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Abstract

On the road to exascale computing, the gap between hardware peak performance

and application performance is increasing as system scale, chip density and inherent

complexity of modern supercomputers are expanding. Even if we put aside the

difficulty to express algorithmic parallelism and to efficiently execute applications

at large scale, other open questions remain. The ever-growing scale of modern

supercomputers induces a fast decline of the Mean Time To Failure. A generic,

low-overhead, resilient extension becomes a desired aptitude for any programming

paradigm. This dissertation addresses these two critical issues, designing an efficient

unified linear algebra development environment using a task-based runtime, and

extending a task-based runtime with fault tolerant capabilities to build a generic

framework providing both soft and hard error resilience to task-based programming

paradigm.

To bridge the gap between hardware peak performance and application perfor-

mance, a unified programming model is designed to take advantage of a lightweight

task-based runtime to manage the resource-specific workload, and to control the

dataflow and parallel execution of tasks. Under this unified development, linear

algebra tasks are abstracted across different underlying heterogeneous resources,

including multicore CPUs, GPUs and Intel Xeon Phi coprocessors. Performance

portability is guaranteed and this programming model is adapted to a wide range of

accelerators, supporting both shared and distributed-memory environments.
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To solve the resilient challenges on large scale systems, fault tolerant mechanisms

are designed for a task-based runtime to protect applications against both soft and

hard errors. For soft errors, three additions to a task-based runtime are explored. The

first recovers the application by re-executing minimum number of tasks, the second

logs intermediary data between tasks to minimize the necessary re-execution, while

the last one takes advantage of algorithmic properties to recover the data without re-

execution. For hard errors, we propose two generic approaches, which augment the

data logging mechanism for soft errors. The first utilizes non-volatile storage device

to save logged data, while the second saves local logged data on a remote node to

protect against node failure. Experimental results have confirmed that our soft and

hard error fault tolerant mechanisms exhibit the expected correctness and efficiency.
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Chapter 1

Introduction

Today’s fastest supercomputers can solve problems at petascale, that is, a quadrillion

(1015) floating point operations each second. The number of components of

supercomputers, such as CPU cores, accelerators, memory size, network bandwidth,

and storage size grow exponentially. Today’s most powerful supercomputer, Sunway

TaihuLight Top500 (2016), from National Supercomputing Center in Wuxi, China,

harnessed 10, 649, 600 cores to achieve its theoretical peak performance of 125 PFlop/s

to rank No.1 on November 2016 Top500 list. While these petascale supercomputers

are quite powerful, the next milestone in computing achievement expected by 2018-

2022, is the exascale, that is, 1018 floating point operations each second. As the size

of supercomputer grows larger and its infrastructure becomes more complicated, it is

difficult to express parallelism of applications in an efficient and reliable way on such

systems.

The components of supercomputers continue to become more complicated on

the road to exascale computing at different levels: multi-core CPUs with Non

Uniform Memory Access (NUMA), integration of accelerators (GPU, Intel Xeon Phi),

complex network interconnection and multi-level storage hierarchies. Performance

portability is not guaranteed to scale in the same order with system size. It

is challenging to express the algorithmic parallelism efficiently on a large scale
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system, meanwhile debugging, maintaining and providing performance portability

across different parallel architectures and programming environments. Task-based

programming model has emerged as solution to address this challenge effectively. By

using this programming model, an application is represented as a set of tasks and data

dependencies between these tasks in the form of Directed Acyclic Graph (DAG). A

dynamic runtime engine is designed to discover available tasks by inferring the data

dependencies between the tasks and to schedule tasks to corresponding devices during

execution.

The future exascale systems will be much more vulnerable to failures than current

petascale systems. Two major reasons leading to this trend are: (1) the number of

components required to achieve the scale is increasing; (2) an increase of Mean Time

To Failure (MTTF) of each component will not be high enough to compensate the

impact of the first one. Nowadays, prevailing academic thought is that the MTTF of

supercomputers might drop to about one hour in the next few years Cappello (2009).

