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Resumen 

La demanda de computadores más veloces ha provocado el incremento  del área 

de computación de altas prestaciones, generalmente representado por el uso de 

sistemas distribuidos como los clusters de computadores ejecutando aplicaciones 

paralelas. En esta área, la tolerancia a fallos juega un papel muy importante a la hora 

de proveer alta disponibilidad, aislando los efectos causados por los fallos. 

Prestaciones y disponibilidad componen un binomio indisociable para algunos 

tipos de aplicaciones. Por eso, las soluciones de tolerancia a fallos deben tener en 

consideración estas dos restricciones desde el momento de su diseño. 

En esta disertación, presentamos algunos efectos colaterales que se puede 

presentar en ciertas soluciones tolerantes a fallos cuando recuperan un proceso 

fallado. Estos efectos pueden causar una degradación del sistema, afectando las 

prestaciones y disponibilidad finales. 

Presentamos RADIC-II, una arquitectura tolerante a fallos para paso de mensajes 

basada en la arquitectura RADIC (Redundant Array of Distributed Independent Fault 

Tolerance Controllers). RADIC-II mantiene al máximo posible las características de 

transparencia, descentralización, flexibilidad y escalabilidad existentes en RADIC, e 

incorpora una flexible funcionalidad de redundancia dinámica, que permite mitigar o 

evitar algunos efectos colaterales en la recuperación. 

RADICMPI es el prototipo de RADIC que implementa un conjunto de las 

funciones del patrón MPI-1. Este prototipo ha sido adaptado para realizar las tareas de 

RADIC-II y ha sido usado para validar y evaluar la solución propuesta en varios 

escenarios a través del uso de log de depuración y de un sistema de inyección de 

fallos. También hemos expandido el conjunto de funciones disponibles en el 

prototipo, incorporando las funciones no-bloqueantes de MPI, lo que nos ha permitido 

ejecutar otros tipos de aplicaciones. 

Los resultados han mostrado que RADIC-II opera correctamente y es una buena 

opción para proveer alta disponibilidad a las aplicaciones paralelas sin sufrir la 



x 

degradación del sistema en ejecuciones pos-recuperación, re-estableciendo las 

prestaciones originales del sistema.  



Abstract 

The demand for computational power has been leading the improvement of the 

High Performance Computing (HPC) area, generally represented by the use of 

distributed systems like clusters of computers running parallel applications. In this 

area, fault tolerance plays an important role in order to provide high availability 

isolating the application from the faults effects. 

Performance and availability form an undissociable binomial for some kind of 

applications. Therefore, the fault tolerant solutions must take into consideration these 

two constraints when it has been designed. 

In this dissertation, we present a few side-effects that some fault tolerant 

solutions may presents when recovering a failed process. These effects may causes 

degradation of the system, affecting mainly the overall performance and availability. 

We introduce RADIC-II, a fault tolerant architecture for message passing based 

on RADIC (Redundant Array of Distributed Independent Fault Tolerance Controllers) 

architecture. RADIC-II keeps as maximum as possible the RADIC features of 

transparency, decentralization, flexibility and scalability, incorporating a flexible 

dynamic redundancy feature, allowing to mitigate or to avoid some recovery side-

effects. 

RADICMPI is a RADIC prototype implementing a set of functions of the MPI-1 

standard. This prototype was adapted to perform the RADIC-II tasks and used to 

validate and evaluate RADIC-II in several scenarios through using a debug log and a 

fault injection system. We also expanded the set of functions available in the 

prototype incorporating the MPI non-blocking functions, which allows executing 

other kind of applications. 

The results has shown that RADIC-II operates correctly and becomes itself as a 

good approach to provide high availability to the parallel applications without suffer a 

system degradation in post-recovery execution, reestablishing the original system 

performance.  
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Chapter 1 

Introduction 

1.1 Overview 

Since its creation, computers play an important and increasing role solving 

complex problems. Following the computers evolution, new and more complex 

problems can be solved each day. Indeed, it seems that despite how much more 

powerful are the computers, always will be more applications needing long periods of 

time to be executed.  

This demand for computational power has been leading the improvement of the 

High Performance Computing (HPC) area, generally represented by the use of 

distributed systems like clusters of computers running parallel applications. Following 

there are typical examples of applications areas commonly executed in computer 

clusters. 

• Fluid-flow simulation. Consists in simulate the interaction of large three 

dimensional cells assemblage between themselves, like the weather and climate 

modelling. 

• Natural behaviour simulation. A notoriously complex area, that makes 

computers simulate the real world and its interactions. Good examples are the 

simulation of forest fire and simulation of individuals. 

• Medicine research. Studies like of protein folding require petaflops of 

computing power in order to predict the structure of the protein complete from a 

known sequence of the protein, being applied in many disease treatments. 

• .Astronomy. Simulation of N bodies under the influence of physical forces, 

usually gravity and sometimes other forces. Normally used in cosmology to 

study the process of galaxy cluster formation. 
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For those applications, the correctly finish and the spent time of their executions 

become major issues when planning to perform their tasks in computer based 

solutions. Therefore, it is reasonable to say that those applications commonly have 

two basic constraints: performance and availability (also known as performability 

[Meyer, 1980]). 

However, the complexity of the actual computers, particularly the cluster of 

computers, left them more susceptible to occurrence of failures. How much 

components they have, more probable that one of components will fail. This 

perception is even worse when applied in distributed system like the computer 

clusters. Each individual fault probability increases the susceptibility of failures in the 

whole system. 

Since the failures affect directly the system availability and indirectly the system 

performance, these two major requirements may be quantified basing on the mean 

time to failure (MTTF) and the mean time to repair (MTTR) [Nagajara et al. 2005]. A 

computer cluster configures itself as a system formed by a combination of 

independent components, and generally needs all of them to produce desirable results, 

therefore the MTTF of such system will be smaller that each component, in this case 

the computer nodes. 

 Nowadays, the supercomputers usually have more than 1000 nodes and at least 

dozen of them have more than 10000 processors [Top500.Org, 2006], dramatically 

increasing the fault probability. In order to avoid or mitigate the effects related with 

the MTTF/MTTR, fault management plays an important task in those systems, 

providing ways to allow the system tolerates some kind of failures in certain levels. 

Many researches proposing fault tolerant solutions for parallel systems has been 

presented involving different techniques to detect and recovery from faults. Some 

proposals allows to perform these activities automatically (transparent) like MPICH-

V [Bouteiller, et al., 2006], which consists in a communication library developed for 

the MPICH MPI implementation, or the recovery solution with hierarchical storage 

proposed in ScoreD [Kondo, M., et al. 2003; Gao et al, 2005]. Other solutions try 

combine recovery and failures prediction like the approach of FT-PRO [Li and Lan, 

2006]. Moreover, some works base in manual operating, needing some user 

intervention like LAM/MPI [Burns et al, 1994; Squyres and Lumsdaine, 2003], this 
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solution uses a coordinated checkpoint scheme activated either by the user application 

or by an external controller. Since increasing the MTTF is a hard task, these solutions 

commonly deal with MTTR reduction, making essential a transparent fault 

management. 

Some fault tolerant solutions, in order to assure the correct application ending, 

may generate system configuration changes during the recovery process. This 

behavior happens because those ones manage the faults just using the own active 

cluster resources, in other words, the application continues executing with one less 

node, but keeping the number of processes, causing a unplanned process distribution. 

RADIC (Redundant Array of Distributed Independent Fault Tolerance 

Controllers) [Duarte, 2007] is a transparent architecture that provides fault tolerance 

to message passing based parallel systems. RADIC acts as a layer that isolates an 

application from the possible cluster failures. This architecture does not demand extra 

resources to provide fault tolerance, because of this, after a failure the controller 

recovers the faulty process in some existent node of the cluster. As mentioned before, 

this behavior may leads to system performance degradation in the post-recovery 

execution. 

 RADIC has two kinds of processes working together in order to perform the 

fault tolerance tasks: Observers and Protectors. Each cluster’s node has one Protector, 

and each application’s process has one Observer attached. Each Observer 

communicates with at least one Protector, and each Protector may attend to several 

Observers. The Observers are in charge of: a) manage the inter-process message 

passing communication, b) send the log of received messages and c) take and transmit 

the associated process checkpoints. While the Protectors perform failure detection, 

diagnosis and creation of a fully distributed stable storage virtual device. 

1.2 Goals 

Parallel systems are designed intending to achieve certain performance level. In 

order to satisfy this performance level, the process distribution through the nodes ta-

kes in consideration factors like load balance, CPU power, or memory availability. 
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Whenever this distribution is changed, may lead to system performance degradation, 

due to processes having an unplanned sharing of the computing power of a node. 

All kind of applications cited in the initial of this chapter demands as more 

computing power as possible, and may not tolerate performance slowdown. In 

systems ruled by time constraints, it is so critical finish correctly the application as it 

is finish it before a time limit, which may invalidate the results of the execution. 

Moreover, the “never stop” systems generally requires high cost special devices, 

because they cannot support a continuous reduction of the nodes quantity caused by 

failures, but this requirement may left impracticable the use of those systems 

maintaining high availability. 

In this work we developed RADIC II, incorporating a dynamic redundancy 

[Koren and Krishna, 2007, p. 25; Hariri, et al., 1992] feature that enables RADIC, via 

a spare nodes use, to protect the system configuration from the changes that a 

recovery process may generate. Furthermore, this feature may be also used to restore 

the initial system process distribution and for maintenance purposes too. 

The major premise of RADIC II is to keep as maximum as possible all the 

features of RADIC referred before. Thus, the dynamic redundancy provided by 

RADIC II is transparent, decentralized, flexible and scalable too. 

The RADIC transparency must be maintained in RADIC II allowing us to 

manage the entire process of request and use of spare nodes without need any user 

intervention, or application’s code changes. It must be able to find automatically a 

spare if exists, to discover its state, to request use and to send all information needed 

to recovery and re-spawn the process in this node.  

In order to keep the fully distributed operational mode from RADIC, RADIC II 

has to remain all information about the spares decentralized. All nodes should to work 

independently, exchanging information as needed just with a few neighbor nodes. The 

spare nodes presence must be spread using techniques that do not compromise the 

RADIC scalability, keeping the low overhead produced by RADIC.  
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RADIC II needs to preserve the flexibility of RADIC from the point of view of 

allowing different structures and relationships between its operational elements and of 

the RADIC parameters tuning. Moreover, RADIC II aims to be more flexible through 

allowing dynamic insertion of spare nodes, including during the application execution 

without need to stop it. The dynamic redundancy must be flexible in order to enable 

the original process distribution reestablishment by faulty nodes replacement. Finally, 

the flexibility of RADIC II should allow us to try to avoid failures by permitting to 

use the dynamic redundancy as a mechanism to perform cluster’s nodes maintaining 

tasks, replacing fault-probable nodes for healthy ones. 

Others challenges to RADIC II are: a) to impose a negligible overhead in relation 

to RADIC during failure-free executions. b) To provide a quick recovery process 

must be when applying spare nodes. 

RADIC II, in the same way than RADIC, bases on rollback-recovery techniques, 

implementing an uncoordinated checkpoint with pessimistic event log. This choice 

was one of the RADIC keys to maintain the independence between processes. Thus, 

RADIC II also does not need any coordination process that may increase the overhead 

in large clusters. It should be noted that RADIC II implements an event log, instead 

adopts the usual message log simplification, which may be not enough to assure a 

correct recovery process. 

RADICMPI is the RADIC prototype developed for test the architecture, 

implementing a set of functions of MPI standard [MPI Forum, 2006]. As secondary 

goal of this work, we extended the set of implemented MPI functions of the 

RADICMPI. We included the set of non-blocking functions and all tasks needed to 

provide fault tolerance to these functions. As we will see in this dissertation, these 

functions allow us to enlarge the set of possible applications to be executed in 

RADICMPI, i.e. new benchmark programs. We also used RADICMPI to test the 

spare nodes functionality and the MPI functions implemented too. 

We performed several experiments with RADIC II in order to validate its 

functionality and to evaluate its appliance in different scenarios. We used the debug 

log provided by the RADICMPI original implementation for validate the RADIC II 
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operation, inserting new events related with the spare nodes usage. For this validation 

we used a ping-pong program due to its simplicity. We applied the same approach in 

order to validate the non-blocking function. 

The evaluation of our solution was made comparing the effects of recovery 

having or not available spare nodes. These experiments observed two measures: the 

overall execution time, and the throughput of an application. We applied different 

approaches for a matrix product algorithm, using a static distributed Master/Worker 

and a SPMD approach implementing a Cannon algorithm and we executed a N-Body 

particle simulation using a pipeline paradigm. 

1.3 Organization of this dissertation 

This dissertation contains eight chapters. In the next chapter, we discuss 

theoretical concepts about fault tolerance, including availability, usual strategies for 

provide fault tolerance in message-passing systems and current research in this area. 

Chapter 3 presents the concepts and describes the operation and the elements of 

the RADIC Architecture. Chapter 4 talks about possible side effects that some fault 

tolerant architectures may cause that affect the post-recovery execution of 

applications and explains the RADIC II proposal for the system protection, the 

methods to achieve that protection, concepts related, and changes made in the RADIC 

architecture.  

In chapter 6, we talk about RADICMPI and the new functions implemented, 

including considerations about to implement MPI non-blocking functions under the 

fault tolerance concept.  

Chapter 7 presents the experiments conducted with RADICMPI in order to 

perform a functional validation and evaluation of the solution. Finally, in Chapter 7 

we state our conclusions and remained open lines. 



  

Chapter 2 

Fault Tolerance  

In this chapter, we will discuss theoretical concepts involving fault tolerance, its 

appliance in message passing systems and current implementations. 

2.1 What is fault? 

Before starts to discuss about fault tolerance concepts, it is important to define 

what exactly a fault is. Generally, the terms fault, error and failure are mentioned 

interchangeably. By definition, failure is the perception of undesirable behavior of a 

system, meaning that the system do not produce the expected results, as example a 

software abnormal ending. An error is the generating event which leads to a 

subsequent failure, unless it exists some corrective actions, as example an 

programming error leads to an abnormal end except if this error was caught and 

treated avoiding the failure. Finally, fault it is a system defect with potential to 

generate errors. Thus, a fault may cause an error, which may cause a failure.  

Fault tolerance may be defined as the ability to avoid failures despite existence of 

errors generated by some fault. Fault tolerance has two basic goals: To increase the 

overall reliability of a system (despite individual faults of its components) and to 

increase the system availability [Jalote, 1994, p. 30].  
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2.2 Availability 

Availability is one of the major requirements when using parallel computers. Any 

user of the applications exemplified in the Chapter 1 expects to have the system 

available during the entire execution of its work. The equation 1 represents 

mathematically the meaning of availability [Koren and Krishna, 2007, p. 5]. 

MTTRMTTF
MTTFA
+

=   1  

 

According with the equation 1, the availability is a ratio between the component 

mean time to failure (MTTF) and the MTTF itself adding the mean time to repair the 

component (MTTR). In actual literature, there are some definitions about the MTTF 

or MTBF (mean time between failures) metrics, according with each need. We decide 

consider the approach given by [Koren and Krishna, 2007, p. 5] that is the same given 

by [Jalote, 1994, p. 38] and [Nagajara]. Indeed, [Koren and Krishna, 2007, p. 5] 

consider that MTBF includes the time needed to repair the component, resulting 

MTBF = MTTF+MTTR. 

The MTTF metrics commonly assigns a reliability measure. From the equation 1 

we can deduce that there are two ways to increase the availability of a system: either 

by increasing the reliability of its components or by decreasing the time for repair. To 

increase the components reliability generally implies to use high cost equipments, 

which sometimes makes not viable its implementation. Therefore, fault tolerance 

plays its role by reducing the MTTR. Indeed, we only achieve a theoretical 100% 

availability by having MTTR to zero, once a component with infinite MTTF is 

unachievable by now.   

2.2.1 Availability Metrics 

In order to measure the availability, the industry generally adopts the “nines” 

concept. This approach quantifies the availability by the uptime percentage. As we 

see in the Table 2-1, many “nines” means lower downtimes in a specific period of 

time. 



Fault Tolerance 27 

Table 2-1: Availability Metrics  
Percentage 

Uptime Downtime per Year Downtime per week 

98% 7.3 days 3.37 hours 

99% 3.65 days 1.67 hours 

99.9% 8.75 hours 10.09 minutes 

99.99% 52.5 minutes 1 minute 

99.999% 5.25 minutes 6 seconds 

99.9999% 31.5 seconds 0.6 seconds 

 

Most of fault tolerant systems aims achieve a “five nines” availability level, been 

considered as high availability, although the notion about high availability be relative. 

In order to achieve referred level, just playing with the MTTR reduction, it is 

imperative that the fault tolerant system can automatically detect, diagnose and repair 

the fault. 

2.3 Fault Tolerance Applied in Message Passing Systems 

Message passing in a strict sense is a common technique used in parallel 

computers in order to provide communication between concurrent processes. This 

technique takes the following assumptions: 

• The processes have and only access its own local memory 

• All communications between the process are sending and receiving 

messages 
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• The data interchange requires cooperative actions in each process, 

meaning that a message sending needs a correspondent receive in the 

other process. 

With these simple assumptions, message passing is widely used for parallel 

computing because fits well in cluster of workstations or supercomputers, which are 

interconnected by a network. The figure 2-1 exemplifies the functioning of a simple 

message passing system with three processes sending and receiving messages 

(diagonal arrows) trough the timeline (horizontal arrows)  

P0

P1

P2

Input 
Result 

m1

m2

m3

m4 m5

Message passing system

Outside

 

Figure 2-1: A message passing with three processes interchanging messages. 

