories,

Checkpoint servers, and Computing/Communicating nodes. The dispatcher is the

responsible to launch the entire runtime environment, and performs a fault detection

task by monitoring the runtime execution. Channel Memories are dedicated nodes

providing a service of tunneling and repository. The architecture assumes neither

central control nor global snapshots. The fault tolerance bases on an uncoordinated

checkpoint protocol that uses centralized checkpoint servers to store communication

context and computations independently.

Fault Tolerance 45

FT-Pro [Li and Lan, 2006] is a fault tolerance solution that bases on a

combination of rollback-recovery and failure prediction to take some action at each

decision point. Using this approach, this solution aims to keeps the system

performance avoiding excessive checkpoints. Currently support three different

preventive actions: Process migration, coordinated checkpoint using central

checkpoint storages and no action. Each preventive action is selected dynamically in

an adaptive way intending to reduce the overhead of fault tolerance. FT-Pro works an

initially determined and static number of spare nodes.

Score-D [Kondo, M., et al. 2003]. The Score-D checkpoint solution is a fault

tolerance solution used in the Score cluster implementing a distributed coordinated

checkpoint system. In Score’s checkpointing algorithm, each node stores its

checkpoint data into the local disk in parallel. In addition, it saves redundant data to

ensure the reliability for non-transient failures. A server is in charge to send a

heartbeat to each node in order to detect failures. This redundancy is achieved through

parity generation. In the recovery task, this system uses the parity data distributed

over the nodes, in order to reconstitute the checkpoint image and restart the process in

a spare node allocated statically at the program start. The initial solution has a clear

bottleneck caused by disk writing, so Gao [Gao et al, 2005] proposed an optimization

using a hierarchical storage approach combined with a diskless checkpointing for

transient failures tolerance.

MPICH-V2 [Bouteiller, et al., 2003a] is a improvement in the previous version,

implementing the sender based pessimistic log (the computing node now keeps the

message-log), is well suited for homogeneous network large-scale computing. Unlike

its antecessor, it requires a few number of stable components to reach good

performance on a cluster. MPICH-V2 replaced the channel memories concept by

event loggers assuring the correct replace of messages during recovers.

MPICH-VCL [Bouteiller, et al., 2003b] is designed for extra low latency

dependent applications. It uses coordinated checkpoint scheme based on the Chandy-

Lamport algorithm [Chandy and Lamport, 1985] in order to eliminate overheads

during fault free execution. However, it requires restarting all nodes (even non-

46 Chapter 2

crashed ones) in the case of a single fault. Consequently, it is less fault resilient than

message logging protocols, and is only suited for medium scale clusters.

LAM/MPI [Squyres and Lumsdaine, 2003; Burns et al, 1994]. This

implementation uses a component architecture called System Services Interface (SSI)

that allows checkpoint an MPI application using a coordinated checkpoint approach.

This feature is not automatic, needing a back-end checkpoint system. In case of

failure, all applications nodes stop and a restart command is needed. LAM/MPI

demands a faulty node replacement. This procedure is neither automatic, nor

transparent.

MPICH-V1 [Bosilca, et al., 2002] is the first implementation of MPICH-V. This

version has a good appliance in very large scale computing using heterogeneous

networks. Its fault tolerant protocol uses uncoordinated checkpoint and remote

pessimistic message logging. MPICH-V1 well suited for Desktop Grids and Global

computing as it can support a very high rate of faults. As this solution requires a

central stable storage, it requires a large bandwidth that becomes the major drawback

for this implementation.

Starfish [Agbaria and Friedman, 1999] provides failure detection and recovery at

the runtime level for dynamic and static MPI-2 programs. Starfish allows the user to

control checkpoint and recovery by an user level API allowing the user to control

checkpoint and recovery. Both coordinated and uncoordinated checkpoints strategies

may be applied by the user choice. Coordinated checkpoint relies on the Chandy-

Lamport’s algorithm. For an uncoordinated checkpoint, the environment sends to all

surviving processes a notification of the failure. The application may take decision

and corrective operations to continue execution.

Table 2-3: A comparison of some fault-tolerant MPI solutions based on five relevant features

Solution Scalable Fully
Decentralized Transparent Flexible Dynamic

Redundancy
Cocheck User Not informed
Starfish Not informed
Score-D User Yes Statically Allocated
FT-PRO User Yes Statically Allocated

MPICH-V1 User and Admin Yes Statically Allocated

Fault Tolerance 47

MPICH-V2 Yes User and Admin Yes Statically Allocated
MPICH-VCL User and Admin Statically Allocated

LAM/MPI User Not Applicable
MPICH-V Yes User and Admin Yes Statically Allocated

Cocheck [Stellner, 1996] was one of the firsts solutions for fault tolerance in

MPI. It works as an independent application making a MPI parallel application fault

tolerant. It is implemented at the runtime level (but its implementation on top of

tuMPI required some modification of the tuMPI code), on top of a message passing

library and a portable process checkpoint mechanism. Cocheck coordinates the

application processes checkpoints and flushes the communication channels of the

target applications using a Chandy-Lamport’s algorithm. A centralized coordinator

manages the checkpoint and rollback procedures.

 In Table 2-3 we present a summary of these solutions, comparing according five

relevant features. We considered a solution scalable when it has not any characteristic

that may affect the scalability, i.e. bottlenecks or checkpoint /recovery strategy

needing coordination between all nodes. The fully decentralized feature means that in

any moment of the fault-tolerance process, including recovery, the solution does not

need any central elements. The transparency was analyzed by two points of view:

from the user, a programmer, who does not need to change its program code; and

from the system administrator, who does not need take care of the recovery activities.

We considered flexible, the which ones allowing adjusting some kind of parameter.

Finally, we analyzed the presence of the dynamic redundancy feature, considering as

flexible, when allows a dynamic insertion of spare nodes and statically allocated when

it have a fixed and pre-determined number of spares.

Chapter 3

The RADIC Architecture

This chapter discusses characteristics and behavior of the architecture chosen as

basis of our work. In his work, Duarte [Duarte, 2007] introduces a new fault tolerance

architecture called RADIC, an acronym for Redundant Array of Independent Fault

Tolerance Controllers. As RADIC was intended not uses extra resources, the recovery

process causes a system degradation due to the node losses. Hence, we need to supply

RADIC with some more features, allowing reducing or avoiding this degradation by

protecting the system or allowing preventing the faults.

3.1 RADIC architecture model

Table 3-1: The key features of RADIC

Feature How it is achieved

Transparency − No change in the application code
− No administrator intervention is required to manage the failure

Decentralization − No central or fully dedicated resource is required. All nodes
may be simultaneously used for computation and protection

Scalability − The RADIC operation is not affected by the number of nodes in
the parallel computer

Flexibility

− Fault tolerance parameters may be adjusted according to
application requirements

− The fault-tolerant architecture may change for better adapting
to the parallel computer structure and to the fault pattern

RADIC establishes an architecture model that defines the interaction of the fault-

tolerant architecture and the parallel computer’s structure. Figure 3-1 depicts how the

RADIC architecture interacts with the structure of the parallel computer (in the lower

level) and with the parallel application’s structure (in the higher level). RADIC

implements two levels between the MESSAGE-PASSING level and the computer

The RADIC Architecture 49

structure. The lower level implement the fault tolerance mechanism and the higher

level implements the fault masking and message delivering mechanism.

The core of the RADIC architecture is a fully distributed controller for fault

tolerance that automatically handles faults in the cluster structure. Such controller

shares the parallel computers resources used in the execution of the parallel

application. The controller is also capable to handle its structure in order to survive to

failures.

Figure 3-1: The RADIC levels in a parallel system

Parallel Computer Structure (Fault-probable)

RADIC Fault tolerance functions
Message logs, checkpoints, fault detection and recovery

RADIC Fault masking functions
Message delivering

Message-passing Standard

Parallel Application

3.1.1 Failure pattern

We assume that the probability of failures in the nodes follows a Poisson

distribution. This assumption is accurate if we consider that:

− the chance that a failure occurs in a time interval is proportional to the interval

size;

− the probabilities of failure of each node are independent;

− the probability of multiple failures in a given interval is much smaller than the

probability of a single failure.

Basing on these assumptions, we establish that if a node fails, all elements

involved in the recovery of the failed processes will survive until the end of the

50 Chapter 3

recovery procedure. In other words, if two or more failures occur concurrently, none

of them affects the elements implicated in the recovery of the other failures while the

recovering procedure occurs.

Similarly, any number of failures may occur if each failure does not affect an

element implicated in the recovery of a previous failure.

3.2 RADIC functional elements

The structure of the RADIC architecture uses a group of processes that

collaborate in order to create a distributed controller for fault tolerance. There are two

classes of processes: protectors and observers. Every node of the parallel computer

has a dedicated protector and there is a dedicated observer attached to every parallel

application’s process.

3.2.1 Protectors

There is a protector process in each node of the parallel computer. Each protector

communicates with two protectors assumed as neighbors: an antecessor and a

successor. Therefore, all protectors establish a protection system throughout the nodes

of the parallel computer. In Figure 3-2, we depict a simple cluster built using nine

nodes (N0-N8) and a possible connection of the respective protectors of each node (T0-

T8). The arrows indicate the antecessor←successor relationship.

The RADIC Architecture 51

Figure 3-2: An example of Protectors (T0-T8) in a cluster with nine nodes. Green arrows

indicate the antecessor←successor communication.

The relationship between neighbor protectors exists because the fault detection

procedure. There is a heartbeat/watchdog mechanism between two neighbor

protectors: one has the watchdog and receives heartbeats from the other. By

definition, the protector who has the watchdog is the antecessor and the protector who

sends the heartbeats is the successor.

The arrows in Figure 3-2 indicate the orientation of the heartbeat signals from the

successor to the antecessor. Actually, each successor has a double identity because it

acts simultaneously as a successor for a neighbor and as an antecessor for the other

52 Chapter 3

neighbor. For example, in Figure 3-2, the protector T7 is the antecessor of the

protector T8 and the successor of the protector T6.

Each protector executes the following tasks related to the operation of the

rollback-recovery protocol:

a) It stores checkpoints and message-logs from the application processes those

are running in its successor node;

b) It monitors its neighbors in order to detect failures via a heartbeat/watchdog

scheme;

c) It reestablishes the monitoring mechanism with a new neighbor after a failure

in one of its current neighbors, i.e., it reestablishes the protection chain;

d) It implements the recovery mechanism.

3.2.2 Observers

Observers are RADIC processes attached to each application processes. From the

RADIC operational point-of-view, an observer and its application process compose an

inseparable pair.

The group of observers implements the message-passing mechanism for the

parallel application. Furthermore, each observer executes the following tasks related

to fault tolerance:

a) It takes checkpoints and event logs of its application process and send them

to a protector running in another node, namely the antecessor protector;

b) It detects communication failures with another processes and with its

protector;

c) In the recovering phase, it manages the messages from the message log of its

application process and establishes a new protector;

d) It maintains a mapping table, called radictable, indicating the location of all

application processes and their respective protectors and updates this table in

order to mask faults.

The RADIC Architecture 53

3.2.3 The RADIC controller for fault tolerance

The collaboration between protectors and observers allows the execution of the

tasks of the RADIC controller. Figure 3-3 depicts the same cluster of Figure 3-2 with

all elements of RADIC, as well as their relationships. The arrows in the figure

represent only the communications between the fault-tolerance elements. The

communications between the application processes does not appear in the figure

because they relate to the application behavior.

Each observer has an arrow that connects it to a protector, to whom it sends

checkpoints and message logs of its application process. Such protector is the

antecessor of the local protector. Therefore, by asking to the local protector who is the

antecessor protector, an observer can always know who its protector is.

Each protector has an arrow that connects it to an antecessor protector. Similarly,

it receives a connection from its successor. A protector only communicates with their

immediate neighbors. For example, in Figure 3-3, the protector T5 communicate only

with T4 and T6. It will never communicate with T3, unless T4 fails and T3 becomes its

new immediate neighbor.

The RADIC controller uses the receiver-based pessimistic log rollback-recovery

protocol to handle the faults in order to satisfy the scalability requirement. As

explained in the item 2.6.1, this protocol is the only one in which the recover

mechanism does not demand synchronization between the in-recovering process and

the processes not affected by the fault. Such feature avoids that the scalability suffer

with the operation of the fault tolerance mechanism.

54 Chapter 3

Figure 3-3: A cluster using the RADIC architecture. P0-P8 are application process. O0-O8 are

observers and T0-T8 are protectors. O→T arrows represent the relationship between
observers and protector and T→T arrows the relationship between protectors.

Besides the fault tolerance activities, the observers are responsible to manage the

message-passing mechanism. This activity rests on a mapping table that contains all

information required to the correct delivery of a message between two processes.

Protectors do not participate directly in the message-passing mechanism, only

performing the message log storing.

The RADIC Architecture 55

3.3 RADIC operation

As we seen, the RADIC distributed controller concurrently executes a set of

activities related to the fault tolerance. Besides these fault tolerance activities, the

controller also implements the message-passing mechanism for the application

processes. Following we explain how these mechanism and tasks contribute for the

RADIC operation.

3.3.1 Message-passing mechanism

In the RADIC message-passing mechanism, an application process sends a

message through its observer. The observer takes care of delivering the message

through the communication channel. Similarly, all messages that come to an

application process must first pass through its observer. The observer then delivers the

message to the application process. Figure 3-4 clarifies this process.

Figure 3-4: The message-passing mechanism in RADIC.

To discover the address of a destination process, each observer uses its routing

table, the radictable, which relates the identification of the destination process inside

the application level with the identification of the destination process inside the

communication level. Table 3-2 represents a typical radictable.

56 Chapter 3

Table 3-2: An example of radictable for the cluster in Figure 3-3

Process identification Address

0 Node 0

1 Node 1

2 Node 2

3 Node 3

.