Developing a programming environment capable of delivering computation at large

scale in an efficient and resilient way, will address a major challenge to fully utilize

future High Performance Computing (HPC) systems to provide scientific productivity.

Popular works addressing failures on large scale systems can be categorized into two

types: Checkpoint/Restart (C/R) and Algorithm Based Fault Tolerance (ABFT)

techniques. Both of these two methods are applicable to protect again failures on

large machines, and each has its own advantages and drawbacks. C/R technique is

generic in nature and highly automatic. It supports a wide range of applications but

suffers relatively high checkpointing overhead as it relies on backing up data to stable

storage. On the other hand, ABFT technique provides relatively low overhead but

it is less generic in feature. Today, most of ABFT works are developed to protect

applications in linear algebra and fast Fourier transform (FFT) domains.

In this dissertation, a unified programming model is designed to provide a

light weighted environment for developing high performance dense linear algebra
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applications. Applications are represented as the form of DAG, and a dynamic task-

based runtime is utilized to manage device-specific workload, to manipulate dataflows

and to schedule tasks in parallel. This unified programming model is enabled by

taking advantage of task abstraction to support different heterogeneous devices,

ranging from multi-core CPUs, NVIDIA GPUs, AMD GPUs and Intel Xeon Phi

coprocessors. We provide implementation of Cholesky factorization, validating that

this unified design is effective for performance portability and taking full utilization

of a mix of different accelerators. Also, fault tolerant mechanisms are explored and

added to a dynamic task-based runtime to build a generic framework enabling both

soft-error and hard-error resilience. Dense linear applications running on such a task-

based runtime obtain automatic resilient support from runtime level. We focus on

protecting application data against failures. Our goal is to design generic and low-

overhead solutions to handle both soft and hard errors. By combining the advantages

of algorithmic properties of applications, parameterized presentation of tasks and

automatic generation of minimum required execution graph in a task-based runtime,

our resilient solutions guarantee that data and execution flow are secure in an error-

prone environment with low cost of computational overhead and storage overhead.

We design three mechanisms at two levels of granularities to handle soft errors: at

the coarse level, tasks are required to re-execute to generate correct result, and at

the fine level, tasks are augmented to integrate necessary algorithmic properties

to handle possible data corruption. Two generic mechanisms are also designed to

handle hard errors, which augment generic data logging solution for soft errors by

taking advantage of reliable secondary storage and remote compute node to save

intermediary dataflow. Our design is illustrated by using Cholesky factorization

as a case study. We implement this resilient design in the PaRSEC Bosilca et al.

(2013) framework, which uses a dynamic runtime engine to efficiently manage data

dependencies and schedule tasks on distributed heterogeneous platforms.

3



1.1 Thesis Statement

The main objective of this dissertation is to demonstrate that dynamic task-based

runtime can be extended to facilitate the development of high performance dense

linear algebra applications on large scale systems toward future exascale computing.

This dissertation addresses these two major challenges. The first challenge is

designing a programming model which utilizes a task-based runtime to facilitate the

development of high performance dense linear algebra on heterogeneous platforms.

The second challenge is the fault tolerant design for a task-based runtime to handle

both soft and hard errors. The proposed methodologies should guarantee low

computational and storage overhead to protect application data in a failure-prone

environment.

1.2 Contribution

The contribution of this dissertation consists of two parts: efficient utilization of a

task-based runtime for unified linear algebra development and resilient extension to

a task-based runtime.

1.2.1 Unified Linear Algebra Development

• clMAGMA: We design the static scheduling in clMAGMA Cao et al. (2014)

library to implement high performance dense linear algebra for hybrid systems

consisting of CPUs and OpenCL devices.

• Unified Linear Algebra Development using QUARK: We design a

unified programming model of dynamic scheduling using a task-based runtime

(QUARK in our implementation) to implement high performance dense linear

algebra. We present how modularized methodologies are adapted to utilize a

task-based runtime to guarantee that two computational goals are reached: (1)

4



to achieve optimal performance on the entire heterogeneous platform, (2) to

facilitate the development by using a task graph programming model.