Parallel computers using message passing are more susceptible to the effects of a 

failure. In these architectures, a fault may occur in a node or either in the 

communication network. If the fault occurs in the network, the behavior of the 

systems depends if the implementation provides or not mechanisms like timeout and 

if the fault is transient or not. When a node fails, the processing assigned to it will be 

lost and may incur in the inaccurate, useless or incorrect result of the parallel 

application. 

There are many techniques developed to increase the overall reliability and 

provide high availability for message passing distributed systems including 
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replication protocols, self-stabilizing protocols and rollback-recovery protocols 

[Bouteiller, et al., 2006]. Rollback-recovery is widely studied and used in order to 

provide fault tolerance for message passing systems. 

2.4 Rollback-Recovery 

Rollback-recovery is a protocol or technique to provide fault tolerance basing in 

backs the program execution to a point before the failure and in some ways, retry the 

computation. According Shooman [Shooman, 2002, p.270] there are four basic types 

of rollback-recovery techniques: 

Reboot/restart techniques – It is the simplest recovery technique, but the weakest 

too. This approach consists in restart the system or the application from the beginning. 

It is acceptable when the time spent in computation is still small and the time needed 

to restart the system or application is satisfactory. When the restart procedure is made 

automatically, this technique is generally referred as recovery.  

Journaling techniques – It bases in periodically stores all inputs to the system. In 

failures cases, the processing may be repeated automatically. This technique is a usual 

feature in most word processors. 

Retry techniques – This technique is more complex and supposes that the failure 

is transient and in a subsequent moment, the system can operates normally. It bases 

on stay performing the action repeatedly until achieve a maximum of attempts or 

achieve a correct result. Disk controllers are a good example of retry use.  

Checkpoint techniques – It can be said that the checkpoint technique is a 

improvement of the reboot one. In this approach, the system state is saved 

periodically, so the application or the system just needs to back to most recent 

checkpoint before the failure. 

Due to the characteristics of the applications running in parallel systems, usually 

executing during a long time, the checkpoint approach becomes more suitable for 

these systems. Performing checkpoint is a more difficult task in distributed systems 

compared with centralized ones [Kalaiselvi and Rajaraman, 2000]. This difficult is 
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because distributed systems are compound by a set of independent processors with 

individual lines of execution, and there is not a global synchronized clock between 

them, which allows starting a checkpoint at same time, saving the global state of the 

parallel application. 

2.4.1 Basic Concepts 

Before continuing discussing about rollback-recovery and checkpoint, we should 

introduce some important concepts involving the rollback-recovery in distributed 

systems. These concepts will be useful to understand how works our solution. 

Checkpoint 

Chekpoints, also known as recovery points, may be considered as the state saving 

of a process. In this procedure, all information needed to re-spawn the process is 

stored in a stable storage. This information is compounded by variable and register 

values, control point, thread states, etc. In failure case, the fault tolerant system use 

this saved state to recover the process. In single machines, the checkpoint process is 

not a complex issue, but when applied in a distributed context it is not quite simple. 

As the processes communicate between themselves, each checkpoint must to reflect 

all relevant communication exchanged. 

Stable Storage 

The use of checkpoints to perform rollback-recovery generally requires that 

system state must be available after the failure. In order to provide this feature the 

fault tolerance techniques suppose the existence of a stable storage, which survives to 

any failures occurred in the system, when all system will be saved. Although stable 

storage is usually confused with physical disk storage, it is just an abstract concept 

[Elnozahy, et al., 2002]. A stable storage may be implemented in different ways:  

a) It may be a disk array using RAID, allowing tolerates any number of non-

transient failures;  

b) If using a distributed system, a stable storage may be performed by the 

memory of a neighbor node;  
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c) If just it needs tolerate transient faults, a stable storage may be implemented 

using a disk in the local machine. 

Consistent System State 

The major goal of a rollback-recovery protocol is bring back the system working 

and producing the expected results. Rollback-recovery is a quite simple to implement 

in a single process application, but in distributed systems, with many processes 

executing parallel, it becomes a hard task. In the parallel applications using message 

passing, the state of the system comprises the state of each process running in 

different nodes and are communicating between them. Therefore, take a checkpoint of 

a process individually may not represent a snapshot of the overall system. 

Hence, we can define consistent system state as one which each process state 

reflects all interdependences with the other processes, in other words, if a process 

accuses a message receipt, the sender process must be accuses the message sending 

too. We can say that during a failure-free execution, any global state taken is a 

consistent system state. 

Domino Effect 

The domino effect [Koren and Krishna, 2007] may occur when the processes of a 

distributed application take their checkpoints in an uncoordinated manner. When a 

failed process rollbacks to its most recent checkpoint, its state may not reflect a 

communication with other processes, forcing these processes to roll back to 

checkpoint prior this communication. This situation may continue happening until 

reach the initial of the execution. Following, we exemplify this happening by the 

situation depicted in Figure 2-2 that shows an execution in which processes take their 

checkpoints (represented by blue circles) without coordinating with each other. 

We consider the process starts as an initial checkpoint. Suppose that process P0 

fails and rolls back to checkpoint A. The rollback of P0 invalidates the sending of 

message m6, and so P1 must roll back to checkpoint B in order to “invalidate” the 

receipt of the message m6. Thus, the invalidation of message m6 propagates the 

rollback of process P0 to the process P1, which in turn invalidates message m5 and 



32 Chapter 2 

forces P2 to roll back as well. Because of the rollback of process P2, process P3 must 

also rollback to invalidate the reception of m4. Those cascaded rollbacks may 

continue and eventually may lead to the domino effect, which forces the system to roll 

back to the beginning of the computation, in spite of all saved checkpoints.  

The amount of rollback depends on the message pattern and the relation between 

the checkpoint placements and message events. Typically, the system restarts since 

the last recovery line. However, depending on the interaction between the message 

pattern and the checkpoint pattern, the only bound for the system rollback is the initial 

state, causing the loss of all the work done by all processes. The dashed line shown in 

Figure 2-2 represents the recovery line of the system in case of a failure in P0. 

 
Figure 2-2: Domino effect 

In-transit messages 

A message that is in the state of the sender but is not yet in the state of the 

receiver is an example of an in-transit message. A message that appears in the 

receiver state but not in the sender state is an orphan message. The in-transit message 

generally is not a problem. If the model presumes a reliable communication channel, 

this one guarantees the delivery of all messages. However, in systems that do not 

provide a reliable communication, the rollback-recovery relies that the application 

been executed provides the mechanisms in order to guarantee the message delivery. 
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Logging Protocols 

Log-based rollback recovery is a strategy used to avoid the domino effect caused 

by uncoordinated checkpoints. Logging protocols is a set of protocols whose take 

message logs besides checkpoints. Such protocols base on the piecewise deterministic 

(PWD) assumption [Strom and Yemini, 1985]. Under this assumption, the rollback 

recovery protocol can identify all the nondeterministic events executed by each 

process. For each nondeterministic event, the protocol logs a determinant that 

contains all needed information to replay the event should it be necessary during 

recovery. If the PWD assumption holds, a log-based rollback-recovery protocol can 

recover a failed process and replay the determinants as if they have occurred before 

the failure.  

The log-based protocols require only that the failed processes roll back. During 

the recovery, the messages that were lost because of the failure are “resent” to the 

recovered process in the correct order using the message logs. Therefore, log-based 

rollback-recovery protocols force the execution of the system to be identical to the 

one that occurred before the failure. The system always recovers to a state that is 

consistent with the input and output interactions that occurred up to the fault. 

2.5 Checkpoint Based Protocols 

The goal of rollback-recovery protocols based on checkpoint is to restore the 

system to the most recent consistent global state of the system, in other words, the 

most recent recovery line. Since such protocols do not rely on the PWD assumption, 

they do not care about nondeterministic events, that it means, they do not need to 

detect, log or replay nondeterministic events. Therefore, checkpoint-based protocols 

are simpler to implement and less restrictive than message-log methods. 
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Figure 2-3: Different checkpoint approaches.  

The Figure 2-3 shows a classification scheme for checkpoint approaches, basing 

on where is performed, application level or system level, or in the coordination 

strategy, uncoordinated, communication induced or coordinated. The next topics 

explain the three categories of the checkpointing strategies used by the checkpoint-

based protocols: uncoordinated, coordinated and communication-induced. 

2.5.1 Uncoordinated checkpointing 

In this method, each process has total autonomy for making its own checkpoints. 

Therefore, each process chooses to take a checkpoint when it is more convenient to it 

(for instance, when the process’s state is small) and does not care about the 

checkpoints of the other processes. Zambonelli [Zambonelli, 1998] makes an 

evaluation of several uncoordinated checkpoint strategies. 

The uncoordinated strategy simplifies the checkpoint mechanism of the 

rollback-recovery protocol because it gives independence for each process manage its 

checkpoint without any negotiation with the other processes. However, such 

independence of each process comes under a cost expressed as follows: 

a) There is the possibility of domino effect and all its consequences; 
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b) A process can take useless checkpoint since it cannot guarantee by itself that 

a checkpoint is part of a global consistent-state. These checkpoint will 

overhead the system but will not contribute to advance the recovery line. 

c) It is necessary to use garbage collection algorithm to free the space used by 

checkpoints that are not useful anymore. 

d) It is necessary a global coordination to compute the recovery line, what can 

be very expensive in application with frequent output commit. 

2.5.2 Coordinated Checkpointing 

In this approach, the processes must synchronize their checkpoint in order to 

create a consistent global state. A faulty process always will restart from its most 

recent checkpoint, so the recovery is simplified and the domino effect avoided. 

Furthermore, as each process only needs to maintain one checkpoint in stable storage, 

there is no the need of a garbage collection scheme and the storage overhead is 

reduced. 

The main disadvantage is the high latency involved when operating with large 

systems. Because of this, the coordinated checkpoint protocol is barely applicable to 

large systems. 

Although straightforward, this scheme can yield in a large overhead. An 

alternative approach is to use a non-blocking checkpoint scheme like the proposed in 

[Chandy and Lamport, 1985] and in [Elnozahy, et al., 1992]. However, non-blocking 

schemes must prevent the processes from receiving application messages that make 

the checkpoint inconsistent. 

The scalability of coordinated checkpointing is weak because all processes must 

to participate in every checkpoint and transmits their checkpoints to a stable storage 

that generally is centralized, this activity may cause a communication bottleneck.  



36 Chapter 2 

2.5.3 Communication-Induced Checkpointing (CIC) 

The communication-induced checkpointing protocols do not require that all 

checkpoints be coordinated and do avoid the domino effect. There are two kinds of 

checkpoints for each process: local checkpoints that occur independently and forced 

checkpoints that must occur in order to guarantee the eventual progress of the 

recovery line. The CIC protocols take forced checkpoints to prevent the creation of 

useless checkpoints, that is, checkpoints that will never be part of a consistent global 

state (and so they will never contribute to the recovery of the system from failures) 

although they consume resources and cause performance overhead. 

As opposed to coordinated checkpointing, CIC protocols do not exchange any 

special coordination messages to determine when forced checkpoints should occur; 

instead, they piggyback protocol specific information on each application message. 

The receiver then uses this information to decide if it should take a forced checkpoint. 

The algorithm to decide about forced checkpoints relies on the notions of Z-path and 

Z-cycle [Alvisi, et al., 1999]. For CIC protocols, one can prove that a checkpoint is 

useless if and only if it is part of a Z-cycle. 

Two types of CIC protocols exist: indexed-based coordination protocols and 

model-based checkpointing protocols.  It has been shown that both are fundamentally 

equivalent [Helary, et al., 1997a], although in practice they have some differences 

[Alvisi, et al., 1999]. 

Indexed-based coordination protocols 

These protocols assign timestamps to local and forced checkpoints such that 

checkpoints with the same timestamp at all processes form a consistent state.  The 

timestamps are piggybacked on application messages to help receivers decide when 

they should force a checkpoint [Elnozahy, et al., 2002].  

In CIC, each process has a considerable autonomy in taking checkpoint. 

Therefore, the use of efficient policies in order to decide when to take checkpoints can 

lead to a small overhead in the system. Since these protocols do not require processes 
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to participate in a globally coordinated checkpoint, they can, in theory, scale up well 

in systems with a large number processes [Elnozahy, et al., 2002]. 

Model-based protocols 

These schemes prevent useless checkpoint using structures that avoid patterns of 

communications and checkpoints that could lead to useless checkpoints or Z-cycles. 

They use a heuristic in order to define a model for detecting the possibility that such 

patterns occur in the system. The patterns are detected locally using information 

piggybacked on application messages. If such a pattern is detected, the process forces 

a checkpoint to prevent that the pattern occurs [Elnozahy, et al., 2002]. 

Model-based protocols are always conservative because they force more 

checkpoints than could be necessary, once each process does not have information 

about the global system state because there is no explicit coordination between the 

application processes. 

2.5.4 Comparing the checkpoint protocols 

It is reasonable to say that the major source of overhead in checkpointing 

schemes is the stable storage latency. Communication overhead becomes a minor 

source of overhead as the latency of network communication decreases. In this 

scenario, the coordinated checkpoint becomes worthy since it requires less accesses to 

stable storage than uncoordinated checkpoints. Furthermore, in practice, the low 

overhead gain  of uncoordinated checkpointing do not justify neither the complexities 

of finding the recovery line after failure and performing the garbage collection nor the 

high demand for storage space caused by multiple checkpoints of each process 

[Elnozahy, et al., 2002]. 

CIC protocol, in turn, does not scale well as the number of process increases. The 

required amount of storage space is also difficult to predict because the occurrence of 

forced checkpoints at random points of the application execution. 
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2.6 Log-based protocols 

These protocols require that only the failed process to roll back. During normal 

computation, the processes log the messages into a stable storage. If a process fails, it 

will recover from a previous state and the system will lose the consistency since there 

may be missed messages or orphan messages related to the recovered 

process[Elnozahy and Zwaenepoel, 1994]. During the process’s recovery, the logged 

messages will be recovered properly from the message log, so the process can resume 

its normal operation and the system will reach a consistent state again [Jalote, 1994]. 

Log-based protocols consider that a parallel-distributed application is a sequence 

of deterministic state intervals, each starting with the execution of a nondeterministic 

event [Jalote, 1994]. Each nondeterministic event relates to a unique determinant. In 

distributed systems, the typical nondeterministic event that occurs to a process is the 

receipt of a message from another process (message logging protocol is the other 

name for these protocols.) Sending a message, however, is a deterministic event. For 

example, in Figure 2-2, the execution of process P3 is a sequence of three 

deterministic intervals. The first one is the process’ creation and the other two starts 

with the receipt of m2 and m4. The initial state of the process P3 is the unique 

determinant for sending m1. 

During failure-free operation, each process logs the determinants of all the 

received messages onto stable storage. Additionally, each process also takes 

checkpoints to reduce the extent of rollback during recovery. After a failure occurs, 

the failed processes recover by using the checkpoints and logged determinants to 

replay the corresponding nondeterministic events precisely as they occurred during 

the pre-failure execution. Because the execution within each deterministic interval 

depends only on the sequence of received messages that preceded the interval’s 

beginning, the recovery procedure reconstructs the pre-failure execution of a failed 

process up to the first received message that have a no logged determinant. 

Log-based protocols guarantee that upon recovery of all failed processes, the 

system does not contain any orphan process. A process is orphan when it does not fail 

and its state depends on the execution of a nondeterministic event whose determinant 
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cannot be recovered from stable storage or from the volatile memory of a surviving 

process [Elnozahy, et al., 2002].  

The way a specific protocol implements the no-orphan  message condition affects 

the protocol’s failure-free performance overhead, the latency of output commit, and 

the simplicity of recovery and garbage collection schemes, as well as its potential for 

rolling back correct processes. These differences lead to three classes of log-based 

protocols: pessimistic, optimistic and causal. 

2.6.1 Pessimistic log-based protocols 

Despite all efforts in order to provide fault tolerance, in reality, failures are rare. 

Although this, these protocols assume a pessimistic behavior, supposing that a failure 

may occur after any nondeterministic event in the computation. In their most simple 

form, pessimistic protocols log the determinant of each received message before the 

message influences in the computation. Pessimistic protocols implement a property 

often referred to as synchronous logging, i.e., if an event has not been logged on 

stable storage, then no process can depend on it [Elnozahy, et al., 2002]. Such 

condition assures that orphan processes will never exist in systems using pessimistic 

log-based protocol. 

Processes also take periodic checkpoints in order to limit the amount of work that 

the faulty process has to repeat during recovery. If a failure occurs, the process 

restarts from its most recent checkpoint. During the recovering procedure, the process 

uses the logged determinants to recreate the pre-failure execution, without needing 

any synchronization between the processes. The checkpoint period implies directly in 

the overhead imposed by fault tolerance, creating a dilemma: if checkpoints is taken 

in short periods, it will cause greater overhead during a failure-free execution, but less 

expensive will be the recovery process. 

Synchronous logging enables that the observable state of each process is always 

recoverable. This property leads to four advantages at the expense of a high 

computational overhead penalty [Elnozahy, et al., 2002]: 
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e) Recovery is simple because the effects of a failure influences only the 

processes that fails. 

f) Garbage collection is simple because the process can discard older 

checkpoints and determinants of received messages that are before the most 

recent checkpoint. 

g) Upon a failure, the failed process restarts from its most recent checkpoint 

what limits the extent of lost computation. 

h) There is no need of a special protocol to send messages to outside world. 