.
.
.

3.3.2 State saving task

In this task, protectors and observers collaborate in order to save snapshots of the

parallel application’s state. This task is the major responsible for resources consumed

by the fault tolerance mechanism as well as for the enlargement in the execution time

in the absence of failures.

The system must supply storage space for the checkpoints and the message-logs

required by the rollback-recovery protocol. Furthermore, the checkpoint procedure

introduces a time delay in the computation because a process may suspend its

operation while the checkpoint occurs.

Additionally, the message-log interferes in the message latency, because a

process only considers a message delivered after the message is stored in the message

log.

Checkpoints

Each observer takes checkpoints of its application process, as well as of itself,

and sends them to the protector located in its antecessor node. Figure 3-5 depicts a

simplified scheme to clarify the relationship between an observer and its protector.

A checkpoint is an atomic procedure and a process become unavailable to

communicate while a checkpoint procedure is in progress. This behavior demands

that the fault detection mechanism differentiates a communication failure caused by a

The RADIC Architecture 57

real failure from a communication failure caused by a checkpoint procedure. We

explain this differentiation in item 3.3.3.

Figure 3-5: Relation between an observer and its protector.

The protectors operate like a distributed reliable storage. The reliability is

achieved because the checkpoints and message logs of a process are stored in a

different node. Therefore, if a process fails, all information required to recover it is in

a survivor node.

Thanks to the uncoordinated checkpoint mechanism of the pessimistic

message-log rollback-recovery protocol used by RADIC, each observer may establish

an individual checkpoint policy for its application process. Such policy may be time-

driven or event-driven. The RADIC architecture allows the implementation of any

combination of these two policies.

The time-driven policy is very typical in the fault-tolerant implementations based

on rollback-recovery. In this policy, each observer has a checkpoint interval that

determines the times when the observer takes a checkpoint.

The event-driven policy defines a trigger that each observer uses in order to start

the checkpoint procedure. A typical event-driven policy occurs when two or more

observers coordinate their checkpoints. Such policy is useful when two processes

have to exchange many messages. In this case, because the strong interaction between

58 Chapter 3

the processes, coordinate the checkpoint is a good way to reduce the checkpoint

intrusion over the message exchanging.

When an observer takes a checkpoint of its process, this checkpoint represents all

computational work done by such process until that moment. Is such computational

work that the observer sends to the protector. As the process continues its work, the

state saved in the protector becomes obsolete. To make possible the reconstruction of

the process’ state in case of failure, the observer also logs in to its protector all

messages its process has received since its last checkpoint. Therefore, the protector

always has all information required to recover a process in case of a failure, but such

state’s information is always older than the current process’ state.

Message logs

Because the pessimistic log-based rollback-recovery protocol, each observer must

log all messages received by its application process. As we have explained in Chapter

2, the use of message logs together with checkpoint optimizes the fault tolerance

mechanism by avoiding the domino effect and by reducing the amount of checkpoints

that the system must maintain.

The message log mechanism in RADIC is very simple: the observer resends all

received messages to its protector, which saves it in a stable storage. The log

procedure must complete before the sender process consider the message as delivered.

Figure 3-6 depicts the message’s delivery mechanism and message’s log mechanism.

The log mechanism enlarge the message latency perceived by the sender process,

because it has to wait until the protector concludes the message log procedure in order

to consider the message as delivered.

The RADIC Architecture 59

tim
e

Figure 3-6: Message delivering and message log mechanism.

Garbage collection

The pessimistic message log protocol does not require any synchronization

between processes. Each observer is free to take checkpoints of its process without

caring about what is happening with other parallel application’s process.

This feature greatly simplifies the construction of the garbage collector by the

protectors. Because each checkpoint represents the current state of a process,

whenever a new checkpoint comes from an observer, the protector may discard all

prior checkpoints and message-logs related to that process. Therefore, after a

protector receives a new checkpoint from a process, it automatically eliminates the

older checkpoint of this process.

3.3.3 Failure detection task

The failure detection is an activity performed simultaneously by protectors and

observers. Each one performs specific activities in this task, according to its role in

the fault tolerance scheme.

60 Chapter 3

How protectors detect failures

The failure detection procedure contains two tasks: a passive monitoring task and

an active monitoring task. Because of this, each protector has two parts: it is,

simultaneously, antecessor of one protector and successor of other.

There is a heartbeat/watchdog mechanism between two neighbors. The

antecessor is the watchdog element and the successor is the heartbeat element. Figure

3-8 represents the operational flow of each protector element.

A successor regularly sends heartbeats to an antecessor. The heartbeat/watchdog

cycle determines how fast a protector will detect a failure in its neighbor, i.e., the

response time of the failure detection scheme. Short cycles reduce the response time,

but also increase the interference over the communication channel. Figure 3-7 depicts

three protectors and the heartbeat/watchdog mechanism between them. In this picture

we see the antecessors running the watchdog routine waiting for a heartbeat sent by

its neighbor.

Heartbeat

Sucessor

Heartbeat Heart… ..beat

Sucessor Sucessor

Antecessor Antecessor Antecessor
W H W H W H

TX TY TZ

Figure 3-7: Three protectors (TX, TY and TZ) and their relationship to detect failures.
Successors send heartbeats to antecessors.

A node failure generates events in the node’s antecessor and in the node’s

successor. If a successor detects that its antecessor has failed, it immediately starts a

search for a new antecessor. The search algorithm is very simple. Each protector

knows the address of its antecessor and the address of the current antecessor of its

antecessor. Therefore, when a antecessor fails, the protector know exactly who its

new antecessor will be.

The RADIC Architecture 61

An antecessor, in turns, begins to wait for a new successor detects a failure in its

current successor. Furthermore, the antecessor also starts the recovering procedure, in

order to recover the faulty processes that were running in the successor node.

Figure 3-8: Protector algorithms for antecessor and successor tasks

How the observers detect failures

Each observer relates with two classes of remote elements: its protector and the

other application processes. An observer detects failures either when the

communication with other application processes fails or when the communication

with its protector fails. However, because an observer just communicates with its

protector when it has to do a checkpoint or a message log, an additional mechanism

shall exist to certify that an observer will quickly perceive that its protector has failed.

62 Chapter 3

RADIC provides such mechanism using a warning message between the observer

and the local protector (the protector that is running in the same node of the observer).

Whenever a protector detects a fail in its antecessor, such protector sends a warning

message to all observers in its nodes because it knows that the failed antecessor is the

protector that the local observers are using to save checkpoints and message logs.

When an observer receives such message, it immediately establishes a new

protector and takes a checkpoint.

How the observers confirm a failure

There are two situations which create a communication failure between

application processes, but that must not indicate a node failure. The first failure

situation occurs when an observer is taking a checkpoint of its application process.

The second occurs when a process fails and restarts in a different node.

In this paragraph, we explain how the observers get rids of the first problem. We

will explain how the observer gets rid of the second situation in the description of the

Fault Masking Phase.

A process becomes unavailable to communicate inside the checkpoint procedure.

Such behavior could cause that a sender process interprets the communication failure

caused by the checkpoint procedure as a failure in the destination.

Table 3-3: The radictable of each observer in the cluster in Figure 3-3.

Process identification Address Protector
(antecessor address)

0 Node 0 Node 8

1 Node 1 Node 0

2 Node 2 Node 1

3 Node 3 Node 2

.

.
.
.

.

.

The RADIC Architecture 63

In order to avoid this fake failure detection, before a sender observer assumes a

communication failure with a destination process, the sender observer contacts the

destination’s protector and asks about the destination’s status. To allow that each

observer knows the location of the protector of the other process, the radictable now

includes the address of the destination’s protector, as shown in Table 3-3.

Analyzing Table 3-3, one may see that the protector in node eight protects the

processes in node zero, the protector in node zero protects processes in node one and

so forth.

Using its radictable, any sender observer may locate the destination’s protector.

Since the destination’s protector is aware about the checkpoint procedure of the

destination process, it will inform the destination’s status to the sender observer.

Therefore, the sender observers can discover if the communication failure is

consequence of a current checkpoint procedure.

The radictable and the search algorithm

Whenever an observer needs to contact another observer (in order to send a

message) or an observer’s protector (in order to confirm the status of a destination),

this observer will look for the address of the element in its radictable. However, after

a failure occurs, the radictable of an observer becomes outdated, because the address

of the recovered process and their respective protectors changed.

To face this problem, each observer uses a search algorithm for calculates the

address of failed elements. This algorithm relies on the determinism of the protection

chain. Each observer knows that the protector of a failed element (observer or

protector) is the antecessor of this element. Since a antecessor is always the previous

element in the radictable, whenever the observer needs to find an element it simply

looks the previous line in its radictable, and finds the address of the element. The

observer repeats this procedure until it finds the element it is looking for.

3.3.4 Recovery task

In normal operation, the protectors are monitoring computer’s nodes, and the

observers care about checkpoints and message logs of the distributed application

64 Chapter 3

processes. Together, protectors and observers function like a distributed controller for

fault tolerance.

When protectors and observers detect a failure, both actuate to reestablish the

consistent state of the distributed parallel application and to reestablish the structure

of the RADIC controller.

Reestablishing the RADIC structure after failures

The protectors and observers implicated in the failure will take simultaneous

atomic actions in order to reestablish the integrity of the RADIC controller’s

structure. Table 3-4 explicates the atomic activities of each element.

When the recovery task is finished, the RADIC controller’s structure is

reestablished and henceforth is ready to manage new failures. Figure 3-9 presents the

configuration of a cluster from a normal situation until the recovery task has finished.

Recovering failed application processes

Table 3-4: Recovery activities performed by the each element implicated in a failure.

Protectors Observers
Successor:

Survivors:

1) Establish a new protector
1) Fetches a new antecessor

2) Reestablishes the heartbeat mechanism
2) Take a checkpoint

3) Commands the local observers to checkpoint

Antecessor :

1) Waits for a new successor

The protector that is the antecessor of the failed node recovers the failed

application processes in the same node in which the protector is running. Immediately

after the recovery, each observer connects to a new protector. This new protector is

the antecessor of the node in which the observer recovers. The recovered observer

gets the information about its new protector from the protector in its local node.

2) Reestablishes the watchdog mechanism

3) Recovers the failed processes

Recovered:

1) Establish a new protector

2) Copy current checkpoint and message log to the
new protector

3) Replays message from the message-log

The RADIC Architecture 65

Indeed, the protector of any observer is always the antecessor of the node in which the

observer is running.

(a)

(b)

(c)

(d)

Figure 3-9: Recovering tasks in a cluster. (a) Failure free cluster. (b) Fault in node N3. (c)
Protectors T2 and T4 detect the failure and reestablish the chain, O4 connects to T2. (d) T2

recovers P3/O3 and O3 connects to T1.

66 Chapter 3

Load balance after recovering from faults

After recovering, the recovered process is running in the same node of its former

protector. It means that the computational load increases in such node, because it now

contains its original application processes plus the recovered processes. Therefore, the

original load balancing of the system changes. This configuration change may imply

in system degradation, resulting in performance loss in some cases. Moreover, after

recovering, the memory usage in the node hosting the recovered process will rise

leading to disk swap in some cases.

RADIC make possible the implementation of several strategies to face the load

balance problem after process recovery. A possible strategy is to implement a

heuristic for load balance that could search a node with lesser computational load.

Therefore, instead of recovering the faulty process in its own node, a protector could

send the checkpoint and the message logs of the faulty processes to be recovered by a

protector in a node with less computational load.

3.3.5 Fault masking task

The fault masking is an observers’ attribution. The observers assure that the

processes continue to correctly communicate through the message-passing

mechanism, i.e., the observers create a virtual machine in which failures does not

affect the message-passing mechanism.

In order to perform this task, each observer manages all messages sent and

received by its process. An observer maintains, in its private radictable, the address of

all logical processes or the parallel application associated with their respective

protectors. Using the information in its radictable, each observer uses the search

algorithm, explained in sub-item The radictable and the search algorithm at the item

3.3.3, to locate the recovered processes.

Similarly, each observer records a logical clock in order to classify all messages

delivered between the processes. Using the logical clock, an observer easily manages

messages sent by recovered processes.

The RADIC Architecture 67

Table 3-5 represents a typical radictable including the logical clocks. One can see

that the observer that owns this table has received three messages from the process

zero and has sent two messages to this process. Similarly, the process has received

one message and sent one message to process three.

Table 3-5: The radictable of an observer in the cluster in Figure 3-3.

Process id. Address Protector
(antecessor addr.)

Logical clock for
sent messages

Logical clock for
recev. messages

0 Node 0 Node 8 2 3
1 Node 1 Node 0 0 0
2 Node 2 Node 1 0 0
3 Node 3 Node 2 1 1
… … … … …

Locating recovered process

When a node fails, the antecessor neighbor of the faulty node - which executes

the watchdog procedure and stores checkpoints and message-logs of the processes in

the faulty node – detects the fail and starts the recovering procedure. Therefore, the

faulty processes now restart their execution in the node of the antecessor, resuming

since their last checkpoint.

In order to clarify the behavior of a recovered process, in Figure 3-10 we

represent four nodes of Figure 3-3 and the final configuration after a failure in one of

these nodes. The process P3 that was originally in the faulty node N3 is now running

in the node N2. Therefore, all other processes have to discover the new location of P3.

68 Chapter 3

(a) (b)

Figure 3-10: (a) A failure free cluster; (b) The same cluster after the management of a
failure in node N3.

In the explanation of the Fault Detection Phase, we defined two situations that

create fake fault detection. The first situation occurs when an observer is taking a

checkpoint of its application process, making this process unavailable to

communicate. We described the solution for this problem in the Fault Detection

Phase. Now, we describe the second situation and the solution for it.