• Supporting Distributed-memory Platform: We propose the extensions for

the unified programming model using QUARK to support distributed-memory

platforms. As QUARK itself only works in a shared-memory environment, the

extensions here include strategies varying from the way data is stored and moved

to the way algorithms are split into tasks and scheduled for execution.

1.2.2 Resilient Design for a Task-based Runtime

Several fault tolerant techniques are developed in this dissertation such that both

soft and hard errors can be tolerated, delivering a resilient execution environment for

dense linear algebra applications using a task-based runtime.

Soft Errors

• Sub-DAG Recovery Mechanism: When a soft error strikes the output of

a task during execution, a sub-DAG composed of the failed tasks and all its

necessary predecessors from original input is created. This sub-DAG consists

of minimum requirement to regenerate correct result for the failed task from

original input, and is executed in parallel with other non-failed tasks in original

DAG.

• Data Logging Recovery Mechanism: In order to reduce the recovery

overhead, intermediary dataflow in the original execution graph is reserved

periodically, by saving a copy into memory. When a soft error strikes a task,

a sub-DAG consisting of only predecessors between the failed task and the

reserved dataflow is created. By taking extra memory to log dataflow, the re-

execution of tasks is bounded by latest version of saved data, and a relatively

smaller sub-DAG is created and scheduled by runtime to recover the failure.
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• Algorithm Based Fault Tolerance Mechanism: By exploiting the feature

of ABFT, two checksum vectors are appended to every matrix tile of original

data layout. It has been proved that checksum vectors keep consistent with

corresponding matrix data during factorization. After every task completes,

checksum vectors are utilized to validate result and correct errors. ABFT

mechanism takes extra computational overhead to keep checksum vectors valid

during execution, and avoids task re-execution after a failure happens. It is also

able to serve as a software level failure detector.

• Formal and experimental performance analysis: A thorough examination

of the theoretical computation complexity of the fault tolerant mechanisms is

provided. We calculate the number of extra floating point operations (FLOPS)

incurred by the different resilient mechanisms, and compare the extra FLOPS

with the FLOPS of the original application. We also verify the theoretical

analysis through experiments.

Hard Errors

• Non-volatile Storage Mechanism: We augment the data logging mechanism

for soft errors to support hard errors. After a hard error happens, reserved

dataflow in memory is also lost when the process crashes. High-speed non-

volatile storage such as solid-state drive (SSD) and Non-volatile random-access

memory (NVRAM) can be utilized to save intermediary dataflow. After a

hard error strikes, the dataflow saved in the non-volatile storage of the crashed

process, and other dataflow saved in the memory of non-crashed processes can

be combined together to rebuild a restarting state for the crashed process.

• Remote Data Logging Mechanism: Another low-overhead mechanism to

handle hard errors is designed by saving intermediary dataflow on a remote

process. A remote process protects the data that the crashed process requires

to restore. We augment the communication engine in PaRSEC to be adaptable
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for hard error resilience, and exploit the parameterized representation of tasks

in PaRSEC to reduce communication overhead introduced by saving data

remotely.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows: Chapter 2 introduces task graph

scheduling using dynamic runtimes and the source of failures in high performance

computing. We also review pioneering works done to develop high performance

dense linear algebra libraries and to mitigate the impact of failures on large scale

applications. Chapter 3 presents a unified programming model using a task-based

runtime that mitigates the difficulty of dealing with different underling devices and

programming libraries during HPC application development. Chapter 4 presents

three mechanisms for soft error recovery, including sub-DAG recovery mechanism,

data logging recovery mechanism and algorithm based fault tolerance mechanism.

Chapter 5 presents two mechanisms to support hard error resilience, including non-

volatile storage mechanism and remote data logging mechanism. Finally Chapter 6

concludes the dissertation and outlines future directions.
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Chapter 2

Background

In this chapter we introduce the background of task graph scheduling using dynamic

runtimes and the source of failures in high performance computing. We also review

pioneering works done to develop high performance dense linear algebra libraries and

to mitigate the impact of failures on applications.