Due to the synchronism, the log mechanism may enlarge the message latency 

perceived by the sender process, because it has to wait until the stable storage 

confirms the message log writing in order to consider the message as delivered. In 

order to reduce the overhead caused by the synchronous logging, the fault tolerance 

system may applies a Sender Based Message Logging model that stores the log in the 

volatile memory of the message sender, supposing as a reliable device. In this case, 

the recovery process is more complex, needing to involve each machine that has 

communicated with the failed process. 

2.6.2 Optimistic log-based protocols 

In opposition, these protocols suppose that failures occurs rarely, relaxing the 

event log, but allowing the orphans processes appearing caused by failures in order to 

reduce the failure-free performance overhead. However, the possibility of appearing 

orphans processes lefts the recovery process more complex, garbage collection and 

output commit [Jalote, 1994]. In optimistic protocols as in pessimistic protocols, 

every process take checkpoint and message log asynchronously [Alvisi and Marzullo, 

1998]. Furthermore, a volatile log maintains each determinant meanwhile the 

application processes continue their execution. There is no concern if the log is in the 

stable storage or in the volatile memory. The protocol assumes that logging to stable 

storage will complete before a failure occurs (thence its optimism). 

If a process fails, the determinants in its volatile log will be lost, and the state 

intervals started by the nondeterministic events corresponding to these determinants 
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are unrecoverable. Furthermore, if the failed process sent a message during any of the 

state intervals that cannot be recovered, the receiver of the message becomes an 

orphan process and must roll back to undo the effects of receiving the message. To 

perform these rollbacks correctly, optimistic logging protocols track causal 

dependencies during failure-free execution [Elnozahy, et al., 2002; Jalote, 1994]. 

Upon a failure, the dependency information is used to calculate and recover the latest 

global state of the pre-failure execution in which no process is in an orphan. Since 

there is now a dependency between processes, optimistic protocols need to keep 

multiple checkpoints what complicates the garbage collection policy. 

The recovery mechanism in optimistic protocol can be either synchronous or 

asynchronous. Each one is explained bellow [Elnozahy, et al., 2002] and detailed 

bellow: 

Synchronous recovery 

During failure free operation, each process updates a state interval index when a 

new state interval begins. The indexes serve to track the dependency between 

processes using two distinct strategies: direct or transitive. In synchronous recovery, 

all processes use this dependency information and the logged information to calculate 

the maximum recovery line. Then, each process uses the calculated recovery line to 

decide if it must roll back. 

In direct tracking strategy, each outgoing message contains the state interval 

index of the sender (piggybacked in the message) in order to allow the receiver to 

record the dependency directly caused by the message. At recovery time, each process 

assemblies its dependencies to obtain the complete dependency information. 

In transitive tracking, each process maintains a size-N vector V, where V[i] is the 

current state interval index of the process Pi  itself, and V[j],  j ≠ i, records the highest 

index of any state interval of a process Pj on which Pi depends. Transitive dependency 

tracking generally incurs a higher failure-free overhead because of piggybacking and 

maintaining the dependency vectors, but allows faster output commit and recovery. 
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Asynchronous recovery 

In this scheme, a recovery process broadcasts a rollback announcement to start a 

new incarnation. Every process that receives a rollback announcement checks if it has 

become an orphan because of the announcement and then, if necessary, it rolls back 

and broadcasts its own rollback announcement. 

Asynchronous recovery can produce a situation called exponential rollbacks. 

Exponential rollbacks occur when a process rolls back an exponential number of 

times because of a single failure. The asynchronous protocol eliminates exponential 

rollbacks by either distinguishing failure announcements from rollback 

announcements or piggybacking the original rollback announcement from the failed 

process on every subsequent rollback announcement that it broadcasts. 

2.6.3 Causal log-based protocols 

These protocols avoid the creation of orphan processes by ensuring that the 

determinant of each received message, which causally precedes a process’s state, 

either is in stable storage or is available locally to that process [Elnozahy, et al., 

2002]. Such protocols dispense synchronous logging, which is the main disadvantage 

of pessimistic protocols, while maintaining their benefits (isolation of failed 

processes, rollback extent limitation and no apparition of orphan processes). 

However, causal protocols have a complex recovery scheme. 

In order to track causality, each process piggybacks the non-stable determinants 

that are in its volatile log on the messages it sends to other processes. On receiving a 

message, a process first adds any piggybacked determinant to its volatile determinant 

log and then delivers the message to the application. 

2.7 Comparing the rollback-recovery protocols 

Table 2-2 summarizes the differences among the rollback-recover protocols. The 

decision about which one is best suited for a given system than another is not 

straightforward. It depends on diverse factors like probability of failures, message 

pattern among application processes, the resources consumed, etc. 
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Using the four basic requirements as reference (scalability, transparency, 

decentralization and flexibility,) we compared the protocols described in Table 2-2 in 

order to choose the ones that could best attend to these requirements. We immediately 

discarded the uncoordinated, the CIC and the optimistic protocol because they allow 

the creation of orphan processes. 

We defined that, in order to be scalable, the number of computational elements of 

the parallel computer must not influence the operation of the protocol. To satisfy such 

requirement, the recovery mechanism must be independent of the number of elements 

present in the system. For this, it is necessary that the process recovering rest only on 

local information, i.e, it cannot rests on the information about other process. 

Looking again at Table 2-2, one can see that the only protocol that allows local 

decision during the recovery phase is the pessimist message-log. This protocol also 

increases the efficiency in terms of storage space because each process only needs to 

store its last checkpoint in order to recover. Additionally, this feature greatly 

simplifies the implementation of the garbage collection mechanism. 

The pessimistic rollback-recovery protocol does not restrict the other features. It 

may operate in the system level so the application is not aware about it (transparency). 

It has an intrinsic decentralization because each process only needs local information 

to recover from faults. 

Table 2-2: Comparison between rollback recovery protocols [Elnozahy, et al., 2002] 

 Checkpointing Message logging 

 Uncoord. Coordinated CIC Pessimistic Optimistic Causal 

PWD 
assumed No No No Yes Yes Yes 

Checkpoint 
per process Several 1 Several 1 Several 1 

Domino 
effect Possible No No No No No 

Orphan 
processes Possible No Possible No Possible No 
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Rollback 
extent Unbounded Last global 

checkpoint 
Possibly 

several local 
checkpoints 

Last 
checkpoint 

Possibly 
several 

checkpoints 
Last 

checkpoint 

Recovery 
data Distributed Distributed Distributed Distributed or 

Local 
Distributed or  

local 
Distributed 

 

Recovery 
protocol Distributed Distributed Distributed Local Distributed Distributed 

Output 
commit 

Not 
possible 

Global 
coordination 

required 

Global 
coordination 

required 
Local 

decision 
Global 

coordination 
required 

Local 
decision 

 

Finally, the pessimistic message log protocol is very flexible because the 

operation of the fault tolerance mechanism is restricted to each process, allowing the 

building of several different arrangements in order to attend to the performance or 

efficiency requirements of the system. For example, each process may have its own 

checkpoint interval in order to reduce the overall cost of the checkpoint procedure. 

2.8 Current Researches 

Fault tolerance becomes a major issue in the high performance computing area. 

Hence, many works has been developed in order to provide fault tolerance for parallel 

systems. Following, there are some of the current researches in this area. 

MPICH-V [Bouteiller, et al., 2006] is a framework that aims to compare 

different approaches for fault tolerance over the MPICH-1 implementation of MPI.  It 

is an evolution of other three implementations. This framework is a MPICH channel 

library implementation associated with a runtime environment. The MPICH-V 

runtime environment is formed by some components: Dispatcher, Channel memories, 

Checkpoint servers, and Computing/Communicating nodes. The dispatcher is the 

responsible to launch the entire runtime environment, and performs a fault detection 

task by monitoring the runtime execution. Channel Memories are dedicated nodes 

providing a service of tunneling and repository. The architecture assumes neither 

central control nor global snapshots. The fault tolerance bases on an uncoordinated 

checkpoint protocol that uses centralized checkpoint servers to store communication 

context and computations independently.  



Fault Tolerance 45 

FT-Pro [Li and Lan, 2006] is a fault tolerance solution that bases on a 

combination of rollback-recovery and failure prediction to take some action at each 

decision point. Using this approach, this solution aims to keeps the system 

performance avoiding excessive checkpoints. Currently support three different 

preventive actions: Process migration, coordinated checkpoint using central 

checkpoint storages and no action. Each preventive action is selected dynamically in 

an adaptive way intending to reduce the overhead of fault tolerance. FT-Pro works an 

initially determined and static number of spare nodes. 

Score-D [Kondo, M., et al. 2003]. The Score-D checkpoint solution is a fault 

tolerance solution used in the Score cluster implementing a distributed coordinated 

checkpoint system. In Score’s checkpointing algorithm, each node stores its 

checkpoint data into the local disk in parallel. In addition, it saves redundant data to 

ensure the reliability for non-transient failures. A server is in charge  to send a 

heartbeat to each node in order to detect failures. This redundancy is achieved through 

parity generation. In the recovery task, this system uses the parity data distributed 

over the nodes, in order to reconstitute the checkpoint image and restart the process in 

a spare node allocated statically at the program start. The initial solution has a clear 

bottleneck caused by disk writing, so Gao [Gao et al, 2005] proposed an optimization 

using a hierarchical storage approach combined with a diskless checkpointing for 

transient failures tolerance. 

MPICH-V2 [Bouteiller, et al., 2003a] is a improvement in the previous version, 

implementing the sender based pessimistic log (the computing node now keeps the 

message-log), is well suited for homogeneous network large-scale computing. Unlike 

its antecessor, it requires a few number of stable components to reach good 

performance on a cluster. MPICH-V2 replaced the channel memories concept by 

event loggers assuring the correct replace of messages during recovers. 

MPICH-VCL [Bouteiller, et al., 2003b] is designed for extra low latency 

dependent applications. It uses coordinated checkpoint scheme based on the Chandy-

Lamport algorithm [Chandy and Lamport, 1985] in order to eliminate overheads 

during fault free execution. However, it requires restarting all nodes (even non-
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crashed ones) in the case of a single fault. Consequently, it is less fault resilient than 

message logging protocols, and is only suited for medium scale clusters. 

LAM/MPI [Squyres and Lumsdaine, 2003; Burns et al, 1994]. This   

implementation uses a component architecture called System Services Interface (SSI) 

that allows checkpoint an MPI application using a coordinated checkpoint approach. 

This feature is not automatic, needing a back-end checkpoint system. In case of 

failure, all applications nodes stop and a restart command is needed. LAM/MPI 

demands a faulty node replacement. This procedure is neither automatic, nor 

transparent. 

MPICH-V1 [Bosilca, et al., 2002] is the first implementation of MPICH-V. This 

version has a good appliance in very large scale computing using heterogeneous 

networks. Its fault tolerant protocol uses uncoordinated checkpoint and remote 

pessimistic message logging. MPICH-V1 well suited for Desktop Grids and Global 

computing as it can support a very high rate of faults. As this solution requires a 

central stable storage, it requires a large bandwidth that becomes the major drawback 

for this implementation. 

Starfish [Agbaria and Friedman, 1999] provides failure detection and recovery at 

the runtime level for dynamic and static MPI-2 programs. Starfish allows the user to 

control checkpoint and recovery by an user level API allowing the user to control 

checkpoint and recovery. Both coordinated and uncoordinated checkpoints strategies 

may be applied by the user choice. Coordinated checkpoint relies on the Chandy-

Lamport’s algorithm. For an uncoordinated checkpoint, the environment sends to all 

surviving processes a notification of the failure. The application may take decision 

and corrective operations to continue execution. 

Table 2-3: A comparison of some fault-tolerant MPI solutions based on five relevant features  

Solution Scalable Fully 
Decentralized Transparent Flexible Dynamic 

Redundancy 
Cocheck   User  Not informed 
Starfish     Not informed 
Score-D   User Yes Statically Allocated 
FT-PRO    User Yes Statically Allocated 

MPICH-V1   User and Admin Yes Statically Allocated 
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MPICH-V2 Yes  User and Admin Yes Statically Allocated 
MPICH-VCL   User and Admin  Statically Allocated 

LAM/MPI   User   Not Applicable 
MPICH-V Yes  User and Admin Yes Statically Allocated 

 

Cocheck [Stellner, 1996] was one of the firsts solutions for fault tolerance in 

MPI. It works as an independent application making a MPI parallel application fault 

tolerant. It is implemented at the runtime level (but its implementation on top of 

tuMPI required some modification of the tuMPI code), on top of a message passing 

library and a portable process checkpoint mechanism. Cocheck coordinates the 

application processes checkpoints and flushes the communication channels of the 

target applications using a Chandy-Lamport’s algorithm. A centralized coordinator 

manages the checkpoint and rollback procedures. 

 In Table 2-3 we present a summary of these solutions, comparing according five 

relevant features. We considered a solution scalable when it has not any characteristic 

that may affect the scalability, i.e. bottlenecks or checkpoint /recovery strategy 

needing coordination between all nodes. The fully decentralized feature means that in 

any moment of the fault-tolerance process, including recovery, the solution does not 

need any central elements. The transparency was analyzed by two points of view: 

from the user, a programmer, who does not need to change its program code; and 

from the system administrator, who does not need take care of the recovery activities. 

We considered flexible, the which ones allowing adjusting some kind of parameter. 

Finally, we analyzed the presence of the dynamic redundancy feature, considering as 

flexible, when allows a dynamic insertion of spare nodes and statically allocated when 

it have a fixed and pre-determined number of spares. 

 

 

 



  

Chapter 3 

The RADIC Architecture 

This chapter discusses characteristics and behavior of the architecture chosen as 

basis of our work. In his work, Duarte [Duarte, 2007] introduces a new fault tolerance 

architecture called RADIC, an acronym for Redundant Array of Independent Fault 

Tolerance Controllers. As RADIC was intended not uses extra resources, the recovery 

process causes a system degradation due to the node losses. Hence, we need to supply 

RADIC with some more features, allowing reducing or avoiding this degradation by 

protecting the system or allowing preventing the faults. 

3.1 RADIC architecture model 

Table 3-1: The key features of RADIC 

Feature How it is achieved 

Transparency − No change in the application code 
− No administrator intervention is required to manage the failure 

Decentralization − No central or fully dedicated resource is required. All nodes 
may be simultaneously used for computation and protection 

Scalability − The RADIC operation is not affected by the number of nodes in 
the parallel computer 

Flexibility 

− Fault tolerance parameters may be adjusted according to 
application requirements 

− The fault-tolerant architecture  may change for better adapting 
to the parallel computer structure and to the fault pattern 

 

RADIC establishes an architecture model that defines the interaction of the fault-

tolerant architecture and the parallel computer’s structure. Figure 3-1 depicts how the 

RADIC architecture interacts with the structure of the parallel computer (in the lower 

level) and with the parallel application’s structure (in the higher level). RADIC 

implements two levels between the MESSAGE-PASSING level and the computer 
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structure. The lower level implement the fault tolerance mechanism and the higher 

level implements the fault masking and message delivering mechanism. 

The core of the RADIC architecture is a fully distributed controller for fault 

tolerance that automatically handles faults in the cluster structure. Such controller 

shares the parallel computers resources used in the execution of the parallel 

application. The controller is also capable to handle its structure in order to survive to 

failures. 

 
 

Figure 3-1: The RADIC levels in a parallel system 

Parallel Computer Structure (Fault-probable)

RADIC Fault tolerance functions 
Message logs, checkpoints, fault detection and recovery 

RADIC Fault masking functions 
Message delivering 

Message-passing Standard

Parallel Application 

3.1.1 Failure pattern 

We assume that the probability of failures in the nodes follows a Poisson 

distribution. This assumption is accurate if we consider that:  

− the chance that a failure occurs in a time interval is proportional to the interval 

size; 

− the probabilities of failure of each node are independent; 

− the probability of multiple failures in a given interval is much smaller than the 

probability of a single failure. 

Basing on these assumptions, we establish that if a node fails, all elements 

involved in the recovery of the failed processes will survive until the end of the 
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recovery procedure. In other words, if two or more failures occur concurrently, none 

of them affects the elements implicated in the recovery of the other failures while the 

recovering procedure occurs. 

Similarly, any number of failures may occur if each failure does not affect an 

element implicated in the recovery of a previous failure. 

3.2 RADIC functional elements 

The structure of the RADIC architecture uses a group of processes that 

collaborate in order to create a distributed controller for fault tolerance. There are two 

classes of processes: protectors and observers. Every node of the parallel computer 

has a dedicated protector and there is a dedicated observer attached to every parallel 

application’s process. 

3.2.1 Protectors 

There is a protector process in each node of the parallel computer. Each protector 

communicates with two protectors assumed as neighbors: an antecessor and a 

successor. Therefore, all protectors establish a protection system throughout the nodes 

of the parallel computer. In Figure 3-2, we depict a simple cluster built using nine 

nodes (N0-N8) and a possible connection of the respective protectors of each node (T0-

T8). The arrows indicate the antecessor←successor relationship. 
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Figure 3-2: An example of Protectors (T0-T8) in a cluster with nine nodes. Green arrows 

indicate the antecessor←successor communication.  

The relationship between neighbor protectors exists because the fault detection 

procedure. There is a heartbeat/watchdog mechanism between two neighbor 

protectors: one has the watchdog and receives heartbeats from the other. By 

definition, the protector who has the watchdog is the antecessor and the protector who 

sends the heartbeats is the successor. 