After a node failure, all future communications to the processes in this node will

fail. Therefore, whenever an observer tries to send a message to a process in a faulty

node, this observer will detect a communication failure and start the algorithm to

discover the new destination location.

The RADIC Architecture 69

Figure 3-11: Fault detection algorithms for sender and receiver observers

Figure 3-11 describes the algorithms used by an observer if it acts as sender or as

a receiver. An observer uses the search algorithm only the communication fails when

it is sending a message to another process. If the failure occurs while the process is

receiving a message, the observer simply aborts the communication because it knows

that the faulty sender we restart the communication after it has recovered.

The search algorithm used by the sender observer uses the protector of the

receiver process to inform the status of the receiver. However, if the receiver has

recovered from a fault, its protector now is the antecessor of its original protector,

because the recovered observer is now running in the same node of its original

protector.

The example in Figure 3-10 clarifies the location of the recovered process P3 after

a failure in node N3. The new protector of P3 is now T1, because P3 currently is

running in the same node of its original protector T2.

70 Chapter 3

If some observer tries to communicate with the faulty process P3, such observer

will obtain a communication error and will ask to the protector T2 about the status of

P3. In this case, T2 informs that it is not responsible for P3 (because T1 is now the

current protector of P3.)

In order to find who the current protector of P3 is, the sender observer uses its

radictable to follow the protector chain. The sender observer knows that if T2 is no

more protecting P3, then the probable protector of P3 shall be the antecessor of T2 in

the protector chain (because a faulty process always recover in the antecessor

neighbor node).

Therefore, the sender observer reads its radictable and calculates the protector

who is the antecessor of the protector T2. In our example, the antecessor of the

protector T2 is the protector T1. In the radictable the order of the protectors in the

chain naturally follows the same order of the table index. Therefore, the antecessor of

a node is always the node in the previous line of the table, as shown in Table 3-6.

Table 3-6: Part of the original radictable for the processes represented in Figure 3-10a.

Process identification Address Protector
(antecessor address)

1 Node 1 Node 0
2 Node 2 Node 1
3 Node 3 Node 2
4 Node 4 Node 3

Now that the sender observer knows who the probable protector of the receiver

process P3 is, it contacts such protector and asks about the status of P3. If the protector

confirms the location of P3, the sender observer updates its radictable and restarts the

communication process. Otherwise, the sender observer continues to follows the

protection chain and asks for the next antecessor about P3, until it finds where the

process P3 is.

In our example, the updated radictable of a process who tries to communicate

with the recovered process P3 has the information presented in Table 3-7. In this

table, the line three of the radictable (represent with bold font) represents the update

location of process P3 together with its new protector.

The RADIC Architecture 71

Table 3-7: Part of he updated radictable of a process that has tried to communicate with
P3 after it has recovered as shown in Figure 3-10b.

Process identification Address Protector
(antecessor address)

1 Node 1 Node 0

2 Node 2 Node 1

3 Node 2 Node 1

4 Node 4 Node 3

This process bases on the determinism of RADIC when recovering, which

guarantees that the recovered process will be in the same node of its protector,

allowing the explained heuristic. This heuristic will be change when we incorporate

the dynamic redundancy, cause the spare node use may to generate a indeterminism

when locating a failed process, once such process may recovers in any spare

available.

Managing messages of recovered process

An application process recovers from its earlier checkpoint and resumes its

execution from that point. If the process has received messages since its earlier

checkpoint, those messages are in its current message log. The process’ observer uses

such message log to deliver the messages required by the recovered process.

If the recovered process resend messages during the recovery process, the

destination observers discard such repeated messages. Such mechanism is simple to

implement by using a logical clock. Each sender includes a logical time mark that

identifies the message’s sequence for the receiver. The receiver compares the time

mark of the received message against the current time mark of the sender. If the

received message is older than the current time mark from the specific sender, the

receiver simply discards the message.

The observers discard the repeated messages received from recovered processes.

However, a recovered process starts in a different node from the ones in which it was

72 Chapter 3

before the failure. Therefore, it is necessary to make the observers capable to discover

the recovered processes’ location.

An observer starts the mechanism used to discover a process’s location whenever

a communication between two processes fails. Each observer involved in the

communication uses the mechanism according to its role in the communication. If the

observer is a receiver, it simply waits for the sender recovering.

On the other hand, if the observer is a sender it will have to search for the failed

receiver in another node. The searching procedure starts by asking the receiver’s

status to the protector of the failed receiver. When the protector answers that the

failed receiver is ready, the sender updates the location of the failed process and

restart the communication.

3.4 RADIC functional parameters

The RADIC controller allows the setup of two time parameters: the checkpoint

interval and the watchdog/heartbeat cycle.

To choose the optimal checkpoint interval is a difficult task. The interaction

between the application and the checkpoints determines the enlargement of the

application execution time. Using the interaction between the observers and the

parallel application processes, the RADIC controller allows the implementation of

any checkpoint interval policy. Each observer can calculate the optimal checkpoint

interval by using a heuristic based in some local or distributed information.

Furthermore, the observer may adjust the checkpoint interval during the process’

execution.

The watchdog/heartbeat cycle, associated with the message latency, defines the

sensitivity of the failure detection mechanism. When this cycle is short, the neighbors

of the failed node will rapidly detect the failure and the recovery procedure will

quickly start. However, a very short cycle is inconvenient because it increases the

number of control messages and, consequently, the network overhead. Furthermore,

short cycles also increase the system’s sensibility regards the network latency.

The RADIC Architecture 73

The setting of the RADIC parameters, in order to achieve the best performance of

the fault tolerance scheme, is strongly dependent of the application behavior. The

application’s computation-to-communication pattern plays a significant role in the

interference of the fault-tolerant architecture on the parallel application’s run time.

For example, the amount and size of the messages directly define the interference of

message log protocols.

3.5 RADIC flexibility

The impact of each parameter over the overall performance of the distributed

parallel application strongly depends of the details of the specific RADIC

implementation and the architecture of the parallel computer. Factors like network

latency, network topology or storage bandwidth are extremely relevant when

evaluating the way the fault-tolerant architecture affects the application.

The freedom to adjust of the fault tolerance parameters individually for each

application process is one of the functional features that contribute to the flexibility of

the RADIC architecture. Additionally, two features play an important role for the

flexibility of RADIC: the ability to support concurrent failures and the structural

flexibility.

3.5.1 Concurrent failures

In RADIC, a recover procedure is complete after the recovered process

establishes a new protector, i.e., only after the recovered process has a new protector

capable to recover it. In other words, the recover procedure is complete when the

recovered process has done its first checkpoint in the new protector.

RADIC assumes that the protector that is recovering a failed process never fails

before the recovery completion. We have argued in item that the probability of failure

of an element involved in the recovery of a previous failure in other element is

negligible. Nevertheless, the RADIC architecture allows the construction of an

N-protector scheme in order to manage such situation.

74 Chapter 3

In such scheme, each observer would transmit the process’ checkpoints and the

message logs to N different protectors. If a protector fails while it is recovering a

failed application process, another protector would assume the recovering procedure.

For example, in the cluster of Figure 3-9, if the node N2 fails before the recovery

of P3, the system will collapse. To solve this situation using a 2-protector scheme,

each observer should store the checkpoints and message-logs of its process in two

protectors. In Figure 3-9, this would mean that O3 should store the checkpoints and

message-logs of P3 in T2 and in T1. Therefore, T1 will recover P3 in case of a failure in

T2 while it is recovering the process P3. During the recovery process, some election

policy must be applied in order to decide the protector who will recover the failed

process.

3.5.2 Structural flexibility

Another important feature of the RADIC architecture is the possibility of

assuming different protection schemes. Such ability allows implementing different

fault tolerance structures throughout the nodes, in addition to the classical single

protectors’ chain.

One example of the structural flexibility of RADIC is the possibility of clustering

of protector’s chain. In this case, the system would have several independent chains of

protectors. Therefore, each individual chain would function like an individual RADIC

controller and the traffic of fault tolerance information would be restricted to the

elements of each chain. Figure 3-12 depicts an example of using two protectors’

chains in our sample cluster.

In order to implement this feature is necessary to add one column to the

radictable, the column that indicates the protector’s chain. An observer uses the

information in such column to search the protector of a faulty node inside each

protectors' chain. The bold column in Table 3-8 exemplifies the chain information in a

typical radictable.

The RADIC Architecture 75

N0

T0

N1

T1

N2

T2

N3

T3

N4

T4

N5

T5

N6

T6

N7

T7

N8

T8

O0

P0

O1

P1

O2

P2

O3

P3

O4

P4

O5

P5

O6

P6

O7

P7

O8

P8

Figure 3-12: A cluster using two protectors’ chain.

The RADIC architecture requires that, in order to manage at least one fault in the

system, the minimum amount of protectors in a chain is four. This constraint occurs

because each protector of the RADIC controller for fault tolerance requires two

neighbors, an antecessor and a successor (see paragraph 3.2.1) Therefore, at least

three nodes must compose a protector’s chain. We depicted such minimal structure in

Figure 3-13, in which each protector has an antecessor (to which it sends the

heartbeats) and a successor (from which it receives heartbeats.)

76 Chapter 3

Table 3-8: The radictable of an observer for a cluster protected by two protectors’ chains
like in Figure 3-12.

Process id. Address Protector
(antecessor addr.) Chain

Logical clock
for sent

messages

Logical clock
for received
messages

0 Node 0 Node 3 0 2 3

1 Node 1 Node 0 0 0 0

2 Node 2 Node 1 0 0 0

3 Node 3 Node 2 0 1 1

4 Node 4 Node 8 1 2 3

5 Node 5 Node 4 1 0 0

6 Node 6 Node 5 1 0 0

7 Node 7 Node 6 1 1 1

8 Node 8 Node 7 1 0 0

If we consider that a fault takes out a node of the chain, and that a chain with

three nodes is not capable to handle any fault, it is easy to conclude that the minimum

number of protectors in a chain defines the maximum number of faults that such chain

can handle. Equation 2 expresses this relation; the maximum number of faults that a

protector chain can handle is equal to the number of protectors in the chain minus

three (the minimum number of protectors required to form a chain.)

Figure 3-13: The minimum structure for a protectors’ chain.

The RADIC Architecture 77

MaxFaults = Number_of_Protectors - 3 2

Chapter 4

Protecting the System

The last chapter explained about how RADIC is able to protect an application

from the faults and to assure its correct finish. We saw the operational details when

saving state, detecting faults and recovering a process.

During the recovery process, it was explained that RADIC, intending not using

any extra resources, provoke a system configuration change that, in some cases, lefts

the system in a undesirable situation.

In this chapter, we discuss about the side effects caused by the recovery process,

and how these side effects may degrade the system, generating performance loss in

some cases. This chapter also discusses about our solution in order to protect the

system from these side effects, in other words, the system configuration changes that

a recovery may cause.

4.1 Recovery Side-Effects

The fault tolerance activity incurs in some side effects in the cluster behavior,

which vary according to kind of rollback-recovery protocol chosen, implementation

details or architecture specifications. These effects generally incurs in some overhead

in the application execution. Following, we will discuss about a specific side effect

caused by some fault tolerant solutions.

4.1.1 System Configuration Changes

In order to provide fault tolerance to parallel machines, some rollback-recovery

solutions does not demand any extra resources to perform its tasks. These solutions

use the own cluster’s nodes to execute the recovery procedures. When a failure

occurs, some other node executing an application process is responsible to receive the

Protecting the System 79

state data of the failed process, its checkpoint and log, and re-launch the failed

process in this own node. Hence, more than the overhead imposed by the fault

tolerance activity, basically the checkpoints and logs transmitting and storing [Rao et

al, 2000], the post-recovery execution in these fault tolerant systems may be affected

by this behaviour.

As said in chapter 1, some kind of applications demands a high computing power

to perform satisfactorily its activities. This demand usually makes these applications

use a parallel computer in order to achieve better results. Due to the application

features, the user generally plans some process distribution over the cluster nodes

aiming achieve the best performance possible. By example, the user may assign the

process with more computing time in the node with more computing power, or

allocate the process with high communication level in the closest nodes. This system

configuration generally represents an optimal process distribution for the user idea,

so, any changes in this configuration may represent a not desirable situation.

The RADIC architecture explained in Chapter 3 is an example of this kind of

fault tolerant systems. As seen in item 3.3.4, the recovery process of RADIC leaves

the system in an unplanned process distribution (Figure 4-11).

Following, we analyse an effect of this system configuration change over the

performance in post-recovery executions.

4.1.2 Performance Degradation

The system configuration change explained in the last item leads to the presence

of processes sharing a computing node. It is easy to perceive that in this node, both

processes will suffer a slowdown in their executions and the memory usage in this

node will be increased may leading to disk swap. Moreover, these processes will be

accessing the same protector, competing by to send the redundancy data. Supposing

that a previous process distribution was made, aiming to achieve a certain

performance level according with the cluster characteristics, this condition becomes

very undesirable, mainly if the application is not able to adapt itself to workload

changes along the nodes.

80 Chapter 4

Long time running programs are very susceptible to MTBF factor, the fault

probability is constantly increasing during the time pass. In consequence, the number

of overloaded nodes gradually increases, may leading to an impracticable situation.

The Figure 2-1 depicts a nine nodes cluster in a situation after three recovered faults

always occurred in the overloaded node. In this figure, we can see that in the node N2

each process has at maximum 25% of the available node computing power. This may

be an usual situation in clusters with thousands of nodes

Figure 4-1: The cluster configuration after three sequential recovered failures.

