
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

5-2006 

Scalable Techniques for Fault Tolerant High Performance Scalable Techniques for Fault Tolerant High Performance 

Computing Computing 

Zizhong Chen 
University of Tennessee - Knoxville 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Chen, Zizhong, "Scalable Techniques for Fault Tolerant High Performance Computing. " PhD diss., 
University of Tennessee, 2006. 
https://trace.tennessee.edu/utk_graddiss/1654 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268766869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=trace.tennessee.edu%2Futk_graddiss%2F1654&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Zizhong Chen entitled "Scalable Techniques 

for Fault Tolerant High Performance Computing." I have examined the final electronic copy of 

this dissertation for form and content and recommend that it be accepted in partial fulfillment 

of the requirements for the degree of Doctor of Philosophy, with a major in Computer Science. 

Jack J. Dongarra, Major Professor 

We have read this dissertation and recommend its acceptance: 

James S. Plank, Shriley Moore, Ohannes Karakashian 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



To the Graduate Council:

I am submitting herewith a dissertation written by Zizhong Chen entitled “Scalable
Techniques for Fault Tolerant High Performance Computing.” I have examined the
final electronic copy of this dissertation for form and content and recommend that it be
accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy,
with a major in Computer Science.

Jack J. Dongarra

Major Professor

We have read this dissertation
and recommend its acceptance:

James S. Plank

Shirley Moore

Ohannes Karakashian

Accepted for the Council:

Anne Mayhew

Vice Chancellor
and Dean of Graduate Studies

(Original signatures are on file with official student records.)



SCALABLE TECHNIQUES FOR

FAULT TOLERANT HIGH

PERFORMANCE COMPUTING

A Dissertation

Presented for the

Doctor of Philosophy Degree

The University of Tennessee, Knoxville

Zizhong Chen

May 2006



Copyright c© 2006 by Zizhong Chen

All rights reserved.

ii



Dedication

This dissertation is dedicated to my dearest parents, Daide Chen and Yongqun Yang,

and my loving wife, Shunlan Lu.

iii



Acknowledgments

I would like to express my deepest gratitude to my advisor, Dr. Jack Dongarra, for

leading me into the area of high performance computing and for his precious guidance,

endless support, and valuable discussions throughout the process of this research. I

am grateful to Dr. Dongarra for providing me generous financial support for this re-

search and ample opportunities to share the research ideas in various conferences and

workshops.

I would also like to express my appreciation to Dr. James Plank, Dr. Shirley Moore,

and Dr. Ohannes Karakashian for serving on my graduate committee and for providing

valuable comments and constructive suggestions towards improving the quality of this

research.

I am grateful to all people who have helped me. I especially thank Graham Fagg,

Edgar Gabriel, George Bosilca, Julien Langou, Piotr Luszczek, Kenneth Roche, Thara

Angskun, Jelena Pjesivac-Grbovic, Zhiao Shi, Min Zhou, Yuanlei Zhang, Haihang You,

and Fengguang Song for their valuable help and precious friendship.

I am extremely thankful to my wife, Shunlan Lu, for her endless love, patience, and

understanding. Without her support, it would be impossible for me to complete this

work. I could never thank my parents enough for their love, sacrifices, and encourage-

ment that are crucial to the completion of my studies.

The author acknowledges the support of the research by the Los Alamos National

Laboratory under Contract No. 03891-001-99 49 and the Applied Mathematical Sci-

iv



ences Research Program of the Office of Mathematical, Information, and Computational

Sciences, U.S. Department of Energy under contract DE-AC05-00OR22725 with UT-

Battelle, LLC.

v



Abstract

As the number of processors in today’s parallel systems continues to grow, the

mean-time-to-failure of these systems is becoming significantly shorter than the execu-

tion time of many parallel applications. It is increasingly important for large parallel

applications to be able to continue to execute in spite of the failure of some components

in the system. Today’s long running scientific applications typically tolerate failures by

checkpoint/restart in which all process states of an application are saved into stable

storage periodically. However, as the number of processors in a system increases, the

amount of data that need to be saved into stable storage increases linearly. Therefore,

the classical checkpoint/restart approach has a potential scalability problem for large

parallel systems.

In this research, we explore scalable techniques to tolerate a small number of process

failures in large scale parallel computing. The goal of this research is to develop scalable

fault tolerance techniques to help to make future high performance computing appli-

cations self-adaptive and fault survivable. The fundamental challenge in this research

is scalability. To approach this challenge, this research (1) extended existing diskless

checkpointing techniques to enable them to better scale in large scale high performance

computing systems; (2) designed checkpoint-free fault tolerance techniques for linear al-

gebra computations to survive process failures without checkpoint or rollback recovery;

(3) developed coding approaches and novel erasure correcting codes to help applications

to survive multiple simultaneous process failures. The fault tolerance schemes we intro-
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duce in this dissertation are scalable in the sense that the overhead to tolerate a failure

of a fixed number of processes does not increase as the number of total processes in a

parallel system increases.

Two prototype examples have been developed to demonstrate the effectiveness of

our techniques. In the first example, we developed a fault survivable conjugate gradi-

ent solver that is able to survive multiple simultaneous process failures with negligible

overhead. In the second example, we incorporated our checkpoint-free fault tolerance

technique into the ScaLAPACK/PBLAS matrix-matrix multiplication code to evaluate

the overhead, survivability, and scalability. Theoretical analysis indicates that, to sur-

vive a fixed number of process failures, the fault tolerance overhead (without recovery)

for matrix-matrix multiplication decreases to zero as the total number of processes (as-

suming a fixed amount of data per process) increases to infinity. Experimental results

demonstrate that the checkpoint-free fault tolerance technique introduces surprisingly

low overhead even when the total number of processes used in the application is small.
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Chapter 1

Introduction

As the unquenchable desire of today’s scientists to run ever larger simulations and

analyze ever larger data sets drives the size of high performance computers from hun-

dreds, to thousands, and even tens of thousands of processors, the mean-time-to-failure

(MTTF) of these computers is becoming significantly shorter than the execution time

of many current high performance computing applications.

Even making generous assumptions on the reliability of a single processor or link, it

is clear that as the processor count in high end clusters grows into the tens of thousands,

the mean-time-to-failure of these clusters will drop from a few years to a few days, or

less. The current DOE ASCI computer (IBM Blue Gene L) is designed with 131,000

processors. The mean-time-to-failure of some nodes or links for this system is reported

to be only six days on average [1].

In recent years, the trend of the high performance computing [13] has been shift-
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ing from the expensive massively parallel computer systems to clusters of commodity

off-the-shelf systems[13]. While commodity off-the-shelf cluster systems have excellent

price-performance ratio, the low reliability of the off-the-shelf components in these sys-

tems leads a growing concern with the fault tolerance issue. The recently emerging

computational grid environments [36] with dynamic resources have further exacerbated

the problem.

However, driven by the desire of scientists for ever higher levels of detail and accuracy

in their simulations, many computational science programs are now being designed to

run for days or even months. Therefore, the next generation computational science

programs need to be able to tolerate failures.

1.1 Problem Statement

Assume a computing system consists of many nodes connected by network connections.

Each node has its own memory and local disk. There is at least one processor on each

node and only one application process on each processor. The communication between

processes is assumed to be message passing. Assume a process may fail due to the

failure of a processor or many other reasons. We assume a fail-stop failure model: the

failed process stops working and all data associated with the failed process are lost.

Although other types of failures exist, in this work we only consider this type of

failure. This type of failure is common in today’s large computing systems such as high-

end clusters with thousands of nodes and computational grids with dynamic resources.
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Today’s long running scientific applications typically tolerate failures by check-

point/restart approaches in which all process states of an application are periodically

saved into stable storage. The advantage of this approach is that it is able to tolerate

the failure of the whole system. However, in this approach, if one process fails, usually

all surviving processes are aborted and the whole application is restarted from the last

checkpoint.

The major source of overhead in all stable-storage-based checkpoint systems is the

time it takes to write checkpoints to stable storage [53]. The checkpoint of an appli-

cation on a, say, ten-thousand-processor computer implies that all critical data for the

application on all ten thousand processors have to be written into stable storage period-

ically, which may introduce an unacceptable amount of overhead into the checkpointing

system. The restart of such an application implies that all processes have to be recre-

ated and all data for each process have to be re-read from stable storage into memory

or re-generated by computation, which often brings a large amount of overhead into

restart. It may also be very expensive or unrealistic for many large systems such as

grids to provide the large amount of stable storage necessary to hold all process state

of an application running on thousands of processes.

Furthermore, as the number of processors in the system increases, the total number

of process states that need to be written into the stable storage also increases linearly.

Therefore, the fault tolerance overhead increases linearly. Figure 1.1 shows how a typical

checkpoint/restart approach works.
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Comp Proc 1                                     Comp Proc k
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Figure 1.1: Tolerate failures by checkpoint/restart approach

Due to the high frequency of failures and the large number of processors in next

generation computing systems, the classical checkpoint/restart fault tolerance approach

may become a very inefficient way to handle failures. More scalable fault tolerance

techniques need to be investigated.

Noting that today’s high performance computing architectures are usually robust

enough to survive partial node failures without suffering complete system failure, it

is natural to ask: can we tolerate partial node failures with lower overhead and better

scalability ?

The focus of this research is to investigate techniques to tolerate partial process

failures in large high performance computing applications executing on high-end clusters

and grids. The goal is to develop scalable fault tolerance techniques to help these

applications to tolerate partial process failures in a scalable way. The fundamental

challenge in this research is scalability.

4



1.2 Contributions

This dissertation develops several scalable fault tolerance techniques to tolerate partial

process failures in large-scale parallel and distributed computing. The specific contri-

butions this research makes can be summarized as follows

• Scalable Checkpointing for Large Parallel Systems: We introduce sev-

eral new encoding strategies into the existing diskless checkpointing idea and re-

duce the overhead to tolerate k failures in p processes from k(β + γ)m . log p to

k(β + γ)m . (1 + O( 1√
m

), where 1
γ is the rate to perform summation, 1

β is the

network bandwidth between processors, and m is the size of local checkpoint per

processor. The introduced checkpoint schemes are scalable in the sense that the

overhead to tolerate k failures in p processes does not increase as the number of

processes p increases. We evaluate the performance overhead of our fault toler-

ance approach by using a preconditioned conjugate gradient equation solver as an

example. Experimental results demonstrate that our fault tolerance approach can

survive a small number of simultaneous processor failures with low performance

overhead and little numerical impact.

• Algorithm-Based Checkpoint-Free Fault Tolerance: we explore an algorithm-

based checkpoint-free fault tolerance approach in which, instead of taking check-

point periodically, a coded global consistent state of the critical application data is

maintained in memory by modifying applications to operate on encoded data. We

show the practicality of this technique by applying it to the ScaLAPACK/PBLAS

5



matrix-matrix multiplication kernel which is one of the most important kernels

for ScaLAPACK to achieve high performance and scalability.

• Numerically Stable Real Number Codes: We present a class of numerically

stable real number erasure codes based on random matrices which can be used

in the algorithm-based checkpoint-free fault tolerance technique to tolerate multi-

ple simultaneous process failures. Experiment results demonstrate our codes are

numerically much more stable than existing codes in the literature.

• Condition Numbers of Gaussian Random Matrices: Let Gm×n be an m×n

real random matrix whose elements are independent and identically distributed

standard normal random variables, and let κ2(Gm×n) be the 2-norm condition

number of Gm×n. We prove that, for any m ≥ 2, n ≥ 2 and x ≥ |n − m| + 1,

κ2(Gm×n) satisfies 1√
2π

(c/x)|n−m|+1 < P
(

κ2(Gm×n)
n/(|n−m|+1) > x

)
< 1√

2π
(C/x)|n−m|+1 ,

where 0.245 ≤ c ≤ 2.000 and 5.013 ≤ C ≤ 6.414 are universal positive con-

stants independent of m, n and x. Moreover, for any m ≥ 2 and n ≥ 2,

E(log κ2(Gm×n)) < log n
|n−m|+1 +2.258. A similar pair of results for complex Gaus-

sian random matrices is also established. These theoretical results demonstrate

that the coding schemes in our algorithm-based checkpoint-free fault tolerance are

numerically highly reliable.
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1.3 Limitations of the Research

The size of the checkpoint affects the performance of any checkpointing scheme. The

larger the checkpoint size is, the higher the checkpoint overhead will be. The overhead

for checkpointing in this research increases linearly as the size of the checkpoint per

process increases. Furthermore, the checkpointing in this research could not survive a

failure of all processes. Also, to survive a failure occurring during checkpoint or recovery,

the storage overhead would double. If an application needs to tolerate these types of

failures, a two level recovery scheme [62] which uses both diskless checkpointing and

stable-storage-based checkpointing is a good choice.

Compared with the typical checkpoint/restart approaches, the algorithm-based checkpoint-

free fault tolerance in this dissertation can only tolerate partial process failures and only

works for matrix computations. It needs support from programming environments to

detect and locate failures. It requires the programming environment to be robust enough

to survive node failures without suffering complete system failure. Both the overhead

of and the additional effort to maintain a coded global consistent state of the criti-

cal application data in algorithm-based checkpoint-free fault tolerance is usually highly

dependent on the specific characteristic of the application.

The real-number and complex-number codes proposed in the research are not perfect.

Due to the probability approach we used, the drawback of our codes is that, no matter

how small the probability is, there is a probability that a erasure pattern may not be

able to be recovered accurately. An interesting open problem is how to construct the

7



numerically best codes over real-number and complex-number fields.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 gives a brief review

of the background as well as related work. Chapter 3 develops some scalable check-

pointing strategies for large parallel systems. Chapter 4 explores some algorithm-based

checkpoint-free fault tolerance techniques for high performance matrix computations.

In Chapter 5, we address the practical numerical issue in algorithm-based checkpoint-

free fault tolerance by proposing a class of numerically good real number erasure codes.

In Chapter 6, we evaluate the condition numbers of Gaussian random matrices used in

Chapters 4 and 5. Chapter 7 concludes the dissertation and discusses future work.
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Chapter 2

Background

In this chapter, we briefly review related work in fault tolerant high performance com-

puting and introduce the background of our research.

2.1 Related Work

Fault tolerance techniques can usually be divided into three big branches and some

hybrid techniques. The first branch is messaging logging. In this branch, there are three

sub-branches: pessimistic messaging logging, optimistic messaging logging, and casual

messaging logging. The second branch is checkpointing and rollback recovery. There are

also three sub-branches in this branch: network disk based checkpointing and rollback

recovery, diskless checkpointing and rollback recovery , and local disk based checkpointing

and rollback recovery. The third branch is algorithm-based fault tolerance.

There has been much work on fault tolerant techniques for high performance com-
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puting. These efforts come in basically four categories

1. System level checkpoint/message-logging [18, 2, 47, 38, 40]: Most fault tol-

erance schemes in the literature belong to this category. The idea of this approach

is to incorporate fault tolerance into the system level so that the application can

be recovered automatically without any efforts from the application programmer.

The most important advantage of this approach is its transparency. However, due

to lack of knowledge about the semantics of the application, the system typically

backs up all the processes and logs all messages, thus often introducing a huge

amount of fault tolerance overhead.

2. Compiler-based fault tolerance approach [56, 9, 50]: The idea of this ap-

proach is to exploit the knowledge of the complier to insert the checkpoint at

the best place and to exclude irrelevant memory areas to reduce the size of the

checkpoint. This approach is also transparent. However, due to the inability of

the compiler to determine the state of the communication channels at the time of

the checkpoint, this approach is difficult to use in parallel/distributed applications

that communicate through message passing.

3. User-level Checkpoint Libraries [61, 28, 5]: The idea of this approach is to

provide some checkpoint libraries to the programmer and let the programmer

decide where, when, and what to checkpoint. The disadvantage of this approach

is its non-transparency. However, due to the involvement of the programmer in

the checkpoint, the size of the checkpoint can be reduced considerably, and hence
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the fault tolerance overhead can also be reduced considerably.

4. Algorithmic fault tolerance approach [35, 46, 34, 8]: The idea of this ap-

proach is to leverage the knowledge of algorithms to reduce the fault tolerance

overhead to the minimum. In this approach, the programmer has to decide not

only where, when, and what to checkpoint but also how to do the checkpoint, and

hence the programmer must have deep knowledge about the application. However,

if this approach can be incorporated into widely used application libraries such as

ScaLAPACK and PETSc, then it is possible to reduce both the involvement of the

application programmer and the overhead of the fault tolerance to a minimum.

Our research in this dissertation is mainly concentrated on incorporating fault tol-

erance into tightly coupled large scale high performance computation intensive applica-

tions. Because these applications are often communication intensive, checkpoint/rollback-

recovery and algorithm-based fault tolerance approaches generally work better than

message logging approaches.

In the rest of this section, we will confine our literature review mainly to checkpoint-

ing techniques and algorithm-based fault tolerance instead of general fault tolerance

schemes.

2.1.1 Checkpointing and Rollback Recovery

Most traditional distributed multiprocessor recovery schemes are designed to tolerate

an arbitrary number of failures. Hence they store their checkpoint data in a central
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stable storage. The central stable storage usually has its own fault tolerance techniques

to protect it from failures. But the bandwidth between the processors and the central

stable storage is usually very low. Several experimental studies presented in [57] have

shown that the main performance overhead of checkpointing is the time spent writing

the checkpoint data to the central stable storage.

In [52, 53], Plank proposed to use diskless checkpointing technique as an approach

to tolerant single failures with low performance overhead when stable storage is not

available. Diskless checkpointing is a technique where processor redundancy, memory

redundancy and failure coverage are traded off so that a checkpointing system can

operate in the absence of stable storage. Experimental studies presented in [57] have

shown that diskless checkpointing has much better performance than traditional disk

based checkpoint techniques.

In [39], parity based diskless checkpointing is incorporated into several matrix opera-

tions with low performance overhead. In [39], the author also proposed to use checksum

and reverse computation methods to tolerate single failures for some matrix operations

to reduce the memory usage of the diskless checkpointing.

There are also several papers which compare the performance of different diskless

checkpointing schemes. In [12], Chiueh compares the performance of different diskless

checkpointing schemes on a massively parallel SIMD machine. Their experiments were

performed on a DECmpp 12000 machine. The DECmpp 12000 machine has 8192 pro-

cessors with each processor owning 64 Kbytes of RAM, but without any local disk for
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each processor. They implemented three chechpointing schemes (checkpoint mirroring,

parity checkpointing and partial party checkpointing) for a matrix-matrix multiplication

application. The checkpoint procedure itself is fault tolerant in their implementation.

The XOR operation was performed following an O(logN) binary tree fashion. Their

experiment result shows that the checkpoint mirroring scheme is an order of magnitude

faster than the parity checkpointing scheme, but introduces twice as much memory

overhead as the parity checkpointing scheme. In [57], Silva also did some experimental

studies about diskless checkpointing The experiments were done on an Xplorer Parsytec

machine with 8 transputers (T805). Their experimental results show that the check-

point mirroring has much better performance than the n+1 parity scheme. But the

checkpoint mirroring scheme always presents more memory overhead than the n+1 par-

ity scheme. In [53], Plank also report that the checkpoint mirroring scheme has lower

performance overhead than the parity scheme if the checkpoint data is stored on local

disk instead of the memory of a processor.

Local disk can also be used to store the checkpoint data. In [48], Plank applies RAID

strategies to deal with local disk checkpoint data so that his checkpoint strategies can

yield better performance for a smaller amount of fault coverage than traditional disk

based checkpointing. In his paper, coordinated checkpoints are first taken to the local

disk of each processor and then checkpointing mirroring, n+1 parity, or Reed-Solomon

Coding are used to encode the local checkpoint data to the local disk of other processors.

This strategy uses the local disk to replace the memory to tolerate small process failures,
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thus achieving low checkpoint overhead when there is not enough memory to do diskless

checkpoint.

To tolerate an arbitrary number of failures with low performance overhead, in [62],

Vaidya proposed a two-level distributed recovery approach. A two-level recovery scheme

tolerates the more probable failures with low performance overhead, while less probable

failures maybe tolerated with a higher performance overhead. In his example, the more

probable single failures are tolerated with diskless checkpointing ( checkpoint mirror-

ing ), while the less probable multiple failures are tolerated with traditional disk based

checkpointing. In that example, he demonstrated that to minimize the average over-

head, it is often necessary to take both diskless checkpoints and disk based checkpoints.

Checkpoint can be done either at the system-level or at the application level. In [57],

Silva compared the performance overhead of system-level checkpointing and user defined

checkpointing. Their experiments were done on an Xplorer Parsytec machine with 8

transputers (T805). The experiments showed that user defined checkpointing schemes

have much lower performance overhead than system-level checkpointing schemes. But

the degree of the performance improvement is dependent on specific applications.