The arrows in Figure 3-2 indicate the orientation of the heartbeat signals from the 

successor to the antecessor. Actually, each successor has a double identity because it 

acts simultaneously as a successor for a neighbor and as an antecessor for the other 
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neighbor. For example, in Figure 3-2, the protector T7 is the antecessor of the 

protector T8 and the successor of the protector T6. 

Each protector executes the following tasks related to the operation of the 

rollback-recovery protocol: 

a) It stores checkpoints and message-logs from the application processes those 

are running in its successor node; 

b) It monitors its neighbors in order to detect failures via a heartbeat/watchdog 

scheme; 

c) It reestablishes the monitoring mechanism with a new neighbor after a failure 

in one of its current neighbors, i.e., it reestablishes the protection chain; 

d) It implements the recovery mechanism. 

3.2.2 Observers 

Observers are RADIC processes attached to each application processes. From the 

RADIC operational point-of-view, an observer and its application process compose an 

inseparable pair.  

The group of observers implements the message-passing mechanism for the 

parallel application. Furthermore, each observer executes the following tasks related 

to fault tolerance: 

a) It takes checkpoints and event logs of its application process and send them 

to a protector running in another node, namely the antecessor protector; 

b) It detects communication failures with another processes and with its 

protector; 

c) In the recovering phase, it manages the messages from the message log of its 

application process and establishes a new protector; 

d) It maintains a mapping table, called radictable, indicating the location of all 

application processes and their respective protectors and updates this table in 

order to mask faults. 
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3.2.3 The RADIC controller for fault tolerance 

The collaboration between protectors and observers allows the execution of the 

tasks of the RADIC controller. Figure 3-3 depicts the same cluster of Figure 3-2 with 

all elements of RADIC, as well as their relationships. The arrows in the figure 

represent only the communications between the fault-tolerance elements. The 

communications between the application processes does not appear in the figure 

because they relate to the application behavior. 

Each observer has an arrow that connects it to a protector, to whom it sends 

checkpoints and message logs of its application process. Such protector is the 

antecessor of the local protector. Therefore, by asking to the local protector who is the 

antecessor protector, an observer can always know who its protector is. 

Each protector has an arrow that connects it to an antecessor protector. Similarly, 

it receives a connection from its successor. A protector only communicates with their 

immediate neighbors. For example, in Figure 3-3, the protector T5 communicate only 

with T4 and T6. It will never communicate with T3, unless T4 fails and T3 becomes its 

new immediate neighbor. 

The RADIC controller uses the receiver-based pessimistic log rollback-recovery 

protocol to handle the faults in order to satisfy the scalability requirement. As 

explained in the item 2.6.1, this protocol is the only one in which the recover 

mechanism does not demand synchronization between the in-recovering process and 

the processes not affected by the fault. Such feature avoids that the scalability suffer 

with the operation of the fault tolerance mechanism. 
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Figure 3-3: A cluster using the RADIC architecture. P0-P8 are application process. O0-O8 are 

observers and T0-T8 are protectors. O→T arrows represent the relationship between 
observers and protector and T→T arrows the relationship between protectors. 

Besides the fault tolerance activities, the observers are responsible to manage the 

message-passing mechanism. This activity rests on a mapping table that contains all 

information required to the correct delivery of a message between two processes. 

Protectors do not participate directly in the message-passing mechanism, only 

performing the message log storing. 
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3.3 RADIC operation 

As we seen, the RADIC distributed controller concurrently executes a set of 

activities related to the fault tolerance. Besides these fault tolerance activities, the 

controller also implements the message-passing mechanism for the application 

processes. Following we explain how these mechanism and tasks contribute for the 

RADIC operation. 

3.3.1 Message-passing mechanism 

In the RADIC message-passing mechanism, an application process sends a 

message through its observer. The observer takes care of delivering the message 

through the communication channel. Similarly, all messages that come to an 

application process must first pass through its observer. The observer then delivers the 

message to the application process. Figure 3-4 clarifies this process. 

 
Figure 3-4: The message-passing mechanism in RADIC. 

To discover the address of a destination process, each observer uses its routing 

table, the radictable, which relates the identification of the destination process inside 

the application level with the identification of the destination process inside the 

communication level. Table 3-2 represents a typical radictable. 
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Table 3-2: An example of radictable for the cluster in Figure 3-3

Process identification Address 

0 Node 0 

1 Node 1 

2 Node 2 

3 Node 3 

. 

. 
. 
. 

3.3.2 State saving task 

In this task, protectors and observers collaborate in order to save snapshots of the 

parallel application’s state. This task is the major responsible for resources consumed 

by the fault tolerance mechanism as well as for the enlargement in the execution time 

in the absence of failures.  

The system must supply storage space for the checkpoints and the message-logs 

required by the rollback-recovery protocol. Furthermore, the checkpoint procedure 

introduces a time delay in the computation because a process may suspend its 

operation while the checkpoint occurs. 

Additionally, the message-log interferes in the message latency, because a 

process only considers a message delivered after the message is stored in the message 

log. 

Checkpoints 

Each observer takes checkpoints of its application process, as well as of itself, 

and sends them to the protector located in its antecessor node. Figure 3-5 depicts a 

simplified scheme to clarify the relationship between an observer and its protector. 

A checkpoint is an atomic procedure and a process become unavailable to 

communicate while a checkpoint procedure is in progress. This behavior demands 

that the fault detection mechanism differentiates a communication failure caused by a 
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real failure from a communication failure caused by a checkpoint procedure. We 

explain this differentiation in item 3.3.3. 

 

Figure 3-5: Relation between an observer and its protector. 

The protectors operate like a distributed reliable storage. The reliability is 

achieved because the checkpoints and message logs of a process are stored in a 

different node. Therefore, if a process fails, all information required to recover it is in 

a survivor node. 

Thanks to the uncoordinated checkpoint mechanism of the pessimistic 

message-log rollback-recovery protocol used by RADIC, each observer may establish 

an individual checkpoint policy for its application process. Such policy may be time-

driven or event-driven. The RADIC architecture allows the implementation of any 

combination of these two policies. 

The time-driven policy is very typical in the fault-tolerant implementations based 

on rollback-recovery. In this policy, each observer has a checkpoint interval that 

determines the times when the observer takes a checkpoint. 

The event-driven policy defines a trigger that each observer uses in order to start 

the checkpoint procedure. A typical event-driven policy occurs when two or more 

observers coordinate their checkpoints. Such policy is useful when two processes 

have to exchange many messages. In this case, because the strong interaction between 
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the processes, coordinate the checkpoint is a good way to reduce the checkpoint 

intrusion over the message exchanging. 

When an observer takes a checkpoint of its process, this checkpoint represents all 

computational work done by such process until that moment. Is such computational 

work that the observer sends to the protector. As the process continues its work, the 

state saved in the protector becomes obsolete. To make possible the reconstruction of 

the process’ state in case of failure, the observer also logs in to its protector all 

messages its process has received since its last checkpoint. Therefore, the protector 

always has all information required to recover a process in case of a failure, but such 

state’s information is always older than the current process’ state. 

Message logs 

Because the pessimistic log-based rollback-recovery protocol, each observer must 

log all messages received by its application process. As we have explained in Chapter 

2, the use of message logs together with checkpoint optimizes the fault tolerance 

mechanism by avoiding the domino effect and by reducing the amount of checkpoints 

that the system must maintain. 

The message log mechanism in RADIC is very simple: the observer resends all 

received messages to its protector, which saves it in a stable storage. The log 

procedure must complete before the sender process consider the message as delivered. 

Figure 3-6 depicts the message’s delivery mechanism and message’s log mechanism. 

The log mechanism enlarge the message latency perceived by the sender process, 

because it has to wait until the protector concludes the message log procedure in order 

to consider the message as delivered.  
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Figure 3-6: Message delivering and message log mechanism. 

Garbage collection 

The pessimistic message log protocol does not require any synchronization 

between processes. Each observer is free to take checkpoints of its process without 

caring about what is happening with other parallel application’s process. 

This feature greatly simplifies the construction of the garbage collector by the 

protectors. Because each checkpoint represents the current state of a process, 

whenever a new checkpoint comes from an observer, the protector may discard all 

prior checkpoints and message-logs related to that process. Therefore, after a 

protector receives a new checkpoint from a process, it automatically eliminates the 

older checkpoint of this process. 

3.3.3 Failure detection task 

The failure detection is an activity performed simultaneously by protectors and 

observers. Each one performs specific activities in this task, according to its role in 

the fault tolerance scheme. 
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How protectors detect failures 

The failure detection procedure contains two tasks: a passive monitoring task and 

an active monitoring task. Because of this, each protector has two parts: it is, 

simultaneously, antecessor of one protector and successor of other.  

There is a heartbeat/watchdog mechanism between two neighbors. The 

antecessor is the watchdog element and the successor is the heartbeat element. Figure 

3-8 represents the operational flow of each protector element. 

A successor regularly sends heartbeats to an antecessor. The heartbeat/watchdog 

cycle determines how fast a protector will detect a failure in its neighbor, i.e., the 

response time of the failure detection scheme. Short cycles reduce the response time, 

but also increase the interference over the communication channel. Figure 3-7 depicts 

three protectors and the heartbeat/watchdog mechanism between them. In this picture 

we see the antecessors running the watchdog routine waiting for a heartbeat sent by 

its neighbor. 

Heartbeat 

Sucessor 

Heartbeat Heart… ..beat 

Sucessor Sucessor 

Antecessor Antecessor Antecessor 
W H W H W H

TX TY TZ

Figure 3-7: Three protectors (TX, TY  and TZ) and their relationship to detect failures. 
Successors send heartbeats to antecessors. 

A node failure generates events in the node’s antecessor and in the node’s 

successor. If a successor detects that its antecessor has failed, it immediately starts a 

search for a new antecessor. The search algorithm is very simple. Each protector 

knows the address of its antecessor and the address of the current antecessor of its 

antecessor. Therefore, when a antecessor fails, the protector know exactly who its 

new antecessor will be. 
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An antecessor, in turns, begins to wait for a new successor detects a failure in its 

current successor. Furthermore, the antecessor also starts the recovering procedure, in 

order to recover the faulty processes that were running in the successor node. 

 

Figure 3-8: Protector algorithms for antecessor and successor tasks 

How the observers detect failures 

Each observer relates with two classes of remote elements: its protector and the 

other application processes. An observer detects failures either when the 

communication with other application processes fails or when the communication 

with its protector fails. However, because an observer just communicates with its 

protector when it has to do a checkpoint or a message log, an additional mechanism 

shall exist to certify that an observer will quickly perceive that its protector has failed. 
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RADIC provides such mechanism using a warning message between the observer 

and the local protector (the protector that is running in the same node of the observer). 

Whenever a protector detects a fail in its antecessor, such protector sends a warning 

message to all observers in its nodes because it knows that the failed antecessor is the 

protector that the local observers are using to save checkpoints and message logs. 

When an observer receives such message, it immediately establishes a new 

protector and takes a checkpoint. 

How the observers confirm a failure 

There are two situations which create a communication failure between 

application processes, but that must not indicate a node failure. The first failure 

situation occurs when an observer is taking a checkpoint of its application process. 

The second occurs when a process fails and restarts in a different node. 

In this paragraph, we explain how the observers get rids of the first problem. We 

will explain how the observer gets rid of the second situation in the description of the 

Fault Masking Phase. 

A process becomes unavailable to communicate inside the checkpoint procedure. 

Such behavior could cause that a sender process interprets the communication failure 

caused by the checkpoint procedure as a failure in the destination.  

Table 3-3: The radictable of each observer in the cluster in Figure 3-3. 

Process identification Address Protector 
(antecessor address) 

0 Node 0 Node 8 

1 Node 1 Node 0 

2 Node 2 Node 1 

3 Node 3 Node 2 

. 

. 
. 
. 

. 

. 
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In order to avoid this fake failure detection, before a sender observer assumes a 

communication failure with a destination process, the sender observer contacts the 

destination’s protector and asks about the destination’s status. To allow that each 

observer knows the location of the protector of the other process, the radictable now 

includes the address of the destination’s protector, as shown in Table 3-3. 

Analyzing Table 3-3, one may see that the protector in node eight protects the 

processes in node zero, the protector in node zero protects processes in node one and 

so forth. 

Using its radictable, any sender observer may locate the destination’s protector. 

Since the destination’s protector is aware about the checkpoint procedure of the 

destination process, it will inform the destination’s status to the sender observer. 

Therefore, the sender observers can discover if the communication failure is 

consequence of a current checkpoint procedure. 

The radictable and the search algorithm 

Whenever an observer needs to contact another observer (in order to send a 

message) or an observer’s protector (in order to confirm the status of a destination), 

this observer will look for the address of the element in its radictable. However, after 

a failure occurs, the radictable of an observer becomes outdated, because the address 

of the recovered process and their respective protectors changed. 

To face this problem, each observer uses a search algorithm for calculates the 

address of failed elements. This algorithm relies on the determinism of the protection 

chain. Each observer knows that the protector of a failed element (observer or 

protector) is the antecessor of this element. Since a antecessor is always the previous 

element in the radictable, whenever the observer needs to find an element it simply 

looks the previous line in its radictable, and finds the address of the element. The 

observer repeats this procedure until it finds the element it is looking for. 

3.3.4 Recovery task 

In normal operation, the protectors are monitoring computer’s nodes, and the 

observers care about checkpoints and message logs of the distributed application 
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processes. Together, protectors and observers function like a distributed controller for 

fault tolerance. 

When protectors and observers detect a failure, both actuate to reestablish the 

consistent state of the distributed parallel application and to reestablish the structure 

of the RADIC controller. 

Reestablishing the RADIC structure after failures 

The protectors and observers implicated in the failure will take simultaneous 

atomic actions in order to reestablish the integrity of the RADIC controller’s 

structure. Table 3-4 explicates the atomic activities of each element. 

When the recovery task is finished, the RADIC controller’s structure is 

reestablished and henceforth is ready to manage new failures. Figure 3-9 presents the 

configuration of a cluster from a normal situation until the recovery task has finished. 

Recovering failed application processes 

Table 3-4: Recovery activities performed by the each element implicated in a failure. 

Protectors Observers 
Successor: 

Survivors: 

1) Establish a new protector 
1) Fetches a new antecessor 

2) Reestablishes the heartbeat mechanism 
2) Take a checkpoint 

3) Commands the local observers to checkpoint 

Antecessor : 

1) Waits for a new successor 

 

The protector that is the antecessor of the failed node recovers the failed 

application processes in the same node in which the protector is running. Immediately 

after the recovery, each observer connects to a new protector. This new protector is 

the antecessor of the node in which the observer recovers. The recovered observer 

gets the information about its new protector from the protector in its local node. 

2) Reestablishes the watchdog mechanism 

3) Recovers the failed processes 

Recovered: 

1) Establish a new protector 

2) Copy current  checkpoint and message log to the 
new protector 

3) Replays message from the message-log 
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Indeed, the protector of any observer is always the antecessor of the node in which the 

observer is running. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-9: Recovering tasks in a cluster. (a) Failure free cluster. (b) Fault in node N3. (c) 
Protectors T2 and T4 detect the failure and reestablish the chain, O4 connects to T2. (d) T2 

recovers P3/O3 and O3 connects to T1. 
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Load balance after recovering from faults 

After recovering, the recovered process is running in the same node of its former 

protector. It means that the computational load increases in such node, because it now 

contains its original application processes plus the recovered processes. Therefore, the 

original load balancing of the system changes. This configuration change may imply 

in system degradation, resulting in performance loss in some cases. Moreover, after 

recovering, the memory usage in the node hosting the recovered process will rise 

leading to disk swap in some cases. 

RADIC make possible the implementation of several strategies to face the load 

balance problem after process recovery. A possible strategy is to implement a 

heuristic for load balance that could search a node with lesser computational load. 

Therefore, instead of recovering the faulty process in its own node, a protector could 

send the checkpoint and the message logs of the faulty processes to be recovered by a 

protector in a node with less computational load. 

3.3.5 Fault masking task 

The fault masking is an observers’ attribution. The observers assure that the 

processes continue to correctly communicate through the message-passing 

mechanism, i.e., the observers create a virtual machine in which failures does not 

affect the message-passing mechanism. 

In order to perform this task, each observer manages all messages sent and 

received by its process. An observer maintains, in its private radictable, the address of 

all logical processes or the parallel application associated with their respective 

protectors. Using the information in its radictable, each observer uses the search 

algorithm, explained in sub-item The radictable and the search algorithm at the item 

3.3.3, to locate the recovered processes. 

Similarly, each observer records a logical clock in order to classify all messages 

delivered between the processes. Using the logical clock, an observer easily manages 

messages sent by recovered processes. 
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Table 3-5 represents a typical radictable including the logical clocks. One can see 

that the observer that owns this table has received three messages from the process 

zero and has sent two messages to this process. Similarly, the process has received 

one message and sent one message to process three. 

Table 3-5: The radictable of an observer in the cluster in Figure 3-3.  

Process id. Address Protector 
(antecessor addr.) 

Logical clock for 
sent messages 

Logical clock for 
recev. messages 

0 Node 0 Node 8 2 3 
1 Node 1 Node 0 0 0 
2 Node 2 Node 1 0 0 
3 Node 3 Node 2 1 1 
… … … … … 

Locating recovered process 

When a node fails, the antecessor neighbor of the faulty node - which executes 

the watchdog procedure and stores checkpoints and message-logs of the processes in 

the faulty node – detects the fail and starts the recovering procedure. Therefore, the 

faulty processes now restart their execution in the node of the antecessor, resuming 

since their last checkpoint. 