The Figure 4-1 also depicts other problem caused by successive recovered faults:

all the processes running in the node N2 are storing their checkpoints and logs in the

same neighbor, the node N1. Checkpoints usually have large sizes in common

scientific programs, and logs are very frequently in some kind of applications,

consequently this happening may cause some situations:

Protecting the System 81

a) The communication channel becomes a bottleneck due to the intensive traffic

between the nodes

b) As each process is sending its checkpoint and log to the same protector, may

occur a queuing of requests for checkpoint and log transmission in this

protector.

c) The physical memory in the node N2 is being consumed N+1 times more,

where N is the number of unplanned processes running in the node divided

by the number of original processes of the node. This fact may lead to use

virtual memory on disk, which have a slower speed.

 All of situations mentioned before, may engender a slowdown in all processes in

the node, and may be combined between them, getting worse the system performance.

434,57 434,57 434,57

72,61%

49,37%

27,05%

0,00000

100,00000

200,00000

300,00000

400,00000

500,00000

600,00000

700,00000

800,00000

25% 50% 75%

Ti
m
e
(s
)

Fault moment

1500x1500 Matrix product using 9 nodes ‐ SPMD cannon algorithm‐ 1 fault
160 loops ‐ckpt each 60s

Without failures

With Failures

Figure 4-2: Execution times of a matrix product program implemented under the SPMD

paradigm using a cannon algorithm. Occurrence of one failure per execution

 Depending on the moment when the failure occurs, this disarrangement caused

by the recovery process may affect the usability of the application results. For

example in a weather prediction program, that deals with a lot of variables and has a

well defined time limit to produce its results, that is before they really happens, a

large delay cause the application produces obsolete results. Online (24x7) systems

82 Chapter 4

will suffer gradual throughput degradation as failures occurs, generating response

times that may become unacceptable.

An aggravation of this condition may occur in tightly coupled parallel systems

where the communications between the processes is very intensive. Therefore, if

some processes experience a slowdown in their execution, they will start to postpone

their responses to other processes, then these ones will be held, waiting a message

receive from the slow nodes, propagating the slowdown by the entire cluster. The

chart in the Figure 4-2 shows the execution times of a SPMD implementation of a

matrix multiplication (Cannon’s algorithm). This SPMD algorithm has a

communication mesh as depicted in Figure 4-3b.

Each execution was performed in a nine nodes cluster and one fault was injected

at different moments. In this chart, the greater bars indicate more execution time. We

can see that having only one node sharing process causes considerable delays even

when fault occurring near to the end of the processing. Comparatively, the Figure 4-4

depicts an analogue result with a master/work implementation of matrix

multiplication. In this approach, the processing was distributed statically through the

cluster nodes. As shown in Figure 4-3, the MW algorithm has a 1-to-N message

pattern (Figure 4-3a). The master process communicates with all the worker

processes. Each worker process only communicates with the master process. We can

see that the effects of having nodes sharing the computing power of a node are very

similar in different parallel paradigms.

(a)

P P P

P P P

P P P

M

W W W W

 (b)
Figure 4-3: Message pattern of a matrix-multiplication using

a) M/W paradigm and b) SPMD paradigm.

Protecting the System 83

353,80 353,80 353,80

73,07%

49,23%

27,58%

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

25% 50% 75%

Ti
m
e
(s
)

Fault moment

1000x1000 Matrix product using 11 nodes ‐Master/Worker static distribution ‐ 1 fault
160 loops ‐ ckpt each 60s Without failures

With Failure

Figure 4-4: Execution times of a matrix product program implemented under the

Master/Worker paradigm using a static distribution. Presence of one fault per execution

The factors exposed and the results showed in this chapter, demonstrate that the

s

perf

ng the system

The item 4.1 explained about the side effects caused by the recovery process in

 discusses about our solution in order to

prot

 Indeed, recently studies [Nagajara et al. 2005]

has

ystem configuration change may produce unwanted system slowdown. Those

ormance degradations may leave impracticable the use of some applications that

have time constrictions or demands all computing power possible. Therefore, it is

very desirable that the fault tolerance solutions avoid this phenomenon and more than

protect just the application execution, also protect the system configuration from the

possible changes.

4.2 Protecti

some fault tolerant solutions. This item

ect the system from these side effects, in other words, the system configuration

changes that a recovery may cause.

Besides the high availability, the applications running in clusters of computers

usually demands high performance.

demonstrated the relationship between these two requirements, retrieving the

“performability” concept formally introduced by Meyer [Meyer, 1980], which takes

84 Chapter 4

into consideration that in parallel computers, as a degradable system, performance and

availability cannot be dissociated and the overall performance of some systems is

very dependable of its availability.

With the performability concept in mind, we developed RADIC II, a new version

of the RADIC architecture that, beyond guaranteeing the correct finish of the

app

 changes imposed by the recovery

proc

architecture. The major challenge in this new RADIC architecture version

is k

curring until reach

b)

ation execution, spare nodes are consumed as needed, this approach

c)

s. This approach is useful for maintaining purposes. It is

lications, protects the system from the performance degradation caused by fault

recovery, allowing preserving the planned process distribution (system configuration)

in order to conciliate performance and availability.

We increased the RADIC flexibility providing a dynamic redundancy feature that

protects the system configuration from the possible

ess. The dynamic redundancy in opposite to static approach, bases on presence of

backup components ready to assume the work of a failed one. These backup

components also are called spares, if they are active, but not working, may be called

hot spares.

This new feature introduces a fully transparent management of hot spare nodes in

the RADIC

eep all the RADIC features and provide a mechanism to use and manage spare

nodes in a fully distributed system. This mechanism was implemented in three

different approaches, each one incorporating a new functionality:

a) Starting the application execution with a pre-allocated number of spare

nodes. The spare nodes are being used as faults are oc

zero.

New spares insertion, in order to replace the consumed ones. During the

applic

allows reestablish the planned number of spares in the system. This approach

also is useful to replace failed nodes when there are not spares in the

configuration.

Replacing the most fault probable nodes (due to factors like MTBF) before

the fault occur

Protecting the System 85

Suc

major c y and scalability.

Foll

h em that avoids the system configuration

ing a set of spare nodes used to assume

faile

 once we avoid the node loss by replacing it by a spare

nod

me request. The Figure 4-5 depicts a

RAD

e called spare table. The excerpt in Table 4-1 shows

the

possible to replace each node of a cluster without need to stop the entire

application. It is applicable in long running applications.

h mechanism improves the RADIC perfomability without to affect its four

haracteristics: transparency, decentralization, flexibilit

owing we explain in detail each one of these approaches, showing how it works.

4.2.1 Avoiding System Changes

In t is approach, we provide a syst

change mentioned in item 4.1.1 by provid

d processes, instead of to recover in some working node. A RADIC II

configuration may have any spare nodes as desired. Each spare node runs a protector

process in a spare mode.

Such approach aims to allow controlling the system degradation generated by the

RADIC recovery process,

e. We preserve the original flexibility allowing many spares as desired, without to

affect the scalability feature once the spares does not participate of the fault tolerant

activities excepting, of course, the recovery task. The RADIC transparency is kept by

a management scheme that does not need any administrator intervention and keeps

decentralized all information about the spares.

In this mode, the protector does not perform the regular tasks described in item

3.2.1, just staying in listening state waiting for so

IC II configuration using two spare nodes, in this figure the nodes N9 and N10 are

spare nodes protectors denoted by gray color, we can see that these protectors does

not participate of the protectors’ chain, avoiding generating the failure detection

overhead with a workless node.

Each active Protector maintains the information about the spares presence. This

information is stored in a structur

spare table structure: in the first column is the spare identification according with

the same protector’s identification. The second field is the physical address of the

86 Chapter 4

spare node. Finally, the third column indicates the number of observers (processes)

running on this spare; this field is useful to indicate if the spare is still in an idle state.

Table 4-1: The spare table of each observer in the cluster in Figure 3-3.

Spare identification Address Observers

9 Node 9 0

10 Node 10 1

.

.
.
.

.

.

Protecting the System 87

N0

T0

N1

T1

N2

T2

N3

T3

N4

T4

N5

T5

N6

T6

N7

T7

N8

T8

O0

P0

O1

P1

O2

P2

O3

P3

O4

P4

O5

P5

O6

P6

O7

P7

O8

P8

N9

T9

N10

T10

Figure 4-5: A cluster using the RADIC II architecture with two spare nodes (N9 and N10).

How the active protectors detects the spare nodes

In order to keep RADIC II as a decentralized system, the spare nodes must spread

their existence for all active nodes of the cluster. To achieve this requirement, the

protector, when starts in spare mode, announces itself to the other protectors through a

reliable broadcast basing in the message forwarding technique [Jalote, 1994, p. 142].

This technique was chosen because does not affects the original RADIC scalability.

88 Chapter 4

Figure 4-6: How a protector in spare mode announces itself to the other protectors

The protector when running in spare mode searches some active node in each

protector’s chain running with the application and starts a communication protocol

with him requesting for its addition in the protectors’ spare table. The working

protector that receives this request, searches if the new spare data already is on its

spare table. If not, this protector adds the new spare data and forwards this request to

its neighbors, passing the new spare information in sequence. Each protector performs

the same tasks until to receive an already existent spare node data, finalizing the

message forward process. The flow in the Figure 4-6 clarifies this announcement

procedure.

This procedure occurs before the application starts, while RADIC is mounting its

radictable and just after has been started the Protectors (see item 3.3.1), hence it is a

Protecting the System 89

latency caused by the initialization process, does not considered as overhead in the

execution time. At the end of the spare nodes announcement, all the protectors have a

spare list containing the data of all spares available.

4.2.2 Recovering Using Spare Nodes

In the RADIC II, we modified the original RADIC recovery task described in the

item 3.3.4 in order to contemplate the spare node use. Currently, when a protector

detects a fault, it first searches a spare data in its spare table, if found some

unoccupied spare, i.e. the number of observers reported in the spare table still is

equals to zero, it starts a spare use protocol. In this protocol, the active protector

communicates with the spare asking for its situation, i.e. how many observers are

running on its node. At this point, two situations may happen:

a) If the spare answer that already has processes running on its node, the

protector then search other spare in its table and restart the procedure. If

the protector does not find any idle spare, it executes the regular RADIC

recovery task.

b) If the protector confirms the idle situation, the protector then sends a

request for its use.

90 Chapter 4

Figure 4-7: The recovery task using spare nodes

From the request moment, the spare will not accept any requests from other

protectors. After receive the request confirmation, the protector commands the spare

to join the protectors’ fault detection scheme. This step consists in these phases:

a) The protector tells to its antecessor in the chain to wait the

connection of the spare to be its new successor.

b) Simultaneously, the protector commands to spare to connect to

this antecessor and make it its own antecessor.

c) The protector instructs the spare to wait its connection as its new

successor.

Protecting the System 91

d) Finally, the protector connects to spare as its new antecessor.

(a)

(b)

(c)

(d)

Figure 4-8: Recovering tasks in a cluster using spare nodes.

92 Chapter 4

After finishes this step, the protector sends the failed process checkpoint and

log to the spare, and command it to recover the failed process using the regular

RADIC recovery process. The flow in the Figure 4-7 clarifies this entire process,

complementing the understanding of this process.

The Figure 4-8 depicts the system configuration in four stages of the

recovery task: a) Failure free execution with presence of spare nodes; b) a fault occurs

the node N3; c) the protector T4 starts the recovery activating the spare N9; d) process

recovered in the spare node.

Changes in the Fault-Masking Task

Figure 4-9: The new fault mask procedure

Protecting the System 93

The original RADIC fault-masking task presented in the item 3.3.5 bases on a

heuristic to determine where a faulty process will be after the recovery. This heuristic

was very efficient in RADIC, because its recovery process was very deterministic, i.e.

the failed process always recovers in its protector. RADIC II inserts a small

indeterminism in locating a failed process because this process may has been

recovered in any spare of the configuration, and the process may not able to locate the

recovered process in this spare.

In order to solve this indeterminism, we implemented a small change in the

original RADIC fault-masking task. This change consists in if after the observer did

not find the recovered process asking by its original protector, it searches in the spares

using spare table, looking for the faulty process. However, as we said in the topic

How the active protectors detects the spare nodes, only the protectors have the spare

table information, not the observers. Hence, we increased the communication between

the Observers and the Protector running in its node, the local protector. In order to

execute the new fault masking protocol, the Observer communicates with the local

Protector, asking for the spare table, and seeks in this table for the recovered process.

After the Observer has found the recovered process, it updates its radictable with the

new location, does not needing to perform this procedure again. The Figure 4-9

contains the flow of this new procedure.

94 Chapter 4

4.2.3 Restoring the System Configuration

Until now, we saw how the proposed RADIC II mechanism avoids the system

configuration changes. Most of the concepts presented will be also applied in this

approach.

Figure 4-10: How a spare is used to replace a faulty node

Let us suppose a long-term execution application, like the 24x7 systems. This

system usually needs a fault tolerant solution based in redundancy in order to avoid

the degradation of the system, keeping the performability. If it using a dynamic

redundancy solution provided by spare components, the system will be able to keep

the performance by a certain period, but as the number of spares is a fixed value, they

are used in each fault until reach zero. From this moment, this system starts to suffer

some degradation after fault recoveries.

Protecting the System 95

The flexibility of RADIC II allows avoiding this happening by restoring the

initial system configuration. The procedure explained in topic How the active

protectors detects the spare nodes may be applied to insert new nodes in order to

replace the used spare nodes. Despite the process described in this topic be performed

at the start of an application, it may be executed at any moment during the program

execution, without need stop the application. Thus, the failed nodes can return to the

configuration after be repaired.

More than to replace used spare nodes, that procedure may replace faulty nodes

too. We extended the announcement task to permit that if some node of the

configuration is already overloaded, i.e. it has more processes executing than the

original planning, it can request the spare at the announcement moment, transferring

the extra processes to the inserted node. If there is not any overloaded node, this new

node remains just a new spare in the configuration.