2.1.2 Algorithm-Based Fault Tolerance

Algorithm-based fault tolerance (ABFT), which was originally developed by Huang and

Abraham [35], is a low-cost fault tolerance scheme to detect and correct permanent and

transient errors in certain matrix operations on systolic arrays. The key idea of the

ABFT technique is to encode the data at a higher level using checksum schemes and to
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redesign algorithms to operate on the encoded data. One of the most important char-

acteristics of algorithm-based fault tolerance is that it assumes a fail-continue model in

which failed processors continue to work but produce incorrect calculations. Therefore,

ABFT has to address the issue of error detection, location and correction.

Various checksum codes [45] have been suggested for fault tolerant matrix com-

putation on processor arrays. However, due to the potential round-off, overflow, and

underflow errors, the use of these codes has been limited. In floating point arithmetic,

where no computation is exact, it is difficult to distinguish errors resulting from faulty

hardware from errors resulting from round-off errors. Previous checksum codes in the

literature are also quite suspect in their numerical stability when correcting multiple

failures.

2.1.3 Naturally Fault Tolerant Algorithms

This class of approaches considers the specific characteristic of an application and de-

signs fault tolerance schemes according to the specific characteristic of an application.

In [27], Geist et. el. investigated the natural fault tolerance concept in which

the application can finish the computation task even if a small amount of application

data are lost, therefore, checkpoint can be avoided for this type of applications. The

authors try to establish a theoretical foundation for a new class of algorithms called

super-scalable algorithms that have the properties of scale invariance and natural fault

tolerance. Scale invariance means that the individual tasks in the larger parallel job have

a fixed number of other tasks with which they communicate independent of the number
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of tasks in the application. Finite difference algorithm is one such example. What scale

invariance does is to isolate the failure and not make it a property of the total number

of tasks. Fault tolerance can then be handled locally by self healing or natural fault

tolerance. A parallel algorithm has natural fault tolerance if it is able to get the correct

answer despite the failure of some tasks during the calculation. For example, an iterative

algorithm may still converge despite lost information. It is not that the calculation are

taken over by other tasks, but rather that the nature of the algorithm is that there

is a natural compensation for the lost information. If an algorithm is naturally fault

tolerant, then failure recovery (meaning data recovery) can be avoided. However, failure

detection and notification are still needed to inform the algorithm to adapt. In [8], a

checkpoint-free scheme is given for iterative methods. In [34], a checkpoint-free scheme

is incorporated into a parallel direct search application.

2.2 Failure Model

To define the problem we are targeting and clarify the differences with traditional fault

tolerance approaches, in this section we specify the type of failures we are focusing on.

We assume our target computing systems have many nodes which are connected by

network connections. Each node has its own memory and local disk. There is at least

one processor on each node and only one application process on each processor. Assume

the target application is optimized to run on a fixed number of processes. Unlike in

traditional algorithm-based fault tolerance which assumes a failed process continues to
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work but produce incorrect results, in this work we assume a fail-stop failure model.

In a fail-stop failure model, the failed process is assumed to stop working and all data

associated with the failed process are assumed to be lost. The surviving processes can

neither send nor receive any message from the failed processes.

2.3 FT-MPI

Current parallel programming paradigms for high-performance distributed computing

systems are typically based on the Message-Passing Interface (MPI) specification [44].

However, the current MPI specification does not specify the behavior of an MPI imple-

mentation when one or more process failures occur during runtime. MPI gives the user

the choice between two possibilities of how to handle failures. The first one, which is

the default mode of MPI, is to immediately abort all the processes of the application.

The second possibility is just slightly more flexible, handing control back to the user

application without guaranteeing that any further communication can occur.

2.3.1 FT-MPI Overview

FT-MPI [20] is a fault tolerant version of MPI that is able to provide basic system

services to support fault survivable applications. FT-MPI implements the complete

MPI-1.2 specification, some parts of the MPI-2 document and extends some of the

semantics of MPI for allowing the application the possibility to survive process failures.

FT-MPI can survive the failure of n-1 processes in a n-process job, and, if required, can
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re-spawn the failed processes. However, the application is still responsible for recovering

the data structures and the data of the failed processes.

Although FT-MPI provides basic system services to support fault survivable appli-

cations, prevailing benchmarks show that the performance of FT-MPI is comparable [21]

to the current state-of-the-art MPI implementations.

2.3.2 FT-MPI Semantics

FT-MPI provides semantics that answer the following questions:

1. what is the status of an MPI communicator after recovery?

2. what is the status of ongoing communication and messages during and after re-

covery?

When running an FT-MPI application, there are two parameters used to specify

which modes the application is running.

The first parameter, the ’communicator mode’, indicates the status of an MPI object

after recovery. FT-MPI provides four different communicator modes, which can be

specified when starting the application:

• ABORT: like any other MPI implementation, FT-MPI can abort on an error.

• BLANK: failed processes are not replaced, all surviving processes have the same

rank as before the crash and MPI COMM WORLD has the same size as before.
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• SHRINK: failed processes are not replaced, however the new communicator after

the crash has no ’holes’ in its list of processes. Thus, processes might have a new

rank after recovery and the size of MPI COMM WORLD will change.

• REBUILD: failed processes are re-spawned, surviving processes have the same

rank as before. The REBUILD mode is the default, and the most used mode of

FT-MPI.

The second parameter, the ’communication mode’, indicates how messages, which

are on the ’fly’ while an error occurs, are treated. FT-MPI provides two different

communication modes, which can be specified while starting the application:

• CONT/CONTINUE: all operations which returned the error code MPI SUCCESS

will finish properly, even if a process failure occurs during the operation (unless

the communication partner has failed).

• NOOP/RESET: all pending messages are dropped. The assumption behind this

mode is, that on error the application returns to its last consistent state, and all

currently pending operations are not of any further interest.

2.3.3 FT-MPI Usage

Handling fault-tolerance typically consists of three steps: 1) failure detection, 2) noti-

fication, and 3) recovery. The only assumption the FT-MPI specification makes about

the first two points is that the run-time environment discovers failures and all remaining

processes in the parallel job are notified about these events. The recovery procedure
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is considered to consist of two steps: recovering the MPI library and the run-time

environment, and recovering the application. The latter one is considered to be the

responsibility of the application. In the FT-MPI specification, the communicator-mode

discovers the status of MPI objects after recovery, and the message-mode ascertains the

status of ongoing messages during and after recovery. FT-MPI offers for each of these

modes several possibilities. This allows application developers to take the specific char-

acteristics of their application into account and use the best-suited method to handle

fault-tolerance.
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Chapter 3

Scalable Checkpointing for Large

Parallel Systems

Today’s parallel architectures are usually robust enough to survive node failures without

suffering complete system failure. However, most of today’s high performance comput-

ing applications can not survive node failures and, therefore, whenever there is a node

failure, have to abort themselves and restart from the beginning or a stable-storage-

based checkpoint.

In this chapter, we explore how to build fault survivable high performance computing

applications with FT-MPI using diskless checkpointing so that these applications can

tolerate partial process failures with lower overhead and better scalability than using

the traditional checkpoint/restart approach. We analyze existing diskless checkpointing

techniques and introduce several new encoding strategies into diskless checkpointing to
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improve the scalability of the techniques. We give a detailed presentation on how to write

a fault survivable application with FT-MPI using diskless checkpointing and evaluate

the performance overhead of our fault tolerance approach by using a preconditioned

conjugate gradient equation solver as an example. Experimental results demonstrate

that our fault tolerance approach can survive a small number of simultaneous processor

failures with low performance overhead.

3.1 Diskless Checkpointing

Diskless checkpointing [53] is a technique to save the state of a long running computation

on a distributed system without relying on stable storage. With diskless checkpointing,

each processor involved in the computation stores a copy of its state locally, either in

memory or on local disk. Additionally, encodings of these checkpoints are stored in local

memory or on local disk of some processors which may or may not be involved in the

computation. When a failure occurs, each live processor may roll its state back to its

last local checkpoint, and the failed processor’s state may be calculated from the local

checkpoints of the surviving processors and the checkpoint encodings. By eliminating

stable storage from checkpointing and replacing it with memory and processor redun-

dancy, diskless checkpointing removes the main source of overhead in checkpointing on

distributed systems [53]. Figure 3.1 is an example of how diskless checkpoint works.

To make diskless checkpointing as efficient as possible, it can be implemented at the

application level rather than at the system level [51]. There are several advantages to
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Figure 3.1: Tolerate failures by diskless checkpointing

implement checkpointing at the application level. Firstly, the application level check-

pointing can be placed at synchronization points in the program, which achieves check-

point consistency automatically. Secondly, with the application level checkpointing, the

size of the checkpoint can be minimized because the application developers can restrict

the checkpoint to the required data. This is opposed to a transparent checkpointing

system which has to save the whole process state. Thirdly, the transparent system level

checkpointing typically writes binary memory dumps, which rules out a heterogeneous

recovery. On the other hand, application level checkpointing can be implemented such

that the recovery operation can be performed in a heterogeneous environment as well.

In typical long running scientific applications, when diskless checkpointing is taken

from application level, what needs to be checkpointed is often some numerical data [39].

These numerical data can either be treated as bit-streams or as floating-point numbers.

If the data are treated as bit-streams, then bit-stream operations such as parity can be

used to encode the checkpoint. Otherwise, floating-point arithmetic such as addition
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can be used to encode the data.

However, compared with treating checkpoint data as numerical numbers, treating

them as bit-streams usually has the following disadvantages:

1. To survive general multiple process failures, treating checkpoint data as bit-

streams often involves the introduction of Galois Field arithmetic in the calcula-

tion of checkpoint encoding and recovery decoding [49]. If the checkpoint data are

treated as numerical numbers, then only floating-point arithmetic is needed to cal-

culate the checkpoint encoding and recovery decoding. Floating-point arithmetic

is usually simpler to implement and more efficient than Galois Field arithmetic.

2. Treating checkpoint data as bit-streams rules out a heterogeneous recovery. The

checkpoint data may have different bit-stream representation on different plat-

forms and even have different bit-stream length on different architectures. The in-

troduction of a unified representation of the checkpoint data on different platforms

within an application for checkpoint purposes scarifices too much performance and

is unrealistic in practice.

3. In some cases, treating checkpoint data as bit-streams does not work. For exam-

ple, in [39], in order to reduce memory overhead in fault tolerant dense matrix

computation, no local checkpoints are maintained on computation processors, only

the checksums of the local checkpoints are maintained on the checkpoint proces-

sors. Whenever a failure occurs, the local checkpoints on surviving computation

processors are re-constructed by reversing the computation. Lost data on failed
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processors are then re-constructed through the checksum and the local checkpoints

obtained from the reverse computation. However, due to round-off errors, the lo-

cal checkpoints obtained from reverse computation are not the same bit-streams

as the original local checkpoints. Therefore, in order to be able to re-construct the

lost data on failed processors, the checkpoint data have to be treated as numerical

numbers and floating point arithmetic has to be used to encode the checkpoint

data.

The main disadvantage of treating the checkpoint data as floating-point numbers

is the introduction of round-off errors into the checkpoint and recovery operations.

Round-off error is a limitation of any floating-point number calculation. Even without

checkpoint and recovery, scientific computing applications are still affected by round-off

errors. In practice, the increased possibility of overflows, underflows, and cancellations

due to round-off errors in numerically stable checkpoint and recovery algorithms is often

negligible.

In this dissertation, we explore the possibility of treating the checkpoint data as

floating-point numbers rather than bit-streams. However, the corresponding bit-stream

version schemes could also be used if the the application programmer thinks they are

more appropriate. In the following subsection, we discuss how the local checkpoint can

be encoded so that applications can survive single process failure.
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3.1.1 Checksum-Based Checkpointing

The checksum-based checkpointing is a floating-point version of the parity-based check-

pointing scheme proposed in [52]. In the checksum-based checkpointing, instead of

using parity, floating-point number addition is used to encode the local checkpoint

data. By encoding the local checkpoint data of the computation processors and send-

ing the encoding to some dedicated checkpoint processors, the checksum- based check-

pointing introduces a much lower memory overhead into the checkpoint system than

neighbor-based checkpoint. However, due to the calculating and sending of the encod-

ing, the performance overhead of the checksum-based checkpointing is usually higher

than neighbor-based checkpoint schemes. There are two versions of the checksum-based

checkpointing schemes.

The basic checksum scheme works as follow. If the program is executing on N

processors, then there is an N + 1-st processor called the checksum processor. At all

points in time a consistent checkpoint is held in the N processors in memory. Moreover

a checksum of the N local checkpoints is held in the checksum processor. Assume Pi

is the local checkpoint data in the memory of the i-th computation processor. C is

the checksum of the local checkpoints in the checkpoint processor. If we look at the

checkpoint data as an array of real numbers, then the checkpoint encoding actually

establishes an identity (3.1) between the checkpoint data Pi on computation processors

and the checksum data C on the checksum processor. If any processor fails, then the

identity (3.1) becomes an equation with one unknown. Therefore, the data in the failed
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processor can be reconstructed through solving this equation.

P1 + . . . + Pn = C (3.1)

Due to the floating-point arithmetic used in the checkpoint and recovery, there will be

round-off errors in the checkpoint and recovery. However, the checkpoint involves only

additions and the recovery involves additions and only one subtraction. In practice, the

increased possibility of overflows, underflows, and cancellations due to round-off errors

in the checkpoint and recovery algorithm is negligible.

The basic checksum scheme can survive only one failure. However, it can be used

to construct a one-dimensional checksum scheme to survive certain multiple failures.

3.1.2 Overhead and Scalability Analysis

Assume diskless checkpointing is performed in a parallel system with p processors and

the size of checkpoint on each processor is m bytes. It takes α+βx to transfer a message

of size x bytes between two processors regardless of which two processors are involved

and. α is often called latency of the network. 1
β is called the bandwidth of the network.

Assume the rate to calculate the sum of two arrays is γ seconds per byte. We also

assume that it takes α+βx to write x bytes of data into the stable storage. Our default

network model is the duplex model where a processor is able to concurrently send a

message to one partner and receive a message from a possibly different partner. The

more restrictive simplex model permits only one communication direction per processor.
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We also assume that disjoint pairs of processors can communicate each other without

interference each other.

By simply organizing all processors as a binary tree and sending local checkpoints

along the tree to the checkpoint processor (see Figure 3.2) [53], the time to perform one

checkpoint, Tdiskless−binary, can be represented as

Tdiskless−binary = 2dlog pe . m(β + γ) + 2dlog pe . α.

Note that, in a typical checkpoint/restart approach (see Figure 1.1), the time to

perform one checkpoint, Tcheckpoint/restart, is

Tcheckpoint/restart = p . mβ + p . α.

Therefore, by eliminating stable storage from checkpointing and replacing it with

memory and processor redundancy, diskless checkpointing improves the scalability of

checkpointing greatly on parallel and distributed systems.

Figure 3.2: Encoding local checkpoints using the binary tree algorithm
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3.2 A Scalable Algorithm for Checkpoint Encoding

Although the existing diskless checkpointing technique improves the scalability of check-

pointing dramatically on parallel and distributed systems, the overhead to perform one

checkpoint still increases quickly (Tdiskless−binary = 2dlog pe(α+βm+γm)) as the num-

ber of processors increases. In this section, we propose a new style of encoding algorithm

which improves the scalability of diskless checkpointing significantly. The new encoding

algorithm is based on the pipeline idea.

3.2.1 Pipelining

The key idea of pipelining is (1) the segmenting of messages and (2) the simultaneous

non-blocking transmission and receipt of data. By breaking up a large message into

smaller segments and sending these smaller messages through the network, pipelining

allows the receiver to begin forwarding a segment while receiving another segment.

Data pipelining can produce several significant improvements in the process of check-

point encoding. First, pipelining masks the processor and network latencies that are

known to be an important bottleneck in high-bandwidth local area networks. Second,

it allows the simultaneous sending and receiving of data, and hence exploits the full

duplex nature of the interconnect links in the parallel system.
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processor 0: m[0]

processor 1: m[1]

processor 2: m[2]

processor 3: m[3]
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m[0][1]

m[0][1]+m[1][1]
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step0    step1     step2 step3

m[0][1]+m[1][1]+m[2][1]

m[0][2]+m[1][2]

m[0][3]

Figure 3.3: Chain-pipelined encoding for diskless checkpointing

3.2.2 Chain-pipelined encoding for diskless checkpointing

Let m[i] denote the data on the ith processor. The task of checkpoint encoding is to

calculate the encoding which is m[0] + m[1] + ... + m[p− 1] and deliver the encoding to

the checkpoint processor.

The chain-pipelined encoding algorithm works as follows. First, organize all com-

putational processors and the checkpoint processor as a chain. Second, segment the

data on each processor into small pieces. Assume the data on each processor are seg-

mented into t segment of size s. The j th segment of m[i] is denoted as m[i][j]. Third,

m[0]+m[1]+ ...+m[p−1] are calculated by calculating m[0][j]+m[1][j]+ ...+m[p−1][j]

for each 0 ≤ j ≤ t − 1 in a pipelined way. Fourth, when the j th segment of encoding

m[0][j]+m[1][j]+...+m[p−1][j] is available, start to send it to the checkpoint processor.

Figure 3.3 demonstrates an example of calculating a chain-pipelined checkpoint en-
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coding for three processors (processor 0, processor 1, and processor 2) and deliver it to

the checkpoint processor (processor 3). In step 0, processor 0 sends its m[0][0] to pro-

cessor 1. Processor 1 receives m[0][0] from processor 0 and calculates m[0][0] + m[1][0].

In step1, processor 0 sends its m[0][1] to processor 1. Processor 1 first concurrently

receives m[0][1] from processor 0 and sends m[0][0] + m[1][0] to processor 2 and then

calculates m[0][1] + m[1][1]. Processor 2 first receives m[0][0] + m[1][0] from processor

1 and then calculate m[0][0] + m[1][0] + m[2][0]. As the procedure continues, at the

end of step2, the checkpoint processor will be able to get its first segment of encoding

m[0][0] + m[1][0] + m[2][0] + m[3][0]. From now on, the checkpoint processor will be

able to receive a segment of the encoding at the end of each step. After the checkpoint

processor receives the last checkpoint encoding, the checkpoint is finished.

3.2.3 Overhead and Scalability Analysis

In the chain-pipelined checkpoint encoding, the time for each step is Teach−step = α +

βs + γs. The number of steps to encode and deliver t segments in a p processor system

is t + p − 1. If we assume the size of data on each processor is m (= ts), then the total

time for encoding and delivery is

Ttotal(s) = (p − 1 + t)(α + βs + γs)
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Note that

T ′′
total(s) ≥ 0, (3.2)

and

lim
s−→∞

Ttotal(s) = lim
s−→0

Ttotal(s) = ∞. (3.3)

Therefore, there is a minimum for Ttotal when s changes.

Let

T ′
total(s) = −mα

s2
+ (p − 1)(β + γ) = 0.

Then, we can get the point that makes Ttotal(s) reach its minimum

s1 =

√
mα

(p − 1)(β + γ)

When s1 =
√

mα
(p−1)(β+γ) ,

Ttotal = (p − 1)α + (β + γ)m + 2
√

(p − 1)α(β + γ)m

= (β + γ)m .

(
1 + 2

√
(p − 1)α

(β + γ)m
+

(p − 1)α

(β + γ)m

)
(3.4)

When (β + γ)m � (p − 1)α, both 2
√

(p−1)α
(β+γ)m and (p−1)α

(β+γ)m are small. Therefore,

Ttotal ≈ (β + γ)m.
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Performance of Scalable Checkpoint Encoding
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Figure 3.4: Performance of pipeline encoding with 8 Mega-bytes local checkpoint data
on each processor

In diskless checkpointing, the size of checkpoint m is often large (Mega-bytes level).

The latency α is often a very small number compared with the time to send a large

message. If p is not too large, then (β + γ)m � (p − 1)α. Therefore, in practice, the

number of processors will have very little impact on the time to perform one checkpoint.

Figure 3.4 shows the time to perform one checkpoint encoding with 8 Mega-bytes

local checkpoint data on each processor.

Note that the overhead for existing checkpoint encoding is Tdiskless−binary = 2dlog pe(α+

βm+γm); therefore, the pipeline encoding algorithm improves the scalability of diskless

checkpointing.
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3.3 Coding to Tolerate Multiple Process Failures

To tolerate multiple simultaneous process failures of arbitrary patterns with minimum

process redundancy, a weighted checksum scheme can be used. A weighted checksum

scheme can be viewed as a version of the Reed-Solomon erasure coding scheme [49] in

the real number field. The basic idea of this scheme works as follow: Each processor

takes a local in-memory checkpoint, and m equalities are established by saving weighted

checksums of the local checkpoint into m checksum processors. When f failures happen,

where f ≤ m, the m equalities becomes m equations with f unknowns. By appropriately

choosing the weights of the weighted checksums, the lost data on the f failed processors

can be recovered by solving these m equations.