2.1 Task Graph Scheduling using Dynamic Run-

times

Task Graph is a classical programming model that has been used to express task

dependencies and to explore parallelism. In this dissertation, a task graph is defined

as a Directed Acyclic Graph (DAG) D = (V,E), where every vertex v ∈ V represents

a task (a set of sequential computations), and every edge (v1, v2) ∈ E represents a

data dependency between an output of task v1 and an input of task v2. An edge

(v1, v2) that exists between task v1 and task v2 implies that task v2 can only start

after task v1 completes and its output is received by task v2. In this dissertation,

our work is implemented on two representative task-based runtimes: QUARK and

PaRSEC.
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QUARK (QUeuing And Runtime for Kernels) YarKhan et al. (2011) is a

lightweight runtime environment, it provides a scheduling engine that enables

dynamic discovery and execution of tasks with data dependencies in a shared-

memory environment. It is developed by the Innovative Computing Laboratory (ICL)

from University of Tennessee. QUARK infers data dependencies and precedence

constraints between tasks from the way that the data is used, and then executes the

tasks in an asynchronous, dynamic fashion in order to achieve a high utilization of the

available resources. It is the dynamic runtime engine used within the PLASMA linear

algebra library and has been proved to deliver high productivity and performance

benefits Haidar et al. (2011).

The Parallel Runtime Scheduling and Execution Controller (PaRSEC) is a

generic framework for architecture-aware scheduling and management of micro-

tasks on distributed many-core heterogeneous architectures. It is also developed

by ICL from University of Tennessee. The core components of PaRSEC runtime

are one dynamic multi-level scheduler supporting distributed-memory environment,

one communication engine supporting asynchronous data transfer and one data

dependencies engine parsing task availability Bosilca et al. (2011). Tasks are

mapped to corresponding computing nodes by runtime based on data distribution.

Both local and remote data dependencies are detected and enabled. The dynamic

scheduler explores the maximum amount of parallelism by scheduling available tasks

to underlying multi-core CPUs and accelerators. PaRSEC also follows the task graph

programming model.

Figure 2.1 presents the detailed framework of PaRSEC. The lowest level is the

support for different hardware architecture, including multi-core CPUs, memory hier-

archies, cache coherence, and accelerators. The middle level is the functionalities from

the parallel runtime in PaRSEC, including distributed scheduling, data movement,

data collections, managing task classes and creating specialized kernels. The top

level is the extensions for domain specific applications, including a concise format of

representing tasks called Parameterized Task Graph (PTG) Cosnard et al. (1999), a
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dynamic representation of tasks called Dynamic Task Discovery (DTD) Haidar et al.

(2011), and current supported applications from dense linear algebra, sparse linear

algebra to Chemistry.
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Figure 2.1: The Framework of PaRSEC.

2.2 Source of Failures

Failures have been unavoidable since the birth of computers. Resilience has become

a major challenge for large scale systems over the past few years. These systems

will typically gather from half a million to several millions of CPU cores running up

to a billion of threads. Based on today’s observations and research of statistics of

failures on large scale systems, it is estimated that next generation exascale systems

will be struck by multiple types of failures many times per day Cappello et al. (2009).

According to failure statistic of machines at Oak Ridge National Laboratory and Los

Alamos National Laboratory, three major threats for HPC systems are cosmic rays,

bad solder and reducing power consumption Geist (2016):
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• Cosmic rays: The amount of energy required to flip a bit in a transistor is

decreasing as the size of the transistor gets smaller. By predicting that the size

of transistors on future exascale systems will be about a third of the size it is

today, there will be much more likely to introduce cosmic ray-induced errors.

• Bad solder: Radioactive lead may happen in the bad solder used to make the

boards carrying the processors, causing bad data in the L1 cache.