In the Figure 4-10 we show the flow contemplating this approach. Some election

policy may be applied in order to choice what node will migrate its extra processes to

the new node, i.e. the first one found or the most overloaded. After initiate the use of

the new node, the protector update the spare data informing that this spare already is

in use and continues the spare spreading procedure, thus all protectors will know of

the existence of this node.

In this approach, we have a limitation, which occurs in the case of all of the

nodes already have been replaced. In this situation, the new spare has not how to

discover any node of the application without some extra information provided at the

start of the procedure.

4.2.4 Avoiding Faults

Despite the availability, the major goal of continuous applications using high

performance computing cluster is to obtain faster response times. It is a common

sense that the fault avoidance is a better approach than the fault tolerance. The usual

manner to avoid faults occurrence bases on a preventive maintenance of the system

components.

96 Chapter 4

Preventive maintenance generally involves the periodic replacement of the fault-

imminent or fault-probable components. This procedure generally means to stop the

component or its host. However, the referred kind of applications doesn’t expect

maintenance downtimes, implying in the existence of a mechanism that allows these

replacements without need stop the execution of the application.

The dynamic redundancy scheme present in RADIC II, explained above,

provides a scheme that enable the architecture to perform a scheduled hot replacement

(not stopping the application execution) of a cluster node. As RADIC II allows the

spare node insertion after the application starts without requiring any stop in the

program execution, we just need turn off the node to be replaced and their processes

automatically will be recovered in the recent spare added.

Such mechanism is very simple, and may be improved by implementing some

automation feature that allows commanding the machine to be replaced to

automatically turn off, or to take it checkpoint directly in to new spare added, just

before to suicide. Other improvement may be the inclusion of some fault prediction

algorithm that permits a best choice of the machines to be replaced.

Chapter 5

Implementing the RADIC II

Architecture

In order to prove and to perform experimental evaluation, Duarte implemented a

prototype of RADIC architecture called RADICMPI [Duarte et al, 2006]. RADICMPI

implements a set of the Message Passing Interface (MPI), a widely used specification

for message passing implementations.

Since our solution bases on the RADIC architecture, we also used the

RADICMPI prototype to implement the dynamic redundancy feature. We performed

some modifications in the original program in order to allow the transparent

management of the spare nodes. By the other hand, we also incremented the set of

MPI functions implemented in RADICMPI with the nonblocking functions, as part of

a continuous work to achieve a complete MPI implementation, which allow us to

perform a variety of experiments.

This chapter shows how we made a practical implementation of the RADIC II

architecture over the existent RADIC prototype.

5.1 RADICMPI

The functional validation and all of RADIC experiments was conducted using a

prototype implementation called RADICMPI. The MPI specification was chosen

because is a widely adopted standard for message passing and have a fail-stop

semantic that demands some fault tolerance support.

Following we list the RADICMPI major features:

98 Chapter 5

a) It relies in open source software that allow an improved control of its

components.

b) It is a multithread program written in the C++ language and running on

Linux operating system for i386 architecture.

c) All network communication bases in the TCP/IP protocol

d) The checkpoint/recovery functions are performed by the well known library

BLCR (Berkeley Labs Checkpoint/Restart) [Hargrove and Duell, 2006].

The RADICMPI prototype system is compounded by three parts:

a) A set of shell scripts: radiccc - It used to compile RADIC MPI compliant

programs, indeed it is a convenience wrapper for the local native C and C++

compilers including the RADICMPI library; radicrun – It launches a RADIC

application, it receives the RADIC parameters and after parse them, bypass

them to other RADICMPI components.

b) The Protector program – It is a standalone program that implements the

RADIC Protector concept.

c) The RADICMPI Library - is a multithread library. Three threads exist when

we execute a program compiled with the RADICMPI library: the program

main thread, the observer thread and the checkpoint thread

RADICMPI has a built-in failure injector system that allows simulating faults

driven by pre-programmed events like passed time or number of messages. This

failure injector also permits determine which machine will fail. It also provides a

event logger that performs a detailed monitoring of the execution either of the

observers or of the protectors. Finally, RADICMPI allows a time instrumentation of

specific events embedded in its code allowing measuring the performance of

determined tasks.

Actually, RADICMPI Library implements a set of the MPI-1 compliant

functions: the blocking communication functions: MPI_Send, MPI_Recv,

MPI_Sendrecv; the initialization and finalization functions MPI_Init, MPI_Finalize;

Implementing the RADIC II Architecture 99

and a group of auxiliary functions: MPI_Comm_rank, MPI_Comm_size,

MPI_Wtime, MPI_Type_size and MPI_Get_processor_name.

The observer thread in the RADICMPI Library, as responsible by processes

communications, uses an internal buffer to deal with the arrived messages. The

incoming message process of RADICMPI works through this continuing running

thread, thus, the reception of a message is not associated with an MPI_Recv

command. An observer is always ready to receive messages, unless it is performing a

checkpoint of its process.

The Protector program performs the node protection activities and the distributed

storage tasks. It owns two entities related with its functionalities: The Antecessor

executing the watchdog thread, responsible to detect the neighbor failure and to

manage the neighbor’s observers, receiving their checkpoint and logs; the Successor

performing the heartbeat thread indicating when the node is alive.

5.2 The New Spare Nodes Feature

In order to enable the RADICMPI implementation for the dynamic redundancy

described in the RADIC II architecture, we performed some modifications in its code.

These modifications are mainly implemented in the Protector program’s code, which

is commonly associated with node tasks.

The Spare Mode

The first modification was the creation of the spare operation mode. The

Protector now receives a parameter indicating when it is a spare. In this situation, the

Protector starts neither the heartbeat/watchdog functions nor the observers’

management.

The Protector now receives as parameter the name of the node that it must to

connect to inform its presence. This node name is given either by the radicrun script

when the spare starts with the application or by the new radicadd script, responsible

to add new spares during the application execution. This script takes a machine name

in the list of application nodes and runs then Protector in spare mode passing such

100 Chapter 5

name as parameter. The Protector now tries to connect with this node, if fails returns

an error code to script, which takes other machine name from the list and repeats the

process. If the Protector gets connected, it requests its addition in the spare table,

starting the spreading of its data. The flow in the Figure 5-1 makes this procedure

clearer.

Figure 5-1: How a Protector in spare mode discover and connects with an application node

Furthermore, we implemented a new function in the Protector that is in charge to

deal with management requests.

Management Functions

In order to enable the Protector to deal with the new features incorporated by

RADIC II, we create a set of management functions and a management thread to

attend the requests. When the Protector starts in spare mode, it only starts the

management thread. This thread opens a TCP socket listening for any request from

the external world made by other Protector, an Observer or a Monitoring program.

Implementing the RADIC II Architecture 101

When a connection arrives, the management thread analyzes the request and starts a

specialized function to attend it performing needed tasks. The request is a message

containing a header indicating its type, and generally, some other information needed

to perform it. Following we list the request types and its functionality.

USESPARE – Request the use of the spare to recover a failed process. The

protector that detects the fault, send this request to spare. When the spare Protector

receives this request, performs the tasks to join the protector’s chain, to receive and to

recover the failed process.

CNCTPROT – It commands the Protector to connect with other one. The request

contains the Protector address to be connected. This request makes part of the tasks

performed when recovering a failed process.

NEWSPARE – It is the request for insert the information of a new spare in the

spare table. The new spare sends this request to a Protector and this Protector, after

adding this information, sends the same request to its neighbor, until receive back the

same request, finalizing the new spare addition process.

OBSQTY – When a Protector (spare or not) receives this request, it answer with

the number of observers running in this node. This information is useful to determine

when a spare still remain idle and can be requested for recovering. A Protector sends

this request to discover the idle spares.

MLOGTX – This request is inherited from the Observer-Protector protocol used

to perform the regular RADIC recovery process. It is a request for the log file

transmission. When the spare receives this request, waits for the log file reception,

and store it for the recovery process.

CKPTTX – This request is also inherited from the Observer-Protector protocol

used to perform the regular RADIC recovery process. It is a request for the

checkpoint file transmission. When the spare receives this request, waits for the

checkpoint file reception, and store it for the recovery process.

SNDSPARETBL – It asks to Protector to send its spare table.

102 Chapter 5

SNDSPARETBLOBS – It is similar to the previous, but in this case, the

Observers who sent this kind of request. This request is useful in the fault-masking

task performed by the Observers and they need to know where the spares in the actual

configuration are in order to find some recovered process.

RCVSPARETBL – It is a request that tells to the Protector to stay waiting for a

spare table transmission, i.e. to get ready for to receive a spare table. A Protector

sends this request when the spare assumes a failed process, because at this moment

the spare still not know who the other spares are.

SNDINFONGHB – It asks to Protector to inform who its neighbors are. It is

useful to a monitoring tool in order to discover the actual protectors’ chain.

RCVROBS – This is the command to the spare to recover the Observer using the

checkpoint and log transmitted before. The data of the Observer goes just after the

request.

STOPTHREAD – It is an operational request. Applied when the application has

finished and the RADIC II environment is shutting down. It performs the finish of the

management thread.

STOPRCV – It commands to Protector to stop the management session, backing

to wait a new session.

How RADICMPI Recovers a Process Using a Spare Node

When a Protector detects a fault, it starts a recovery process using the

management commands mentioned before. Following, we describe the recovery

process using a spare node.

The Protector searches in its spare table if there is some spare. If not, it performs

the regular RADIC recovery process. If there is some spare in the table, the protector

sends to it a OBSQTY request, if the response is greater than zero, it will be taken the

next spare in the table and repeat this step. If does not remains any spare in the table,

it performs the regular RADIC recovery process. If the spare answers that have zero

observers, the Protector assumes a commander function in relation to the spare and

sends a USESPARE request. The spare then starts a usespare routine not attending

Implementing the RADIC II Architecture 103

requests from any other Protector. The commander Protector then sends a

CNCTPROT request in order to the spare join itself to the Protector’s chain. The

commander sends a CKPTTX request, and transmits the checkpoint file, following

sends a MLOGTX if there is any log file and send it to the spare. After the files

transmition, the Protector sends a RCVROBS request and the spare performs the

regular RADIC recovery. Finally, the commander sends a STOPRCV to stop the

recovery session. The Figure 5-2 depicts the message exchange between Protector and

spare.

tim
e

Figure 5-2: The recovery RADICMPI protocol using spare.

Changes in the Fault Masking Routine

After a successful recovery procedure in the spare, the other processes in the

application might not know that where the recovered process is running. As the old

RADICMPI recovery routine was deterministic, i.e. the process always recover in its

Protector (a neighbour), the fault masking routine was based in to search back in each

Protector of the chain. At present, the recovered process location is a quite

undetermined, because may be located in any of the spares of the configuration, or in

its original Protector either. In order to solve this question, we changed the original

fault masking routine, making it to search the recovered process in the spare table if

didn’t find in the original protector. For in such a way, the Observer attached to the

process locating the recovered one must to know the spares in the actual

104 Chapter 5

configuration, and then it starts a communication with the local Protector, i.e. the

Protector running in the same node, and send a SNDSPARETBLOBS request. The

local Protector sends its spare table to Observer. The Observer will ask to each

Protector’ spare in the table for its status. If after this routine the recovered process is

not found, it means that the process was recovered in the original way, so the

Observer starts the original fault masking routine. After the Observer has found the

recovered process, it updates its radictable with the new location, does not needing to

perform this procedure again.

5.3 New MPI Functions

In order to improve our experimental work, increasing the number of possible

experiments and contribute with the RADICMPI completeness, we performed an

additional work, adding some new MPI functions. All of these functions was designed

and implemented taking care with the fault tolerance issues. Following we describe

these functions.

5.3.1 The Non-Blocking Functions

We believe that an important step after to have the major blocking functions

implemented is to have available the non-blocking MPI functions. These functions

perform communication without need to block the processing until the message buffer

is free. This behavior allows overlapping computation with communications, i.e.

while the communication request is not finished, some computation may be

performed. We implemented the functions: MPI_Isend, MPI_Irecv, MPI_Test,

MPI_Testany, MPI_Testall, MPI_Wait, MPI_Waitany, MPI_Waitall and the object

MPI_Request.

MPI_Request

MPI_Request is an object used to control the requests of non-blocking functions.

Every time that a non blocking function starts, it creates a MPI_Request object, when

the function completes its work, it updates this object.

Implementing the RADIC II Architecture 105

MPI_Isend

MPI_Isend commands the Observer to use a thread to send the message stored in

a buffer informed by the application process. At this moment, the function creates a

MPI_Request object that is returned to application. The processing continues despite

the observer not has delivered the message to the communication channel yet. When

the message is delivered, the MPI_Request object has the information of its

completion set to true.

MPI_Irecv

The MPI_Irecv drives the Observer to check in the RADICMPI buffer if a

requested message was delivered. If not, it puts such message in a pending message

buffer, and let the processing continues, setting the MPI_Request completion field to

false. Every time that a message arrives, the Observer checks in the pending message

buffer if there is a correspondent message request, if it finds the message, it sets the

MPI_Request completion field to true.

MPI_Test

The MPI_Test receives an MPI_Request object and probes its completion

returning the result of the probe. Moreover if the request command was a MPI_Irecv,

it sets the MPI_Status referred with this command.

MPI_Testany

MPI_Testany performs a MPI_Test function in a set of MPI_Request objects

returning true if any of them is complete. Moreover it also sets the MPI_Status of the

completed command in the MPI_Irecv cases.

MPI_Testall

MPI_Testall performs a MPI_Test function in a set of MPI_Request objects

returning true if all of them are complete. Moreover it also sets the MPI_Status of the

completed commands in the MPI_Irecv cases. Indeed, the MPI_Test is a special case

of this function, where the set of requests only has one entry.

106 Chapter 5

MPI_Wait

The MPI_Wait receives an MPI_Request object, probes its completion, and

blocks the processing until the request finishes. In the MPI_Isend case, waits that the

started thread signalizes its finish through a lock variable. The MPI_Irecv cases relies

in the arriving of messages that signalize the checking of pending messages routine.