3.3.1 The Basic Weighted Checksum Scheme

Suppose there are n processors used for computation. Assume the checkpoint data on

the i-th computation processor is Pi. In order to be able to reconstruct the lost data

on failed processors, another m processors are dedicated to hold m encodings (weighted

checksums) of the checkpoint data (see Figure 3.5).

The weighted checksum Cj on the jth checksum processor can be calculated from





a11P1 + . . . + a1nPn = C1

...

am1P1 + . . . + amnPn = Cm,

(3.5)
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Figure 3.5: Basic weighted checksum scheme for diskless checkpointing

where aij, i = 1, 2, ...,m, j = 1, 2, ..., n, is the weight we need to choose. Let A = (aij)mn.

We call A the checkpoint matrix for the weighted checksum scheme.

Suppose that k computation processors and m−h checkpoint processors have failed.

Then there are n − k computation processors and h checkpoint processors that have

survived. If we look at the data on the failed processors as unknowns, then (3.5)

becomes m equations with m − (h − k) unknowns.

If k > h, then there are fewer equations than unknowns. There is no unique solution

for (3.5), and the lost data on the failed processors can not be recovered.

However, if k < h, then there are more equations than unknowns. By appropriately

choosing A, a unique solution for (3.5) can be guaranteed, and the lost data on the

failed processors can be recovered by solving (3.5).

Without loss of generality, we assume: (1) the computational processors j1, j2, ..., jk

failed and the computational processors jk+1, jk+2, ..., jn survived; (2) the checkpoint

processors i1, i2, ..., ih survived and the checkpoint processors ih+1, ih+2, ..., im failed.
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Then, in equation (2), Pj1 , ..., Pjk
and Cih+1

, ..., Cim become unknowns after the failure

occurs. If we re-structure (3.5), we can get





ai1j1Pj1 + ... + ai1jk
Pjk

= Ci1 −
∑n

t=k+1 ai1jtPjt

...

aihj1Pj1 + ... + aihjk
Pjk

= Cih −∑n
t=k+1 aihjtPjt

(3.6)

and 



Cih+1
= aih+11P1 + . . . + aih+1nPn

...

Cim = aim1P1 + . . . + aimnPn.

(3.7)

Let Ar denote the coefficient matrix of the linear system (3.6). If Ar has full col-

umn rank, then Pj1 , ..., Pjk
can be recovered by solving (3.6), and Cih+1

, ..., Cim can be

recovered by substituting Pj1 , ..., Pjk
into (3.7).

Whether we can recover the lost data on the failed processes or not directly depends

on whether Ar has full column rank or not. However, Ar in (3.6) can be any sub-matrix

(including minor) of A depending on the distribution of the failed processors. If any

square sub-matrix (including minor) of A is non-singular and there are no more than

m process failed, then Ar can be guaranteed to have full column rank. Therefore, to

be able to recover from no more than any m failures, the checkpoint matrix A has to

satisfy the condition that any square sub-matrix (including minor) of A is non-singular.
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How can we find such kind of matrices? It is well known that some structured

matrices such as Vandermonde matrix and Cauchy matrix satisfy this condition.

However, in computer floating point arithmetic where no computation is exact due

to round-off errors, it is well known [2] that, in solving a linear system of equations, a

condition number of 10k for the coefficient matrix leads to a loss of accuracy of about k

decimal digits in the solution. Therefore, in order to get a reasonably accurate recovery,

the checkpoint matrix A actually has to satisfy any square sub-matrix (including minor)

of A is well-conditioned.

It is well-known [14] that Gaussian random matrices are well-conditioned. To esti-

mate how well conditioned Gaussian random matrices are, we have proved the following

Theorem:

Theorem 1 Let Gm×n be an m×n real random matrix whose elements are independent

and identically distributed standard normal random variables, and let κ2(Gm×n) be the

2-norm condition number of Gm×n. Then, for any m ≥ 2, n ≥ 2 and x ≥ |n − m| + 1,

κ2(Gm×n) satisfies

P

(
κ2(Gm×n)

n/(|n − m| + 1)
> x

)
<

1√
2π

(
C

x

)|n−m|+1

,

and

E(lnκ2(Gm×n)) < ln
n

|n − m| + 1
+ 2.258,

where 0.245 ≤ c ≤ 2.000 and 5.013 ≤ C ≤ 6.414 are universal positive constants
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independent of m, n and x.

We omit the proof of the Theorem 1 here and put it in Chapter 6. Note that any

sub-matrix of a Gaussian random matrix is still a Gaussian random matrix. Therefore, a

Gaussian random matrix would satisfy the condition that any sub-matrix of the matrix

is well-conditioned with high probability.

Theorem 1 can be used to estimate the accuracy of recovery in the weighted checksum

scheme. For example, if an application uses 100,000 processors to perform computation

and 20 processors to perform checkpointing, then the checkpoint matrix is a 20 by

100,000 Gaussian random matrix. If 10 processors fail concurrently, then the coefficient

matrix Ar in the recovery algorithm is a 20 by 10 Gaussian random matrix. From

Theorem 1, we can get

E(log10 κ2(Ar)) < 1.25

and

P (κ2(Ar) > 100) < 3.1 × 10−11.

Therefore, on average, we will lose about one decimal digit in the recovered data and

the probability to lose 2 digits is less than 3.1 × 10−11.

3.3.2 One Dimensional Weighted Checksum Scheme

The one dimensional weighted checksum scheme works as follows. Assume the program

is running on m × n processors. Partition the m × n processors into m groups with
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Figure 3.6: One dimensional weighted checksum scheme for diskless checkpointing

n processors in each group. Dedicate another k checksum processors for each group.

In each group, the checkpoint are done using the basic weighted checksum scheme (see

Figure 3.6). This scheme can survive k processor failures in each group. The advantage

of this scheme is that the checkpoints are localized to a subgroup of processors, so the

checkpoint encoding in each sub-group can be done in parallel. Therefore, compared

with the basic weighted checksum scheme, the performance of the one dimensional

weighted checksum scheme is usually better.

By using a pipelined encoding algorithm in each subgroup, the time to perform one

checkpoint in the one dimensional weighted checksum scheme is

Tone−dimensional = (β + γ)m .

(
1 + 2

√
(p − 1)α

(β + γ)m
+

(p − 1)α

(β + γ)m

)
(3.8)
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Figure 3.7: Localized weighted checksum scheme for diskless checkpointing

3.3.3 Localized Weighted Checksum Scheme

The localized weighted checksum scheme works as follows. Assume we want to tolerate

k simultaneous process failures. Divide all processes onto subgroups of size k(k + 1).

In each group, the checkpoint encoding is performed like the basic weighted checksum

scheme (see Figure 3.7). But each encoding is distributed into k + 1 processes in the

subgroup. Note that there are k(k + 1) processes in each subgroup, therefore, all k

encodings can be replicated in k+1 processes with each process hold only one encoding.

This scheme can survive k processor failures in each group. The advantage of this scheme

is that the checkpoints are localized to a subgroup of processors, so the checkpoint

encoding in each sub-group can be done in parallel. Therefore, compared with the basic
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weighted checksum scheme, the performance of the localized weighted checksum scheme

is usually better. Another advantage of the localized weighted checksum scheme is that

it does not require dedicated processes to hold the checkpoint encoding.

By using a pipelined encoding algorithm in each subgroup, the time to perform one

checkpoint in the localized weighted checksum scheme is

Tone−dimensional = (β + γ)m

(
1 + 2

√
k(k + 1)α

(β + γ)m
+

k(k + 1)α

(β + γ)m

)

+βm

(
1 + 2

√
kα

βm
+

kα

βm

)
(3.9)

3.4 A Fault Survivable Iterative Equation Solver

In this section, we give a detailed presentation on how to incorporate fault tolerance

into applications by using a preconditioned conjugate gradient equation solver as an

example.

3.4.1 Preconditioned Conjugate Gradient Algorithm

The Preconditioned Conjugate Gradient (PCG) method is the most commonly used

algorithm to solve the linear system Ax = b when the coefficient matrix A is sparse and

symmetric positive definite. The method proceeds by generating vector sequences of

iterates (i.e., successive approximations to the solution), residuals corresponding to the

iterates, and search directions used in updating the iterates and residuals. Although the

length of these sequences can become large, only a small number of vectors needs to be
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Compute r(0) = b − Ax(0) for some initial guess x(0)

for i = 1, 2, . . .

solve Mz(i−1) = r(i−1)

ρi−1 = r(i−1)T
z(i−1)

if i = 1

p(1) = z(0)

else
βi−1 = ρi−1/ρi−2

p(i) = z(i−1) + βi−1p
(i−1)

endif

q(i) = Ap(i)

αi = ρi−1/p(i)T
q(i)

x(i) = x(i−1) + αip
(i)

r(i) = r(i−1) − αiq
(i)

check convergence; continue if necessary
end

Figure 3.8: Preconditioned conjugate gradient algorithm

kept in memory. In every iteration of the method, two inner products are performed in

order to compute update scalars that are defined to make the sequences satisfy certain

orthogonality conditions. The pseudo-code for the PCG is given in Figure 3.8. For more

details of the algorithm, we refer the reader to [4].

3.4.2 Incorporating Fault Tolerance into PCG

We first implemented the parallel non-fault tolerant PCG. The preconditioner M we use

is the diagonal part of the coefficient matrix A. The matrix A is stored as sparse row

compressed format in memory. The PCG code is implemented such that any symmetric,

positive definite matrix using the Harwell Boeing format or the Matrix Market format
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can be used as a test problem. One can also choose to generate the test matrices in

memory according to testing requirements.

We then incorporate the basic weighted checksum scheme into the PCG code. As-

sume the PCG code uses n MPI processes to do computation. We dedicate another m

MPI processes to hold the weighted checksums of the local checkpoint of the n com-

putation processes. The checkpoint matrix we use is a pseudo random matrix. Note

that the sparse matrix does not change during computation; therefore, we only need to

checkpoint three vectors (i.e. the iterate, the residual and the search direction) and two

scalars (i.e. the iteration index and ρ(i−1) in Figure 3.8).

The communicator mode we use is the REBUILD mode. The communication mode

we use is the NOOP/RESET mode. Therefore, when processes failed, FT-MPI will

drop all pending messages and re-spawn all failed processes without changing the rank

of the surviving processes.

An FT-MPI application can detect and handle failure events using two different

methods: either the return code of every MPI function is checked, or the application

makes use of MPI error handlers. The second mode gives users the possibility of incor-

porating fault tolerance into applications that call existing parallel numerical libraries

that do not check the return code of their MPI calls. In the PCG code, we detect and

handle failure events by checking the return code of every MPI function.

The recovery algorithm in PCG makes use of the longjmp function of the C-standard.

In case the return code of an MPI function indicates that an error has occurred, all
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surviving processes set their state variable to RECOVER and jump to the recovery

section in the code. The recovery algorithm consists of the following steps:

1. Re-spawn the failed processes and recover the FT-MPI runtime environment by

calling a specific, predefined MPI function.

2. Determining how many processes have died and who has died.

3. Recover the lost data from the weighted checksums using the algorithm described

in Section 4.3.1.

4. Resume the computation.

Another issue is how a process can determine whether it is a survival process or it

is a re-spawned process. FT-MPI offers the user two possibilities to solve this problem:

• In the first method, when a process is a replacement for a failed process, the

return value of its MPI Init call will be set to a specific new FT-MPI constant

(MPI INIT RESTARTED PROCS).

• The second possibility is that the application introduces a static variable. By

comparing the value of this variable to the value on the other processes, the

application can detect whether everybody has been newly started (in which case

all processes will have the pre-initialized value), or whether a subset of processes

have a different value, since each processes modifies the value of this variable after

the initial check. This second approach is somewhat more complex; however, it is

fully portable and can also be used with any other non fault-tolerant MPI library.
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In PCG, each process checks whether it is a re-spawned process or a surviving process

by checking the return code of its MPI Init call.

The relevant section with respect to fault tolerance is shown in the source code

below.

/* Determine who is re-spawned */

rc = MPI_Init( &argc, &argv );

if (rc==MPI_INIT_RESTARTED_NODE) {

/* re-spawned procs initialize */

...

} else {

/* Original procs initialize*/

...

}

/*Failed procs jump to here to recover*/

setjmp( env );

/* Execute recovery if necessary */

if ( state == RECOVER ) {

/*Recover MPI environment*/

newcomm = FT_MPI_CHECK_RECOVER;

MPI_Comm_dup(oldcomm, &newcomm);

/*Recover application data*/
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recover_data (A, b, r, p, x, ...);

/*Reset state-variable*/

state = NORMAL;

}

/*Major computation loop*/

do {

/*Checkpoint every K iterations*/

if ( num_iter % K == 0 )

checkpoint_data(r, p, x, ...);

/*Check the return of communication

calls to detect failure. If failure

occurs, jump to recovery point*/

rc = MPI_Send ( ...)

if ( rc == MPI_ERR_OTHER ) {

state = RECOVER;

longjmp ( env, state );

}

} while ( not converge );
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3.5 Experimental Evaluation

In this section, we evaluate both the performance overhead of our fault tolerance ap-

proach and the numerical impact of our floating-point arithmetic encoding using the

PCG code implemented in the last section.

We performed four sets of experiments to answer the following four questions:

1. What is the performance of FT-MPI compared with other state-of-the-art MPI

implementations?

2. What is the performance overhead of performing checkpointing?

3. What is the performance overhead of performing recovery?

4. What is the numerical impact of round-off errors in recovery?

For each set of experiments, we test PCG with four different problems. The size of

the problems and the number of computation processors used (not including checkpoint

processors) for each problem are listed in Table 3.1.

All experiments were performed on a cluster of 64 dual-processor 2.4 GHz AMD

Opteron nodes. Each node of the cluster has 2 GB of memory and runs the Linux

operating system. The nodes are connected with a Gigabit Ethernet. The timer we

used in all measurements is MPI Wtime.
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Table 3.1: Experiment configurations for each problem

Size of the Problem Num. of Comp. Procs

Prob #1 164,610 15

Prob #2 329,220 30

Prob #3 658,440 60

Prob #4 1,316,880 120

Table 3.2: PCG execution time (in seconds) with different MPI implementations

Time Prob#1 Prob#2 Prob#3 Prob#4

MPICH-1.2.6 916.2 1985.3 4006.8 10199.8

MPICH2-0.96 510.9 1119.7 2331.4 7155.6

FT-MPI 480.3 1052.2 2241.8 6606.9

FT-MPI ckpt 482.7 1055.1 2247.5 6614.5

FT-MPI rcvr 485.8 1061.3 2256.0 6634.0

3.5.1 Performance of PCG with Different MPI Implementations

The first set of experiments was designed to compare the performance of different MPI

implementations and evaluate the overhead of surviving a single failure with FT-MPI.

We ran PCG with MPICH-1.2.6 [31], MPICH2-0.96, FT-MPI, FT-MPI with one check-

point processor and no failure, and FT-MPI with one checkpoint processor and one

failure for 2000 iterations. For PCG with FT-MPI with checkpoint, we checkpoint

every 100 iterations. For PCG with FT-MPI with recovery, we simulate a processor

failure by exiting one process at the 1000-th iteration. The execution times of all tests

are reported in Table 3.2.
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Figure 3.9: PCG performance with different MPI implementations

Figure 3.9 compares the execution time of PCG with MPICH-1.2.6, MPICH2-0.96,

FT-MPI, FT-MPI with one checkpoint processor and no failure, and FT-MPI with one

checkpoint processor and one failure for different sizes of problems. Figure 5 indicates

that the performance of FT-MPI is slightly better than MPICH2-0.96. Both FT-MPI

and MPICH2-0.96 are much faster than MPICH-1.2.6. Even if with checkpointing

and/or recovery, the performance of PCG with FT-MPI is still at least comparable to

MPICH2-0.96.

3.5.2 Performance Overhead of Taking Checkpoint

The purpose of the second set of experiments is to measure the performance penalty of

taking checkpoints to survive general multiple simultaneous processor failures. There
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are no processor failures involved in this set of experiments. At each run, we divided the

processors into two classes. The first class of processors is dedicated to perform PCG

computation work. The second class of processors ais dedicated to perform checkpoint.

In Table 3.3 and Table 3.4, the first column of the table indicates the number of check-

point processors used in each test. If the number of checkpoint processors used in a run

is zero, then there is no checkpoint in this run. For all experiments, we ran PCG for

2000 iterations and checkpoint every 100 iterations.

Table 3.3 reports the execution time of each test. In order to reduce the disturbance

of the noise of the program execution time to the checkpoint time, we measure the time

used for checkpointing separately for all experiments.

Table 3.3: PCG execution time (in seconds) with checkpoint

Time Prob #1 Prob #2 Prob #3 Prob #4

0 ckpt 480.3 1052.2 2241.8 6606.9

1 ckpt 482.7 1055.1 2247.5 6614.5

2 ckpt 484.4 1057.9 2250.3 6616.9

3 ckpt 486.5 1059.9 2252.4 6619.7

4 ckpt 488.1 1062.2 2254.7 6622.3

5 ckpt 489.9 1064.3 2256.5 6625.1

Table 3.4: PCG checkpointing time (in seconds)

Time Prob #1 Prob #2 Prob #3 Prob #4

1 ckpt 2.6 3.8 5.5 7.8

2 ckpt 4.4 5.8 8.5 10.6

3 ckpt 6.0 7.9 10.2 12.8

4 ckpt 7.9 9.9 12.6 15.0

5 ckpt 9.8 11.9 14.1 16.8

50



�������������
	
�
�������������������
�
�

�
�
�����

�
�� ����

!"�
�����

!"�� ����

#
�
�����

#
�� ����

! $ % & '
(�)�*�+�,"-/.�0�1�2�,�3�4�5
.�687�9;:�-�.�3�,�<�<�.
-�<

= >
?@
A ?B
C
D E
F

G
-
.�+IHKJ
G
-
.�+IH $
G
-
.�+IH %
G
-
.�+IH &

Figure 3.10: PCG checkpoint overhead

Table 3.4 reports the individual checkpoint time for each experiment. Figure 3.10

compares the checkpoint overhead (%) of surviving different numbers of simultaneous

processor failures for different size of problems.

Table 3.4 indicates that as the number of checkpoint processors increases, the time

for checkpointing in each test problem also increases. The increase in time for each

additional checkpoint processor is approximately the same for each test problem. How-

ever, the increase of the time for each additional checkpoint processor is smaller than

the time for using only one checkpoint processor. This is because from no checkpoint

to checkpoint with one checkpoint processor PCG has to first set up the checkpoint en-

vironment and then do one encoding. However, from checkpoint with k (where k > 0)

processors to checkpoint with k + 1 processors, the only additional work is to perform
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one more encoding.

Note that we are performing checkpoint every 100 iterations and run PCG for 2000

iterations; therefore, from Table 3, we can calculate the checkpoint interval for each test.

Our checkpoint interval ranges from 25 seconds (Prob #1) to 330 seconds (Prob #4).

In practice, there is an optimal checkpoint interval which depends on the failure rate,

the time cost of each checkpoint and the time cost of each recovery. Much literature

about the optimal checkpoint interval [29, 54, 63] is available. We will not address this

issue further here.

From Figure 3.10, we can see that even if we checkpoint every 25 seconds (Prob

#1), the performance overhead of checkpointing to survive five simultaneous processor

failures is still within 2% of the original program execution time, which actually falls into

the noise margin of the program execution time. If we checkpoint every 5.5 minutes

(Prob #4) and assume a processor fails one after another (one checkpoint processor

case), then the overhead is only 0.1%.

3.5.3 Performance Overhead of Performing Recovery

The third set of experiments is designed to measure the performance overhead to perform

recovery. All experiment configurations are the same as in the previous section except

that we simulate a failure of k (k equals the number of checkpoint processors in the

run) processors by exiting k processes at the 1000-th iteration in each run.

Table 3.5 reports the execution time of PCG with recovery. In order to reduce the

disturbance of the noise of the program execution time to the recovery time, we measure
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Table 3.5: PCG execution time (in seconds) with recovery

Time Prob #1 Prob #2 Prob #3 Prob #4

0 proc 480.3 1052.2 2241.8 6606.9

1 proc 485.8 1061.3 2256.0 6634.0

2 proc 488.1 1063.6 2259.7 6633.5

3 proc 490.0 1066.1 2262.1 6636.3

4 proc 492.6 1068.8 2265.4 6638.2

5 proc 494.9 1070.7 2267.5 6639.7

Table 3.6: PCG recovery time (in seconds)

Time Prob #1 Prob #2 Prob #3 Prob #4

1 proc 3.2 5.0 8.7 18.2

2 proc 3.7 5.5 9.2 18.8

3 proc 4.0 6.0 9.8 20.0

4 proc 4.5 6.5 10.4 20.9

5 proc 4.8 7.0 11.1 21.5

the time used for recovery separately for all experiments. Table 3.6 reports the recovery

time in each experiment. Figure 3.11 compares the recovery overhead (%) from different

numbers of simultaneous processor failures for different sizes of problems.