In order to clarify the behavior of a recovered process, in Figure 3-10 we 

represent four nodes of Figure 3-3 and the final configuration after a failure in one of 

these nodes. The process P3 that was originally in the faulty node N3 is now running 

in the node N2. Therefore, all other processes have to discover the new location of P3. 
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(a) (b) 

Figure 3-10: (a) A failure free cluster; (b) The same cluster after the management of a 
failure in node N3. 

In the explanation of the Fault Detection Phase, we defined two situations that 

create fake fault detection. The first situation occurs when an observer is taking a 

checkpoint of its application process, making this process unavailable to 

communicate. We described the solution for this problem in the Fault Detection 

Phase. Now, we describe the second situation and the solution for it. 

After a node failure, all future communications to the processes in this node will 

fail. Therefore, whenever an observer tries to send a message to a process in a faulty 

node, this observer will detect a communication failure and start the algorithm to 

discover the new destination location. 
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Figure 3-11: Fault detection algorithms for sender and receiver observers 

Figure 3-11 describes the algorithms used by an observer if it acts as sender or as 

a receiver. An observer uses the search algorithm only the communication fails when 

it is sending a message to another process. If the failure occurs while the process is 

receiving a message, the observer simply aborts the communication because it knows 

that the faulty sender we restart the communication after it has recovered. 

The search algorithm used by the sender observer uses the protector of the 

receiver process to inform the status of the receiver. However, if the receiver has 

recovered from a fault, its protector now is the antecessor of its original protector, 

because the recovered observer is now running in the same node of its original 

protector. 

The example in Figure 3-10 clarifies the location of the recovered process P3 after 

a failure in node N3. The new protector of P3 is now T1, because P3 currently is 

running in the same node of its original protector T2. 
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If some observer tries to communicate with the faulty process P3, such observer 

will obtain a communication error and will ask to the protector T2 about the status of 

P3. In this case, T2 informs that it is not responsible for P3 (because T1 is now the 

current protector of P3.) 

In order to find who the current protector of P3 is, the sender observer uses its 

radictable to follow the protector chain. The sender observer knows that if T2 is no 

more protecting P3, then the probable protector of P3 shall be the antecessor of T2 in 

the protector chain (because a faulty process always recover in the antecessor 

neighbor node).  

Therefore, the sender observer reads its radictable and calculates the protector 

who is the antecessor of the protector T2. In our example, the antecessor of the 

protector T2 is the protector T1. In the radictable the order of the protectors in the 

chain naturally follows the same order of the table index. Therefore, the antecessor of 

a node is always the node in the previous line of the table, as shown in Table 3-6. 

Table 3-6:  Part of the original radictable  for the processes represented in Figure 3-10a. 

Process identification Address Protector 
(antecessor address) 

1 Node 1 Node 0 
2 Node 2 Node 1 
3 Node 3 Node 2 
4 Node 4 Node 3 

 

Now that the sender observer knows who the probable protector of the receiver 

process P3 is, it contacts such protector and asks about the status of P3. If the protector 

confirms the location of P3, the sender observer updates its radictable and restarts the 

communication process. Otherwise, the sender observer continues to follows the 

protection chain and asks for the next antecessor about P3, until it finds where the 

process P3 is. 

In our example, the updated radictable of a process who tries to communicate 

with the recovered process P3 has the information presented in Table 3-7. In this 

table, the line three of the radictable (represent with bold font) represents the update 

location of process P3 together with its new protector. 
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Table 3-7:  Part of he updated radictable of a process that has tried to communicate with 
P3 after it has recovered as shown in Figure 3-10b. 

Process identification Address Protector 
(antecessor address) 

1 Node 1 Node 0 

2 Node 2 Node 1 

3 Node 2 Node 1 

4 Node 4 Node 3 

 

This process bases on the determinism of RADIC when recovering, which 

guarantees that the recovered process will be in the same node of its protector, 

allowing the explained heuristic. This heuristic will be change when we incorporate 

the dynamic redundancy, cause the spare node use may to generate a indeterminism 

when locating a failed process, once such process may recovers in any spare 

available. 

Managing messages of recovered process 

An application process recovers from its earlier checkpoint and resumes its 

execution from that point. If the process has received messages since its earlier 

checkpoint, those messages are in its current message log. The process’ observer uses 

such message log to deliver the messages required by the recovered process. 

If the recovered process resend messages during the recovery process, the 

destination observers discard such repeated messages. Such mechanism is simple to 

implement by using a logical clock. Each sender includes a logical time mark that 

identifies the message’s sequence for the receiver. The receiver compares the time 

mark of the received message against the current time mark of the sender. If the 

received message is older than the current time mark from the specific sender, the 

receiver simply discards the message.  

The observers discard the repeated messages received from recovered processes. 

However, a recovered process starts in a different node from the ones in which it was 
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before the failure. Therefore, it is necessary to make the observers capable to discover 

the recovered processes’ location. 

An observer starts the mechanism used to discover a process’s location whenever 

a communication between two processes fails. Each observer involved in the 

communication uses the mechanism according to its role in the communication. If the 

observer is a receiver, it simply waits for the sender recovering. 

On the other hand, if the observer is a sender it will have to search for the failed 

receiver in another node. The searching procedure starts by asking the receiver’s 

status to the protector of the failed receiver. When the protector answers that the 

failed receiver is ready, the sender updates the location of the failed process and 

restart the communication. 

3.4 RADIC functional parameters 

The RADIC controller allows the setup of two time parameters: the checkpoint 

interval and the watchdog/heartbeat cycle.  

To choose the optimal checkpoint interval is a difficult task. The interaction 

between the application and the checkpoints determines the enlargement of the 

application execution time. Using the interaction between the observers and the 

parallel application processes, the RADIC controller allows the implementation of 

any checkpoint interval policy. Each observer can calculate the optimal checkpoint 

interval by using a heuristic based in some local or distributed information. 

Furthermore, the observer may adjust the checkpoint interval during the process’ 

execution. 

The watchdog/heartbeat cycle, associated with the message latency, defines the 

sensitivity of the failure detection mechanism. When this cycle is short, the neighbors 

of the failed node will rapidly detect the failure and the recovery procedure will 

quickly start. However, a very short cycle is inconvenient because it increases the 

number of control messages and, consequently, the network overhead. Furthermore, 

short cycles also increase the system’s sensibility regards the network latency. 
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The setting of the RADIC parameters, in order to achieve the best performance of 

the fault tolerance scheme, is strongly dependent of the application behavior. The 

application’s computation-to-communication pattern plays a significant role in the 

interference of the fault-tolerant architecture on the parallel application’s run time. 

For example, the amount and size of the messages directly define the interference of 

message log protocols. 

3.5 RADIC flexibility 

The impact of each parameter over the overall performance of the distributed 

parallel application strongly depends of the details of the specific RADIC 

implementation and the architecture of the parallel computer. Factors like network 

latency, network topology or storage bandwidth are extremely relevant when 

evaluating the way the fault-tolerant architecture affects the application. 

The freedom to adjust of the fault tolerance parameters individually for each 

application process is one of the functional features that contribute to the flexibility of 

the RADIC architecture. Additionally, two features play an important role for the 

flexibility of RADIC: the ability to support concurrent failures and the structural 

flexibility. 

3.5.1 Concurrent failures 

In RADIC, a recover procedure is complete after the recovered process 

establishes a new protector, i.e., only after the recovered process has a new protector 

capable to recover it. In other words, the recover procedure is complete when the 

recovered process has done its first checkpoint in the new protector. 

RADIC assumes that the protector that is recovering a failed process never fails 

before the recovery completion. We have argued in item that the probability of failure 

of an element involved in the recovery of a previous failure in other element is 

negligible. Nevertheless, the RADIC architecture allows the construction of an 

N-protector scheme in order to manage such situation. 
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In such scheme, each observer would transmit the process’ checkpoints and the 

message logs to N different protectors. If a protector fails while it is recovering a 

failed application process, another protector would assume the recovering procedure. 

For example, in the cluster of Figure 3-9, if the node N2 fails before the recovery 

of P3, the system will collapse. To solve this situation using a 2-protector scheme, 

each observer should store the checkpoints and message-logs of its process in two 

protectors. In Figure 3-9, this would mean that O3 should store the checkpoints and 

message-logs of P3 in T2 and in T1. Therefore, T1 will recover P3 in case of a failure in 

T2 while it is recovering the process P3. During the recovery process, some election 

policy must be applied in order to decide the protector who will recover the failed 

process. 

3.5.2 Structural flexibility  

Another important feature of the RADIC architecture is the possibility of 

assuming different protection schemes. Such ability allows implementing different 

fault tolerance structures throughout the nodes, in addition to the classical single 

protectors’ chain. 

One example of the structural flexibility of RADIC is the possibility of clustering 

of protector’s chain. In this case, the system would have several independent chains of 

protectors. Therefore, each individual chain would function like an individual RADIC 

controller and the traffic of fault tolerance information would be restricted to the 

elements of each chain. Figure 3-12 depicts an example of using two protectors’ 

chains in our sample cluster. 

In order to implement this feature is necessary to add one column to the 

radictable, the column that indicates the protector’s chain. An observer uses the 

information in such column to search the protector of a faulty node inside each 

protectors' chain. The bold column in Table 3-8 exemplifies the chain information in a 

typical radictable. 
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Figure 3-12: A cluster using two protectors’ chain. 

The RADIC architecture requires that, in order to manage at least one fault in the 

system, the minimum amount of protectors in a chain is four. This constraint occurs 

because each protector of the RADIC controller for fault tolerance requires two 

neighbors, an antecessor and a successor (see paragraph 3.2.1) Therefore, at least 

three nodes must compose a protector’s chain. We depicted such minimal structure in 

Figure 3-13, in which each protector has an antecessor (to which it sends the 

heartbeats) and a successor (from which it receives heartbeats.) 
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Table 3-8: The radictable of an observer for a cluster protected by two protectors’ chains 
like in Figure 3-12. 

Process id. Address Protector 
(antecessor addr.) Chain 

Logical clock 
for sent 

messages 

Logical clock 
for received 
messages 

0 Node 0 Node 3 0 2 3 

1 Node 1 Node 0 0 0 0 

2 Node 2 Node 1 0 0 0 

3 Node 3 Node 2 0 1 1 

4 Node 4 Node 8 1 2 3 

5 Node 5 Node 4 1 0 0 

6 Node 6 Node 5 1 0 0 

7 Node 7 Node 6 1 1 1 

8 Node 8 Node 7 1 0 0 

 

If we consider that a fault takes out a node of the chain, and that a chain with 

three nodes is not capable to handle any fault, it is easy to conclude that the minimum 

number of protectors in a chain defines the maximum number of faults that such chain 

can handle. Equation 2 expresses this relation; the maximum number of faults that a 

protector chain can handle is equal to the number of protectors in the chain minus 

three (the minimum number of protectors required to form a chain.) 

 
Figure 3-13: The minimum structure for a protectors’ chain.  
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MaxFaults = Number_of_Protectors - 3 2 



  

Chapter 4 

Protecting the System 

The last chapter explained about how RADIC is able to protect an application 

from the faults and to assure its correct finish. We saw the operational details when 

saving state, detecting faults and recovering a process.  

During the recovery process, it was explained that RADIC, intending not using 

any extra resources, provoke a system configuration change that, in some cases, lefts 

the system in a undesirable situation. 

In this chapter, we discuss about the side effects caused by the recovery process, 

and how these side effects may degrade the system, generating performance loss in 

some cases. This chapter also discusses about our solution in order to protect the 

system from these side effects, in other words, the system configuration changes that 

a recovery may cause.  

4.1 Recovery Side-Effects 

The fault tolerance activity incurs in some side effects in the cluster behavior, 

which vary according to kind of rollback-recovery protocol chosen, implementation 

details or architecture specifications. These effects generally incurs in some overhead 

in the application execution.  Following, we will discuss about a specific side effect 

caused by some fault tolerant solutions. 

4.1.1 System Configuration Changes 

In order to provide fault tolerance to parallel machines, some rollback-recovery 

solutions does not demand any extra resources to perform its tasks. These solutions 

use the own cluster’s nodes to execute the recovery procedures. When a failure 

occurs, some other node executing an application process is responsible to receive the 
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state data of the failed process, its checkpoint and log, and re-launch the failed 

process in this own node. Hence, more than the overhead imposed by the fault 

tolerance activity, basically the checkpoints and logs transmitting and storing [Rao et 

al, 2000 ], the post-recovery execution in these fault tolerant systems may be affected 

by this behaviour.  

As said in chapter 1, some kind of applications demands a high computing power 

to perform satisfactorily its activities. This demand usually makes these applications 

use a parallel computer in order to achieve better results. Due to the application  

features, the user generally plans some process distribution over the cluster nodes 

aiming achieve the best performance possible. By example, the user may assign the 

process with more computing time in the node with more computing power, or 

allocate the process with high communication level in the closest nodes. This system 

configuration generally represents an optimal process distribution for the user idea, 

so, any changes in this configuration may represent a not desirable situation. 

The RADIC architecture explained in Chapter 3 is an example of this kind of 

fault tolerant systems. As seen in item 3.3.4, the recovery process of RADIC leaves 

the system in an unplanned process distribution (Figure 4-11). 

Following, we analyse an effect of this system configuration change over the 

performance in post-recovery executions. 

4.1.2 Performance Degradation 

The system configuration change explained in the last item leads to the presence 

of processes sharing a computing node. It is easy to perceive that in this node, both 

processes will suffer a slowdown in their executions and the memory usage in this 

node will be increased may leading to disk swap. Moreover, these processes will be 

accessing the same protector, competing by to send the redundancy data. Supposing 

that a previous process distribution was made, aiming to achieve a certain 

performance level according with the cluster characteristics, this condition becomes 

very undesirable, mainly if the application is not able to adapt itself to workload 

changes along the nodes.  
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Long time running programs are very susceptible to MTBF factor, the fault 

probability is constantly increasing during the time pass. In consequence, the number 

of overloaded nodes gradually increases, may leading to an impracticable situation. 

The Figure 2-1 depicts a nine nodes cluster in a situation after three recovered faults 

always occurred in the overloaded node.  In this figure, we can see that in the node N2 

each process has at maximum 25% of the available node computing power. This may 

be an usual situation in clusters with thousands of nodes 

 

 
Figure 4-1: The cluster configuration after three sequential recovered failures. 

The Figure 4-1 also depicts other problem caused by successive recovered faults: 

all the processes running in the node N2 are storing their checkpoints and logs in the 

same neighbor, the node N1. Checkpoints usually have large sizes in common 

scientific programs, and logs are very frequently in some kind of applications, 

consequently this happening may cause some situations:  
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a) The communication channel becomes a bottleneck due to the intensive traffic 

between the nodes 

b) As each process is sending its checkpoint and log to the same protector, may 

occur a queuing of requests for checkpoint and log transmission in this 

protector. 

c) The physical memory in the node N2 is being consumed  N+1 times more, 

where N is the number of  unplanned processes running in the node divided 

by the number of original processes of the node. This fact may lead to use 

virtual memory on disk, which have a slower speed. 

 All of situations mentioned before, may engender a slowdown in all processes in 

the node, and may be combined between them, getting worse the system performance. 
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Figure 4-2: Execution times of a matrix product program implemented under the SPMD 

paradigm using a cannon algorithm. Occurrence of one failure per execution 

 Depending on the moment when the failure occurs, this disarrangement caused 

by the recovery process may affect the usability of the application results. For 

example in a weather prediction program, that deals with a lot of variables and has a 

well defined time limit to produce its results, that is before they really happens, a 

large delay cause the application produces obsolete results. Online (24x7) systems 
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will suffer gradual throughput degradation as failures occurs, generating response 

times that may become unacceptable. 

An aggravation of this condition may occur in tightly coupled parallel systems 

where the communications between the processes is very intensive. Therefore, if 

some processes experience a slowdown in their execution, they will start to postpone 

their responses to other processes, then these ones will be held, waiting a message 

receive from the slow nodes, propagating the slowdown by the entire cluster. The 

chart in the Figure 4-2 shows the execution times of a SPMD implementation of a 

matrix multiplication (Cannon’s algorithm). This SPMD algorithm has a 

communication mesh as depicted in Figure 4-3b. 

 

Each execution was performed in a nine nodes cluster and one fault was injected 

at different moments. In this chart, the greater bars indicate more execution time. We 

can see that having only one node sharing process causes considerable delays even 

when fault occurring  near to the end of the processing. Comparatively, the Figure 4-4 

depicts an analogue result with a master/work implementation of matrix 

multiplication. In this approach, the processing was distributed statically through the 

cluster nodes. As shown in Figure 4-3, the MW algorithm has a 1-to-N message 

pattern (Figure 4-3a). The master process communicates with all the worker 

processes. Each worker process only communicates with the master process. We can 

see that the effects of having nodes sharing the computing power of a node are very 

similar in different parallel paradigms. 
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 (b) 
Figure 4-3: Message pattern of a matrix-multiplication using 

a) M/W paradigm and b) SPMD paradigm. 
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Figure 4-4: Execution times of a matrix product program implemented under the 

Master/Worker paradigm using a static distribution. Presence of one fault per execution 

The factors exposed and the results showed in this chapter, demonstrate that the 

s  

perf

ng the system 

The item 4.1 explained about the side effects caused by the recovery process in 

 discusses about our solution in order to 

prot

 Indeed, recently studies [Nagajara et al. 2005] 

has 

ystem configuration change may produce unwanted system slowdown. Those

ormance degradations may leave impracticable the use of some applications that 

have time constrictions or demands all computing power possible. Therefore, it is 

very desirable that the fault tolerance solutions avoid this phenomenon and more than 

protect just the application execution, also protect the system configuration from the 

possible changes.  