MPI_Waitany

MPI_Waitany performs probe in a set of MPI_Request objects waiting until any

of them is complete. Moreover it also sets the MPI_Status of the completed command

in the MPI_Irecv cases.

MPI_Waitall

MPI_Waitall performs a MPI_Wait function in a set of MPI_Request objects

waiting until all of them are complete. Moreover it also sets the MPI_Status of the

completed commands in the MPI_Irecv cases. Indeed, the MPI_Wait is a special case

of this function, where the set of requests only has one entry.

5.3.2 The Collective Functions

In order to carry out a specific experiment, we just implemented the

MPI_Allgather function, performed with MPI_Sends and MPI_Recvs commands.

This function sends a buffer in each process for all of the other process. After

performing, each process has a vector containing the buffer value of each process

executing.

Chapter 6

RADIC II Experiments

After to design and to implement the RADIC II features, the next step in our

work certainly is to test our idea through a set of experiments that allows to validate

and to evaluate our solution.

In order to perform this activity we made a plan of experiments, taking into

consideration the aspects that we would to analyze, and the expected results. This plan

of experiments contains the kind of experiment, how to perform it, objective and

results expected versus results obtained.

Our experiments not intended to prove or to evaluate the RADIC functionalities.

We believe that these functionalities and features are already proved [Duarte, et al.,

2007] and RADIC perform its tasks with correctness, producing valid results. We

stated our experiments in the flexible dynamic redundancy feature, validating its

functioning and evaluating comparatively its results. All of our generated results were

compared with the same program compiled and executed with MPICH-1.2.7,

guaranteeing the correctness of the execution.

6.1 Experiments Environment

In order to proceed with our experiments, we used a cluster with the following

characteristics: twelve Athlon-XP2600+/ 1.9GHz/ 512KB L2 cache, 768 MB RAM,

40GB ATA running Linux Kernel 2.6.17 with gcc v4.0.2 compiler. An Ethernet 100-

baseTX switch interconnects all of nodes. The network protocol used was TCP/IP v4.

All executions were performed using the RADICMPI prototype. RADICMPI

provides two important tools to perform experiments with fault tolerance: a fault

injection mechanism and a debug log.

108 Chapter 6

The generation of the faults may be deterministic or probabilistic. In

deterministic testing, the tester selects the fault patterns from the domain of possible

faults. In probabilistic testing, the tester selects the fault patterns according to the

probabilistic distribution of the fault patterns in the domain of possible faults.

The fault injection mechanism implemented in RADICMPI served for testing and

debugging. The operation of the mechanism was deterministic, i.e., we programmed

the mechanism to force all fault situations required to test the system functionality.

The mechanism is implemented at software level. This allowed a rigorous control

of the fault injection and greatly facilitated the construction and operation of the fault

injection mechanism. In practice, the fault injection code is part of the code of the

RADICMPI elements.

The RADICMPI debug log mechanism served to help us in the development of

the RADICMPI software and to validate some procedures. The mechanism records

the internal activities in a log database stored in the local disk of each node.

Table 6-1 describes each field of the debug log database. The database has the

same structure for protectors and observers

Table 6-1: Fields of the debug log

Column Field name Description

1 Element ID Indicate the rank of the element. T# elements are protectors and O#
elements are observers

2 Event id Identifies the event type

3 Event time Elapsed time in seconds since the program startup

4 Function name Name of the internal function that generate the event

5 Event Description of the event

6.2 Validation Experiments

Firstly, we perform a set of experiments in order to validate the spare nodes

functioning. These experiments were performed based on a common ping-pong

RADIC II Experiments 109

algorithm execution and the results contained in debug log generated by RADICMPI.

The Figure 6-1 depicts the flow of the validation process applied. After to define a

test scenario and the expected results, we created specific events triggered by actions

performed by the spare nodes usage. Finally, we analyze the debug log, allowing us to

validate the correct system functioning.

Define test
scenario

Execute tests

Init

End

Analyze Debug Log

Define Events to
be logged

Define expected
Log results

Figure 6-1: Flow representing the validation process

Validating the spare adding task

In this experiment, we aim to validate the procedure described in the item 4.2.1.

Hence, we expect that a Protector was able to identify a new spare request and

forward this request until receive it again. We put some event triggers when the

Protector receives a request and when the Protector detects a repeated request and

stops the forwarding. The Figure 6-2 shows the debug log excerpt containing these

events.

110 Chapter 6

.

.

.
2 1 management_thread prt 3 : waiting message reception
8 1 management_thread prt 3 : Request received. Type: Add new spare request
8 1 addNewSpare prt 3 : waiting for spare data...
2 1 addNewSpare prt 3 : Receiving a New spare. Initiating the message
forwarding:
8 1 addNewSpare prt 3 : New spare added: 158.109.65.216
8 1 sendNewSpare prt 3 : new spare request sent to: 158.109.65.213
8 1 sendNewSpare prt 3 : new spare sent to: 158.109.65.213
2 1 management_thread prt 3 : waiting connection
2 1 management_thread prt 3 : waiting message reception
8 1 management_thread prt 3 : Request received. Type: Stop session
2 1 management_thread prt 3 : waiting connection
8 1 connect prt 3 : ANTECESSOR: receiving information from : 158.109.65.215
8 1 connect prt 3 : ANTECESSOR: sending my information to 158.109.65.215
8 1 connect prt 3 : successor OK
33 1 main prt 3 : PRE_ANTE= 158.109.65.212 - ANTE= 2 - SUC= 4
45 2 obs_managing_thread prt 3 : Command 24 from observer 3
10 2 manage_local_observers_list prt 3 : + obs 3 from node -1. 1
observers attached
2 2 management_thread prt 3 : waiting message reception
8 2 management_thread prt 3 : Request received. Type: Add new spare request
8 2 addNewSpare prt 3 : waiting for spare data...
2 2 addNewSpare prt 3 : I already have the New spare. stopping the
message forwarding:
2 2 management_thread prt 3 : waiting connection
.
.
.

Figure 6-2: Debug log excerpt of a Protector containing the new spare events

In this execution, we reserved one node to acts as a spare node. Such node starts a

communication with the Protector number 3 of the configuration and sends its

information. As shown in the last Figure, the Protector 3 receives the first new spare

request, add its information and forward it to its neighbor. When the Protector

receives the request for add the same spare, it stops the message forwarding. These

.

.

.
2 0 main prt 5 : I am a spare
2 0 management_thread prt 5 : Thread created
2 0 management_thread prt 5 : waiting connection
2 70 management_thread prt 5 : waiting message reception
8 70 management_thread prt 5 : Request received. Type: Observers quantity
request
8 70 getObserverQty prt 5 : Sending observer qty: 0
8 70 getObserverQty prt 5 : Qty of observer sent: 0
2 70 management_thread prt 5 : waiting connection
2 70 management_thread prt 5 : waiting message reception
8 70 management_thread prt 5 : Request received. Type: Receive spare list
request
8 70 rcvSpareList prt 5 : waiting for spare data...
8 70 rcvSpareList prt 5 : first spare data received: 158.109.65.216
2 70 management_thread prt 5 : waiting connection
2 70 management_thread prt 5 : waiting message reception
8 70 management_thread prt 5 : Request received. Type: Use spare request

RADIC II Experiments 111

 events are highlighted in the excerpt shown before.

2 70 management_thread prt 5 : calling use_spare function
8 70 use_spare prt 5 : Changed: starting use_spare function.
communicating with: 158.109.65.213
2 70 use_spare prt 5 : waiting command
8 70 use_spare prt 5 : Request received. Type: Join the protector's chain
8 70 use_spare prt 5 : request for heartbeat/watchdog received from:
158.109.65.213
2 70 watchdog_threadprt 5 : Thread created
2 70 connect prt 5 : ANTECESSOR: waiting receive information from my neighbour
2 70 heartbeat_thread prt 5 : Thread created
8 70 heartbeat_thread prt 5 : Connecting with: 158.109.65.213
8 71 connect prt 5 : SUCCESSOR: response received from an active protector with
its information: 158.109.65.213
8 71 connect prt 5 : antecessor OK
8 78 connect prt 5 : ANTECESSOR: receiving information from : 158.109.65.215
8 78 connect prt 5 : ANTECESSOR: sending my information to 158.109.65.215
8 78 connect prt 5 : successor OK
45 78 obs_managing_thread prt 5 : Command 12 from observer 4
54 78 manage_observers_list prt 5 : Managing obs 4
10 78 manage_observers_list prt 5 : + obs 4 from node 4. 1 observers attached
33 79 use_spare prt 5 : PRE_ANTE= 158.109.65.212 - ANTE= 2 - SUC= 4
8 79 use_spare prt 5 : Request received. Type: Checkpoint file transfer
request
2 79 use_spare prt 5 : Chekpoint file transmission request
8 79 recvCkptLogFile prt 5 : starting receive file from: 158.109.65.213
2 79 recvCkptLogFile prt 5 : Checkpoint or Log file successfully received.
8 79 use_spare prt 5 : Request received. Type: Message log file transfer
request
8 79 recvCkptLogFile prt 5 : starting receive file from: 158.109.65.213
2 79 recvCkptLogFile prt 5 : Checkpoint or Log file successfully received.
8 79 use_spare prt 5 : Request received. Type: Recover observer request
2 79 use_spare prt 5 : adding the observer in the observer list before
recover
2 79 recover_observers prt 5 : Initiating recovery
39 79 recover_observers prt 5 : Recovering process 3
8 79 use_spare prt 5 : Request received. Type: Stop session
2 79 management_thread prt 5 : returned from use_spare function
2 79 management_thread prt 5 : waiting connection
4.
.
.

Figure 6-3: Debug log excerpt of a spare node Protector performing a recovery

Validating the recovery task using spare

Beyond the correct finish of the application after been recovered using a spare

node, we validate this task by using the debug log to certify that the correct steps were

performed. In this experiment, we expect that after inject a fault, the Protector that

detects this fault searches for a spare and starts the protocol for spare use. In the

Figure 6-3 we can see the debug log of a spare node Protector, denoting the events

related with the recovery process.

.

.

.
36 69 obs_managing_thread prt 3 : Reception finished : 6400 B / 0.000754

112 Chapter 6

s

The highlighted events are the requests that correspond with the process recovery

detailed in item 4.2.2.

12 69 watchdog_thread prt 3 : ERROR : Success
2 69 manageFault prt 3 : Fault detected
8 69 manageFault prt 3 : Spare node Found! address: 158.109.65.218
8 69 querySpareObsQty prt 3 : Observer qty query sent to: 158.109.65.218
57 69 querySpareObsQty obs 3 : Fault observer qty=: message 0
60 69 manageFault prt 3 : obsQty= 0
8 69 manageFault prt 3 : using Spare address: 158.109.65.218
8 69 sendRequest prt 3 : initiating request send command : Receive
spare list request
8 69 sendRequest prt 3 : Socket closed. Opening with new IP Address...
158.109.65.218
8 69 sendRequest prt 3 : request sent command : Receive spare list
request
8 69 sendSpareList prt 3 : Start sending spare list to 158.109.65.218
8 69 sendSpareList prt 3 : Finalizing spare list sending to 158.109.65.218
8 69 sendRequest prt 3 : initiating request send command : Stop session
2 69 sendRequest prt 3 : Socket exists and has the same IP Address. Do
nothing...
8 69 sendRequest prt 3 : request sent command : Stop session
8 69 sendRequest prt 3 : initiating request send command : Use spare
request
8 69 sendRequest prt 3 : Socket closed. Opening with new IP Address...
158.109.65.218
8 69 sendRequest prt 3 : request sent command : Use spare request
2 69 manageFault prt 3 : fetching new neighbourhood with the spare:
8 69 sendRequest prt 3 : initiating request send command : Join the
protector's chain
2 69 sendRequest prt 3 : Socket exists and has the same IP Address. Do
nothing...
8 69 sendRequest prt 3 : request sent command : Join the protector's
chain
45 69 obs_managing_thread prt 3 : Command 19 from observer 4
14 69 storage_message_log prt 3 : Logging 6400 Bytes of message 327 from
source 3
.
.
Figure 6-4: Debug log excerpt of the Protector commanding the recovery in a spare node

6.3 Evaluation Experiments

In order to evaluate the RADIC II behavior, we performed some experiments

running well-known applications in different contexts. We tried to represent some

distinct approaches to common parallel applications and measuring comparatively the

effects of use or not the spare nodes approach.

For such class of experiments, we applied two kind of parallel programs: a

master-worker matrix product and an N-Body particle simulation using non-blocking

functions in a pipeline approach.

RADIC II Experiments 113

We choose the matrix product algorithms because we could apply different

parallel paradigms over it. We used a master-worker and a SPMD algorithm,

facilitating the creation of different fault scenarios. As shown in Figure 4-3, the MW

algorithm has a 1-to-N message pattern (Figure 4-3a). The master process

communicates with all the worker processes. Each worker process only communicates

with the master process. The SPMD algorithm has a communication mesh (Figure

4-3b). Each application process communicates with their neighbors, representing a

tightly coupled application.

The MW algorithm also offered an additional control over the application

behavior; it was possible to use two strategies to balance the computation load

between the workers: dynamic and static.

In the static strategy, the master first calculates the amount of data that each

worker must receive. Next, the master sends the data slice for each worker and waits

until all workers return the results. In this strategy, the number of messages is small

but each message is large, because the master only communicates at the beginning, to

send the matrices blocks to the workers; and at the end, to receive the answers.

114 Chapter 6

Figure 6-5: The N-Body particle simulation flow

In the dynamic strategy, the master slices the matrices in small blocks and sends

pairs of blocks to the workers. When a worker answered the block multiplication’s

results, the master consolidates the result in the final matrix and sends a new pair of

blocks to the worker. In this strategy is easy to control the

computation-to-communication ratio by changing the block size. Small blocks

produce more communication and less computation. Conversely, large blocks produce

less communication and more computation.