From Table 3.6, we can see the recovery time increases approximately linearly as the

number of failed processors increases. However, the recovery time for a failure of one

processor is much longer than the increase of the recovery time from a failure of k (where

k > 0) processors to a failure of k + 1 processors. This is because, from no failure to a

failure with one failed processor, the additional work the PCG has to perform includes

first setting up the recovery environment and then recovering data. However, from a
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Figure 3.11: PCG recovery overhead

failure with k (where k > 0) processors to a failure with k + 1 processors, the only

additional work is to recover data for an additional processor.

From Figure 3.11, we can see that the overheads for recovery in all tests are within

1% of the program execution time, which is again within the noise margin of the program

execution time.

3.5.4 Numerical Impact of Round-Off Errors in Recovery

As discussed in Section 3.1, our diskless checkpointing schemes are based on floating-

point arithmetic encodings, which introduce round-off errors into the checkpointing

system. The experiments in this sub-section are designed to measure the numerical im-

pact of the round-off errors in our checkpointing system. All experiment configurations
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Table 3.7: Numerical impact of round-off errors in PCG recovery

Residual Prob #1 Prob #2 Prob #3 Prob #4

0 proc 3.050e-6 2.696e-6 3.071e-6 3.944e-6

1 proc 2.711e-6 4.500e-6 3.362e-6 4.472e-6

2 proc 2.973e-6 3.088e-6 2.731e-6 2.767e-6

3 proc 3.036e-6 3.213e-6 2.864e-6 3.585e-6

4 proc 3.438e-6 4.970e-6 2.732e-6 4.002e-6

5 proc 3.035e-6 4.082e-6 2.704e-6 4.238e-6

are the same as in the previous section except that we report the norm of the residual

at the end of each computation.

Note that if no failures occur, the computation proceeds with the same computa-

tional data as without checkpoint. Therefore, the computational results are affected

only when there is a recovery in the computation. Table 7 reports the norm of the

residual at the end of each computation when there are 0, 1, 2, 3, 4, and 5 simultaneous

process failures.

From Table 3.7, we can see that the norms of the residuals are different for differ-

ent numbers of simultaneous process failures. This is because, after recovery, due to

the impact of round-off errors in the recovery algorithm, the PCG computations are

performed based on slightly different recovered data. However, table 7 also indicates

that the residuals with recovery do not have much difference from the residuals without

recovery.
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3.6 Discussion

The size of the checkpoint affects the performance of any checkpointing scheme. The

larger the checkpoint size is, the higher the diskless checkpoint overhead will be. In the

PCG example, we only need to checkpoint three vectors and two scalars periodically,

therefore, the performance overhead is very low.

Diskless checkpointing is good for applications that modify a small amount of mem-

ory between checkpoints. There are many such applications in the high performance

computing field. For example, in typical iterative methods for sparse matrix computa-

tion, the sparse matrix is often not modified during the program execution, only some

vectors and scalars are modified between checkpoints. For this type of application, the

overhead for surviving a small number of processor failures is very low.

Even for applications that modify a relatively large amount of memory between two

checkpoints, reasonable performance for surviving single processor failure were reported

in [39].

The basic weighted checksum scheme implemented in the PCG example has a higher

performance overhead than other schemes discussed in Section 3. When an application

is executed on a large number of processors, to survive general multiple simultaneous

processor failures, the one dimensional weighted checksum scheme will achieve a much

lower performance overhead than the basic weighted checksum scheme. If processors

fail one after another (i.e. no multiple simultaneous processor failures), the neighbor

based schemes can achieve even lower performance overhead. It was shown in [12]
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that neighbor-based checkpointing is an order of magnitude faster than parity-based

checkpointing, but takes twice as much storage overhead.

Diskless checkpointing can not survive a failure of all processors. Also, to survive a

failure occurring during checkpoint or recovery, the storage overhead would double. If

an application needs to tolerate these types of failures, a two level recovery scheme [62]

which uses both diskless checkpointing and stable-storage-based checkpointing is a good

choice.

Another drawback of our fault tolerance approach is that it requires the program-

mer to be involved in the fault tolerance. However, if the fault tolerance schemes are

implemented into numerical software packages such as LFC [10], then transparent fault

tolerance can also be achieved for programmers using these software tools.

3.7 Conclusions and Future Work

We have presented how to build fault survivable high performance computing appli-

cations with FT-MPI using diskless checkpointing. We have introduced floating-point

arithmetic encodings into diskless checkpointing and discussed several checkpoint en-

coding strategies in detail. We have also implemented a fault survivable example appli-

cation (PCG) that can survive general multiple simultaneous processor failures. Exper-

imental results show that FT-MPI is at least comparable to other state-of-the-art MPI

implementations with respect to performance and can support fault survivable MPI

applications at the same time. Experimental results further demonstrate that our fault
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tolerance approach can survive a small number of simultaneous processor failures with

low performance overhead and little numerical impact.

For the future, we will evaluate our fault tolerance approach on systems with larger

numbers of processors. We would also like to evaluate our fault tolerance approach with

more applications and more diskless checkpointing schemes.
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Chapter 4

Algorithm-Based

Checkpoint-Free Fault Tolerance

As the size of today’s high performance computers increases from hundreds, to thou-

sands, and even tens of thousands of processors, node failures in these computers are

becoming frequent events. Although checkpoint/rollback-recovery is the typical tech-

nique to tolerate such failures, it often introduces considerable overhead. Algorithm-

based fault tolerance is a very cost-effective method to incorporate fault tolerance into

matrix computations. However, previous algorithm-based fault tolerance methods for

matrix computations are often derived using algorithms that are seldom used in the

practice of today’s high performance matrix computations and have mostly focused on

platforms where failed processors produce incorrect calculations. To fill this gap, this

chapter extends the existing algorithm-based fault tolerance for parallel matrix com-
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putations to the volatile computing platform where the failed processor stops working.

Instead of taking checkpoints periodically, a coded global consistent state of the crit-

ical application data is maintained in memory by modifying applications to operate

on encoded data. Because no periodical checkpoint or rollback-recovery is involved in

this approach, partial node failures can often be tolerated with surprisingly low over-

head. We show the practicality of this technique by applying it to the ScaLAPACK

matrix-matrix multiplication kernel which is one of the most important kernels for the

ScaLAPACK library to achieve high performance and scalability. Experimental results

demonstrate that the proposed approach is able to survive process failures with very

low performance overhead.

4.1 Motivation

Today’s long running scientific applications typically deal with faults by checkpoint/restart

approaches in which all process states of an application are saved into stable storage

periodically. The advantage of this approach is that it is able to tolerate the failure of

the whole system. However, in this approach, if one process fails, usually all surviving

processes are aborted and the whole application is restarted from the last checkpoint.

The major source of overhead in all stable-storage-based checkpoint systems is the time

it takes to write checkpoints into stable storage [53]. The checkpoint of an application on

a, say, ten-thousand-processor computer implies that all critical data for the application

on all ten thousand processors have to be written into stable storage periodically, which
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may introduce an unacceptable amount of overhead into the checkpointing system. The

restart of such an application implies that all processes have to be recreated and all data

for each process have to be re-read from stable storage into memory or re-generated by

computation, which often brings a large amount of overhead into restart. It may also

be very expensive or unrealistic for many large systems such as grids to provide the

large amount of stable storage necessary to hold all process state of an application with

thousands of processes.

In order to tolerate partial failures with reduced overhead, diskless checkpointing [53]

has been proposed by Plank et. al. By eliminating stable storage from checkpointing and

replacing it with memory and processor redundancy, diskless checkpointing removes the

main source of overhead in checkpointing [53]. Diskless checkpointing has been shown to

achieve a decent performance to tolerate single process failure in [39]. For applications

that modify a small amount of memory between checkpoints, it is shown in [11] that

,even to tolerate multiple simultaneous process failures, the overhead introduced by

diskless checkpointing is still negligible.

However, for applications such as matrix-matrix multiplication that modify a large

mount of memory between checkpoints, due to the large checkpoint size, even diskless

checkpointing still introduces a considerable overhead into applications. Firstly, a local

in memory checkpoint has to be maintained in diskless checkpointing, thus introducing

large amount of memory overhead and hurts the efficiency of applications. Secondly,

the local checkpoint in diskless checkpointing has to be taken and encoded periodically,
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which introduce a considerable performance overhead into applications. Although the

checksum and reverse computation technique in [39] has reduced the memory overhead,

the overhead to calculate the checkpoint encodings periodically does not change. Fur-

thermore, after failures, this technique increases the recovery overhead by reversing the

computation.

Inspired by the existing algorithm-based fault tolerance idea in [35], in this chap-

ter, we present an algorithm-based checkpoint-free fault tolerance approach in which,

instead of taking checkpoints periodically, a coded global consistent state of the criti-

cal application data is maintained in memory by modifying applications to operate on

encoded data. Although this approach is not as generally applicable as typical check-

point approaches, in parallel matrix computations where it usually works, because no

periodic checkpoint and rollback-recovery are involved in this approach, fault tolerance

for partial node failures can often be achieved with a surprisingly low overhead.

Despite the fact that there has been much research on algorithm-based fault toler-

ance [35] in which applications are modified to operate on encoded data to determine

the correctness of some mathematical calculations on parallel platforms where failed

processors produce incorrect calculations, to the best of our knowledge, this is the first

time that applications are modified to operate on encoded data to maintain a global

consistent state on parallel and distributed systems where failed processors stop work-

ing.

We show the practicality of this technique by applying it to the ScaLAPACK [6]
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matrix-matrix multiplication kernel which is one of the most important kernels for

the ScaLAPACK library to achieve high performance and scalability. We address the

practical numerical issue in this technique by proposing a class of numerically good

real number erasure codes based on random matrices. Experimental results for matrix-

matrix multiplication demonstrate that the proposed approach is able to survive a small

number of process failures with a very low performance overhead.

Although the algorithm-based checkpoint-free fault tolerance approach presented in

this chapter is non-transparent and algorithm-dependent, it is meaningful in that

1. It can often achieve a surprisingly low overhead in parallel matrix computations

where it usually works.

2. It is often possible to build it into frequently used numerical libraries such as

ScaLAPACK to relieve the involvement of the application programmer.

4.2 Algorithm-Based Checkpoint-Free Fault Tolerance

In this section, we present the basic idea of algorithm-based checkpoint-free fault toler-

ance. We restrict our scope to long running numerical computing applications only. As

indicated in Section 5, this approach can mainly be applied to linear algebra computa-

tions on parallel and distributed systems.
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4.2.1 Failure Detection and Location

It is assumed that fail-stop failures can be detected and located with the aid of the pro-

gramming environment. Many current programming environments such as PVM [59],

Globus [24], FT-MPI [20, 21, 19], and Open MPI [26] do provide this kind of failure

detection and location capability. We assume that the loss of some processes in the

message passing system does not cause the aborting of the surviving processes and that

it is possible to replace the failed processes in the message passing system and continue

the communication after the replacement. FT-MPI [20] is one such programming en-

vironment that supports all these functionalities. In the rest of this section, we will

mainly focus on how to recover the application.

4.2.2 Single Failure Recovery

Today’s long running scientific programs typically deal with faults by checkpoint and

rollback recovery in which all process states of an application are saved into certain

storage periodically. If one process fails, the data on all processes have to be recovered

from the last checkpoint. The checkpoint and rollback of an application on a, say, ten-

thousand-processor computer implies that all critical data for the application on all ten

thousand processors have to be saved into and recovered from some storage periodically,

which may introduce an unacceptable amount of overhead (both time and storage) into

the checkpointing system. Considering that all data on all surviving processes are still

effective, it is interesting to ask: is it possible to recover only the lost data on the failed
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processes?

Consider the simple case where there will be only one process failure. Before the

failure actually occurs, we do not know which process will fail; therefore, a scheme to

recover only the lost data on the failed process actually needs to be able to recover data

on any process. It seems difficult to be able to recover data on any process without

saving all data on all processes somewhere. However, if we assume, at any time during

the computation, that the data on the ith process Pi satisfy

P1 + P2 + · · · + Pn−1 = Pn, (4.1)

where n is the total number of process used for the computation, then the lost data on

any failed process can be able to be recovered from (4.1). Assume the j th process fails,

then the lost data Pj can be recovered from

Pj = Pn − (P1 + · · · + Pj−1 + Pj+1 + · · · + Pn−1)

In this very special case, we are lucky enough to be able to recover the lost data on

any failed process without checkpoint due to the special checksum relationship (4.1). In

practice, this kind of special relationship is by no means natural. However, it is natural

to ask: is it possible to design an application to maintain such a special checksum

relationship on purpose?

Assume the original application is designed to run on n processes. Let Pi denote
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the data on the ith computation process. The special checksum relationship above can

actually be designed on purpose as follows:

• Add another encoding process into the application. Assume that the data on

this encoding process is C. For numerical computations, Pi is often an array of

floating-point numbers; therefore, at the beginning of the computation, we can

create a checksum relationship among the data of all processes by initializing the

data C on the encoding process as

P1 + P2 + · · · + Pn = C (4.2)

• During the execution of the application, redesign the algorithm to operate both

on the data of computation processes and on the data of encoding process in such

a way that the checksum relationship (4.2) is always maintained.

The specially designed checksum relationship (4.2) actually establishes an equality

between the data Pi on computation processes and the encoding data C on the encoding

process. If any processor fails, then the equality (4.2) becomes an equation with one

unknown. Therefore, the data on the failed processor can be reconstructed through

solving this equation.
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4.2.3 Multiple Failure Recovery

The specially designed checksum relationship in the last sub-section can only survive

one process failure. However, in today’s high performance computers, there are usually

multiple processors on each node. Hence, it is usual to run multiple processes on one

node, which implies that the failure of one node often causes the loss of multiple pro-

cesses. Furthermore, as the number of nodes increases, the possibility of lost multiple

nodes also increases. Therefore, it is often necessary to be able to survive multiple

simultaneous process failures. In this section, we present a scheme that can be used to

recover multiple simultaneous process failures.

Suppose there are n processes used for computation. Assume Pi represents the data

on the i-th computation process. In order to be able to reconstruct the lost data on

m failed processes, another m processes are dedicated to hold m encodings (weighted

checksums) of the computation data. At the beginning of the application, the weighted

checksum Cj on the jth encoding process can be calculated from





a11P1 + . . . + a1nPn = C1

...

am1P1 + . . . + amnPn = Cm,

(4.3)

where aij , i = 1, 2, ...,m, j = 1, 2, ..., n, is the weight we need to choose. During the

executing of the application, the application needs to be re-designed to operate both on
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the data of computation processes and on the data of encoding processes in such a way

that the relationship (4.3) is always maintained.

We call the relationship (4.3) the weighted checksum relationship. We call A =

(aij)mn the encoding matrix for the weighted checksum relationship. The specially de-

signed weighted checksum relationship (4.3) actually establishes m equalities between

the data Pi on computation processes and the encoding data Ci on the encoding pro-

cesses. If some processes fail, then the m equalities become a system of linear equations.

Therefore, the lost data on the failed processes may be able to be reconstructed through

solving the system of linear equations.

Supposing that k computation processes and m − h encoding processes have failed,

then n − k computation processors and h encoding processes have survived. If we look

at the data on failed processors as unknowns, then (4.3) becomes m equations with

m − (h − k) unknowns.

If k > h, then there are fewer equations than unknowns, and there is no unique

solution for (4.3). The lost data on the failed processes cannot be recovered.

However, if k < h, then there are more equations than unknowns. By appropriately

choosing A, a unique solution for (4.3) can be guaranteed. Therefore, the lost data on

the failed processes can be recovered by solving (4.3).

Without loss of generality, we assume: (1) the computational processes j1, j2, ..., jk

failed and the computational processes jk+1, jk+2, ..., jn survived; (2) the encoding pro-

cesses i1, i2, ..., ih survived and the encoding processes ih+1, ih+2, ..., im failed. Then, in
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equation (4.3), Pj1 , ..., Pjk
and Cih+1

, ..., Cim become unknowns after the failure occurs.

If we re-structure (4.3), we can get





ai1j1Pj1 + ... + ai1jk
Pjk

= Ci1 −
∑n

t=k+1 ai1jtPjt

...

aihj1Pj1 + ... + aihjk
Pjk

= Cih −∑n
t=k+1 aihjtPjt

(4.4)

and 



Cih+1
= aih+11P1 + . . . + aih+1nPn

...

Cim = aim1P1 + . . . + aimnPn.

(4.5)

Let Ar denote the coefficient matrix of the linear system (4.4). If Ar has full col-

umn rank, then Pj1 , ..., Pjk
can be recovered by solving (4.4), and Cih+1

, ..., Cim can be

recovered by substituting Pj1 , ..., Pjk
into (4.5).

Whether we can recover the lost data on the failed processes or not directly depends

on whether Ar has full column rank or not. However, Ar in (4.4) can be any sub-matrix

(including minor) of A depending on the distribution of the failed processors. If any

square sub-matrix (including minor) of A is non-singular and there are no more than

m process failed, then Ar can be guaranteed to have full column rank. Therefore, to be

able to recover from any no more than m failures, the encoding matrix A has to satisfy:

any square sub-matrix (including minor) of A is non-singular.
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How can we find such kind of matrices? It is well known that some structured

matrices such as Vandermonde matrix, Cauchy matrix, and DFT matrix satisfy any

square sub-matrix (including minor) of the matrix is non-singular.

4.3 Checkpoint-Free Fault Tolerance for Matrix Multipli-

cation

As an example to demonstrate how the algorithm-based checkpoint-free fault tolerance

works in practice, in this section, we apply this technique to the ScaLAPACK matrix-

matrix multiplication kernel which is one of the most important kernels for ScaLAPACK

to achieve high performance and scalability.

Actually, it is also possible to incorporate fault tolerance into many other ScaLA-

PACK routines through this approach. However, in this section, we will restrict our

presentation to the matrix-matrix multiplication kernel. For the simplicity of presenta-

tion, in this section, we only discuss the case where there is one process failure. However,

just as described in the last section, it is straightforward to extend the result here to

the multiple simultaneous process failures case by simply using the weighted checksum

scheme in Section 4.2.3.

4.3.1 Two-Dimensional Block-Cyclic Distribution

It is well-known [6] that the layout of an application’s data within the hierarchical mem-

ory of a concurrent computer is critical in determining the performance and scalability
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(a). One-dimensional process array      (b). Two-dimensional process grid

Figure 4.1: Process grid in ScaLAPACK

of the parallel code. By using two-dimensional block-cyclic data distribution [6], ScaLA-

PACK seeks to maintain load balance and reduce the frequency with which data must

be transferred between processes.

For reasons described above, ScaLAPACK organizes the one-dimensional process

array representation of an abstract parallel computer into a two-dimensional rectangular

process grid. Therefore, a process in ScaLAPACK can be referenced by its row and

column coordinates within the grid. An example of such an organization is shown in

Figure 4.1.

The two-dimensional block-cyclic data distribution scheme is a mapping of the global

matrix onto the rectangular process grid. There are two pairs of parameters associated

with the mapping. The first pair of parameters is (mb, nb), where mb is the row block

size and nb is the column block size. The second pair of parameters is (P,Q), where

P is the number of process rows in the process grid and Q is the number of process

columns in the process grid. Given an element aij in the global matrix A, the process
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Figure 4.2: Two-dimensional block-cyclic matrix distribution

coordinate (pi, qj) that aij resides can be calculated by





pi = b i
mbc mod P,

qj = b j
nbc mod Q,

The local coordinate (ipi
, jqj

) which aij resides in the process (pi, qj) can be calculated

according to the following formula





ipi
= b b

i
mb

c
P c .mb + i mod mb,

jqj
= b b

j
nb

c
Q c . nb + j mod nb,

Figure 4.2 is an example of mapping a 9 by 9 matrix onto a 2 by 3 process grid according
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two-dimensional block-cyclic data distribution with mb = nb = 2.

4.3.2 Encoding Two-Dimensional Block Cyclic Matrices

In this section, we will construct different encoding schemes which can be used to design

checkpoint-free fault tolerant matrix computation algorithms in ScaLAPACK.

Assume a matrix M is originally distributed in a P by Q process grid according to

the two dimensional block cyclic data distribution. For the convenience of presentation,

assume the sizes of the local matrices in each process are the same. We will explain

different coding schemes for the matrix M with the help of the example matrix in Figure

4.3. Figure 4.3 (a) shows the global view of an example matrix. After the matrix is

mapped onto a 2 by 2 process grid with mb = nb = 1, the distributed view of this

matrix is shown in Figure 4.3 (b).

Suppose we want to tolerate a single process failure. We dedicate another P +Q+1

additional processes and organize the total PQ+P +Q+1 process as a P +1 by Q+1

process grid with the original matrix M distributed onto the first P rows and Q columns

of the process grid.