4.2 Protecti

some fault tolerant solutions. This item

ect the system from these side effects, in other words, the system configuration 

changes that a recovery may cause. 

Besides the high availability, the applications running in clusters of computers 

usually demands high performance.

demonstrated the relationship between these two requirements, retrieving the 

“performability” concept formally introduced by Meyer [Meyer, 1980], which takes 
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into consideration that in parallel computers, as a degradable system, performance and 

availability cannot be dissociated and the overall performance of some systems is 

very dependable of its availability. 

With the performability concept in mind, we developed RADIC II, a new version 

of the RADIC architecture that, beyond guaranteeing the correct finish of the 

app

 changes imposed by the recovery 

proc

architecture. The major challenge in this new RADIC architecture version 

is k

curring until reach 

b) 

ation execution, spare nodes are consumed as needed, this approach 

c) 

s. This approach is useful for maintaining purposes. It is 

lications, protects the system from the performance degradation caused by fault 

recovery, allowing preserving the planned process distribution (system configuration) 

in order to conciliate performance and availability. 

We increased the RADIC flexibility providing a dynamic redundancy feature that 

protects the system configuration from the possible

ess. The dynamic redundancy in opposite to static approach, bases on presence of 

backup components ready to assume the work of a failed one. These backup 

components also are called spares, if they are active, but not working, may be called 

hot spares. 

This new feature introduces a fully transparent management of hot spare nodes in 

the RADIC 

eep all the RADIC features and provide a mechanism to use and manage spare 

nodes in a fully distributed system. This mechanism was implemented in three 

different approaches, each one incorporating a new functionality: 

a) Starting the application execution with a pre-allocated number of spare 

nodes. The spare nodes are being used as faults are oc

zero. 

New spares insertion, in order to replace the consumed ones. During the 

applic

allows reestablish the planned number of spares in the system. This approach 

also is useful to replace failed nodes when there are not spares in the 

configuration. 

Replacing the most fault probable nodes (due to factors like MTBF) before 

the fault occur
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Suc

major c y and scalability. 

Foll

h em that avoids the system configuration 

ing a set of spare nodes used to assume 

faile

 once we avoid the node loss by replacing it by a spare 

nod

me request. The Figure 4-5 depicts a 

RAD

e called spare table. The excerpt in Table 4-1 shows 

the 

possible to replace each node of a cluster without need to stop the entire 

application. It is applicable in long running applications. 

h mechanism improves the RADIC perfomability without to affect its four 

haracteristics: transparency, decentralization, flexibilit

owing we explain in detail each one of these approaches, showing how it works.  

4.2.1 Avoiding System Changes 

In t is approach, we provide a syst

change mentioned in item 4.1.1 by provid

d processes, instead of to recover in some working node. A RADIC II 

configuration may have any spare nodes as desired. Each spare node runs a protector 

process in a spare mode.  

Such approach aims to allow controlling the system degradation generated by the 

RADIC recovery process,

e. We preserve the original flexibility allowing many spares as desired, without to 

affect the scalability feature once the spares does not participate of the fault tolerant 

activities excepting, of course, the recovery task. The RADIC transparency is kept by 

a management scheme that does not need any administrator intervention and keeps 

decentralized all information about the spares.  

In this mode, the protector does not perform the regular tasks described in item 

3.2.1, just staying in listening state waiting for so

IC II configuration using two spare nodes, in this figure the nodes N9 and N10 are 

spare nodes protectors denoted by gray color, we can see that these protectors does 

not participate of the protectors’ chain, avoiding generating the failure detection 

overhead with a workless node.  

Each active Protector maintains the information about the spares presence. This 

information is stored in a structur

spare table structure: in the first column is the spare identification according with 

the same protector’s identification. The second field is the physical address of the 
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spare node. Finally, the third column indicates the number of observers (processes) 

running on this spare; this field is useful to indicate if the spare is still in an idle state. 

Table 4-1: The spare table  of each observer in the cluster in Figure 3-3. 

Spare identification Address Observers  

9 Node 9 0 

10 Node 10 1 

. 

. 
. 
. 

. 

. 
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Figure 4-5: A cluster using the RADIC II architecture with two spare nodes (N9 and N10). 

How the active protectors detects the spare nodes 

In order to keep RADIC II as a decentralized system, the spare nodes must spread 

their existence for all active nodes of the cluster. To achieve this requirement, the 

protector, when starts in spare mode, announces itself to the other protectors through a 

reliable broadcast basing in the message forwarding technique [Jalote, 1994, p. 142]. 

This technique was chosen because does not affects the original RADIC scalability.  
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Figure 4-6: How a protector in spare mode announces itself to the other protectors 

The protector when running in spare mode searches some active node in each 

protector’s chain running with the application and starts a communication protocol 

with him requesting for its addition in the protectors’ spare table. The working 

protector that receives this request, searches if the new spare data already is on its 

spare table. If not, this protector adds the new spare data and forwards this request to 

its neighbors, passing the new spare information in sequence. Each protector performs 

the same tasks until to receive an already existent spare node data, finalizing the 

message forward process. The flow in the Figure 4-6 clarifies this announcement 

procedure.  

This procedure occurs before the application starts, while RADIC is mounting its 

radictable and just after has been started the Protectors (see item 3.3.1), hence it is a 
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latency caused by the initialization process, does not considered as overhead in the 

execution time. At the end of the spare nodes announcement, all the protectors have a 

spare list containing the data of all spares available.  

4.2.2 Recovering Using Spare Nodes 

In the RADIC II, we modified the original RADIC recovery task described in the 

item 3.3.4 in order to contemplate the spare node use. Currently, when a protector 

detects a fault, it first searches a spare data in its spare table, if found some 

unoccupied spare, i.e. the number of observers reported in the spare table still is 

equals to zero, it starts a spare use protocol. In this protocol, the active protector 

communicates with the spare asking for its situation, i.e. how many observers are 

running on its node. At this point, two situations may happen: 

a) If the spare answer that already has processes running on its node, the 

protector then search other spare in its table and restart the procedure. If 

the protector does not find any idle spare, it executes the regular RADIC 

recovery task. 

b) If the protector confirms the idle situation, the protector then sends a 

request for its use.  
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Figure 4-7: The recovery task using spare nodes 

From the request moment, the spare will not accept any requests from other 

protectors. After receive the request confirmation, the protector commands the spare 

to join the protectors’ fault detection scheme. This step consists in these phases: 

a) The protector tells to its antecessor in the chain to wait the 

connection of the spare to be its new successor.  

b) Simultaneously, the protector commands to spare to connect to 

this antecessor and make it its own antecessor. 

c) The protector instructs the spare to wait its connection as its new 

successor. 

 



Protecting the System 91 

d) Finally, the protector connects to spare as its new antecessor. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-8: Recovering tasks in a cluster using spare nodes. 
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After finishes this step, the protector sends the failed process checkpoint and 

log to the spare, and command it to recover the failed process using the regular 

RADIC recovery process. The flow in the Figure 4-7 clarifies this entire process, 

complementing the understanding of this process. 

The Figure 4-8 depicts the system configuration in four stages of the 

recovery task: a) Failure free execution with presence of spare nodes; b) a fault occurs 

the node N3; c) the protector T4 starts the recovery activating the spare N9; d) process 

recovered in the spare node. 

Changes in the Fault-Masking Task 

 

Figure 4-9: The new fault mask procedure 
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The original RADIC fault-masking task presented in the item 3.3.5 bases on a 

heuristic to determine where a faulty process will be after the recovery. This heuristic 

was very efficient in RADIC, because its recovery process was very deterministic, i.e. 

the failed process always recovers in its protector. RADIC II inserts a small 

indeterminism in locating a failed process because this process may has been 

recovered in any spare of the configuration, and the process may not able to locate the 

recovered process in this spare. 

In order to solve this indeterminism, we implemented a small change in the 

original RADIC fault-masking task. This change consists in if after the observer did 

not find the recovered process asking by its original protector, it searches in the spares 

using spare table, looking for the faulty process. However, as we said in the topic 

How the active protectors detects the spare nodes, only the protectors have the spare 

table information, not the observers. Hence, we increased the communication between 

the Observers and the Protector running in its node, the local protector. In order to 

execute the new fault masking protocol, the Observer communicates with the local 

Protector, asking for the spare table, and seeks in this table for the recovered process.  

After the Observer has found the recovered process, it updates its radictable with the 

new location, does not needing to perform this procedure again. The Figure 4-9 

contains the flow of this new procedure. 
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4.2.3 Restoring the System Configuration 

Until now, we saw how the proposed RADIC II mechanism avoids the system 

configuration changes. Most of the concepts presented will be also applied in this 

approach. 

 

Figure 4-10: How a spare is used to replace a faulty node 

Let us suppose a long-term execution application, like the 24x7 systems. This 

system usually needs a fault tolerant solution based in redundancy in order to avoid 

the degradation of the system, keeping the performability. If it using a dynamic 

redundancy solution provided by spare components, the system will be able to keep 

the performance by a certain period, but as the number of spares is a fixed value, they 

are used in each fault until reach zero. From this moment, this system starts to suffer 

some degradation after fault recoveries. 
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The flexibility of RADIC II allows avoiding this happening by restoring the 

initial system configuration. The procedure explained in topic How the active 

protectors detects the spare nodes may be applied to insert new nodes in order to 

replace the used spare nodes. Despite the process described in this topic be performed 

at the start of an application, it may be executed at any moment during the program 

execution, without need stop the application. Thus, the failed nodes can return to the 

configuration after be repaired. 

More than to replace used spare nodes, that procedure may replace faulty nodes 

too. We extended the announcement task to permit that if some node of the 

configuration is already overloaded, i.e. it has more processes executing than the 

original planning, it can request the spare at the announcement moment, transferring 

the extra processes to the inserted node. If there is not any overloaded node, this new 

node remains just a new spare in the configuration. 

In the Figure 4-10 we show the flow contemplating this approach. Some election 

policy may be applied in order to choice what node will migrate its extra processes to 

the new node, i.e. the first one found or the most overloaded. After initiate the use of 

the new node, the protector update the spare data informing that this spare already is 

in use and continues the spare spreading procedure, thus all protectors will know of 

the existence of this node. 

In this approach, we have a limitation, which occurs in the case of all of the 

nodes already have been replaced. In this situation, the new spare has not how to 

discover any node of the application without some extra information provided at the 

start of the procedure. 

4.2.4 Avoiding Faults 

Despite the availability, the major goal of continuous applications using high 

performance computing cluster is to obtain faster response times. It is a common 

sense that the fault avoidance is a better approach than the fault tolerance. The usual 

manner to avoid faults occurrence bases on a preventive maintenance of the system 

components.  
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Preventive maintenance generally involves the periodic replacement of the fault-

imminent or fault-probable components. This procedure generally means to stop the 

component or its host. However, the referred kind of applications doesn’t expect 

maintenance downtimes, implying in the existence of a mechanism that allows these 

replacements without need stop the execution of the application. 

The dynamic redundancy scheme present in RADIC II, explained above, 

provides a scheme that enable the architecture to perform a scheduled hot replacement 

(not stopping the application execution) of a cluster node. As RADIC II allows the 

spare node insertion after the application starts without requiring any stop in the 

program execution, we just need turn off the node to be replaced and their processes 

automatically will be recovered in the recent spare added. 

Such mechanism is very simple, and may be improved by implementing some 

automation feature that allows commanding the machine to be replaced to 

automatically turn off, or to take it checkpoint directly in to new spare added, just 

before to suicide. Other improvement may be the inclusion of some fault prediction 

algorithm that permits a best choice of the machines to be replaced. 

 

 

 



  

Chapter 5 

Implementing the RADIC II 

Architecture  

In order to prove and to perform experimental evaluation, Duarte implemented a 

prototype of RADIC architecture called RADICMPI [Duarte et al, 2006]. RADICMPI 

implements a set of the Message Passing Interface (MPI), a widely used specification 

for message passing implementations. 

Since our solution bases on the RADIC architecture, we also used the 

RADICMPI prototype to implement the dynamic redundancy feature. We performed 

some modifications in the original program in order to allow the transparent 

management of the spare nodes. By the other hand, we also incremented the set of 

MPI functions implemented in RADICMPI with the nonblocking functions, as part of 

a continuous work to achieve a complete MPI implementation, which allow us to 

perform a variety of experiments. 

This chapter shows how we made a practical implementation of the RADIC II 

architecture over the existent RADIC prototype. 

5.1 RADICMPI 

The functional validation and all of RADIC experiments was conducted using a 

prototype implementation called RADICMPI. The MPI specification was chosen 

because is a widely adopted standard for message passing and have a fail-stop 

semantic that demands some fault tolerance support. 

Following we list the RADICMPI major features: 

 



98 Chapter 5 

a) It relies in open source software that allow an improved control of its 

components.  

b) It is a multithread program written in the C++ language and running on 

Linux operating system for i386 architecture. 

c) All network communication bases in the TCP/IP protocol 

d) The checkpoint/recovery functions are performed by the well known library 

BLCR (Berkeley Labs Checkpoint/Restart) [Hargrove and Duell, 2006]. 

The RADICMPI prototype system is compounded by three parts: 

a) A set of shell scripts: radiccc - It used to compile RADIC MPI compliant 

programs, indeed it is a convenience wrapper for the local native C and C++ 

compilers including the RADICMPI library; radicrun – It launches a RADIC 

application, it receives the RADIC parameters and after parse them, bypass 

them to other RADICMPI components. 

b) The Protector program – It is a standalone program that implements the 

RADIC Protector concept. 

c) The RADICMPI Library - is a multithread library. Three threads exist when 

we execute a program compiled with the RADICMPI library: the program 

main thread, the observer thread and the checkpoint thread 

RADICMPI has a built-in failure injector system that allows simulating faults 

driven by pre-programmed events like passed time or number of messages. This 

failure injector also permits determine which machine will fail. It also provides a 

event logger that performs a detailed monitoring of the execution either of the 

observers or of the protectors. Finally, RADICMPI allows a time instrumentation of 

specific events embedded in its code allowing measuring the performance of 

determined tasks. 

Actually, RADICMPI Library implements a set of the MPI-1 compliant 

functions: the blocking communication functions: MPI_Send, MPI_Recv, 

MPI_Sendrecv; the initialization and finalization functions MPI_Init, MPI_Finalize; 
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and a group of auxiliary functions: MPI_Comm_rank, MPI_Comm_size, 

MPI_Wtime, MPI_Type_size and MPI_Get_processor_name. 

The observer thread in the RADICMPI Library, as responsible by processes 

communications, uses an internal buffer to deal with the arrived messages. The 

incoming message process of RADICMPI works through this continuing running 

thread, thus, the reception of a message is not associated with an MPI_Recv 

command. An observer is always ready to receive messages, unless it is performing a 

checkpoint of its process. 

The Protector program performs the node protection activities and the distributed 

storage tasks. It owns two entities related with its functionalities: The Antecessor 

executing the watchdog thread, responsible to detect the neighbor failure and to 

manage the neighbor’s observers, receiving their checkpoint and logs; the Successor 

performing the heartbeat thread indicating when the node is alive. 

5.2 The New Spare Nodes Feature 

In order to enable the RADICMPI implementation for the dynamic redundancy 

described in the RADIC II architecture, we performed some modifications in its code. 

These modifications are mainly implemented in the Protector program’s code, which 

is commonly associated with node tasks. 

The Spare Mode 

The first modification was the creation of the spare operation mode. The 

Protector now receives a parameter indicating when it is a spare. In this situation, the 

Protector starts neither the heartbeat/watchdog functions nor the observers’ 

management.  

The Protector now receives as parameter the name of the node that it must to 

connect to inform its presence. This node name is given either by the radicrun script 

when the spare starts with the application or by the new radicadd script, responsible 

to add new spares during the application execution. This script takes a machine name 

in the list of application nodes and runs then Protector in spare mode passing such 
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name as parameter. The Protector now tries to connect with this node, if fails returns 

an error code to script, which takes other machine name from the list and repeats the 

process. If the Protector gets connected, it requests its addition in the spare table, 

starting the spreading of its data. The flow in the Figure 5-1 makes this procedure 

clearer. 

 

Figure 5-1: How a Protector in spare mode discover and connects with an application node 

 

Furthermore, we implemented a new function in the Protector that is in charge to 

deal with management requests. 

Management Functions 

In order to enable the Protector to deal with the new features incorporated by 

RADIC II, we create a set of management functions and a management thread to 

attend the requests. When the Protector starts in spare mode, it only starts the 

management thread. This thread opens a TCP socket listening for any request from 

the external world made by other Protector, an Observer or a Monitoring program. 
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When a connection arrives, the management thread analyzes the request and starts a 

specialized function to attend it performing needed tasks. The request is a message 

containing a header indicating its type, and generally, some other information needed 

to perform it. Following we list the request types and its functionality. 

USESPARE – Request the use of the spare to recover a failed process. The 

protector that detects the fault, send this request to spare. When the spare Protector 

receives this request, performs the tasks to join the protector’s chain, to receive and to 

recover the failed process. 