The N-Body program bases in the example presented by Gropp [Gropp et al,

1999, p. 117]. This program performs a particle simulation, calculating the attraction

forces between them. It is implemented under the pipeline parallel paradigm and uses

RADIC II Experiments 115

non-blocking MPI communication functions to increase the performance. The Figure

6-5 represents the flow of the actions performed by each process.

6.3.1 Evaluating According with the Fault Moment

In this experiment series, we evaluate the behavior of the applications according

with the moment of the fault when using or not dynamic redundancy.

In order to perform these experiments, we executed two approaches for the

matrix product algorithm, the master-worker static distributed and the SPMD based

on the cannon algorithm. Thus, we can evaluate the coupling factor too, once the

SPMD algorithms are commonly tightly coupled.

353,80 353,80 353,80

73,07%

49,23%

27,58%

12,15% 12,57% 11,70%

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

25% 50% 75%

Ti
m
e
(s
)

Fault moment

1000x1000 Matrix product using 11 nodes ‐Master/Worker static distribution ‐ 1 fault
160 loops ‐ ckpt each 60s Without failures

Failures without spare

Failures with spare

Figure 6-6: Results of matrix product using a master-work static distributed program

Intending to obtain more diversity, we performed this experiment executing a

product of two 1000 X 1000 matrixes of float values in the master-work approach

over a cluster with eleven nodes in the first case. In order to increase the computing

time, we repeat the product 160 times in all executions. In the second case, we

executed the cannon algorithm with 1500 X 1500 matrixes over a nine nodes cluster.

In both cases, we inject a fault at approximately 25%, 50% and 75% of the total

execution time and we compared with a failure-free execution and with the spare

116 Chapter 6

nodes usage. In this case, we repeated the computing 160 times in order to enlarge the

execution time.

The Figure 6-6 contains a chart showing the results with the master-worker

approach. In this chart, we can see that the overhead caused by a recovery without

spare (the red middle column in each fault moment) versus using spare (the green

right column in each fault moment) with one fault occurring in different moments.

The overhead not using spares shows itself inversely proportional to the moment

when the fault occurs, generating greater overheads (reaching 73.07% in the worst

case analyzed) in premature fault case, while using spare, the overhead keeps

constantly and low despite the moment of the fault.

434,57 434,57 434,57

72,61%

49,37%

27,05%

13,93% 14,19% 14,82%

0,00000

100,00000

200,00000

300,00000

400,00000

500,00000

600,00000

700,00000

800,00000

25% 50% 75%

Ti
m
e
(s
)

Fault moment

1500x1500 Matrix product using 9 nodes ‐ SPMD cannon algorithm‐ 1 fault
160 loops ‐ckpt each 60s

Without failures

Failures without spare

Failures with spare

Figure 6-7: Results of matrix product using a SPMD program based in the cannon
algorithm

The Figure 6-7 shows de result chart with the SPMD program. We see an

analogous behavior with the overhead caused by not using spare nodes. The overhead

caused by the spare nodes usage is slightly greater than the static distribution

approach. This increment is due to the high coupling level in the SPMD approach, the

time spent in the recovery affects directly the communications with the neighbors’

processes and this delay continues propagating by the others process of the

RADIC II Experiments 117

application, while the recovery in the master-worker approach only affects the failed

worker.

6.3.2 Evaluating According with the Number of Nodes

In these experiments, we evaluated the behavior of the fault recovery in different

cluster sizes. Due to our physical limitations, we could not to prove in large size

clusters, which it allows to certify the RADIC II scalability. The current experiments

only give us an idea that RADIC II does not affect the scalability of a program.

631,40

271,80

196,70

2.67%

0.07%

0.07%

3.24%

0.03%

0.04%

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

4 Nodes 8 Nodes 11 Nodes

Ti
m
e
(s
)

Cluster Size

1000x1000 Matrix product in different cluster sizes‐Dynamic distribution ‐ 1 fault at ~25%
100 loops

Without failures

Failures without spare

Failures with spare

Figure 6-8: Results of matrix product using a master-worker program with load
dynamically balanced running in different cluster sizes

We ran two approaches for a master-work matrix product: using a static

distribution and using a dynamic distribution of matrix blocks. In both cases we

performed a product between two 1000 X 1000 matrixes. We executed the program

with four, eight and eleven nodes. We injected faults always at 25% of the execution

time, approximately. We measured the execution time when using or not the spare

nodes and comparing with a fault free execution time.

118 Chapter 6

The Figure 6-8 shows a chart with the results of the execution with a dynamic

load balancing approach. We can see clearly that the load balancing can to mitigate

the side-effects of the RADIC regular recovery, and the spare nodes use is almost

equal than not using it, being the worse approach in the smaller cluster. Indeed, the

processes in the overloaded node start to perform fewer tasks than other nodes, and

their workload is distributed among the cluster, almost not affecting the execution

time. As the cost of recovery using spare nodes may slightly greater, may be better do

not use this feature in some cases.

707,30

324,30

227,60

93.65%

73.38%

73.07%

15.31%

14.40%

14.45%

0,0

200,0

400,0

600,0

800,0

1000,0

1200,0

1400,0

1600,0

4 Nodes 8 Nodes 11 Nodes

Ti
m
e
(s
)

Cluster Size

1000x1000 Matrix product in different cluster sizes‐ Static distribution ‐ 1 fault at ~25%
100 loops ‐ ckpt each 45s

Without failures

Failures without spare

Failures with spare

Figure 6-9: Results of matrix product using a master-worker program with static load
distribution running in different cluster sizes

The chart in the Figure 6-9 shows the benefits of using spare nodes in some

parallel approaches. In this case, using a static load distribution, the node that hosts

the recovered process suffers a strong degradation, high affecting the overall

execution time independently of the size of the cluster. By other side, using the spare

nodes approaches, the overall impact in the execution time is low and stable, also

independently of the number of nodes.

RADIC II Experiments 119

6.3.3 Evaluating the Throughput in Continuous Applications

As many of the actual parallel applications are intended to run continuously in a

24x7 scheme, we performed an experiment intending represent the behavior of these

applications. In this experiment, we executed continuously the N-Body particle

simulation in a ten nodes pipeline and injected three faults in different moments and

different machines, measuring the throughput of the program in simulation steps per

minute. We analyzed four situations: a) a failure-free execution, used as comparing;

b) three faults recovered without spare in the same node; c) three faults recovered

without spare in different nodes and d) three faults recovered with spare.

0

5

10

15

20

25

30

35

Si
m
ul
at
io
n
St
ep

s
pe

r m
in
ut
e

Time (in minutes)

N‐Body Simulation of 2000 particles
in a 10 nodes pipeline ‐ 3 faults occurred

SameNode

DiffNode

Spare

FaultFree

Figure 6-10: Results of an N-Body program running continuously after three faults in
different situations.

In the Figure 6-10 we can see the result chart of this experiment. In this

experiment, we can perceive the influence of the application kind over the post-

recovery execution. When the three faults are recovered in different nodes, the

application’s throughput suffers an initial degradation, but in the subsequent faults,

just changes a little. This behavior occurs because the pipeline arrangement: the

degradation of the node containing the second recovered is masked by the delay

120 Chapter 6

caused by the first recovered process node. This assumption is confirmed when all

faults processes are recovered in the same node, we can perceive a degradation of the

throughput after each failure. When executing with spare nodes presence we see that

after quick throughput degradation, the system backs to the original simulation step

rate. We see also that the penalization imposed by the recovery process using spare is

greater than the regular RADIC process, but this loss is quickly compensated by the

throughput restoring in the remaining execution.

Chapter 7

Conclusions

In this dissertation we saw that the demands for high performance computing,

generally represented by parallel systems seems to continue growing. Several

applications have been ported to parallel environments, expecting obtain a certain

gain of performance, commonly represented by their execution times. Furthermore,

besides of performance, the users of these applications usually aim a certain level of

availability.

We explained that due to the reliability constraints, many large parallel systems

may not offer the expected level of availability. Therefore, the fault tolerance has

been a constantly growing issue in order to improve the availability of these systems,

resulting in a considerable number of researches in this area.

The RADIC (Redundant Array of Independent Fault Tolerance Controllers)

architecture was studied as a fault tolerance solution for messaging passing providing

transparency, decentralization, scalability and flexibility. We have presented the

concepts of this architecture, which it bases on two kind of processes working

together to provide fault tolerance, the Observers and the Protectors. We saw the

Modus Operandi of these processes and their issues besides a practical

implementation of the architecture.

We argued that in order to tolerate a fault, some message passing based solutions

may generate a system configuration change at the recovery, i.e., respawning failed

process in other active node of the application, which changes the original process

distribution. Moreover, we shown that this change of configuration may lead to some

122 Conclusions

system degradation, generally meaning overall performance loss as demonstrated by

some experiments ran over the RADIC architecture.

This project was undertaken to design a fault tolerant architecture avoiding the

side effects of the recovery process and evaluate it effectiveness. We used RADIC as

basis to the development of RADIC II, an architecture that adds other protection level

to RADIC, inserting a flexible dynamic redundancy feature.

The implementation of this new feature, represented by the use of spare nodes,

did not affect the RADIC characteristics of transparency, decentralization, flexibility

and scalability. Hence, we developed a transparent management of spare nodes,

which is able to request and use them without need any centralized information.

In RADIC II, we implemented the ability of dynamically insert new spare nodes

during the application execution. The architecture now also allows the replacement of

faulty nodes. Moreover, the new features implemented may be applied to perform

maintenance tasks, injecting faults in specific nodes forcing the processes running on

them to migrate to a recently inserted spare node. These abilities represent the

flexibility of RADIC II, beyond to keep the original RADIC structural flexibility.

We modified the original RADICMPI prototype implementing the flexible

redundancy feature. With the new version of this prototype, we performed several

experiments with RADIC II in order to validate its functionality and to evaluate its

appliance in different scenarios. All of scenarios bases on a twelve nodes cluster

running the LINUX operating system over a TCP/IP network.

We validated the RADIC II operation by using a debug log provided by the

RADICMPI original implementation. We inserted new events related with the spare

nodes usage. Initially we executed a ping-pong algorithm due to its simplicity, then

after injected a fault in some node and the application has been correctly recovered,

we checked the debug log in order to certify that all steps were correctly performed.

We applied the same approach in order to validate the non-blocking function.

We evaluated the appliance of our solution under two concepts: the overall

execution time, and the throughput of an application. We compared the effects of

Chapter 7 123

faults having or not available spare nodes. In the execution time case, we applied

different approaches for a matrix product algorithm, using a static distributed

Master/Worker and a SPMD approach implementing a Cannon algorithm. In order to

evaluate the throughput, we executed an N-Body particle simulation using a pipeline

paradigm, measuring the simulation steps performed comparing, again, the appliance

or not of spare nodes. Hence, the following conclusions can be drawn from the

present study.

Our experiments has shown that the side-effects caused by some recovery

approaches is dependant of the factors like application characteristics, i.e. message

pattern, parallel paradigm applied, i.e. pipeline, Master-Work, or SPMD and where

the process is recovered. We saw that the fault recovery, generally affects the overall

performance of the system, and the generated degradation may vary according to

where the process recovers and the parallel paradigm applied. Other relation

perceived is about the application coupling. Applications with high coupling level

between the computing nodes tend to suffer more intensively with the system

configuration change caused by the recovered process.

Moreover, we conclude that the use of a flexible redundancy scheme is a good

approach to avoid the effects of the system configuration changes. Our solution has

shown to be effective even in faults near at the application finishing. RADIC II also

shows a small overhead caused by the recovery process. The experimental results

have shown execution times and throughput values very near to a failure-free

execution. This work was presented at CACIC’2006 congress [Santos, et al., 2006].

After, we obtained new results that are going to appear in the ParCo2007 congress

[Santos, et al., 2007].

These findings enhance our understanding about the fault tolerance issues, like

the relationship with application characteristics and behavior, or the influence of a

parallel paradigm in recovered applications.

The project was limited in some ways. First, the project used a small sized

cluster, which does not reflects the reality and makes hard to test some aspects like

the scalability, hence, caution must be applied, as the findings might not be

124 Conclusions

transferable to large scale clusters. Despite of our efforts in to increase the number of

MPI functions implemented in RADICMPI, the actual set has restricted the possibility

of probe our solution in different benchmark application. Finally, we found an

intrinsic limitation of our solution when adding spare nodes during the execution.

Such limitation occurs when all nodes of the cluster already was been replaced, so the

new spare inserted does not have to know any machine in the cluster, needing some

additional information.

7.1 Open Lines

After a lot of work, we look to the present and we see many open lines that were

found during the path to reach here. These open lines represent the future work that

may be performed, expanding the RADIC II horizon.

The ideal number of spare nodes and its ideal allocation through the cluster still

are undiscovered subject. Further research might be investigate how it is possible to

achieve better results allocating spare nodes according with some requirements like

degradation level acceptable, or memory limits of a node.

New technologies are arriving each day. A permanent task will be to study how

to adapt and use RADIC II with the new trends of the high computing area, i.e. how

behaves RADIC II using multicore computers?, how can we exploit the

characteristics of this architecture?

Fault tolerant systems generally are very complex systems. RADIC II is not an

exception. Considerably more work will need to be done to generate a RADIC II

analytical model, but will be very useful helping to understand better the architecture

and providing tools to improve the RADIC II functioning allowing to determine better

values for some parameters like checkpoint interval or protection mapping.

Furthermore, this model may be applied in order to foresee the execution time under

some parameters.

A study about the possible election policies to be used in the node replacement

feature will be useful to determine which the ideal behavior to be taken in these

situations, considering factors like load balance or time to recover.