0 1 0 1

2 3 2 3

0 1 0 1

2 3 2 3

0 0 1 1

0 0 1 1

2 2 3 3

2 2 3 3

0           1

0

1

(a). Original matrix from global view           (b). Original matrix from distributed view

Figure 4.3: An example matrix with two-dimensional block cyclic distribution
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(a). Column checksum matrix from global view       (b). Column checksum matrix from distributed view

Figure 4.4: Distributed column checksum matrix of the example matrix

The distributed column checksum matrix M c of the matrix M is the original matrix

M plus the part of data on the (P + 1)th process row which can be obtained by adding

all local matrices on the first P process rows. Figure 4.4 (b) shows the distributed view

of the column checksum matrix of the example matrix from Figure 4.1. Figure 4.4 (a)

is the global view of the column checksum matrix.

The distributed row checksum matrix M r of the matrix M is the original matrix M

plus the part of data on the (Q+1)th process columns which can be obtained by adding

all local matrices on the first Q process columns. Figure 4.5 (b) shows the distributed

view of the row checksum matrix of the example matrix from Figure 4.1. Figure 4.5 (a)

is the global view of the row checksum matrix.

The distributed full checksum matrix M f of the matrix M is the original matrix M ,

plus the part of data on the (P + 1)th process row which can be obtained by adding all

local matrices on the first P process rows, plus the part of data on the (Q+1)th process

column which can be Figure 4.6 (b) shows the distributed view of the full checksum
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(a). Row checksum matrix from global view     (b). Row checksum matrix from distributed view

Figure 4.5: Distributed row checksum matrix of the original matrix
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(a). Full checksum matrix from global view          (b). Full checksum matrix from distributed view

Figure 4.6: Distributed full checksum matrix of the original matrix
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matrix of the example matrix from Figure 4.3. Figure 4.6 (a) is the global view of the

full checksum matrix.

4.3.3 Scalable Universal Matrix Multiplication Algorithm

To achieve high performance, the matrix-matrix multiplication in ScaLAPACK uses the

blocked outer product version of algorithm. Let Aj denote the jth column block of the

matrix A and BT
j denote the jth row block of the matrix B. The following Figure 4.8

is the algorithm to perform the matrix matrix multiplication. Figure 4.7 shows the j th

step of the matrix matrix multiplication algorithm.

b

B j
T

B

A b
A j

= +C ( j+1) C ( j ) A j B j
T

Figure 4.7: The jth step of the matrix-matrix multiplication algorithm in ScaLAPACK

for j = 0, 1, . . .
row broadcast Aj ;
column broadcast BT

j ;
C = C + Aj ∗ BT

j ;
end

Figure 4.8: Scalable universal matrix-matrix multiplication algorithm in ScaLAPACK
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4.3.4 Maintaining Global Consistent States by Computation

Assume A, B and C are distributed matrices on a P by Q process grid with the first

element of each matrix on process (0,0). Let Ac, Br and Cf denote the corresponding

distributed checksum matrix. Let Ac
j denote the jth column block of the matrix Ac and

Br
j
T denote the jth row block of the matrix Br. We first prove the following fundamental

theorem for matrix matrix multiplication with checksum matrices.

Theorem 2 Let Sj = Cf +
∑j−1

k=0 Ac
k ∗ Br

k
T , then Sj is a distributed full checksum

matrix.

Proof. It is straightforward that Ac
k ∗ Br

k
T is a distributed full checksum matrix and

the sum of two distributed full checksum matrices is a distributed checksum matrix.

Sj is the sum of j distributed full checksum matrices, therefore it is a distributed full

checksum matrix.

Theorem 2 tells us that at the end of each iteration of the matrix matrix multi-

plication algorithm with checksum matrices, the checksum relationship of all checksum

matrices is still maintained. This tells us that a coded global consistent state of the crit-

ical application data is maintained in memory at the end of each iteration of the matrix

matrix multiplication algorithm if we perform the computation with related checksum

matrices.

However, in a distributed environment, different processes may update their local

data asynchronously. Therefore, if when some process has updated its local matrix and

some process is still in the communication stage, a failure happens, then the relationship
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of the data in the distributed matrix would not be maintained and the data on all pro-

cesses would not form a consistent state. But this could be solved by simply performing

a synchronization before performing local update. Therefore, in the following algorithm

in Figure 4.10, there will always be a coded global consistent state ( i.e. the checksum

relationship) of the matrix Ac, Br and Cf in memory. Hence, a single process failure

at any time during the matrix matrix multiplication would be able to recovered from

the checksum relationship. Figure 4.9 shows the j th step of the fault tolerant matrix

matrix multiplication algorithm.

In this algorithm, the only modification to the library routine is to perform a syn-

chronization before local update. However the amount of modification necessary to

maintain a consistent state is highly dependent on the characteristic of an algorithm.

For example, in LU factorization, due to the damage of the linear relationship by the

global row pivoting, one also needs to adjust the encodings appropriately when per-

forming pivoting to maintain a consistent encoded state in memory.

b

Br
j
T

Br

Ac b
Ac

j

= +C f ( j+1) C f ( j ) Ac
j Br

j
T

Figure 4.9: The jth step of the fault tolerant matrix-matrix multiplication algorithm
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construct checksum matrices Ac, Br, and Cf ;
for j = 0, 1, . . .

row broadcast Ac
j ;

column broadcast Br
j

T ;
synchronize;

Cf = Cf + Ac
j ∗ Br

j
T ;

end

Figure 4.10: A fault tolerant matrix-matrix multiplication algorithm

4.3.5 Overhead and Scalability Analysis

In this section, we analyze the overhead introduced by the algorithm-based checkpoint-

free fault tolerance for matrix matrix multiplication.

For the simplicity of presentation, we assume all three matrices A,B, and C are

square. Assume all three matrices are distributed onto a P by P process grid with

m by m local matrices on each process. The size of the global matrices is P × m by

P × m. Assume all elements in the matrices are 8-byte double precision floating-point

numbers. Assume every process has the same speed and that disjoint pairs of processes

can communicate without interfering with each other. Assume it takes α+βk seconds to

transfer a message of k bytes regardless of which processes are involved, where α is the

latency of the communication and 1
β is the bandwidth of the communication. Assume

a process can concurrently send a message to one partner and receive a message from a

possibly different partner. Let γ denote the time it takes for a process to perform one

floating-point arithmetic operation.

79



Time Complexity for Parallel Matrix Matrix Multiplication

Note that the sizes of all three global matrices A, B, and C are all P × m; therefore,

the total number of floating-point arithmetic operations in the matrix matrix multipli-

cation is 2P 3m3. There are P 2 process with each process executing the same number

of floating-point arithmetic operations. Hence, the total number of floating-point arith-

metic operations on each process is 2Pm3. Therefore, the time Tmatrix comp for the

computation in matrix matrix multiplication is

Tmatrix comp = 2Pm3γ.

In the parallel matrix matrix multiplication algorithm in Figure 4.8, the columns of A

and the rows of B also need to broadcast to other column and row processes respectively.

To broadcast one block columns of A using a simple binary tree broadcast algorithm,

it takes 2(α + 8bmβ) log2 P , where b is the row block size in the two dimensional block

cyclic distribution. Therefore, the time Tmatrix comm for the communication in matrix

matrix multiplication is

Tmatrix comm = 2α
Pm

b
log2 P + 16βPm2 log2 P.
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Therefore, the total time to perform parallel matrix matrix multiplication is

Tmatrix mult = Tmatrix comp + Tmatrix comm

= 2Pm3γ + 2α
Pm

b
log2 P

+16βPm2 log2 P. (4.6)

Overhead for Calculating Encoding

To make matrix matrix multiplication fault tolerant, the first type of overhead intro-

duced by the algorithm-based checkpoint-free fault tolerance technique is (1) construct-

ing the distributed column checksum matrix Ac from A; (2) constructing the distributed

row checksum matrix Br from B; (3) constructing the distributed full checksum matrix

Cf from C.

The distributed checksum operation involved in constructing all these checksum

matrices performs the summation of P local matrices from P processes and saves the

result into the (P + 1)th process. Let Teach encode denote the time for one checksum

operation and Ttotal encode denote the time for constructing all three checksum matrices

Ac, Br, and Cf , then

Ttotal encode = 4Teach encode

By using a fractional tree reduce style algorithm [55], the time complexity for one
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checksum operation can be expressed as

Teach encode = 8m2β

(
1 + O

((
log2 P

m2

)1/3
))

+O(α log2 P ) + O(m2γ)

Therefore, the time complexity for constructing all three checksum matrices is

Ttotal encode = 32m2β

(
1 + O

((
log2 P

m2

)1/3
))

+O(α log2 P ) + O(m2γ). (4.7)

In practice, unless the size of the local matrices m is very small or the size of the

process grid P is extremely large, the total time for constructing all three checksum

matrices is almost independent of the size of the process grid P .

The overhead (%) Rtotal encode for constructing checksum matrices for matrix matrix

multiplication is

Rtotal encode =
Ttotal encode

Tmatrix mult

= O(
1

Pm
) (4.8)

From (4.8), we can conclude

1. If the size of the data on each process is fixed (m is fixed), then as the number of

processes increases to infinite (that is P → ∞), the overhead (%) for constructing
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the checksum matrices decreases to zero with a speed of O( 1
P )

2. If the number of processes is fixed (P is fixed), then as the size of the data on each

process increases to infinite (that is m → ∞) the overhead (%) for constructing

the checksum matrices decreases to zero with a speed of O( 1
m)

Overhead for Performing Computations on Encoded Matrices

The fault tolerant matrix matrix multiplication algorithm in Figure 4.10 performs com-

putations using checksum matrices which have larger size than the original matrices.

However, the total number of processes devoted to computation also increases. A more

careful analysis of the algorithm in Figure 4.10 indicates that the number of floating-

point arithmetic operations on each process in the fault tolerant algorithm (Figure 4.10)

is actually the same as that of the original non-fault tolerant algorithm (Figure 4.8).

As far as the communication is concerned, in the original algorithm (in Figure 4.8),

the column (and row) blocks are broadcast to P processes. In the fault tolerant algo-

rithms (in Figure 4.10), the column (and row) blocks now have to be broadcast to P +1

processes.

Therefore, the total time to perform matrix matrix multiplication with checksum

matrices is

Tmatrix mult checksum = 2Pm3γ + 2α
Pm

b
log2(P + 1)

+16βPm2 log2(P + 1).
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Therefore, the overhead (time) to perform computations with checksum matrices is

Toverhead matrix mult = Tmatrix mult checksum − Tmatrix mult

= (2α
Pm

b
+ 16βPm2) log2(1 +

1

P
).

(4.9)

The overhead (%) Roverhead matrix mult for performing computations with checksum

matrices in fault tolerant matrix matrix multiplication is

Roverhead matrix mult =
Toverhead matrix mult

Tmatrix mult

= O(
1

Pm
) (4.10)

From (4.10), we can conclude that

1. If the size of the data on each process is fixed (m is fixed), then as the number of

processes increases to infinite (that is P → ∞), the overhead (%) for performing

computations with checksum matrices decreases to zero with a speed of O( 1
P )

2. If the number of processes is fixed (P is fixed), then as the size of the data on each

process increases to infinite (that is m → ∞) the overhead (%) for performing

computations with checksum matrices decrease to zero with a speed of O( 1
m )
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Overhead for Recovery

The failure recovery contains two steps: (1) recover the programming environment; (2)

recover the application data.

The overhead for recovering the programming environment depends on the specific

programming environment. For FT-MPI [20], on which we perform all our experiments,

it introduces a negligible overhead (refer Section 4.5.3).

The procedure to recover the three matrices A,B, and C is similar to calculating

the checksum matrices. For matrix C, it can be recovered from either the row checksum

or the column checksum relationship. Therefore, the overhead to recover data is

Trecover data = 24m2β

(
1 + O

((
log2 P

m2

)1/3
))

+O(α log2 P ) + O(m2γ) (4.11)

In practice, unless the size of the local matrices m is very small or the size of the

process grid P is extremely large, the total time for recover all three checksum matrices

is almost independent of the size of the process grid P .

The overhead (%) Rrecover data for constructing checksum matrices for matrix matrix

multiplication is

Rrecover data =
Trecover data

Tmatrix mult

= O(
1

Pm
) (4.12)
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4.4 Practical Numerical Issues

The algorithm-based checkpoint-free fault tolerance presented in Section 4.2 involves

solving a system of linear equations to recover multiple simultaneous process failures.

Therefore, in the practice of the algorithm-based checkpoint-free fault tolerance, the

numerical issues involved in recovering multiple simultaneous process failures have to

be addressed.

In Section 4.2.3, it has been derived that, to be able to recover from any no more

than m failures, the encoding matrix A has to satisfy: any square sub-matrix (including

minor) of A is non-singular. This requirement for the encoding matrix coincides with

the properties for the generator matrices of real number Reed-Solomon style erasure

correcting codes. In fact, our weighted checksum encoding in Section 4.2.3 can be

viewed as a version of the Reed-Solomon erasure coding scheme [49] in the real number

field. Therefore any generator matrix from real number Reed-Solomon style erasure

codes can actually be used as the encoding matrix of algorithm-based checkpoint-free

fault tolerance

In the existing real number or complex-number Reed-Solomon style erasure codes

in the literature, the generator matrices mainly include the following: Vandermonde

matrix (Vander) [32], Vandermonde-like matrix for the Chebyshev polynomials (Cheb-

vand) [7], Cauchy matrix (Cauchy), Discrete Cosine Transform matrix (DCT), and

Discrete Fourier Transform matrix (DFT) [23]. Theoretically, these generator matri-

ces can all be used as the encoding matrix of the algorithm-based checkpoint-free fault
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tolerance scheme.

However, in computer floating point arithmetic where no computation is exact due

to round-off errors, it is well known [25] that, in solving a linear system of equations, a

condition number of 10k for the coefficient matrix leads to a loss of accuracy of about k

decimal digits in the solution. Therefore, in order to get a reasonably accurate recovery,

the encoding matrix A actually has to satisfy the condition that any square sub-matrix

(including minor) of A is well-conditioned.

The generator matrices from above real number or complex-number Reed-Solomon

style erasure codes all contain ill-conditioned sub-matrices. Therefore, in these codes,

when certain error patterns occur, an ill-conditioned linear system has to be solved to

reconstruct an approximation of the original information, which can cause the loss of

precision of possibly all digits in the recovered numbers.

We will address these practical numerical issues by introducing a class of new codes

based on Gaussian random matrices in Chapter 5 and 6.

4.5 Experimental Evaluation

In this section, we experimentally evaluate the performance overhead of applying the

algorithm-based checkpoint-free fault tolerance technique to the ScaLAPACK matrix-

matrix multiplication kernel. We performed four sets of experiments to answer the

following four questions:

1. What is the performance overhead of constructing checksum matrices?
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Table 4.1: Experiment configurations

Size of original matrix 12,800 19,200 25,600

Size of full checksum matrix 19,200 25,600 32,000

Process grid without FT 2 by 2 3 by 3 4 by 4

Process grid with FT 3 by 3 4 by 4 5 by 5

2. What is the performance overhead of performing computations with checksum

matrices?

3. What is the performance overhead of recovering FT-MPI programming environ-

ments?

4. What is the performance overhead of recovering checksum matrices ?

For each set of experiments, the size of the problems and the number of computation

processes used are listed in Table 4.1.

All experiments were performed on a cluster of 32 Pentium IV Xeon 2.4 GHz dual-

processor nodes. Each node of the cluster has 2 GB of memory and runs the Linux

operating system. The nodes are connected with a Gigabit Ethernet. The timer we

used in all measurements was MPI Wtime.

The programming environment we used was FT-MPI [20]. FT-MPI is a fault tol-

erant version of MPI that is able to provide basic system services to support fault

survivable applications. FT-MPI implements the complete MPI-1.2 specification, some

parts of the MPI-2 document, and extends some of the semantics of MPI for allowing the

application the possibility to survive process failures. FT-MPI can survive the failure
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of n-1 processes in a n-process job, and, if required, can re-spawn the failed processes.

However, the application is still responsible for recovering the data structures and the

data of the failed processes.

Although FT-MPI provides basic system services to support fault survivable appli-

cations, prevailing benchmarks show that the performance of FT-MPI is comparable [21]

to other current state-of-the-art MPI implementations.

4.5.1 Overhead for Constructing Checksum Matrices

The first set of experiments is designed to evaluate the performance overhead of con-

structing checksum matrices. We keep the amount of data in each process fixed (that

is the size of local matrices m fixed), and increase the size of the global test matrices

(hence the size of process grid).

Table 4.2 reports the time for performing computations on original matrices and the

time for constructing the three checksum matrices Ac, Br, and Cf .

From Table 4.2, we can see that, as the size of the global matrices increases, the

time for constructing checksum matrices increases only slightly. This is because, in the

formula (4.7), when the size of process grid P is small, 32m2β is the dominate factor in

Table 4.2: Time and overhead (%) for constructing checksum matrices

Size of original matrix 12,800 19,200 25,600

Exec. time for original matrix 442.9 695.0 989.8

Time for calculating encoding 38.0 40.8 43.2

Overhead (%) for encoding 8.6% 5.9% 4.4%
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the time to constructing checksum matrices. Table 4.2 also indicates that the overhead

(%) for constructing checksum matrices decreases as size of matrices increases, which

is consistent with our theoretical formula (4.8) about the overhead for constructing

checksum matrices.

4.5.2 Overhead for Performing Computations on Encoded Matrices

The algorithm-based checkpoint-free fault tolerance technique involves performing com-

putations with checksum matrices, which introduces some overhead into the fault toler-

ance scheme. The purpose of this experiment is to evaluate the performance overhead

of performing computations with checksum matrices.

Table 4.3 reports the execution time for performing computations on original ma-

trices and the execution time for performing computations on checksum matrices for

different size of matrices.

Table 4.3 indicates that the amount time increased for performing computations on

checksum matrices increases slightly as the size of the matrices increases. The reason for

this increase is that, when performing computations with checksum matrices, column

Table 4.3: Time and overhead (%) for performing computations on encoded matrices

Size of original matrix 12,800 19,200 25,600

Size of full checksum matrix 19,200 25,600 32,000

Exec. time for original matrix 442.9 695.0 989.8

Exec. time for encoded matrix 462.6 716.4 1013.3

Increased time 19.7 21.4 23.5

Overhead (%) 4.4% 3.1% 2.4%
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Table 4.4: Time and overhead (%) for recovering FT-MPI environment

Size of original matrix 12,800 19,200 25,600

Exec. time for original matrix 442.9 695.0 989.8

Time for recovery FT-MPI 0.6 1.1 1.6

Overhead (%) 0.14% 0.16% 0.16%

blocks of Ac (and row blocks of Br) have to be broadcast to one more process. The

dominant time for parallel matrix matrix multiplication is the time for computation

which is the same for both fault tolerant algorithm and non-fault tolerant algorithm.

Therefore, the amount of time for fault tolerant algorithm increases only slightly as the

size of matrices increases.

4.5.3 Overhead for Recovering FT-MPI Environment

The overhead for recovering programming environments depends on the specific pro-

gramming environments. In this section, we evaluate the performance overhead of

recovering the FT-MPI environment.

Table 4.4 reports the time for recovering the FT-MPI communication environment

following a single process failure. Table 4.4 indicates that the overhead for recovering

FT-MPI is less than 0.2% which is negligible in practice.

4.5.4 Overhead for Recovering Application Data

The purpose of this set of experiments is to evaluate the performance overhead of

recovering application data following a single process failure.
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Table 4.5: Time and overhead (%) for recovering application data

Size of original matrix 12,800 19,200 25,600

Exec. time for original matrix 442.9 695.0 989.8

Time for recovery data 28.5 30.6 32.4

Overhead (%) 6.4% 4.4% 3.3%

Table 4.5 reports the time for recovering the three checksum matrices Ac, Br, and

Cf in the case of single process failure. Table 4.5 indicates that ,as the size of the

matrices increases, the time for recovering checksum matrices increases slightly and the

overhead for recovering checksum matrices decreases, again confirming the theoretical

results in Section 4.3.5.

4.6 Discussion

This chapter presented an algorithm-based checkpoint-free fault tolerance approach in

which, instead of taking checkpoints periodically, a coded global consistent state of the

critical application data is maintained in memory by modifying applications to operate

on encoded data. Although the algorithm-based checkpoint-free fault tolerance in this

chapter shares the same basic idea of modifying applications to operate on encoded data

with the traditional the algorithm-based fault tolerance [35], they assume very different

a failure model.

Compared with the typical checkpoint/restart approaches, the algorithm-based checkpoint-

free fault tolerance in this chapter can only tolerate partial process failures. It needs
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support from the programming environment to detect and locate failures. It requires

the programming environment to be robust enough to survive node failures without suf-

fering complete system failure. Both the overhead of and the additional effort to main-

tain a coded global consistent state of the critical application data in algorithm-based

checkpoint-free fault tolerance is usually highly dependent on the specific characteristic

of the application. Therefore, it is possible that the algorithm-based checkpoint-free

fault tolerance approach introduces higher overhead than checkpoint approaches.