• Reducing power consumption: Saving power is a goal of building an exaflop

computer, the power savings will likely have to come from smaller transistors

running at lower voltages to draw less power, which increases the probability

of circuits flipping state spontaneously. Also, power cycling reduces a chip’s

lifetime.

Faults can be rooted in software issues as well. Parallel applications are especially

difficult to develop and may have potential bugs left. If bugs are in system level and

can cause the system to provide incorrect service to application codes, these bugs are

considered as software faults Jia (2015).

In this dissertation we consider two different types of failures for applications

running on a task-based runtime: hard errors and soft errors.

• Hard Error: We define hard errors as process failures, where a process is

crashed after a failure happens, and the corresponding data on the failed process

is lost. When a hard error happens, the application cannot continue due to lost

of data.

• Soft Error: Soft error is defined as silent data corruption (SDC), usually

manifests as bit-flips in memory, cache or processor registers. The application

will not terminate when a soft error occurs, it continues executing without

noticing it, and delivers wrong result at the end.

Soft errors have been highlighted as the continuous increase of memory used by

applications. Compared with hard errors, soft errors are more dangerous because
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of the transient feature. An application will continue to execute when a soft error

shows up and deliver wrong result after completion.

2.3 Dense Linear Algebra Libraries on Distributed

Heterogeneous Systems

There has been a lot of effort on enabling dense linear algebra libraries to run on

heterogeneous systems. Vendors such as NVIDIA, Intel, and AMD provide their

own numerical libraries, such as cuBLAS NIVIDIA (2017), MKL Intel (2016), and

clBLAS AMD (2015), respectively. These libraries do not include implementations

for distributed-memory systems yet.

MAGMA Agullo et al. (2009) is a linear algebra library designed for heterogeneous

architectures from ICL, University of Tennessee. Linear algebra algorithms are

scheduled statically in MAGMA by moving computational intensive operations

to accelerators while keep communication bound ones on CPU side. Tasks are

distributed equally across multiple accelerators. Most of factorizations provided by

MAGMA only support shared-memory systems.

Song et al. Song et al. (2012) describe distributed-memory, multi-GPU linear

algebra algorithms that use a static multi-level block-cyclic data partitioning. The

static data layout allows the distributed nodes to schedule communication events

without coordination. The multi-level data scheme enables CPUs and GPUs to

partition work to handle the workload imbalance between the resources. This

approach does not provide for GPUs of different strengths and for the addition of

other resources such as Intel Xeon Phi coprocessors.

Ayguade et al. have created StarSS Ayguadé et al. (2009), a programming system

that uses compiler directives to annotate code in order to allow task superscalar

execution via a specialized runtime. The directives can specify that functions should

be executed using specific hardware (e.g. GPU, Cell, SMP) rather than using CPUs.
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The superscalar execution allows the host CPU and additional hardware to run in

parallel. Many of the ideas in StarSS have been incorporated in the implementation of

Task Parallelism in the OpenMP 4.0 specification Board (2013), however the OpenMP

standard does not include distributed-memory execution.

The INRIA Runtime team has developed StarPU Augonnet et al. (2009), which

is a dynamic scheduling runtime that uses superscalar execution methods to run

sequential task-based code on parallel resources. StarPU uses a history-based

scheduling mechanism to transparently schedule tasks on heterogeneous multicore and

GPU resources, with extensions that allow StarPU to execute in distributed-memory

environments. StarPU has been used as a runtime in MAGMA to implement the

Cholesky, QR, and LU factorizations Agullo et al. (2011).

The SuperMatrix runtime system for linear algebra was extended to execute on

multicore and GPUs in a shared-memory environment Chan et al. (2007). The

SuperMatrix approach requires that the task-dependencies be substantially exposed

before scheduling and that the GPU take the burden of the computation, not using

available multicore CPUs for complex computational tasks.