CNCTPROT – It commands the Protector to connect with other one. The request 

contains the Protector address to be connected. This request makes part of the tasks 

performed when recovering a failed process. 

NEWSPARE – It is the request for insert the information of a new spare in the 

spare table. The new spare sends this request to a Protector and this Protector, after 

adding this information, sends the same request to its neighbor, until receive back the 

same request, finalizing the new spare addition process. 

OBSQTY – When a Protector (spare or not) receives this request, it answer with 

the number of observers running in this node. This information is useful to determine 

when a spare still remain idle and can be requested for recovering. A Protector sends 

this request to discover the idle spares. 

MLOGTX – This request is inherited from the Observer-Protector protocol used 

to perform the regular RADIC recovery process. It is a request for the log file 

transmission. When the spare receives this request, waits for the log file reception, 

and store it for the recovery process. 

CKPTTX – This request is also inherited from the Observer-Protector protocol 

used to perform the regular RADIC recovery process. It is a request for the 

checkpoint file transmission. When the spare receives this request, waits for the 

checkpoint file reception, and store it for the recovery process. 

SNDSPARETBL – It asks to Protector to send its spare table. 
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SNDSPARETBLOBS – It is similar to the previous, but in this case, the 

Observers who sent this kind of request. This request is useful in the fault-masking 

task performed by the Observers and they need to know where the spares in the actual 

configuration are in order to find some recovered process. 

RCVSPARETBL – It is a request that tells to the Protector to stay waiting for a 

spare table transmission, i.e. to get ready for to receive a spare table. A Protector 

sends this request when the spare assumes a failed process, because at this moment 

the spare still not know who the other spares are. 

SNDINFONGHB – It asks to Protector to inform who its neighbors are. It is 

useful to a monitoring tool in order to discover the actual protectors’ chain. 

RCVROBS – This is the command to the spare to recover the Observer using the 

checkpoint and log transmitted before. The data of the Observer goes just after the 

request. 

STOPTHREAD – It is an operational request. Applied when the application has 

finished and the RADIC II environment is shutting down. It performs the finish of the 

management thread.  

STOPRCV – It commands to Protector to stop the management session, backing 

to wait a new session.  

How RADICMPI Recovers a Process Using a Spare Node 

When a Protector detects a fault, it starts a recovery process using the 

management commands mentioned before. Following, we describe the recovery 

process using a spare node. 

The Protector searches in its spare table if there is some spare. If not, it performs 

the regular RADIC recovery process. If there is some spare in the table, the protector 

sends to it a OBSQTY request, if the response is greater than zero, it will be taken the 

next spare in the table and repeat this step. If does not remains any spare in the table, 

it performs the regular RADIC recovery process. If the spare answers that have zero 

observers, the Protector assumes a commander function in relation to the spare and 

sends a USESPARE request. The spare then starts a usespare routine not attending 
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requests from any other Protector. The commander Protector then sends a 

CNCTPROT request in order to the spare join itself to the Protector’s chain. The 

commander sends a CKPTTX request, and transmits the checkpoint file, following 

sends a MLOGTX if there is any log file and send it to the spare. After the files 

transmition, the Protector sends a RCVROBS request and the spare performs the 

regular RADIC recovery. Finally, the commander sends a STOPRCV to stop the 

recovery session. The Figure 5-2 depicts the message exchange between Protector and 

spare. 

tim
e

 

Figure 5-2: The recovery RADICMPI protocol using spare. 

Changes in the Fault Masking Routine 

After a successful recovery procedure in the spare, the other processes in the 

application might not know that where the recovered process is running. As the old 

RADICMPI recovery routine was deterministic, i.e. the process always recover in its 

Protector (a neighbour), the fault masking routine was based in to search back in each 

Protector of the chain. At present, the recovered process location is a quite 

undetermined, because may be located in any of the spares of the configuration, or in 

its original Protector either. In order to solve this question, we changed the original 

fault masking routine, making it to search the recovered process in the spare table if 

didn’t find in the original protector. For in such a way, the Observer attached to the 

process locating the recovered one must to know the spares in the actual 
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configuration, and then it starts a communication with the local Protector, i.e. the 

Protector running in the same node, and send a SNDSPARETBLOBS request. The 

local Protector sends its spare table to Observer. The Observer will ask to each 

Protector’ spare in the table for its status. If after this routine the recovered process is 

not found, it means that the process was recovered in the original way, so the 

Observer starts the original fault masking routine. After the Observer has found the 

recovered process, it updates its radictable with the new location, does not needing to 

perform this procedure again. 

5.3 New MPI Functions 

In order to improve our experimental work, increasing the number of possible 

experiments and contribute with the RADICMPI completeness, we performed an 

additional work, adding some new MPI functions. All of these functions was designed 

and implemented taking care with the fault tolerance issues. Following we describe 

these functions.  

5.3.1 The Non-Blocking Functions 

We believe that an important step after to have the major blocking functions 

implemented is to have available the non-blocking MPI functions. These functions 

perform communication without need to block the processing until the message buffer 

is free. This behavior allows overlapping computation with communications, i.e. 

while the communication request is not finished, some computation may be 

performed. We implemented the functions: MPI_Isend, MPI_Irecv, MPI_Test, 

MPI_Testany, MPI_Testall, MPI_Wait, MPI_Waitany, MPI_Waitall and the object 

MPI_Request.   

MPI_Request 

MPI_Request is an object used to control the requests of non-blocking functions. 

Every time that a non blocking function starts, it creates a MPI_Request object, when 

the function completes its work, it updates this object.  
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MPI_Isend 

MPI_Isend commands the Observer to use a thread to send the message stored in 

a buffer informed by the application process. At this moment, the function creates a 

MPI_Request object that is returned to application. The processing continues despite 

the observer not has delivered the message to the communication channel yet. When 

the message is delivered, the MPI_Request object has the information of its 

completion set to true. 

MPI_Irecv 

The MPI_Irecv drives the Observer to check in the RADICMPI buffer if a 

requested message was delivered. If not, it puts such message in a pending message 

buffer, and let the processing continues, setting the MPI_Request completion field to 

false. Every time that a message arrives, the Observer checks in the pending message 

buffer if there is a correspondent message request, if it finds the message, it sets the 

MPI_Request completion field to true. 

MPI_Test 

The MPI_Test receives an MPI_Request object and probes its completion 

returning the result of the probe. Moreover if the request command was a MPI_Irecv, 

it sets the MPI_Status referred with this command. 

MPI_Testany 

MPI_Testany performs a MPI_Test function in a set of MPI_Request objects 

returning true if any of them is complete. Moreover it also sets the MPI_Status of the 

completed command in the MPI_Irecv cases. 

MPI_Testall 

MPI_Testall performs a MPI_Test function in a set of MPI_Request objects 

returning true if all of them are complete. Moreover it also sets the MPI_Status of the 

completed commands in the MPI_Irecv cases. Indeed, the MPI_Test is a special case 

of this function, where the set of requests only has one entry. 
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MPI_Wait 

The MPI_Wait receives an MPI_Request object, probes its completion, and 

blocks the processing until the request finishes. In the MPI_Isend case, waits that the 

started thread signalizes its finish through a lock variable. The MPI_Irecv cases relies 

in the arriving of messages that signalize the checking of pending messages routine. 

MPI_Waitany 

MPI_Waitany performs probe in a set of MPI_Request objects waiting until any 

of them is complete. Moreover it also sets the MPI_Status of the completed command 

in the MPI_Irecv cases. 

MPI_Waitall 

MPI_Waitall performs a MPI_Wait function in a set of MPI_Request objects 

waiting until all of them are complete. Moreover it also sets the MPI_Status of the 

completed commands in the MPI_Irecv cases. Indeed, the MPI_Wait is a special case 

of this function, where the set of requests only has one entry. 

5.3.2 The Collective Functions 

In order to carry out a specific experiment, we just implemented the 

MPI_Allgather function, performed with MPI_Sends and MPI_Recvs commands. 

This function sends a buffer in each process for all of the other process. After 

performing, each process has a vector containing the buffer value of each process 

executing. 

 

 

 

 



  

Chapter 6 

RADIC II Experiments 

After to design and to implement the RADIC II features, the next step in our 

work certainly is to test our idea through a set of experiments that allows to validate 

and to evaluate our solution. 

In order to perform this activity we made a plan of experiments, taking into 

consideration the aspects that we would to analyze, and the expected results. This plan 

of experiments contains the kind of experiment, how to perform it, objective and 

results expected versus results obtained. 

Our experiments not intended to prove or to evaluate the RADIC functionalities. 

We believe that these functionalities and features are already proved [Duarte, et al., 

2007] and RADIC perform its tasks with correctness, producing valid results. We 

stated our experiments in the flexible dynamic redundancy feature, validating its 

functioning and evaluating comparatively its results. All of our generated results were 

compared with the same program compiled and executed with MPICH-1.2.7, 

guaranteeing the correctness of the execution. 

6.1 Experiments Environment 

In order to proceed with our experiments, we used a cluster with the following 

characteristics:  twelve Athlon-XP2600+/ 1.9GHz/ 512KB L2 cache, 768 MB RAM, 

40GB ATA running Linux Kernel 2.6.17 with gcc v4.0.2 compiler. An Ethernet 100-

baseTX switch interconnects all of nodes. The network protocol used was TCP/IP v4.  

All executions were performed using the RADICMPI prototype. RADICMPI 

provides two important tools to perform experiments with fault tolerance: a fault 

injection mechanism and a debug log. 
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The generation of the faults may be deterministic or probabilistic. In 

deterministic testing, the tester selects the fault patterns from the domain of possible 

faults. In probabilistic testing, the tester selects the fault patterns according to the 

probabilistic distribution of the fault patterns in the domain of possible faults. 

The fault injection mechanism implemented in RADICMPI served for testing and 

debugging. The operation of the mechanism was deterministic, i.e., we programmed 

the mechanism to force all fault situations required to test the system functionality. 

The mechanism is implemented at software level. This allowed a rigorous control 

of the fault injection and greatly facilitated the construction and operation of the fault 

injection mechanism. In practice, the fault injection code is part of the code of the 

RADICMPI elements. 

The RADICMPI debug log mechanism served to help us in the development of 

the RADICMPI software and to validate some procedures. The mechanism records 

the internal activities in a log database stored in the local disk of each node. 

Table 6-1 describes each field of the debug log database. The database has the 

same structure for protectors and observers  

Table 6-1: Fields of the debug log 

Column Field name Description 

1 Element ID Indicate the rank of the element. T# elements are protectors and O# 
elements are observers 

2 Event id Identifies the event type 

3 Event time Elapsed time in seconds since the program startup 

4 Function name Name of the internal function that generate the event 

5 Event Description of the event 
 

6.2 Validation Experiments  

Firstly, we perform a set of experiments in order to validate the spare nodes 

functioning. These experiments were performed based on a common ping-pong 
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algorithm execution and the results contained in debug log generated by RADICMPI. 

The Figure 6-1 depicts the flow of the validation process applied. After to define a 

test scenario and the expected results, we created specific events triggered by actions 

performed by the spare nodes usage. Finally, we analyze the debug log, allowing us to 

validate the correct system functioning. 

Define test 
scenario

Execute tests

Init

End

Analyze Debug Log

Define Events to 
be logged

Define expected 
Log results

 

Figure 6-1: Flow representing the validation process  

 

Validating the spare adding task 

In this experiment, we aim to validate the procedure described in the item 4.2.1. 

Hence, we expect that a Protector was able to identify a new spare request and 

forward this request until receive it again. We put some event triggers when the 

Protector receives a request and when the Protector detects a repeated request and 

stops the forwarding. The Figure 6-2 shows the debug log excerpt containing these 

events. 
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. 

. 

. 
2  1 management_thread  prt 3 : waiting message reception 
8  1 management_thread  prt 3 : Request received. Type: Add new spare request 
8  1 addNewSpare prt 3 : waiting for spare data...  
2  1 addNewSpare prt 3 : Receiving a New spare. Initiating the message 
forwarding:  
8  1 addNewSpare prt 3 : New spare added:  158.109.65.216 
8  1 sendNewSpare prt 3 :  new spare request sent to:  158.109.65.213 
8  1 sendNewSpare prt 3 :  new spare sent to:  158.109.65.213 
2  1 management_thread  prt 3 : waiting connection 
2  1 management_thread  prt 3 : waiting message reception 
8  1 management_thread  prt 3 : Request received. Type: Stop session 
2  1 management_thread  prt 3 : waiting connection 
8  1 connect prt 3 : ANTECESSOR: receiving information from : 158.109.65.215 
8  1 connect prt 3 : ANTECESSOR:  sending my information to 158.109.65.215 
8  1 connect prt 3 : successor OK 
33  1 main prt 3 : PRE_ANTE= 158.109.65.212 - ANTE= 2 - SUC= 4 
45  2 obs_managing_thread prt 3 : Command 24 from observer 3 
10  2 manage_local_observers_list prt 3 : + obs 3 from node -1. 1 
observers attached 
2  2 management_thread  prt 3 : waiting message reception 
8  2 management_thread  prt 3 : Request received. Type: Add new spare request 
8  2 addNewSpare prt 3 : waiting for spare data...  
2  2 addNewSpare prt 3 : I already have the New spare. stopping the 
message forwarding:  
2  2 management_thread  prt 3 : waiting connection 
. 
. 
. 

Figure 6-2: Debug log excerpt of a Protector containing the new spare events 

In this execution, we reserved one node to acts as a spare node. Such node starts a 

communication with the Protector number 3 of the configuration and sends its 

information. As shown in the last Figure, the Protector 3 receives the first new spare 

request, add its information and forward it to its neighbor. When the Protector 

receives the request for add the same spare, it stops the message forwarding. These  

. 

. 

. 
2   0  main    prt 5 : I am a spare 
2   0  management_thread       prt 5 : Thread created 
2   0  management_thread       prt 5 : waiting connection 
2  70  management_thread       prt 5 : waiting message reception 
8  70  management_thread       prt 5 : Request received. Type: Observers quantity 
request 
8  70  getObserverQty  prt 5 : Sending observer qty:  0 
8  70  getObserverQty  prt 5 : Qty of observer sent:  0 
2  70  management_thread       prt 5 : waiting connection 
2  70  management_thread       prt 5 : waiting message reception 
8  70  management_thread       prt 5 : Request received. Type: Receive spare list 
request 
8  70  rcvSpareList    prt 5 : waiting for spare data... 
8  70  rcvSpareList    prt 5 : first spare data received:  158.109.65.216 
2  70  management_thread       prt 5 : waiting connection 
2  70  management_thread       prt 5 : waiting message reception 
8  70  management_thread       prt 5 : Request received. Type: Use spare request 
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 events are highlighted in the excerpt shown before. 

2  70  management_thread       prt 5 : calling use_spare function 
8  70  use_spare       prt 5 : Changed: starting use_spare function. 
communicating with:  158.109.65.213 
2  70  use_spare       prt 5 : waiting command 
8  70  use_spare       prt 5 : Request received. Type: Join the protector's chain 
8  70  use_spare       prt 5 : request for heartbeat/watchdog received from:  
158.109.65.213 
2  70  watchdog_threadprt 5 : Thread created 
2  70  connect prt 5 : ANTECESSOR: waiting receive information from my neighbour 
2  70  heartbeat_thread        prt 5 : Thread created 
8  70  heartbeat_thread        prt 5 : Connecting with:  158.109.65.213 
8  71  connect prt 5 : SUCCESSOR: response received from an active protector with 
its information:  158.109.65.213 
8  71  connect prt 5 : antecessor OK 
8  78  connect prt 5 : ANTECESSOR: receiving information from : 158.109.65.215 
8  78  connect prt 5 : ANTECESSOR:  sending my information to 158.109.65.215 
8  78  connect prt 5 : successor OK 
45 78  obs_managing_thread     prt 5 : Command 12 from observer 4 
54 78  manage_observers_list   prt 5 : Managing obs 4 
10 78  manage_observers_list   prt 5 : + obs 4 from node 4. 1 observers attached 
33 79  use_spare       prt 5 : PRE_ANTE= 158.109.65.212 - ANTE= 2 - SUC= 4 
8  79  use_spare       prt 5 : Request received. Type: Checkpoint file transfer 
request 
2  79  use_spare       prt 5 : Chekpoint file transmission request 
8  79  recvCkptLogFile prt 5 : starting receive file from:  158.109.65.213 
2  79  recvCkptLogFile prt 5 : Checkpoint or Log file successfully received. 
8  79  use_spare       prt 5 : Request received. Type: Message log file transfer 
request 
8  79  recvCkptLogFile prt 5 : starting receive file from:  158.109.65.213 
2  79  recvCkptLogFile prt 5 : Checkpoint or Log file successfully received. 
8  79  use_spare       prt 5 : Request received. Type: Recover observer request 
2  79  use_spare       prt 5 : adding the observer in the observer list before 
recover 
2  79  recover_observers       prt 5 : Initiating recovery 
39 79  recover_observers       prt 5 : Recovering process 3 
8  79  use_spare       prt 5 : Request received. Type: Stop session 
2  79  management_thread       prt 5 : returned from use_spare function 
2  79  management_thread       prt 5 : waiting connection 
4. 
. 
. 

Figure 6-3: Debug log excerpt of a spare node Protector performing a recovery 

Validating the recovery task using spare 

Beyond the correct finish of the application after been recovered using a spare 

node, we validate this task by using the debug log to certify that the correct steps were 

performed. In this experiment, we expect that after inject a fault, the Protector that 

detects this fault searches for a spare and starts the protocol for spare use. In the 

Figure 6-3 we can see the debug log of a spare node Protector, denoting the events 

related with the recovery process. 