Unlike in typical checkpoint/restart approaches which involve periodical checkpoint

and rollback-recovery, there is no checkpoint or rollback-recovery involved in this ap-

proach. Furthermore, in the algorithm-based checkpoint-free fault tolerance in this

chapter, whenever process failures occur, it is only necessary to recover the lost data

on the failed processes. Therefore, for many applications, it is also possible for this ap-

proach to achieve a much lower fault tolerance overhead than typical checkpoint/restart

approaches. As shown in Section 4.3.5 and 4.5, for matrix matrix multiplication, which

is one of the most fundamental operations for computational science and engineering,

as the size N of the matrix increases, the fault tolerance overhead decreases with the

speed of 1
N .

Although the algorithm-based checkpoint-free fault tolerance approach presented in

this chapter is non-transparent and algorithm-dependent, it is meaningful in that

1. It can often achieve a surprisingly low overhead in parallel matrix computations

where it usually works.
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2. It is often possible to build it into frequently used numerical libraries such as

ScaLAPACK to relieve the involvement of the application programmer.

4.7 Conclusions and Future Work

In this chapter, we presented an algorithm-based checkpoint-free fault tolerance ap-

proach in which, instead of taking checkpoint periodically, a coded global consistent

state of the critical application data is maintained in memory by modifying applica-

tions to operate on encoded data. Although the applicability of this approach is not so

general as the typical checkpoint/rollback-recovery approach, in parallel matrix com-

putations where it usually works, because no periodical checkpoint or rollback-recovery

is involved in this approach, process failures can often be tolerated with a surprisingly

low overhead.

We showed the practicality of this technique by applying it to the ScaLAPACK

matrix-matrix multiplication kernel which is one of the most important kernels for

ScaLAPACK library to achieve high performance and scalability. Experimental results

demonstrated that the proposed checkpoint-free approach is able to survive process

failures with a very low performance overhead.

For the future, we plan to incorporate this fault tolerance technique into more

ScaLAPACK library routines and more high performance computing applications. We

would also like to evaluate this technique on systems with larger numbers of processors.
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Chapter 5

Numerically Stable Real Number

Codes Based on Random

Matrices

Error correction codes are often defined over finite fields. However, in many applications,

error correction codes defined over finite fields do not work. Instead, codes defined over

real-number or complex-number fields have to be used to detect and correct errors. For

example, in algorithm-based fault tolerance [7] [35] [41] [45] and fault tolerant dynamic

systems [32], to provide fault tolerance in computing, data are first encoded using error

correction codes and then algorithms are re-designed to operate (using floating point

arithmetic) on the encoded data. Due to the impact of the floating-point arithmetic

on the binary representation of these encoded data, codes defined over finite fields do

95



not work. But codes defined over real-number and complex-number fields can be used

in these applications to correct errors in computing by taking advantage of certain

relationships, which are maintained only when real-number (or complex-number) codes

are used.

However, most real-number and complex-number codes in literature are quite sus-

pect in their numerical stability. Error correction procedures in most error correction

codes involve solving linear system of equations. In computer floating point arith-

metic where no computation is exact due to round-off errors, it is well known [25] that,

in solving a linear system of equations, a condition number of 10k for the coefficient

matrix leads to a loss of accuracy of about k decimal digits in the solution. In the

generator matrices of most existing real-number and complex-number codes, there exist

ill-conditioned sub-matrices. Therefore, in these codes, when certain error patterns oc-

cur, an ill-conditioned linear system of equations has to be solved in the error correction

procedure, which can cause the loss of precision of possibly all digits in the recovered

numbers.

The numerical issue of the real-number and complex-number codes has been recog-

nized and studied in the literature. In [7], Vandermonde-like matrix for the Chebyshev

polynomials was introduced to relieve the numerical instability problem in error correc-

tion for algorithm-based fault tolerance. In [22] [23] [33] [43], the numerical properties

of the Discrete Fourier Transform codes were analyzed and methods to improve the

numerical properties were also proposed. To some extent, these efforts have alleviated
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the numerical problem of the real-number and complex-number codes. However, how

to construct real-number and complex-number codes without numerical problem is still

an open problem.

In this chapter, we introduce a class of real-number and complex-number codes that

are numerically much more stable than existing codes in the literature. Our codes are

based on random generator matrices over real-number and complex-number fields. The

rest of this chapter is organized as follow: Section 5.1 specifies the problem we focus

on. In Section 5.2, we first study the properties of random matrices and then introduce

our codes. Section 5.3 compares our codes with most existing codes in both burst error

correction and random error correction. Section 5.4 concludes the chapter and discusses

the future work.

5.1 Problem Specification

Let x = (x1, x2, ..., xN )T ∈ CN denote the original information, and G denote a M by N

real or complex matrix. Let y = (y1, y2, ..., yM )T ∈ CM, where M = N + K, denote the

encoded information of x with redundancy. The original information x and the encoded

information y are related through

y = Gx. (5.1)

Our problem is: how to choose the matrix G such that, after any no more than

K erasures in the elements of the encoded information y, a good approximation of the

original information x can still be reconstructed from y.
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When there are at most K elements of y lost, there are at least N elements of y

available. Let J denote the set of indexes of any N available elements of y. Let yJ

denote a sub-vector of y consisting of the N available elements of y whose indexes are

in J . Let GJ denote a sub-matrix of G consisting of the N rows whose indexes are in

J . Then, from (5.1), we can get the following relationship between x and yJ :

yJ = GJx. (5.2)

When the matrix GJ is singular, there are an infinite number of solutions to (5.2).

But, if the matrix GJ is non-singular, then (5.2) has one and only one solution, which

is the original information vector x.

For real-number and complex-number arithmetic on modern computers where no

computation is exact due to round-off errors, it is well known [25] that, in solving a

linear system of equations, a condition number of 10k for the coefficient matrix leads

to a loss of accuracy of about k decimal digits in the solution. Therefore, in order

to reconstruct a good approximation of the original information x, GJ has to be well-

conditioned.

For any N by N sub-matrix GJ of G, there is an erasure pattern of y that requires to

solve a linear system with GJ as the coefficient matrix to reconstruct an approximation

of the original x. Therefore, to guarantee that a reasonably good approximation of x

can be reconstructed after any no more than K erasures in y , the generator matrix G

must satisfy: any N by N sub-matrix of G is well-conditioned.
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5.2 Real Number Codes Based on Random Matrices

In this section, we will introduce a class of new codes that are able to reconstruct a

very good approximation of the original information with high probability regardless of

the erasure patterns in the encoded information. Our new codes are based on random

matrices over real or complex number fields.

5.2.1 Condition Number of Random Matrices from Standard Normal

Distribution

In this sub-section, we mainly focus on the probability that the condition number of a

random matrix is large and the expectation of the logarithm of the condition number.

Let G(m,n) be an m × n real random matrix whose elements are independent and

identically distributed standard normal random variables and let G̃(m,n) be its complex

counterpart.

Theorem 3 Let κ denote the condition number of G(n, n) , n > 2, and t ≥ 1, then

0.13n

t
< P (κ > t) <

5.60n

t
. (5.3)

Moreover,

E(log(κ)) = log(n) + c + εn, (5.4)

where c ≈ 1.537, limn→∞εn = 0 ,
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Proof. The inequality (5.3) is from Theorem 1 of [3]. The formula (5.4) can be

obtained from Theorem 7.1 of [15].

Theorem 4 Let κ̃ denote the condition number of G̃(n, n), and t ≥ √
n, then

1 −
(

1 − 1

t2

)n2−1

≤ P (κ̃ > t) ≤ 1 −
(
1 − n

t2

)n2−1
. (5.5)

Moreover,

E(log(κ̃)) = log(n) + c + εn, (5.6)

where c ≈ 0.982, limn→∞εn = 0 ,

Proof. Let κ̃D denote the scaled condition number (see [16] for definition) of G̃(n, n),

then

P (
κ̃D√

n
> t) ≤ P (κ̃ > t) ≤ P (κ̃D > t). (5.7)

From Corollary 3.2 in [16], we have

P (κ̃D > t) = 1 −
(
1 − n

t2

)n2−1
. (5.8)

Therefore,

P (
κ̃D√

n
> t) = P (κ̃D >

√
nt) = 1 −

(
1 − 1

t2

)n2−1

. (5.9)
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Figure 5.1: The probability density functions of the condition numbers of G(100, 100)
and G̃(100, 100).

The inequality (5.5) can be obtained from (5.7), (5.8) and (5.9). The formula (5.6)

can be obtained from Theorem 7.2 of [15].

In error correction practice, all random numbers used are pseudo random numbers,

which have to be generated through a random number generator. Figure 5.1 shows

the empirical probability density functions of the condition numbers of the pseudo ran-

dom matrix G(100, 100) and G̃(100, 100), where G(100, 100) is generated by randn(100,

100) and G̃(100, 100) is generated by randn(100, 100) +
√
−1 * randn(100, 100) in

MATLAB. From these density functions, we know that most pseudo random matrices

also have very small condition numbers. And, for the same matrix size, the tail of the

condition number for a complex random matrix is thinner than that of a real one.

We have also tested some other random matrices. Experiments show a lot of other

random matrices, for example, uniformly distributed pseudo random matrices, also
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have small condition numbers with high probability. For random matrices of non-

normal distribution, we will report our experiments and some analytical proofs of their

condition number properties in a future work.

5.2.2 Real Number Codes Based on Random Matrices

In this sub-section, we introduce a class of new codes that are able to reconstruct a very

good approximation of the original information with very high probability regardless of

the erasure patterns in the encoded information.

In the real number case, we propose to use G(M,N) or uniformly distributed M by

N matrices with mean 0 ( denote as U(M,N) ) as our generator matrices G. In the

complex number case, we propose to use G̃(M,N) or uniformly distributed M by N

complex matrices with mean 0 ( denote as Ũ(M,N) ) as our generator matrices G.

Take the real-number codes based on random matrix G(M,N) as an example. Since

each element of the generator matrix G(M,N) is a random number from the standard

normal distribution, each element of any N × N sub-matrix (GJ)N×N of G(M,N)

is also a random number from the standard normal distribution. According to the

condition number results in Subsection 5.2.1 , the probability that the condition number

of (GJ )N×N is large is very small. Hence, any N by N sub-matrix (GJ)N×N of G is

well-conditioned with very high probability. Therefore, no matter what erasure patterns

occur, the error correction procedure is numerically stable with high probability.

We admit that our real-number and complex-number codes are not perfect. Due to

the probability approach we used, the drawback of our codes is that, no matter how
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small the probability is, there is a probability that a erasure pattern may not be able

to be recovered accurately.

However, compared with the existing codes in literature, the probability that our

codes fail to recover a good approximation of the original information is negligible (see

Section 5.3 for detail). Moreover, in the error correction practice, we may first generate

a set of pseudo random generator matrices and then test each generator matrix until

we find a satisfied one.

5.3 Comparison with Existing Codes

In the existing codes in the literature, the generator matrices mainly include: Vander-

monde matrix (Vander) [32], Vandermonde-like matrix for the Chebyshev polynomials

(Chebvand) [7], Cauchy matrix (Cauchy), Discrete Cosine Transform matrix (DCT),

Discrete Fourier Transform matrix (DFT) [23]. These generator matrices all contain

ill-conditioned sub-matrices. Therefore, in these codes, when certain error patterns oc-

cur, an ill-conditioned linear system has to be solved to reconstruct an approximation

of the original information, which can cause the loss of precision of possibly all digits

in the recovered numbers. However, in our codes, the generator matrices are random

matrices. Any sub-matrix of our generator matrices is still a random matrix, which is

well-conditioned with very high probability. Therefore, no mater what erasure patterns

occur, the error correction procedure is numerically stable with high probability. In this

section, we compare our codes with existing codes in both burst erasure correction and
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random erasure correction.

5.3.1 Burst Erasure Correction

We compare our codes with existing codes in burst error correction using the following

example.

Example: Suppose x = (1, 1, 1, ..., 1)T and the length of x is N = 100. G is a

120 by 100 generator matrix. y = Gx is a vector of length 120. Suppose yi, where

i = 101, 102, ...120, are lost. We will use yj, where j = 1, 2, ...100, to reconstruct x

through solving (5.2) .

Table 5.1 shows how the generator matrix of each code is generated. Table 5.2

reports the accuracy of the recovery for each code. All calculations are done using

MATLAB. The machine precision is 16 digits. Table 5.2 shows our codes are able to

reconstruct the original information x with much higher accuracy than the existing

Table 5.1: The definition of different codes

Name The generator matrix G = (gmn)120×100

Vander
(
(m + 1)100−n−1

)
120×100

Chebvand (Tm−1(n))120×100, where Tm−1 is the chebyshev polynomial of degree n − 1

Cauchy
(

1
m+n

)
120×100

DCT

(√
i

120 cos π(2n+1)m
240

)

120×100

, where if m = 0, i = 1, and if m 6= 0, i = 2

DFT
(
e−j 2π

120
mn
)

120×100
, where j =

√
−1

RandN randn(120,100) in MATLAB

RandN-C randn(120,100) + j * randn(120,100) in MATLAB, where j =
√
−1

RandU rand(120,100) - 0.5 in MATLAB

RandU-C rand(120,100) - 0.5 + j * (rand(120,100) - 0.5) in MATLAB,
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Table 5.2: Burst erasure recovery accuracy of different codes

Name κ(GJ ) ‖x− �x‖2

‖x‖2
Accurate digits Number of digits lost

Vander 3.7e+218 2.4e+153 0 16

Chebvand Inf 1.7e+156 0 16

Cauchy 5.6e+17 1.4e+03 0 16

DCT 1.5e+17 2.5e+02 0 16

DFT 2.0e+16 1.6e+00 0 16

RandN 7.5e+2 3.8e-14 14 2

RandN-C 4.5e+2 6.8e-14 14 2

RandU 8.6e+2 3.7e-14 14 2

RandU-C 5.7e+2 2.6e-14 14 2

codes. The reconstructed x from all existing codes lost all of their sixteen effective

digits. However, the reconstructed x from the codes we proposed in the last section lost

only about two effective digits.

5.3.2 Random Erasure Correction

For any N by N sub-matrix GJ of G, there is an erasure pattern of y which requires to

solve a linear system with GJ as the coefficient matrix to reconstruct an approximation

of the original x. A random erasure actually results in a randomly picked N by N

sub-matrix of G. In Table 5.3, we compare the proportion of 100 by 100 sub-matrices

whose condition number is larger than 10i, where i = 4, 6, 8, and 10, for different kinds

of generator matrices of size 150 by 100. All generator matrices are defined in Table

5.1. All results in Table 5.3 are calculated using MATLAB based on 1,000,000 randomly

(uniformly) picked sub-matrices.

From Table 5.3, we can see, of the 1,000,000 randomly picked sub-matrices from
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Table 5.3: Percentage of 100 by 100 sub-matrices (of a 150 by 100 generator matrix)
whose condition number is larger than 10i, where i = 4, 6, 8, and 10.

Name κ ≥ 104 κ ≥ 106 κ ≥ 108 κ ≥ 1010

Vander 100.000% 100.000% 100.000% 100.000%

Chebvand 100.000% 100.000% 100.000% 100.000%

Cauchy 100.000% 100.000% 100.000% 100.000%

DCT 96.187% 75.837% 48.943% 28.027%

DFT 92.853% 56.913% 21.644% 5.414%

RandN 1.994% 0.023% 0.000% 0.000%

RandN-C 0.033% 0.000% 0.000% 0.000%

RandU 1.990% 0.018% 0.000% 0.000%

RandU-C 0.036% 0.000% 0.000% 0.000%

any of our random generator matrices, there are 0.000% sub-matrices whose condition

number is larger than 108. However, for all existing codes in literature that we have

tested, there are at least 21.644% sub-matrices whose condition number is larger than

108. Therefore, our codes are much more stable than the existing codes in literature.

5.4 Conclusions and Future Work

In this chapter, we have introduced a class of real-number and complex-number codes

based on random generator matrices over real-number and complex-number fields. We

have compared our codes with existing codes in both burst erasure correction and ran-

dom erasure correction. Experiment results demonstrate our codes are numerically

much more stable than existing codes in the literature.

For the future, we will compare real-number codes based on different random matri-
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ces with different probability distributions. We would also like to investigate what are

the numerically optimal real number codes.
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Chapter 6

Condition Numbers of Gaussian

Random Matrices

In the study of real-number and complex-number error correction codes based on ran-

dom matrices in Chapter 5 and their applications in fault tolerant high performance

computing in Chapter 3 and 4, in order to estimate the numerical stability and relia-

bility of our coding schemes, we need to estimate the probabilities that the condition

numbers of small random rectangular matrices are large. For example, what is the

probability that the condition number of a 10 × 5 random matrix is larger than 102?

In this chapter, we investigate the tails of the condition number distributions of

random rectangular matrices whose elements are independent and identically distributed

standard normal real or complex random variables. We establish upper and lower

bounds for the tails of the condition number distributions of these matrices. Upper
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bounds for the expected logarithms of the condition numbers of these matrices are also

given.

Based on our results, for random rectangular matrices whose elements are indepen-

dent and identically distributed standard normal real or complex random variables, we

are able to estimate the probabilities that their condition numbers are large. For ex-

ample, based on our results, we are able to tell, for a 10 × 5 real random matrix whose

elements are independent and identically distributed standard normal random variables,

the probability that the condition number is larger than 102 is less than 6 × 10−7.

Our main results for the 2-norm condition number κ of an m × n real random

matrix whose elements are independent and identically distributed standard normal

random variables are:

1√
2π

( c

x

)|n−m|+1
< P

(
κ

n/(|n − m| + 1)
> x

)
<

1√
2π

(
C

x

)|n−m|+1

,

and

E(log κ) < log
n

|n − m| + 1
+ 2.258,

where 0.245 ≤ c ≤ 2.000 and 5.013 ≤ C ≤ 6.414 are universal positive constants

independent of m, n and x, and m ≥ 2, n ≥ 2 and x ≥ |n − m| + 1.

For an m×n complex random matrix whose elements are independent and identically

distributed standard normal random variables, our main results for the 2-norm condition
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number κ are:

1

2π

( c

x

)2(|n−m|+1)
< P

(
κ

n/(|n − m| + 1)
> x

)
<

1

2π

(
C

x

)2(|n−m|+1)

,

and

E(log κ) < log
n

|n − m| + 1
+ 2.240,

where 0.319 ≤ c ≤ 2.000 and 5.013 ≤ C ≤ 6.298 are universal positive constants

independent of m, n and x, and m ≥ 2, n ≥ 2 and x ≥ |n − m| + 1.

After finishing the manuscript of this work, we communicated with Edelman and

learned that similar problems were also being studied independently by Edelman and

Sutton [17]. After simple formatting, the upper bounds in both work actually can be

unified into the same format

P (κ > x) ≤ C(m,n, β)

(
1

x

)β(|n−m|+1)

,

where β = 1 for real random matrices and β = 2 for complex random matrices, and

C(m,n, β) is a function of m,n, and β. However, the function C(m,n, β) in the two

works do take very different forms and imply very different meanings.

On one hand, the bounds in [17] are asymptotically tight as x → ∞ while the bounds

in this work are not. On the other hand, the bounds in this work involve only elemen-

tary functions. Hence they are much simpler than the asymptotically tight bounds

in [17] which involve high order moments of the largest eigenvalues of Wishart matrices.
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Although for the special case of large square random matrices, simple estimations for

C(m,n, β) are given in [17], for general rectangular matrices, no simple estimation is

available.

It is well-known that the joint eigenvalue density function of a Wishart matrix has

a closed form expression [37]. Therefore, P (κ > x) can actually be expressed accurately

as a high dimensional integration of this joint eigenvalue density function. One of the

key aspects to estimate P (κ > x) is to find a simple-to-use estimation of this accurate

(but not simple-to-use) high dimensional integral expression. This work is meaningful

in that it finds out such a simple-to-use estimation by giving out simple upper and lower

bounds which involve only elementary functions. We refer interested readers to [17] for

more accurate asymptotically tight bounds and other related bounds for the tails of the

condition numbers of general β-Laguerre ensembles.

Above and in what follows in this chapter, the constant C and c denote universal

positive constants independent of m, n and x; however, identical symbols may represent

different numbers in different places.

6.1 Preliminaries and Basic Facts

Let X be an m × n matrix. If σ1 ≥ σ2 ≥ ... ≥ σp, where p = min{m,n}, are the p

singular values of X, then the 2-norm condition number of X is

κ2(X) =
σ1

σp
.