2.4 Existing Fault Tolerant Techniques

Numerous methods have been proposed to protect against different types of failures at

various levels of the architecture, ranging from underlying hardware level approach

to the user application software level approach at the top. Several existing fault

tolerant technologies have been developed and provided satisfactory results on

current petascale supercomputers. To put our proposed methods into perspective,

a systematic view of the related work is given in this section.
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2.4.1 Hardware Duplication

A straightforward way to tolerate hardware failures is to use hardware redundancy.

Hardware redundancy can be categorized into two types: passive hardware re-

dundancy and active hardware redundancy. The basic idea of passive hardware

redundancy is to execute the same program by several independent modules. After

every module completes, the final result is determined by a majority-voting system to

produce a single output. TMR (Triple Modular Redundancy) Lyons and Vanderkulk

(1962) is a classical type of passive hardware redundancy, if any one of the three

systems fails, the other two systems can correct and mask the fault. The first use

of TMR in a computer was the Czechoslovak computer SAPO Howlett and Rota

(1980), in the 1950s. TMR can be extended to N-modular redundancy (NMR). Active

hardware redundancy, on the other hand, only keeps one redundant unit running at

the same time. The STAR (Self Testing And Repair) computer constructed at the Jet

Propulsion Laboratory, is an early autonomous computer system that could detect

and recover failures Avizienis et al. (1971). STAR computer is designed with dynamic

redundancy, consisting of replaceable components and a program rollback provision

to recover transient errors. Every component in STAR has several backup units, and

at any given time only one unit is powered and working. Hardware duplication is an

effective way to increase the MTBF (mean time between failure) of the entire system.

However, the financial cost of building a fault tolerant system increases proportionally

with the number of redundant components. Modern supercomputers are composed

of millions of cores, which makes this method impractical.

2.4.2 Error Correcting Code

Cosmic rays can strike transistors of dynamic random-access memory (DRAM) to

cause a single bit flip, resulting in an opposite value. As the density of DRAM

is increasing to reach higher memory size, and the size of transistors on chips gets

smaller, meanwhile the energy required to spontaneously flip the bits on DRAM
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is decreasing. Future DRAMs will be much more prone to cosmic ray-induced

errors Mittal and Vetter (2016). A hardware level solution to solve this challenge

is to use extra memory bits and memory controllers to protect original bits. These

extra bits are used to record parity or to use an error-correcting code (ECC). Parity

allows the detection of all single-bit errors (to be more precise, any odd number

of wrong bits). The single-error correction and double-error detection (SECDED)

Hamming code is the most widely used error correcting code. It provides single-bit

error correction and double-bit errors detection in every 64-bit memory word. There

is a trade-off between capabilities of handling bit flips and a higher commercial cost

when using ECC memory. Compared with non-ECC memory, the price of EEC

memory is higher, as extra hardware components are added to implement ECC

functionalities. Also, ECC may lower memory bandwidth by 2-3 percent on some

systems, as ECC memory controllers require extra time to perform error detection

and correction Wikipedia (2017a). Many CPUs have equipped ECC in its on-chip

cache, for example, Intel Itanium processor, AMD Athlon and Opteron processors,

and the DEC Alpha 21264 Yoon and Erez (2009).

2.4.3 Rollback Recovery based on Checkpoint and Message

Logging

Rollback recovery scheme considers a distributed system as a collection of application

processes that communicate through a network. Each process is equipped with a

stable storage device that is robust under failures. During execution, intermediary

data is stored to stable storage periodically. When a failure happens, the failed process

uses the newest version of saved data to restart the execution. The saved data serving

as the starting state for the recovery, is called checkpoints. Message logging-based

rollback recovery combines checkpointing scheme with logging of nondeterministic

events. It follows the the piecewise deterministic (PWD) assumption Strom and

Yemini (1985) that all nondeterministic events that a process executes can be retrieved
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later after storing necessary information safely during original execution. By using

stored information to replay the nondeterministic events in their original order, a

failed process can be recovered.