Chapter 7 125

The maintenance feature of RADIC II is still not a widely explored subject.

Additional research might be address the integration of this feature with some fault

prediction scheme, which will allow RADIC II to perform transparent process

migration avoiding faults before their happening.

It would be interesting to assess the effects of RADIC II in large clusters and with

different kind of applications. This study will give us a real knowledge about the

RADIC II scalability. Due to physical difficulties to access these machines, a RADIC

II simulator would be necessary beside to complete the MPI implementation in

RADICMPI.

The autonomic computing systems [Kephart and Chess, 2003] have been a new

trend in computing systems. Basing on the human autonomic system, this new trend

establishes a new group of systems having the abilities of self-healing, self-

configuring, self-protect and self-optimize. We see that RADIC already provides the

self-healing ability, while RADIC II implements the self-configuring capacity. Hence,

a new research might perform the steps toward an autonomic fault tolerant system

implementing the self-protecting and self-optimizing features.

References

[Agbaria and Friedman, 1999] - Agbaria, A. M. and Friedman, R. Starfish: fault-
tolerant dynamic MPI programs on clusters of workstations. In Proceedings of The
8th International Symposium on High Performance Distributed Computing, pp. 167-
176. Redondo Beach, USA. 3-6 August, 1999.

[Alvisi and Marzullo, 1998] -Alvisi, L. and Marzullo, K.. Message Logging:
Pessimistic, Optimistic, Causal, and Optimal. IEEE Transactions on Software
Engineering. 24(2), pp 149-159 Feb. 1998.

[Alvisi, et al., 1999] - Alvisi, L., Elnozahy, E., Rao, S., Husain, S. A. and de Mel, A.
An analysis of communication induced checkpointing. In Proceedings of The 29th
Annual International Symposium on Fault-Tolerant Computing, pp. 242-249.
Winsconsin, USA. June 15-18, 1999.

[Bosilca et al, 2002] - Bosilca G., Bouteiller A., Cappello F., Djilali S., Fedak G.,
Germain C., Herault T., Lemarinier P., Lodygensky O., Magniette F., Neri V. and
Selikhov A., MPICH-V: Toward a scalable fault tolerant MPI for volatile nodes, in
Supercomputing '02: Proceedings of the 2002 ACM/IEEE Conference on
Supercomputing, 2002, pp. 1-18.

[Bouteiller, et al., 2003a] - Bouteiller, A., Cappello, F., Hérault, T., Krawezik,
G.,Lemarinier, P., and Magniette, F.. MPICH-V2: a fault tolerant MPI for volatile
nodes based on pessimistic sender based message logging. High Performance
Networking and Computing (SC2003), Phoenix USA, IEEE/ACM..

 [Bouteiller, et al., 2003b] - Bouteiller, A., Lemarinier, P., Krawezik, K. and Capello,
F. Coordinated checkpoint versus message log for fault tolerant MPI. In Proceedings
of the 2003 IEEE International Conference on Cluster Computing, pp. 242-250. Hong
Kong, China. December 1-4, 2003. IEEE Computer Society.

[Bouteiller, et al., 2006] - Bouteiller, A., Herault, T., Krawezik, G., Lemarinier, P.
and Cappello, F. MPICH-V Project: A Multiprotocol Automatic Fault-Tolerant MPI.
International Journal of High Performance Computing Applications, 20(319-333
2006)

[Burns et al, 1994] - Burns, G., Daoud, R., Vaigl, J., LAM: An Open Cluster
Environment for MPI. In Ross, J.W., ed.: Proceedings of Supercomputing Symposium
’94, University of Toronto (1994) 379–386.

References 127

[Duarte, 2007] -Duarte, A. RADIC: A Powerful Fault Tolerant Architecture. PHD
Thesis, Computer Architecture and Operating Systems Department. Universitat
Autònoma de Barcelona, Spain.

 [Duarte, et al., 2006] - Duarte, A., Rexachs, D. and Luque, E. An Intelligent
Management of Fault Tolerance in cluster using RADICMPI. Lecture Notes on
Computer Science - Proceedings of The 13th European PVM/MPI User’s Group
Meeting, 4192:150-157. Springer Berlin / Heidelberg, 2006b.

[Duarte, et al., 2007] - Duarte, A., Rexachs, D. and Luque, E. Functional Tests of the
RADIC Fault Tolerance Architecture. In Proceedings of The 15th Euromicro
Conference on Parallel, Distributed and Network-based Processing, pp. 278-287.
Napoli, Italy. February 7-9, 2007. IEEE Computer Society.

 [Chandy and Lamport, 1985] - Chandy, K. M. and Lamport, L. Distributed
snapshots: determining global states of distributed systems. ACM Transactions on
Computer Systems, 3(1):63-75 (February 1985)

[Elnozahy, et al., 2002] - Elnozahy, E. N., Alvisi, L., Wang, Y.-M. and Johnson, D.
B. A survey of rollback-recovery protocols in message-passing systems. ACM
Computing Surveys, 34(3):375-408 (September 2002)

[Gao et al, 2005] - Gao, W., Chen M. and Nanya, T., A Faster Checkpointing and
Recovery Algorithm with a Hierarchical Storage Approach, Hpcasia, vol. 0, pp. 398-
402, 2005.

[Gropp et al, 1999] - Gropp, W., Lusk, E., and Skjellum, A.. 1999. Using MPI:
Portable Parallel Programming with the Message-Passing Interface. Second edn.
Anon. Cambridge, MA: MIT Press. ISSN 0-262-57104-8.

 [Hariri, et al., 1992] - Hariri, S., Choudhari, A and Sarikaya, B. Architectural
Support for Designing Fault-Tolerant Open Distributed Systems. Computer, 25(6):50-
62 (June 1992)

[Hargrove and Duell, 2006] - Hargrove, P. H. and Duell, J. C. Berkeley Lab
Checkpoint/Restart (BLCR) for Linux Clusters. In Proceedings of Scientific
Discovery through Advanced Computing (SciDAC 2006), pp. 494-499. Denver,
USA. June 25-29, 2006. U.S. Department of Energy.

[Kalaiselvi and Rajaraman, 2000] - Kalaiselvi, S. and Rajaraman, V. A survey of
checkpointing algorithms for parallel and distributted computers. Sãdhanã,
25(5):498-510 (October 2000)

128 References

[Kephart and Chess, 2003] - Kephart, J.O. and Chess, D.M., The Vision of Autonomic
Computing. Computer. 36 (1):41-52 , New York, 2003

[Koren and Krishna, 2007] - Koren, I. and Krishna, C. M., Fault Tolerant Systems.
1st. ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007

[Kondo, M., et al. 2003] - Kondo, M., Hayashida, T., Imai, M., Nakamura, H., Nanya,
T.; Hori, A.. Evaluation of Checkpointing Mechanism on SCore Cluster System.
IEICE Transactions on Information and Systems. 86(12), pp 2553-2562

[Jalote, 1994] - Jalote, P. Fault Tolerance in Distributed Systems. 1st. ed. Englewood
Cliffs, USA: Prentice Hall, 1994.

[Li and Lan, 2006] - Li, Y., Lan, Z., Exploit failure prediction for adaptive fault-
tolerance in cluster computing. In: CCGRID ’06: Proceedings of the Sixth IEEE
International Symposium on Cluster Computing and the Grid (CCGRID’06),
Washington, DC, USA, IEEE Computer Society (2006) 531–538

 [Meyer, 1980] - Meyer, J.F. On Evaluating the Performability of Degradable
Computing Systems. IEEE Transactions on Computers, 29(8) 720-731(Aug 1980).

[MPI Forum, 2006] - Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard. Available at http://www.mpi-forum.org/docs/mpi-11-html/mpi-
report.html. Accessed in may, 2006. Knoxville, USA. 1995

[Nagajara et al. 2005] - Nagaraja, K., Gama, G., Martin, R. P., Jr., W. M., Nguyen, T.
D., Quantifying Performability in Cluster-Based Services. IEEE Transactions on
Parallel and Distributed Systems 16, 5 (May 2005).

[Piedad And Hawkins, 2001] - Piedad, Floyd and Hawkins, Michael. High
Availability. Design, Techniques, and Processes . 1st. ed. Upper Saddle River, USA:
Prentice Hall, 2001

[Rao et al, 2000] - Rao, A. , Alvisi, L. and Vin, H., The Cost of Recovery in Message
Logging Protocols. IEEE Transactions on Knowledge and Data Engineering, Vol. 12,
No. 2, pp. 160-173, April 2000.

[Santos, et al., 2006] - Santos, G. A., Duarte, A., Rexachs, D. and Luque, E.
Recuperando prestaciones en clusters tras ocurrencia de fallos utilizando RADIC. In
Proceedings of XII Congreso Argentino de Ciencias de la Computación (CACIC
2006), pp. Potrero de los Funes, Argetina. October 17-21, 2006.

References 129

[Santos, et al., 2007] - Santos, G. A., Duarte, A., Rexachs, D. and Luque, E.
Mitigating the post-recovery overhead in fault tolerant systems. In Proceedings of
Parallel Computing 2007 (ParCo2007), pp. (to appear). Aachen, Germany. September
3-7, 2007.

[Shooman, 2002] - Shooman, Martin L. Reliability of Computer Systems and
Networks.Fault Tolerance: Analysis, and Design. 1st. ed. New York, USA: John
Wiley & Sons, Inc., 2002

[Squyres and Lumsdaine, 2003] Squyres, J. M. and Lumsdaine, A., A component
architecture for LAM/MPI, in Proceedings, 10th European PVM/MPI, Lecture Notes
in Computer Science, Vol. 2840, pp. 379-387, 2003

[Stellner, 1996] - Stellner, G. CoCheck: Checkpointing and Process Migration for
MPI. In Proceedings of The 10th International Parallel Processing Symposium
(IPPS'96), pp. Honolulu, Hawaii. April 15-19, 1996.

[Strom and Yemini, 1985] - Strom, R. and Yemini, S. Optimistic recovery in
distributed systems. ACM Transactions on Computer Systems, 3(3):204-226 (August
1985)

[Zambonelli, 1998] - Zambonelli, F. On the effectiveness of distributed checkpoint
algorithms for domino-free recovery. In Proceedings of The 17th International
Symposium on High Performance Distributed Computing, pp. 124-131. chicago,
USA. July 28-31, 1998.

	Chapter 1 Introduction
	1.1 Overview
	1.2 Goals
	1.3 Organization of this dissertation

	Chapter 2 Fault Tolerance
	2.1 What is fault?
	2.2 Availability
	2.2.1 Availability Metrics

	2.3 Fault Tolerance Applied in Message Passing Systems
	2.4 Rollback-Recovery
	2.4.1 Basic Concepts
	Checkpoint
	Stable Storage
	Consistent System State
	Domino Effect
	In-transit messages
	Logging Protocols

	2.5 Checkpoint Based Protocols
	2.5.1 Uncoordinated checkpointing
	2.5.2 Coordinated Checkpointing
	2.5.3 Communication-Induced Checkpointing (CIC)
	Indexed-based coordination protocols
	Model-based protocols

	2.5.4 Comparing the checkpoint protocols

	2.6 Log-based protocols
	2.6.1 Pessimistic log-based protocols
	2.6.2 Optimistic log-based protocols
	Synchronous recovery
	Asynchronous recovery

	2.6.3 Causal log-based protocols

	2.7 Comparing the rollback-recovery protocols
	2.8 Current Researches

	Chapter 3 The RADIC Architecture
	3.1 RADIC architecture model
	3.1.1 Failure pattern

	3.2 RADIC functional elements
	3.2.1 Protectors
	3.2.2 Observers
	3.2.3 The RADIC controller for fault tolerance

	3.3 RADIC operation
	3.3.1 Message-passing mechanism
	3.3.2 State saving task
	Checkpoints
	Message logs
	Garbage collection

	3.3.3 Failure detection task
	How protectors detect failures
	How the observers detect failures
	How the observers confirm a failure
	The radictable and the search algorithm

	3.3.4 Recovery task
	Reestablishing the RADIC structure after failures
	Recovering failed application processes
	Load balance after recovering from faults

	3.3.5 Fault masking task
	Locating recovered process
	Managing messages of recovered process

	3.4 RADIC functional parameters
	3.5 RADIC flexibility
	3.5.1 Concurrent failures
	3.5.2 Structural flexibility

	
	Chapter 4 Protecting the System
	4.1 Recovery Side-Effects
	4.1.1 System Configuration Changes
	4.1.2 Performance Degradation

	4.2 Protecting the system
	4.2.1 Avoiding System Changes
	How the active protectors detects the spare nodes

	4.2.2 Recovering Using Spare Nodes
	Changes in the Fault-Masking Task

	4.2.3 Restoring the System Configuration
	4.2.4 Avoiding Faults

	Chapter 5 Implementing the RADIC II Architecture
	5.1 RADICMPI
	5.2 The New Spare Nodes Feature
	The Spare Mode
	Management Functions
	How RADICMPI Recovers a Process Using a Spare Node
	Changes in the Fault Masking Routine

	5.3 New MPI Functions
	5.3.1 The Non-Blocking Functions
	MPI_Request
	MPI_Isend
	MPI_Irecv
	MPI_Test
	MPI_Testany
	MPI_Testall
	MPI_Wait
	MPI_Waitany
	MPI_Waitall

	5.3.2 The Collective Functions

	Chapter 6 RADIC II Experiments
	6.1 Experiments Environment
	6.2 Validation Experiments
	Validating the spare adding task
	Validating the recovery task using spare

	6.3 Evaluation Experiments
	6.3.1 Evaluating According with the Fault Moment
	6.3.2 Evaluating According with the Number of Nodes
	6.3.3 Evaluating the Throughput in Continuous Applications

	Chapter 7 Conclusions
	7.1 Open Lines