. 

. 

. 
36 69 obs_managing_thread prt 3 : Reception finished : 6400 B / 0.000754 
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s 

The highlighted events are the requests that correspond with the process recovery 

detailed in item 4.2.2. 

12 69 watchdog_thread  prt 3 : ERROR : Success 
2  69 manageFault  prt 3 : Fault detected 
8  69 manageFault prt 3 : Spare node Found! address:  158.109.65.218 
8  69 querySpareObsQty prt 3 :  Observer qty query sent to:  158.109.65.218 
57 69 querySpareObsQty obs 3 : Fault  observer qty=:  message 0 
60 69 manageFault prt 3 : obsQty= 0 
8  69 manageFault prt 3 : using Spare address:  158.109.65.218 
8  69 sendRequest prt 3 :  initiating request send command :  Receive 
spare list request 
8  69 sendRequest prt 3 :  Socket closed. Opening with new IP Address...  
158.109.65.218 
8  69 sendRequest prt 3 :  request sent command :  Receive spare list 
request 
8  69 sendSpareList prt 3 : Start sending spare list to 158.109.65.218 
8  69 sendSpareList prt 3 : Finalizing spare list sending to 158.109.65.218 
8  69 sendRequest prt 3 :  initiating request send command :  Stop session 
2  69 sendRequest prt 3 :  Socket exists and has the same IP Address. Do 
nothing...  
8  69 sendRequest prt 3 :  request sent command :  Stop session 
8  69 sendRequest prt 3 :  initiating request send command :  Use spare 
request 
8  69 sendRequest prt 3 :  Socket closed. Opening with new IP Address...  
158.109.65.218 
8  69 sendRequest prt 3 :  request sent command :  Use spare request 
2  69 manageFault prt 3 : fetching new neighbourhood with the spare:  
8  69 sendRequest prt 3 :  initiating request send command :  Join the 
protector's chain 
2  69 sendRequest prt 3 :  Socket exists and has the same IP Address. Do 
nothing...  
8  69 sendRequest prt 3 :  request sent command :  Join the protector's 
chain 
45 69 obs_managing_thread prt 3 : Command 19 from observer 4 
14 69 storage_message_log prt 3 : Logging 6400 Bytes of message 327 from 
source 3 
. 
. 
Figure 6-4: Debug log excerpt of the Protector commanding the recovery in a spare node  

6.3 Evaluation Experiments  

In order to evaluate the RADIC II behavior, we performed some experiments 

running well-known applications in different contexts. We tried to represent some 

distinct approaches to common parallel applications and measuring comparatively the 

effects of use or not the spare nodes approach. 

For such class of experiments, we applied two kind of parallel programs: a 

master-worker matrix product and an N-Body particle simulation using non-blocking 

functions in a pipeline approach. 
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We choose the matrix product algorithms because we could apply different 

parallel paradigms over it. We used a master-worker and a SPMD algorithm, 

facilitating the creation of different fault scenarios. As shown in Figure 4-3, the MW 

algorithm has a 1-to-N message pattern (Figure 4-3a). The master process 

communicates with all the worker processes. Each worker process only communicates 

with the master process. The SPMD algorithm has a communication mesh (Figure 

4-3b). Each application process communicates with their neighbors, representing a 

tightly coupled application. 

The MW algorithm also offered an additional control over the application 

behavior; it was possible to use two strategies to balance the computation load 

between the workers: dynamic and static. 

In the static strategy, the master first calculates the amount of data that each 

worker must receive. Next, the master sends the data slice for each worker and waits 

until all workers return the results. In this strategy, the number of messages is small 

but each message is large, because the master only communicates at the beginning, to 

send the matrices blocks to the workers; and at the end, to receive the answers. 
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Figure 6-5: The N-Body particle simulation flow 

In the dynamic strategy, the master slices the matrices in small blocks and sends 

pairs of blocks to the workers. When a worker answered the block multiplication’s 

results, the master consolidates the result in the final matrix and sends a new pair of 

blocks to the worker. In this strategy is easy to control the 

computation-to-communication ratio by changing the block size. Small blocks 

produce more communication and less computation. Conversely, large blocks produce 

less communication and more computation. 

The N-Body program bases in the example presented by Gropp [Gropp et al, 

1999, p. 117]. This program performs a particle simulation, calculating the attraction 

forces between them. It is implemented under the pipeline parallel paradigm and uses 
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non-blocking MPI communication functions to increase the performance. The Figure 

6-5 represents the flow of the actions performed by each process.  

6.3.1 Evaluating According with the Fault Moment 

In this experiment series, we evaluate the behavior of the applications according 

with the moment of the fault when using or not dynamic redundancy. 

In order to perform these experiments, we executed two approaches for the 

matrix product algorithm, the master-worker static distributed and the SPMD based 

on the cannon algorithm. Thus, we can evaluate the coupling factor too, once the 

SPMD algorithms are commonly tightly coupled. 
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Figure 6-6: Results of matrix product using a master-work static distributed program 

Intending to obtain more diversity, we performed this experiment executing a 

product of two 1000 X 1000 matrixes of float values in the master-work approach 

over a cluster with eleven nodes in the first case. In order to increase the computing 

time, we repeat the product 160 times in all executions. In the second case, we 

executed the cannon algorithm with 1500 X 1500 matrixes over a nine nodes cluster. 

In both cases, we inject a fault at approximately 25%, 50% and 75% of the total 

execution time and we compared with a failure-free execution and with the spare 
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nodes usage. In this case, we repeated the computing 160 times in order to enlarge the 

execution time.  

The Figure 6-6 contains a chart showing the results with the master-worker 

approach. In this chart, we can see that the overhead caused by a recovery without 

spare (the red middle column in each fault moment) versus using spare (the green 

right column in each fault moment) with one fault occurring in different moments. 

The overhead not using spares shows itself inversely proportional to the moment 

when the fault occurs, generating greater overheads (reaching 73.07% in the worst 

case analyzed) in premature fault case, while using spare, the overhead keeps 

constantly and low despite the moment of the fault. 

434,57 434,57 434,57

72,61%

49,37%

27,05%

13,93% 14,19% 14,82%

0,00000

100,00000

200,00000

300,00000

400,00000

500,00000

600,00000

700,00000

800,00000

25% 50% 75%

Ti
m
e 
(s
)

Fault moment

1500x1500 Matrix product using 9 nodes ‐ SPMD cannon algorithm‐ 1 fault
160 loops ‐ckpt each 60s

Without failures

Failures without spare

Failures with spare

 

Figure 6-7: Results of matrix product using a SPMD program based in the cannon 
algorithm 

The Figure 6-7 shows de result chart with the SPMD program. We see an 

analogous behavior with the overhead caused by not using spare nodes. The overhead 

caused by the spare nodes usage is slightly greater than the static distribution 

approach. This increment is due to the high coupling level in the SPMD approach, the 

time spent in the recovery affects directly the communications with the neighbors’ 

processes and this delay continues propagating by the others process of the 
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application, while the recovery in the master-worker approach only affects the failed 

worker. 

6.3.2 Evaluating According with the Number of Nodes 

In these experiments, we evaluated the behavior of the fault recovery in different 

cluster sizes. Due to our physical limitations, we could not to prove in large size 

clusters, which it allows to certify the RADIC II scalability. The current experiments 

only give us an idea that RADIC II does not affect the scalability of a program. 
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Figure 6-8: Results of matrix product using a master-worker  program with load 
dynamically balanced  running in different cluster sizes 

We ran two approaches for a master-work matrix product: using a static 

distribution and using a dynamic distribution of matrix blocks. In both cases we 

performed a product between two 1000 X 1000 matrixes. We executed the program 

with four, eight and eleven nodes. We injected faults always at 25% of the execution 

time, approximately. We measured the execution time when using or not the spare 

nodes and comparing with a fault free execution time. 
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The Figure 6-8 shows a chart with the results of the execution with a dynamic 

load balancing approach. We can see clearly that the load balancing can to mitigate 

the side-effects of the RADIC regular recovery, and the spare nodes use is almost 

equal than not using it, being the worse approach in the smaller cluster. Indeed, the 

processes in the overloaded node start to perform fewer tasks than other nodes, and 

their workload is distributed among the cluster, almost not affecting the execution 

time. As the cost of recovery using spare nodes may slightly greater, may be better do 

not use this feature in some cases. 
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Figure 6-9: Results of matrix product using a master-worker  program with static load 
distribution running in different cluster sizes 

The chart in the Figure 6-9 shows the benefits of using spare nodes in some 

parallel approaches. In this case, using a static load distribution, the node that hosts 

the recovered process suffers a strong degradation, high affecting the overall 

execution time independently of the size of the cluster. By other side, using the spare 

nodes approaches, the overall impact in the execution time is low and stable, also 

independently of the number of nodes. 
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6.3.3 Evaluating the Throughput in Continuous Applications 

As many of the actual parallel applications are intended to run continuously in a 

24x7 scheme, we performed an experiment intending represent the behavior of these 

applications. In this experiment, we executed continuously the N-Body particle 

simulation in a ten nodes pipeline and injected three faults in different moments and 

different machines, measuring the throughput of the program in simulation steps per 

minute. We analyzed four situations: a) a failure-free execution, used as comparing; 

b) three faults recovered without spare in the same node; c) three faults recovered 

without spare in different nodes and d) three faults recovered with spare. 
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Figure 6-10: Results of an N-Body program running continuously after three faults in 
different situations.  

In the Figure 6-10 we can see the result chart of this experiment. In this 

experiment, we can perceive the influence of the application kind over the post-

recovery execution. When the three faults are recovered in different nodes, the 

application’s throughput suffers an initial degradation, but in the subsequent faults, 

just changes a little. This behavior occurs because the pipeline arrangement: the 

degradation of the node containing the second recovered is masked by the delay 
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caused by the first recovered process node. This assumption is confirmed when all 

faults processes are recovered in the same node, we can perceive a degradation of the 

throughput after each failure. When executing with spare nodes presence we see that 

after quick throughput degradation, the system backs to the original simulation step 

rate. We see also that the penalization imposed by the recovery process using spare is 

greater than the regular RADIC process, but this loss is quickly compensated by the 

throughput restoring in the remaining execution. 
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Conclusions 

In this dissertation we saw that the demands for high performance computing, 

generally represented by parallel systems seems to continue growing. Several 

applications have been ported to parallel environments, expecting obtain a certain 

gain of performance, commonly represented by their execution times. Furthermore, 

besides of performance, the users of these applications usually aim a certain level of 

availability. 

We explained that due to the reliability constraints, many large parallel systems 

may not offer the expected level of availability. Therefore, the fault tolerance has 

been a constantly growing issue in order to improve the availability of these systems, 

resulting in a considerable number of researches in this area. 

The RADIC (Redundant Array of Independent Fault Tolerance Controllers) 

architecture was studied as a fault tolerance solution for messaging passing providing 

transparency, decentralization, scalability and flexibility. We have presented the 

concepts of this architecture, which it bases on two kind of processes working 

together to provide fault tolerance, the Observers and the Protectors. We saw the 

Modus Operandi of these processes and their issues besides a practical 

implementation of the architecture.  

We argued that in order to tolerate a fault, some message passing based solutions 

may generate a system configuration change at the recovery, i.e., respawning failed 

process in other active node of the application, which changes the original process 

distribution. Moreover, we shown that this change of configuration may lead to some 
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system degradation, generally meaning overall performance loss as demonstrated by 

some experiments ran over the RADIC architecture. 

This project was undertaken to design a fault tolerant architecture avoiding the 

side effects of the recovery process and evaluate it effectiveness. We used RADIC as 

basis to the development of RADIC II, an architecture that adds other protection level 

to RADIC, inserting a flexible dynamic redundancy feature. 

The implementation of this new feature, represented by the use of spare nodes, 

did not affect the RADIC characteristics of transparency, decentralization, flexibility 

and scalability. Hence, we developed a transparent management of spare nodes, 

which is able to request and use them without need any centralized information.  

In RADIC II, we implemented the ability of dynamically insert new spare nodes 

during the application execution. The architecture now also allows the replacement of 

faulty nodes. Moreover, the new features implemented may be applied to perform 

maintenance tasks, injecting faults in specific nodes forcing the processes running on 

them to migrate to a recently inserted spare node. These abilities represent the 

flexibility of RADIC II, beyond to keep the original RADIC structural flexibility. 

We modified the original RADICMPI prototype implementing the flexible 

redundancy feature. With the new version of this prototype, we performed several 

experiments with RADIC II in order to validate its functionality and to evaluate its 

appliance in different scenarios. All of scenarios bases on a twelve nodes cluster 

running the LINUX operating system over a TCP/IP network. 

We validated the RADIC II operation by using a debug log provided by the 

RADICMPI original implementation. We inserted new events related with the spare 

nodes usage. Initially we executed a ping-pong algorithm due to its simplicity, then 

after injected a fault in some node and the application has been correctly recovered, 

we checked the debug log in order to certify that all steps were correctly performed. 

We applied the same approach in order to validate the non-blocking function. 

We evaluated the appliance of our solution under two concepts: the overall 

execution time, and the throughput of an application. We compared the effects of 
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faults having or not available spare nodes. In the execution time case, we applied 

different approaches for a matrix product algorithm, using a static distributed 

Master/Worker and a SPMD approach implementing a Cannon algorithm. In order to 

evaluate the throughput, we executed an N-Body particle simulation using a pipeline 

paradigm, measuring the simulation steps performed comparing, again, the appliance 

or not of spare nodes. Hence, the following conclusions can be drawn from the 

present study.  

Our experiments has shown that the side-effects caused by some recovery 

approaches is dependant of the factors like application characteristics, i.e. message 

pattern, parallel paradigm applied, i.e. pipeline, Master-Work, or SPMD and where 

the process is recovered. We saw that the fault recovery, generally affects the overall 

performance of the system, and the generated degradation may vary according to 

where the process recovers and the parallel paradigm applied. Other relation 

perceived is about the application coupling. Applications with high coupling level 

between the computing nodes tend to suffer more intensively with the system 

configuration change caused by the recovered process. 

Moreover, we conclude that the use of a flexible redundancy scheme is a good 

approach to avoid the effects of the system configuration changes. Our solution has 

shown to be effective even in faults near at the application finishing. RADIC II also 

shows a small overhead caused by the recovery process. The experimental results 

have shown execution times and throughput values very near to a failure-free 

execution. This work was presented  at CACIC’2006 congress [Santos, et al., 2006]. 

After, we obtained new results that are going to appear in the ParCo2007 congress 

[Santos, et al., 2007]. 

These findings enhance our understanding about the fault tolerance issues, like 

the relationship with application characteristics and behavior, or the influence of a 

parallel paradigm in recovered applications.  

The project was limited in some ways. First, the project used a small sized 

cluster, which does not reflects the reality and makes hard to test some aspects like 

the scalability, hence, caution must be applied, as the findings might not be 
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transferable to large scale clusters. Despite of our efforts in to increase the number of 

MPI functions implemented in RADICMPI, the actual set has restricted the possibility 

of probe our solution in different benchmark application. Finally, we found an 

intrinsic limitation of our solution when adding spare nodes during the execution. 

Such limitation occurs when all nodes of the cluster already was been replaced, so the 

new spare inserted does not have to know any machine in the cluster, needing some 

additional information. 

7.1 Open Lines 

After a lot of work, we look to the present and we see many open lines that were 

found during the path to reach here. These open lines represent the future work that 

may be performed, expanding the RADIC II horizon. 

The ideal number of spare nodes and its ideal allocation through the cluster still 

are undiscovered subject. Further research might be investigate how it is possible to 

achieve better results allocating spare nodes according with some requirements like 

degradation level acceptable, or memory limits of a node.  

New technologies are arriving each day. A permanent task will be to study how 

to adapt and use RADIC II with the new trends of the high computing area, i.e. how 

behaves RADIC II using multicore computers?, how can we exploit the 

characteristics of this architecture? 

Fault tolerant systems generally are very complex systems. RADIC II is not an 

exception. Considerably more work will need to be done to generate a RADIC II 

analytical model, but will be very useful helping to understand better the architecture 

and providing tools to improve the RADIC II functioning allowing to determine better 

values for some parameters like checkpoint interval or protection mapping. 

Furthermore, this model may be applied in order to foresee the execution time under 

some parameters.  

A study about the possible election policies to be used in the node replacement 

feature will be useful to determine which the ideal behavior to be taken in these 

situations, considering factors like load balance or time to recover. 
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The maintenance feature of RADIC II is still not a widely explored subject. 

Additional research might be address the integration of this feature with some fault 

prediction scheme, which will allow RADIC II to perform transparent process 

migration avoiding faults before their happening. 

It would be interesting to assess the effects of RADIC II in large clusters and with 

different kind of applications. This study will give us a real knowledge about the 

RADIC II scalability.  Due to physical difficulties to access these machines, a RADIC 

II simulator would be necessary beside to complete the MPI implementation in 

RADICMPI. 

The autonomic computing systems [Kephart and Chess, 2003] have been a new 

trend in computing systems. Basing on the human autonomic system, this new trend 

establishes a new group of systems having the abilities of self-healing, self-

configuring, self-protect and self-optimize. We see that RADIC already provides the 

self-healing ability, while RADIC II implements the self-configuring capacity. Hence, 

a new research might perform the steps toward an autonomic fault tolerant system 

implementing the self-protecting and self-optimizing features. 
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