Checkpoint-based rollback-recovery techniques can be categorized into three types:

uncoordinated checkpointing, coordinated checkpointing, and communication-induced

checkpointing. By using uncoordinated checkpointing, every process makes its own

decision about when to checkpoint necessary data. Uncoordinated checkpointing is

simple to implement, however, under some extreme conditions, it may lead to the

domino effect Randell (1975). The domino effect means that rollback is propagated

to the beginning of the application, repeating all the computation completed before

a failure happens. Several techniques have been designed to avoid the domino

effect. One well-known technique is named coordinated checkpointing in which all

the processes coordinate their checkpoints in order to create a consistent snapshot for

the whole application Chandy and Lamport (1985). Rollback propagation is limited

by such a consistent snapshot. The other technique is called communication-induced

checkpointing, which allows every process to take checkpoints based on the information

induced by communication with remote process Russell (1980).As checkpoints are

stored on stable storage, a system-wide consistent state always exists and the domino

effect is avoided. Checkpoint-based rollback recovery does not rely on the PWD

assumption, and so does not need to detect, log, or replay nondeterministic events.

Compared with log-based rollback recovery, checkpoint-based rollback recovery has

less restrictions and is simpler to implement. However, checkpoint based rollback

recovery does not guarantee that execution before a failure can be deterministically

regenerated after a rollback Elnozahy et al. (2002), thus it is not suitable for

applications that require frequent interactions with the outside world.

As opposed to checkpoint-based rollback recovery, log-based rollback recovery

makes explicit use of the fact that a process execution can be modeled as a sequence

of deterministic state intervals, each starting with the execution of a nondeterministic

event Strom and Yemini (1985). Log-based rollback-recovery techniques guarantee

16



that during the recovery of failures, there is no orphan process (i.e., a process whose

state depends on a nondeterministic event that cannot be reproduced during recovery)

left in the system. Specific message logging implementation delivers different

failure-free performance overhead and rolling back recovery overhead. Pessimistic

message logging-based rollback-recovery technique guarantees that orphan processes

are never created after a failure happens. It simplifies the recovery while introducing

higher failure-free performance overhead. Optimistic message logging-based rollback-

recovery technique reduces the failure-free performance overhead, but allows orphan

processes to be created after a failure happens. Leaving orphan processes in the

system complicates the recovery. Causal message logging-based rollback-recovery

technique is a combination of the abovementioned two techniques, which attempts to

get low performance overhead but requires more complicated implementation.

2.4.4 Algorithm Based Fault Tolerance

Algorithm Based Fault Tolerance (ABFT), which initially stemmed from the effort

of detecting and correcting errors caused by permanent or transient failures in the

hardware Huang and Abraham (1984), and is now widely adapted in dense linear

algebra, sparse linear algebra and fast Fourier transform (FFT) to recover failures.

The basic idea of ABFT is to add redundant data in the form of checksum to

original compute data. ABFT maintains consistency between the checksum and

compute data by applying appropriate mathematical operations to both parties.

Typically, in dense linear algebra, original matrix is extended by row-checksum

vectors or column-checksum vectors. This encoding happens only once before the

computation, and original matrix algorithm is modified to update checksums with

appropriate mathematical operations during computation, which enables checksums

to keep consistent relationship with compute data. Whenever a failure strikes the

compute data, checksums are inverted to recreate missing data. When applicable,

ABFT provides resilience with very low overhead as there is no periodical checkpoint
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or rollback recovery involved, and the extra computational operations updating

checksums is in a lower order compared with original algorithm. ABFT techniques

are well developed in dense linear algebra to handle hard errors and soft errors. For

example, Du et al. have shown that by combining ABFT and diskless checkpoint, a

full matrix protection solution with low space and time overhead is implemented for

LU and QR factorizations against hard errors Du et al. (2012). Jia et al. extend this

method a step further to support Parallel Reduction to Hessenberg Form in two-sided

factorizations Jia et al. (2013). Toward soft errors, Du et al. Du et al. (2011a) apply

Sherman-Morrison formula to recover soft errors happening on dense linear system

solver. FT-ScaLAPACK library Wu and Chen (2014) integates ABFT functionalities

to into LU, QR and Cholesky factorizations in ScaLAPACK Blackford et al. (1996),

by making every update on a matrix block robust against soft errors. ABFT enabled

soft error protection methods have also been explored to support one-sided and two-

sided factorizations on CPU-GPU heterogeneous computing platforms. In a series of

work related to resilient QR factorization Du et al. (2011b) on hybrid system and

resilient Hessenberg reduction on hybrid system Jia et al. (2016), it has been shown

that in the presence of round-off error on heterogeneous system, soft errors in both the

left and right factors in dense linear algebra operations can be detected and corrected.