111



For any m×n matrix X, XT is an n×m matrix and κ2(X) = κ2(X
T ). So, without

loss of generality, in discussing the condition numbers of random matrices, it is enough

to only consider random matrices with no more rows than columns. Therefore, from

now on, when we speak of an m × n matrix, we will assume m ≤ n in the rest of this

chapter.

Let Gm×n be an m × n real random matrix whose elements are independent and

identically distributed standard normal random variables. Let Wm,n denote the m×m

random matrix Gm×nGT
m×n. Wm,n is the well known Wishart matrix named after John

Wishart who first studied its distribution.

Similar to [15], in this chapter, we will study the condition number of Gm×n through

investigating the eigenvalues of the Wishart matrix Wm,n. The following lemma estab-

lishes a simple relationship between the condition number of Gm×n and the eigenvalues

of Wm,n.

Proposition 5 If λmax is the largest eigenvalue of Wm,n, and λmin is the smallest

eigenvalue of Wm,n, then the 2-norm condition number of Gm×n satisfies

κ2(Gm×n) =

√
λmax

λmin
.

Remarkably enough, the exact joint probability density function for the m eigenval-

ues of the Wishart matrix Wm,n can be written down in a closed form [37].

Lemma 6 If λ1 ≥ ... ≥ λm are the m eigenvalues of Wm,n, then the joint probability
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density function of λ1 ≥ ... ≥ λm is

f(x1, ..., xm) = Km,ne−
1
2

� m
i=1 xi

m∏

i=1

x
1
2
(n−m−1)

i

m−1∏

i=1

m∏

j=i+1

(xi − xj), (6.1)

where

K−1
m,n =

(
2n

π

)m/2 m∏

i=1

Γ

(
n − m + i

2

)
Γ

(
i

2

)
. (6.2)

Let N(0, 1) denote the standard normal distribution. Let Ñ(0, 1) denote the dis-

tribution of u + iv, where u and v are independent and identically distributed N(0, 1)

random variables, and i =
√
−1. Let G̃m×n be an m × n complex random matrix

whose elements are independent and identically distributed Ñ(0, 1) random variables.

Let W̃m,n denote the m × m random matrix G̃m×nG̃H
m×n. In literature, W̃m,n is called

the complex Wishart matrix.

Similar to the real case, there is also a simple relationship between the condition

number of G̃m×n and the eigenvalues of W̃m,n.

Proposition 7 If λ̃max is the largest eigenvalue of W̃m,n, and λ̃min is the smallest

eigenvalue of W̃m,n, then the 2-norm condition number of G̃m×n satisfies

κ2(G̃m×n) =

√
λ̃max

λ̃min

.

Like the real case, the exact joint probability density function for the m eigenvalues

of the complex Wishart matrix W̃m,n can also be written down in a closed form [37].
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Lemma 8 If λ̃1 ≥ ... ≥ λ̃m are the m eigenvalues of W̃m,n, then the joint probability

density function of λ̃1 ≥ ... ≥ λ̃m is

f̃(x1, ..., xm) = K̃m,ne−
1
2

� m
i=1 xi

m∏

i=1

xn−m
i

m−1∏

i=1

m∏

j=i+1

(xi − xj)
2, (6.3)

where

K̃−1
m,n = 2mn

m∏

i=1

Γ (n − m + i) Γ (i) . (6.4)

In the process of deriving our upper and lower bounds for the tails of the condition

number distributions, some bounds for Gamma and incomplete Gamma functions are

very useful.

Lemma 9 Assume a > 0, and b > 0. If t ≤ b
a , then

∫ t

0
e−axxbdx ≤ e−attb+1.

Proof. Let f(t) =
∫ t
0 e−axxbdx−e−attb+1, then f ′(t) = e−attb(1+at−(b+1)). So f(t)

decreases on [0, b
a ] and increases on [ b

a ,∞). Since f(0) = 0, and f(∞) =
∫∞
0 e−axxbdx >

0, if t ≤ b
a , then f(t) < 0. Therefore, if t ≤ b

a , then
∫ t
0 e−axxbdx ≤ e−attb+1.

Lemma 10 Assume a > 0, b > 0, and k > 1
a . If t ≥ kb

ka−1 , then

∫ ∞

t
e−axxbdx ≤ ke−attb.

Proof. Let f(t) =
∫∞
t e−axxbdx−ke−attb, then f ′(t) = e−attb(−1+ka− kb

t ). So f(t)
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decreases on [0, kb
ka−1 ] and increases on [ kb

ka−1 ,∞). Since f(0) =
∫∞
0 e−axxbdx > 0, and

f(∞) = 0. So, if t ≥ kb
ka−1 , then f(t) < 0. Therefore, if t ≤ kb

ka−1 , then
∫∞
t e−axxbdx ≤

ke−attb.

Lemma 11 If Γ(x) =
∫∞
0 e−ttx−1dt, where x > 0, then

√
2πxx+ 1

2 e−x < Γ(x + 1) <
√

2πxx+ 1
2 e−x+ 1

12x , (6.5)

and

Γ(x +
1

2
) < Γ(x)

√
x. (6.6)

Proof. (6.5) follows straightforwardly from 6.1.38 in [42], and (6.6) can be obtained

from the answer to Problem 9.60 in [30].

6.2 Bounds for Eigenvalue Densities of Wishart Matrices

In this section, we will prove some bounds for the probability density functions of the

eigenvalues of Wishart matrices. These bounds are very useful in the derivation of the

bounds for the tails of the condition number distributions.

Let λmax denote the largest eigenvalue of Wm,n, and λmin denote the smallest eigen-

value of Wm,n. In the following lemma, we prove an upper bound for the joint probability

density function of λmax and λmin.

Lemma 12 Let fλmax,λmin
(x, y) denote the joint probability density function of λmax
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and λmin. Then fλmax,λmin
(x, y) satisfies:

fλmax,λmin
(x, y) ≤ Cm,ne−

1
2
(x+y)x

1
2
(n+m−3)y

1
2
(n−m−1), (6.7)

where

Cm,n =
1

4Γ (m − 1) Γ (n − m + 1)
. (6.8)

Proof. Let Rx,y = {(x2, x3, ..., xm−1) : x ≥ x2 ≥ ... ≥ xm−1 ≥ y} ⊆ Rm−2. From the

joint probability density function of the m eigenvalues of Wm,n in Lemma 6, we have

fλmax,λmin
(x, y) =

∫

Rx,y

f(x, x2, ..., xm−1, y)dx2dx3...dxm−1

= Km,ne−
1
2
(x+y)x

1
2
(n−m−1)y

1
2
(n−m−1)

∫

Rx,y

e−
1
2

� m−1
i=2 xi

m−1∏

i=2

x
1
2
(n−m−1)

i

(6.9)

(x − y)
m−1∏

i=2

(x − xi)(xi − y)
m−2∏

i=2

m−1∏

j=i+1

(xi − xj)
m−1∏

i=2

dxi.

Let Rm−2 = {(x2, x3, ..., xm−1) : x2 ≥ ... ≥ xm−1 ≥ 0}, then Rm−2 ⊆ Rx,y. Note

that, in (6.9), x ≥ xi ≥ y for i = 2, 3, ...,m − 1. Replacing x − y and x − xi by x, and
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xi − y by xi for i = 2, 3, ...,m − 1, and Rx,y by Rm−2, then we get

fλmax,λmin
(x, y) ≤ Km,ne−

1
2
(x+y)x

1
2
(n+m−3)y

1
2
(n−m−1)

∫

Rm−2

e−
1
2

� m−1
i=2 xi

m−1∏

i=2

x
1
2
(n−m+1)

i

m−2∏

i=2

m−1∏

j=i+1

(xi − xj)

m−1∏

i=2

dxi. (6.10)

Note that f(x1, x2, ..., xm) in (6.1) is a probability density function, therefore, for

any m ≤ n, we have

∫

Rm

e−
1
2

� m
i=1 xi

m∏

i=1

x
1
2
(n−m−1)

i

m−1∏

i=1

m∏

j=i+1

(xi − xj)
m∏

i=1

dxi = K−1
m,n,

where Rm = {x1 ≥ x2 ≥ ... ≥ xm ≥ 0} ⊆ Rm. Therefore, we have

∫

Rm−2

e−
1
2

� m−1
i=2 xi

m−1∏

i=2

x
1
2
(n−m+1)

i

m−2∏

i=2

m−1∏

j=i+1

(xi − xj)
m−1∏

i=2

dxi = K−1
m−2,n. (6.11)

Substitute (6.11) into (6.10), we obtain

fλmax,λmin
(x, y) ≤ Km,n

Km−2,n
e−

1
2
(x+y)x

1
2
(n+m−3)y

1
2
(n−m−1). (6.12)
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From (6.2), we have

Km,n

Km−2,n
=

π

2n

1

Γ
(

m−1
2

)
Γ
(

m
2

)
Γ
(

n−m+1
2

)
Γ
(

n−m+2
2

)

(6.13)

=
1

4Γ (m − 1) Γ (n − m + 1)
.

Substituting (6.13) into (6.12), we get (6.7) and (6.8) .

Let λ̃max denote the largest eigenvalue of W̃m,n, and λ̃min denote the smallest eigen-

value of W̃m,n. Similar to the real case, in the following lemma, we give an upper bound

for the joint probability density function of λ̃max and λ̃min. The upper bound in com-

plex case can be proved using the same techniques used in the real case. Therefore, we

omit the proof and only give the result here.

Lemma 13 Let f̃ �
λmax,

�
λmin

(x, y) denote the joint probability density function of λ̃max

and λ̃min Then f̃ �
λmax,

�
λmin

(x, y) satisfies:

f̃ �
λmax,

�
λmin

(x, y) ≤ C̃m,ne−
1
2
(x+y)xn+m−2yn−m, (6.14)

where

C̃m,n =
1

22nΓ(m − 1)Γ(m)Γ(n − m + 1)Γ(n − m + 2)
. (6.15)

Bounds for the probability density functions of the smallest eigenvalues are also very

useful in the derivation of the bounds for the tails of the condition number distributions.
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In the following lemma, we prove upper and lower bounds for the probability density

function of the smallest eigenvalue of a real Wishart matrix.

Lemma 14 Let fλmin
(x) denote the probability density function of the smallest eigen-

value of Wm,n. Then fλmin
(x) satisfies:

Lm,ne−
m
2

xx
1
2
(n−m−1) ≤ fλmin

(x) ≤ Lm,ne−
1
2
xx

1
2
(n−m−1), (6.16)

where

Lm,n =
2

n−m−1
2 Γ

(
n+1

2

)

Γ
(

m
2

)
Γ (n − m + 1)

. (6.17)

Proof. Let Rx = {(x1, x2, ..., xm−1) : x1 ≥ ... ≥ xm−1 ≥ x} ⊆ Rm−1. From the joint

probability density function of the eigenvalues of Wm,n in Lemma 6, we have

fλmin
(x) =

∫

Rx

f(x1, x2, ..., xm−1, x)dx1dx2dxm−1

= Km,ne−
1
2
xx

1
2
(n−m−1)

∫

Rx

e−
1
2

� m−1
i=1 xi

m−1∏

i=1

x
1
2
(n−m−1)

i

m−1∏

i=1

(xi − x)

m−2∏

i=1

m−1∏

j=i+1

(xi − xj)

m−1∏

i=1

dxi.

For the lower bound part, taking the transformation yi = xi − x, where i =
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1, 2, ...,m − 1, we have

fλmin
(x) = Km,ne−

m
2

xx
1
2
(n−m−1)

∫

Ry

e−
1
2

� m−1
i=1 yi

m−1∏

i=1

(yi + x)
1
2
(n−m−1)

m−1∏

i=1

yi

m−2∏

i=1

m−1∏

j=i+1

(yi − yj)

m−1∏

i=1

dyi,

where Ry = {y1 ≥ y2 ≥ ... ≥ ym−1 ≥ 0} ⊆ Rm−1.

Replacing yi + x by yi for i = 1, 2, ...,m − 1, we obtain

fλmin
(x) ≥ Km,ne−

m
2

xx
1
2
(n−m−1)

∫

Ry

e−
1
2

� m−1
i=1 yi

m−1∏

i=1

y
1
2
(n−m+1)

i

m−2∏

i=1

m−1∏

j=i+1

(yi − yj)

m−1∏

i=1

dyi.

Note that

∫

Ry

e−
1
2

� m−1
i=1 yi

m−1∏

i=1

y
1
2
(n−m+1)

i

m−2∏

i=1

m−1∏

j=i+1

(yi − yj)
m−1∏

i=1

dyi = K−1
m−1,n+1.

Therefore, we obtain

fλmin
(x) ≥ Km,n

Km−1,n+1
e−

m
2

xx
1
2
(n−m−1). (6.18)

For the upper bound part, from [14], we have

fλmin
(x) ≤ Km,n

Km−1,n+1
e−

1
2
xx

1
2
(n−m−1). (6.19)
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From (6.2), we have

Km,n

Km−1,n+1
=

√
π
(

1
2

)n−m+1
2 Γ

(
n+1

2

)

Γ
(

m
2

)
Γ
(

n−m+1
2

)
Γ
(

n−m+2
2

)

(6.20)

=
2

n−m−1
2 Γ

(
n+1

2

)

Γ
(

m
2

)
Γ (n − m + 1)

.

Substitute (6.20) into (6.19) and (6.18), we get (6.16) and (6.17) .

Similar to the real case, in the following lemma, we give upper and lower bounds for

the probability density function of the smallest eigenvalue λ̃min of a complex Wishart

matrix. These bounds can be proved using the same techniques used in the real case.

Therefore, we omit the proof and only give the result here.

Lemma 15 Let f̃ �
λmin

(x) denotes the probability density function of the smallest eigen-

value of W̃m,n, then f̃ �
λmin

(x) satisfies:

L̃m,ne−
m
2

xxn−m ≤ f̃ �
λmin

(x) ≤ L̃m,ne−
1
2
xxn−m, (6.21)

where

L̃m,n =
Γ(n + 1)

2n−m+1Γ(m)Γ(n − m + 1)Γ(n − m + 2)
. (6.22)
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6.3 The Upper Bounds for the Distribution Tails

In this section, we will derive the upper bounds for the tails of the condition number

distributions of random rectangular matrices whose elements are independent and iden-

tically distributed standard normal random variables. Our main results are Theorem

20 for real random matrices, and Theorem 21 for complex random matrices.

Lemma 16 For any A > 0, x > 0, and n ≥ m ≥ 2, the largest eigenvalue λmax and

the smallest eigenvalue λmin of Wm,n satisfy

P

(
λmax

λmin
> x2, λmin ≤ A2n

x2

)
<

1

Γ(n − m + 2)

(
An

x

)n−m+1

.

Proof. From the upper bound for the probability density function of λmin in Lemma

14, we have

P

(
λmax

λmin
> x2, λmin ≤ A2n

x2

)
< P

(
λmin ≤ A2n

x2

)

=

∫ A2n

x2

0
fλmin

(t)dt

< Lm,n

∫ A2n

x2

0
t

1
2
(n−m−1)dt

=
Γ
(

n+1
2

)

Γ
(

m
2

) (
n
2

)n−m+1
2

1

Γ(n − m + 2)

(
An

x

)n−m+1

.

Since m ≤ n, by applying (6.6) repeatedly, we can prove

Γ
(m

2

)(n

2

)n−m+1
2

> Γ

(
n + 1

2

)
.
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Therefore, we have

P

(
λmax

λmin
> x2, λmin ≤ A2n

x2

)
<

1

Γ(n − m + 2)

(
An

x

)n−m+1

.

Similar to real random matrices, for complex random matrices, we have the following

Lemma 17. Lemma 17 can be proved using the same techniques as Lemma 16, so we

will omit the proof and only give the result.

Lemma 17 For any A > 0, x > 0, and n ≥ m ≥ 2, the largest eigenvalue λ̃max and

the smallest eigenvalue λ̃min of W̃m,n satisfy

P

(
λ̃max

λ̃min

> x2, λ̃min ≤ A2n

x2

)
<

1

Γ(n − m + 2)2

(
A2n2

2x2

)n−m+1

.

The proof of the following Lemma 18 is based on the upper bound for the joint

probability density function of λmax and λmin in Lemma 12 and the upper bound of the

incomplete Gamma function in Lemma 10.

Lemma 18 For any A ≥ 2.32, x > 0, and n ≥ m ≥ 2, the largest eigenvalue λmax and

the smallest eigenvalue λmin of Wm,n satisfy

P

(
λmax

λmin
> x2, λmin >

A2n

x2

)
< 0.017

1

Γ(n − m + 2)

(
An

x

)n−m+1

.

123



Proof. From the upper bound for the joint probability density function of λmax and

λmin in Lemma 12, we have

P

(
λmax

λmin
> x2, λmin >

A2n

x2

)
=

∫ ∞

A2n

x2

∫ ∞

tx2

fλmax,λmin
(s, t)dsdt

<

∫ ∞

A2n

x2

∫ ∞

tx2

Cm,ne−
1
2
tt

1
2
(n−m−1)e−

1
2
ss

1
2
(n+m−3)dsdt.

Taking the transform u = tx2, we have

P

(
λmax

λmin
> x2, λmin >

A2n

x2

)
= Cm,n

(
1

x

)n−m+1 ∫ ∞

A2n
e−

u

2x2 u
1
2
(n−m−1)

(∫ ∞

u
e−

1
2
ss

1
2
(n+m−3)ds

)
du.

According to Lemma 10, with k = 4,if u ≥ 2(n + m − 3), then

∫ ∞

u
e−

1
2
ss

1
2
(n+m−3)ds ≤ 4e−

1
2
uu

1
2
(n+m−3).

Since A ≥ 2.32 and n ≥ m, hence, u ≥ A2n ≥ 2(n + m − 3). Therefore, we have

P

(
λmax

λmin
> x2, λmin >

A2n

x2

)
≤ 4Cm,n

(
1

x

)n−m+1 ∫ ∞

A2n
e−

u

2x2 − 1
2
uun−2du

≤ 4Cm,n

(
1

x

)n−m+1 ∫ ∞

A2n
e−

1
2
uun−2du.
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Since A ≥ 2.32, so A2n ≥ 4(n − 2). Apply Lemma 10 again, we have

P

(
λmax

λmin
> x2, λmin >

A2n

x2

)
≤ 16Cm,ne−

1
2
A2nA2n−4nn−2

(
1

x

)n−m+1

=
4e−

A2n
2 A2n−4nm−3

Γ(m − 1)Γ(n − m + 1)

(n

x

)n−m+1

≤ 4e(2 ln A−A2

2
)n

A4

nm−2

Γ(m − 1)

1

Γ(n − m + 2)

(n

x

)n−m+1
.(6.23)

Note that, for any 2 ≤ m ≤ n, it can be proved that

nm−2

Γ(m − 1)
<

en

√
4π

. (6.24)

Substitute (6.24) into (6.23), we have

P

(
λmax

λmin
> x2, λmin >

A2n

x2

)
≤ 4e(2 ln A−A2

2
+1)n

√
4πA4

1

Γ(n − m + 2)

(n

x

)n−m+1
.

Since A ≥ 2.32, therefore, we have

e(2 lnA−A2

2
+1)n < 1.

Therefore, when A ≥ 2.32, we have

P

(
λmax

λmin
> x2, λmin >

A2n

x2

)
≤ 4√

4πA4

1

Γ(n − m + 2)

(n

x

)n−m+1

≤ 0.017
1

Γ(n − m + 2)

(
An

x

)n−m+1

.
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Similar to real random matrices, for complex random matrices, we have the following

Lemma 19. Lemma 19 can be proved using the same techniques as Lemma 18, so we

will omit the proof and only give the result.

Lemma 19 For any A ≥ 3.2735, x > 0, and n ≥ m ≥ 2, the largest eigenvalue λ̃max

and the smallest eigenvalue λ̃min of W̃m,n satisfy

P

(
λ̃max

λ̃min

> x2, λ̃min >
A2n

x2

)
< 0.0016

1

Γ(n − m + 2)2

(
A2n2

2x

)n−m+1

.

We are now prepared to prove our first main result about the condition numbers

of real random matrices whose elements are independent and identically distributed

standard normal random variables.

Theorem 20 For any n ≥ m ≥ 2 and x ≥ n−m + 1, the 2-norm condition number of

Gm×n satisfies

P

(
κ2(Gm×n)

n/(n − m + 1)
> x

)
<

1√
2π

(
C

x

)n−m+1

, (6.25)

where C ≤ 6.414 is a universal positive constant independent of m, n, and x.
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Proof. For any L > 0, inspired by [3], we first break down P (κ2(Gm×n) > x) into

two parts.

P (κ2(Gm×n) > x) = P

(
λmax

λmin
> x2

)

= P

(
λmax

λmin
> x2, λmin ≤ L2n

x2

)
+ P

(
λmax

λmin
> x2, λmin >

L2n

x2

)
.

Let L = 2.32, then based on Lemma 16 and Lemma 18, we can get

P (κ2(Gm×n) > x) <
1

Γ(n − m + 2)

(
Ln

x

)n−m+1

+0.017
1

Γ(n − m + 2)

(
Ln

x

)n−m+1

<
1

Γ(n − m + 2)

(
1.017Ln

x

)n−m+1

.

Note that, from Lemma 11, we have

Γ(n − m + 2) >
√

2π(n − m + 1)(n − m + 1)n−m+1e−(n−m+1).

Therefore, we have

P (κ2(Gm×n) > x) <
1√

2π(n − m + 1)

(
1.017eL n

n−m+1

x

)n−m+1

.
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Therefore

P

(
κ2(Gm×n)

n/(n − m + 1)
> x

)
<

1√
2π(n − m + 1)

(
1.017eL

x

)n−m+1

<
1√
2π

(
6.414

x

)n−m+1

.

Let C = 6.414, then we get (6.25).

Remark:

1. The upper bound in Theorem 20 is for arbitrary n ≥ m ≥ 2 and x ≥ n−m+1.

For some special case of m and n, more precise upper bound can be obtained. For

example, for the special case of real random 2×n matrices, based on the exact probability

density function of κ2(G2×n) in [15], we can get

P (κ2(G2×n) > x) =

(
2x

x2 + 1

)n−1

<

(
2

x

)n−1

.

2. For the special case of real random m × m matrices, where m ≥ 3, it has been

proved in [3] that

P (κ2(Gm×m) > m.x) <
C ′

x
, (6.26)

where C ′ ≤ 5.60 is a universal positive constant independent of x and m.
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In Theorem 20, if we take m = n, then we have

P (κ2(Gm×m) > m.x) <
2.60

x
,

which is consistent with (6.26) except that we improved the upper bound for the constant

C ′ from 5.60 to 2.60. From the following (6.27), we know that the constant C ′ in (6.26)

actually must at least be 2.

3. For the special case of large real random m×m matrices, it has been proved in

[15] that

lim
m→∞

P

(
κ2(Gm×m)

m
< x

)
= e−

2
x
− 2

x2 .

Therefore, we have

lim
m→∞

P

(
κ2(Gm×m)

m
> x

)
= 1 − e−

2
x
− 2

x2 ∼ 2

x
(6.27)

as x → ∞. Hence, the smallest possible universal constant C in Theorem 20 must be no

smaller than 2
√

2π. Therefore, the universal constant C in Theorem 20 actually must

satisfy

C ≥ 2
√

2π ≈ 5.013. (6.28)
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Similar to real random matrices, for complex random matrices, we have the following

Theorem 21. Theorem 21 can be proved using the same techniques as Theorem 20, so

we will omit the proof and only give the result.

Theorem 21 For any n ≥ m ≥ 2 and x ≥ n−m + 1, the 2-norm condition number of

G̃m×n satisfies

P

(
κ2(G̃m×n)

n/(n − m + 1)
> x

)
<

1

2π

(
C̃

x

)2(n−m+1)

,

where C̃ ≤ 6.298 is a universal positive constant independent of x,m, and n.

6.4 The Lower Bounds for the Distribution Tails

In this section, we will prove the lower bounds for the tails of the condition number

distributions of random rectangular matrices whose elements are independent and iden-

tically distributed standard normal random variables. Our main results are Theorem

26 for real random matrices, and Theorem 27 for complex random matrices.

Lemma 22 For any B > 0, x > 0, and n ≥ m ≥ 2, the smallest eigenvalue λmin of

Wm,n satisfies

P

(
λmin ≤ B2n

x2

)
>

√
2e

5
6

3
e−

B2mn

2x2
1

Γ(n − m + 2)

(
e−

1
2 Bn

x

)n−m+1

.
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Proof. From the lower bound for the probability density function of λmin in Lemma

14, we have

P

(
λm ≤ B2n

x2

)
=

∫ B2n

x2

0
f(λm)dλm

>

∫ B2n

x2

0
Lm,ne−

m
2

λmλ
1
2
(n−m−1)

m dλm

> Lm,ne−
B2mn

2x2

∫ B2n

x2

0
λ

1
2
(n−m−1)

m dλm

= Lm,ne−
B2mn

2x2
2n

n−m+1
2

n − m + 1

(
B

x

)n−m+1

= e−
B2mn

2x2
Γ
(

n+1
2

)

Γ
(

m
2

) (
n
2

)n−m+1
2

1

Γ(n − m + 2)

(
Bn

x

)n−m+1

.

Note that

n + 1

2
Γ

(
n + 1

2

)
>

√
2π

(
n + 1

2

)n+2
2

e−
n+1

2 ,

and

m

2
Γ
(m

2

)
<

√
2π
(m

2

)m+1
2

e−
m
2

+ 1
6m .
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Therefore

Γ
(

n+1
2

)

Γ
(

m
2

) (
n
2

)n−m+1
2

> e−
n−m+1

2
− 1

6m

√
(n + 1)n

mm−1nn−m+1

= e−
n−m+1

2
− 1

6m

√
nn+1(1 + 1/n)n+1

(n + 1)mm−1nn−m+1

> e−
n−m+1

2
− 1

6m

√
ne

n + 1
.

Since 2 ≤ m ≤ n, therefore, we have

Γ
(

n+1
2

)

Γ
(

m
2

) (
n
2

)n−m+1
2

>

√
2e

5
6

3
e−

n−m+1
2 .

Therefore, we have

P

(
λm ≤ B2n

x2

)
>

√
2e

5
6

3
e−

B2mn

2x2
1

Γ(n − m + 2)

(
e−

1
2 Bn

x

)n−m+1

.

Similar to real random matrices, we have the following Lemma 23 for complex ran-

dom matrices. Lemma 23 can be proved using the same techniques as Lemma 22, so we

will omit the proof and only give the result.

Lemma 23 For any B > 0, x > 0, and 2 ≤ m ≤ n, the smallest eigenvalue λ̃min of

W̃m,n satisfies

P

(
λ̃min ≤ B2n

x2

)
> e1− 1

12m e−
B2mn

2x2
1

Γ(n − m + 2)2

(
e−1B2n2

2x2

)n−m+1

.
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The proof of the following Lemma 24 is based on the upper bound of the joint

probability density function of λmax and λmin in Lemma 12 and the upper bound of the

incomplete Gamma function in Lemma 10.

Lemma 24 For any B ≤ e−1.7, x > 0, and 2 ≤ m ≤ n, the largest eigenvalue λmax

and the smallest eigenvalue λmin of Wm,n satisfy

P

(
λmin ≤ B2n

x2
,
λmax

λmin
≤ x2

)
<

11Bm−1

4
√

4π

1

Γ(n − m + 2)

(
e−

1
2 Bn

x

)n−m+1

.

Proof. From the upper bound for the joint probability density function of λmax and

λmin in Lemma 12, we have

P

(
λmin ≤ B2n

x2
,
λmax

λmin
≤ x2

)
=

∫ B2n

x2

0

∫ tx2

0
fλmax,λmin

(s, t)dsdt

< Cm,n

∫ B2n

x2

0

∫ tx2

0
e−

1
2
tt

1
2
(n−m−1)e−

1
2
ss

1
2
(n+m−3)dsdt.

Taking the transform u = tx2, we have

P

(
λmin ≤ B2n

x2
,
λmax

λmin
≤ x2

)
= Cm,n

(
1

x

)n−m+1 ∫ B2n

0
e−

u

2x2 u
1
2
(n−m−1)

(∫ u

0
e−

1
2
ss

1
2
(n+m−3)ds

)
du.

According to Lemma 2.5, if u ≤ n + m − 3, then

∫ u

0
e−

1
2
ss

1
2
(n+m−3)ds ≤ e−

1
2
uu

1
2
(n+m−1).
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Therefore, when B ≤ e−1.7, we have

P

(
λmin ≤ B2n

x2
,
λmax

λmin
≤ x2

)
≤ Cm,n

(
1

x

)n−m+1 ∫ B2n

0
e−

u

2x2 − 1
2
uun−1du

≤ Cm,n

(
1

x

)n−m+1 ∫ B2n

0
e−

1
2
uun−1du.

Since B ≤ e−1.7, so B2n ≤ 2(n − 1). Applying Lemma 2.5 again, we have

P

(
λmin ≤ B2n

x2
,
λmax

λmin
≤ x2

)
≤ Cm,n

(
1

x

)n−m+1

e−
B2n

2 B2nnn

=
e−

B2n
2 Bn+m−1nm−1

4Γ(m − 1)Γ(n − m + 1)

(
Bn

x

)n−m+1

.

From (6.24), we have

nm−2

Γ(m − 1)
<

en

√
4π

.

Therefore, we have

P

(
λmin ≤ B2n

x2
,
λmax

λmin
≤ x2

)
≤ ene−

B2n
2 Bn+m−1n

4
√

4πΓ(n − m + 1)

(
Bn

x

)n−m+1

≤ Bm−1n(n − m + 1)e
3
2
ne−

B2n
2 Bn

4
√

4π

1

Γ(n − m + 2)

(
e−

1
2 Bn

x

)n−m+1

.
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When B ≤ e−1.7, for all n ≥ m ≥ 2, we have

n(n − m + 1)e
3
2
ne−

B2n
2 Bn < 11.

Therefore,when B ≤ e−1.7, we have

P

(
λmin ≤ Bn

x2
,
λmax

λmin
≤ x2

)
<

11Bm−1

4
√

4π

1

Γ(n − m + 2)

(
e−

1
2 Bn

x

)n−m+1

.

Similar to real random matrices, we have the following Lemma 25 for complex ran-

dom matrices. Lemma 25 can be proved using the same techniques as Lemma 24, so we

will omit the proof and only give the result.

Lemma 25 For any B2 ≤ e−1.2, x > 0, and 2 ≤ m ≤ n, the largest eigenvalue λ̃max

and the smallest eigenvalue λ̃min of W̃m,n satisfy

P

(
λ̃min ≤ Bn

x2
,
λ̃max

λ̃min

≤ x2

)
< 0.0352

1

Γ(n − m + 2)2

(
e−1B2n2

2x2

)n−m+1

.

We are now prepared to derive the lower bounds for the tails of the condition num-

ber distributions of random matrices whose elements are independent and identically

distributed standard normal random variables

Theorem 26 For any x ≥ n−m + 1 and n ≥ m ≥ 2, the 2-norm condition number of
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Gm×n satisfies

P

(
κ2(Gm×n)

n/(n − m + 1)
> x

)
>

1√
2π

( c

x

)n−m+1
, (6.29)

where c ≥ 0.245 is a universal positive constant independent of x,m, and n.

Proof. For any positive constant H, we have

P (κ2(Gm×n) > x) = P

(
λ1

λm
> x2

)

> P

(
λm ≤ H2n

x2
,

λ1

λm
> x2

)

= P

(
λm ≤ H2n

x2

)
− P

(
λm ≤ H2n

x2
,

λ1

λm
≤ x2

)
.

Let H = e−1.7, then based on Lemma 22 and Lemma 24, we have

P (κ > x) >



√

2e
5
6

3
e−

H2mn

2x2 − 11Hm−1

4
√

4π


 1

Γ(n − m + 2)

(
e−

1
2 Hn

x

)n−m+1

.

From Lemma 11, we have

Γ(n − m + 2) <
√

2π(n − m + 1)(n − m + 1)n−m+1e
−(n−m+1)+ 1

12(n−m+1) .

Note that, for 2 ≤ m ≤ n, we have

√
n − m + 1 < 1.21n−m+1, and

1

12(n − m + 1)
≤ 1

12
,
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Therefore, we have

P (κ2(Gm,n) > x) >



√

2e
5
6

3
e−

H2mn

2x2 − 11Hm−1

4
√

4π


 e−

1
12√
2π




e
1.21(n−m+1)e

− 1
2 Hn

x




n−m+1

.

Since H = e−1.7, x ≥ 1, and 2 ≤ m ≤ n, so we have



√

2e
5
6

3
e−

H2mn

2x2 − 11Hm−1

4
√

4π


 e−

1
12 > 0.99.

Therefore, we have

P (κ2(Gm,n) > x) >
0.99√

2π

(
0.248 n

n−m+1

x

)n−m+1

>
1√
2π

(
0.245 n

n−m+1

x

)n−m+1

.

Therefore

P

(
κ2(Gm,n)

n/(n − m + 1)
> x

)
>

1√
2π

(
0.245

x

)n−m+1

.

Let c = 0.245, then we get (6.29).

Remark:

1. The lower bound in Theorem 26 is for arbitrary n ≥ m ≥ 2 and x ≥ n−m + 1.

For some special case of m and n, more precise lower bound can be obtained. For

example, for the special case of real random m×m matrices, where m ≥ 3, it has been
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proved in [3] that

P (κ2(Gm×m) > m.x) >
c

x
,

where c ≥ 0.13 is a universal positive constant independent of x and m.

In Theorem 26, however, if we take m = n, then we can only get

P (κ2(Gm×m) > m.x) >
0.097

x
,

2. For the special case of real random 2×n matrices, based on the exact probability

density function of κ2(G2×n) in [15], we can get

P (κ2(G2×n) > x) =

(
2x

x2 + 1

)n−1

∼
(

2

x

)n−1

as x → ∞. Hence, the constant c in Theorem 26 is no larger than 2. Therefore, the

constant c in Theorem 26 actually satisfies

0.245 ≤ c ≤ 2. (6.30)

Similar to real random matrices, we have the following Theorem 27 for complex

random matrices. Theorem 27 can be proved using the same techniques as Theorem 26,

so we will omit the proof and only give the result.
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Theorem 27 For any x ≥ n−m + 1 and n ≥ m ≥ 2, the 2-norm condition number of

Gm×n satisfies

P

(
κ2(G̃m×n)

n/(n − m + 1)
> x

)
>

1

2π

( c

x

)2(n−m+1)
,

where c ≥ 0.319 is a universal positive constant independent of x,m, and n.

6.5 The Upper Bounds for the Expected Logarithms

For square Gaussian random matrix Gn×n, in [58], Smale asked for E(log κ2(Gn×n)).

Similarly, for rectangular Gaussian random matrix Gm×n, it is also interesting to investi-

gate E(log κ2(Gm×n)). In this section, we will derive upper bounds for E(log κ2(Gm×n))

and E(log κ̃2(Gm×n)). Our main results are Theorem 28 and Theorem 29.

Theorem 28 For any n ≥ m ≥ 2, the 2-norm condition number of Gm×n satisfies

E(log κ2(Gm×n)) < log
n

n − m + 1
+ 2.258. (6.31)

Proof. Let fκ(x) be the probability density function of κ2(Gm×n), then

E log

(
κ2(Gm×n)

6.414 n
n−m+1

)
=

∫ ∞

1
log

(
x

6.414 n
n−m+1

)
fκ(x)dx

<

∫ ∞

6.414 n
n−m+1

log

(
x

6.414 n
n−m+1

)
fκ(x)dx

=

∫ ∞

6.414 n
n−m+1

P (κ2(Gm×n) > x)
1

x
dx.
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From Theorem 20, we have

P (κ2(Gm×n) > x) <
1√
2π

(
6.414 n

n−m+1

x

)n−m+1

.

Therefore, we have

E log

(
κ2(Gm×n)

6.414 n
n−m+1

)
<

1√
2π

∫ ∞

6.414 n
n−m+1

(
6.414 n

n−m+1

x

)n−m+1
1

x
dx

=
1

(n − m + 1)
√

2π

< 0.399.

Therefore, we have

E log(κ2(Gm×n)) < log
n

n − m + 1
+ log 6.414 + 0.399

< log
n

n − m + 1
+ 2.258.

Remark:

1. For the special case of real random m×m matrices, from the results in [60], we

can get

E log(κ2(Gm×m)) ≤ log m +
3 + 3 log 2

2
≈ 2.54. (6.32)
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In Theorem 28, if we take m = n, then we have

E log(κ2(Gm×n)) < log n + 2.258.

which is a slightly improved version of (6.32).

2. The upper bound in Theorem 28 is for arbitrary n ≥ m ≥ 2. For some special

case of m and n or large m and n, more precise results exist:

For the special case of real random 2 × n matrices, it was shown in [14] that

E log(κ2(G2×n)) =
1

2

√
π

Γ
(

n−1
2

)

Γ
(

n
2

) .

For real random m × m matrices, it has been proved in [14] that

E log(κ2(Gm×m)) = log m + c + o(1)

as m → ∞, where c ≈ 1.537.

For rectangular matrix Gmn×n, if limn→∞ mn/n = y and 0 < y < 1, then it has been

proved in [14] that

E log(κ2(Gmn×n)) = log
1 +

√
y

1 −√
y

+ o(1)

as n → ∞
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Similar to real random matrices, we have the following Theorem 29 for complex

random matrices. Theorem 29 can be proved using the same techniques as Theorem 28,

so we will omit the proof and only give the result.

Theorem 29 For any n ≥ m ≥ 2, the 2-norm condition number of Gm×n satisfies

E(log κ2(G̃m×n)) < log
n

n − m + 1
+ 2.240.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions of the Research

In this dissertation, we developed several scalable fault tolerance techniques to tolerate

partial process failures in large-scale parallel and distributed computing.

We introduced several new encoding strategies into the existing diskless checkpoint-

ing techniques and reduced the overhead to tolerate k failures in p processes from

k(β + γ)m . log p to k(β + γ)m . (1 + O( 1√
m

), where 1
γ is the rate to perform sum-

mation, 1
β is the network bandwidth between processors, and m is the size of local

checkpoint per processor. The introduced checkpoint schemes are scalable in the sense

that the overhead to tolerate k failures in p processes does not increase as the number

of processes p increases. We evaluated the performance overhead of our fault tolerance

approach by using a preconditioned conjugate gradient equation solver as an example.

Experimental results demonstrate that our fault tolerance approach can survive a small
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number of simultaneous processor failures with low performance overhead and little

numerical impact.

We developed an algorithm-based checkpoint-free fault tolerance approach in which,

instead of taking checkpoint periodically, a coded global consistent state of the criti-

cal application data is maintained in memory by modifying applications to operate on

encoded data. We show the practicality of this technique by applying it to the ScaLA-

PACK matrix-matrix multiplication kernel which is one of the most important kernels

for ScaLAPACK to achieve high performance and scalability.

We designed a class of numerically stable real number erasure codes based on ran-

dom matrices which can be used for the algorithm-based checkpoint-free fault toler-

ance technique to tolerate multiple simultaneous process failures. Experimental results

demonstrate our codes are numerically much more stable than existing codes in litera-

ture.

We established upper and lower bounds for the tails of the condition number dis-

tributions of Gaussian random matrices which demonstrate that the coding schemes in

our algorithm-based checkpoint-free fault tolerance are numerically highly reliable. Let

Gm×n be an m×n real random matrix whose elements are independent and identically

distributed standard normal random variables, and let κ2(Gm×n) be the 2-norm con-

dition number of Gm×n. We proved that, for any m ≥ 2, n ≥ 2 and x ≥ |n − m| +

1, κ2(Gm×n) satisfies 1√
2π

(c/x)|n−m|+1 < P
(

κ2(Gm×n)
n/(|n−m|+1) > x

)
< 1√

2π
(C/x)|n−m|+1 ,

where 0.245 ≤ c ≤ 2.000 and 5.013 ≤ C ≤ 6.414 are universal positive constants in-
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dependent of m, n and x. Moreover, for any m ≥ 2 and n ≥ 2, E(log κ2(Gm×n)) <

log n
|n−m|+1 +2.258. A similar pair of results for complex Gaussian random matrices was

also established.

7.2 Future Work

One of the drawbacks of our fault tolerance approach is that it requires the application

programmers to be involved in the fault tolerance. For the future, we plan to design

some techniques and develop some software tools to relieve the fault tolerance burden

from the application programmer. We will exploit the possibility of automating both

the checkpointing and the recovery. We plan to build these fault tolerance techniques

into numerical libraries such ScaLAPACK and PETSc. Another direction to extend our

work is to develop an application level checkpointing library to help users to perform

the diskless checkpointing.

Diskless checkpointing studied in this dissertation could not survive the failure of all

processors. However, in the practice of today’s high performance computing, the failure

of the whole system is not rare. In the future, we would like to explore using a two level

recovery scheme [62] which uses both diskless checkpointing and stable-storage-based

checkpointing to tolerate both types of failures.

The real-number and complex-number codes proposed in the research are not perfect.

Due to the probability approach we used, the drawback of our codes is that, no matter

how small the probability is, there is a probability that a erasure pattern may not be
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able to be recovered accurately. An interesting open problem is how to construct the

numerically optimal codes over real-number and complex-number fields.

Recently, extensive research has been performed on low density parity check (LDPC)

codes. One possible direction to further reduce the fault tolerance overhead and improve

the scalability might be to explore the possibility of using some of the recent LDPC codes

to replace the Reed-Solomon code used in this dissertation.
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