2.4.5 Application Driven Fault Mitigation

Fault tolerance can be implemented in software level. Developers can add extra codes

in original application explicitly to recover possible failures during execution. In order

to inject recovery codes into applications, underlying libraries should export necessary

functionalities and interfaces to support resilience. The idea of application driven

fault mitigation is to provide resilient support in programming model, which enables

the application to use the programming model to handle failures. User Level Failure

Mitigation (ULFM) Herault et al. (2015) is a set of new interfaces for MPI that enables

Message Passing programs to restore MPI functionality affected by process failures.
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Using the fault tolerant interfaces defined by ULFM, applications and libraries handle

the recovery of the MPI state by themselves. Consistency issues resulting from failures

are addressed according to an application’s needs and the recovery actions are limited

to minimum MPI communication objects. Therefore, the recovery scheme is more

efficient than a generic, automatic recovery technique, and can achieve both goals of

enabling applications to resume communication after failure and maintaining extreme

communication performance outside of recovery periods.

2.4.6 Fault-tolerant Task-based Systems

Fault tolerance has been implemented into many task-based runtimes, providing

a resilient running environment for applications. Task scheduling can be static

or dynamic, depending on whether an application’s task graph is known before

computation starts Johnson (1993). In static scheduling systems, tasks are allocated

to processes or computing nodes ahead of time. In order to handle hard errors

in static task-based systems, tasks are duplicated and distributed to different

processes in case process failure happens. Such task duplication strategy has been

applied in grids Fechner et al. (2008) and in real-time systems Qin and Jiang

(2006). However, task duplication repeats the execution for protected task and

introduces high performance penalty in failure-free execution. On the other hand,

dynamic task-based systems distribute tasks to processors during the execution. This

requires the runtime to recover the failure efficiently during computation without

introducing significant performance penalty. Tremendous works have been proposed

to implement resilience in dynamic task-based systems. Kepler scientific workflow

system provides checkpointing and re-execution mechanisms to handle both hard and

soft errors Mouallem et al. (2010). However, the goal of fault tolerance framework

in a workflow system is to provide an appropriate end-to-end support for handling

failures, not to focus on a low-overhead solution. The NABBIT system Agrawal et al.
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(2010) implements a fault tolerant work stealing algorithm Kurt et al. (2014) to re-

execute minimum number of tasks for known data corruption reported by underlying

hardware (i.e., no soft error detectors) in a shared-memory environment. An improved

coordinated checkpoint and rollback recovery mechanism is implemented in KAAPI

framework Gautier et al. (2007) to handle hard errors, it reduces the number of

processes that are required to rollback by exploring the communication dependencies

Besseron et al. (2006).
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Chapter 3

Unified Linear Algebra

Development using a Task-based

Runtime

3.1 Introduction

Both academia and industry have been enjoying the performance benefits provided

by GPU since it was released. The ever expanding capabilities of the hardware

accelerators allowed GPUs to deal with more demanding kinds of workloads and

there was very little need to mix different GPUs in the same machine. Many

Integrated Cores (MIC) known as Xeon Phi, is a from of coprocessor in the realm

of hardware acceleration provided by Intel. Considering computational capabilities,

Xeon Phi delivers similar performance to GPU but on the other hand, Xeon Phi

handles specific size of workloads that is different with GPU. For any application

running on a heterogeneous platform, the optimal performance can be obtained

by combining CPUs, GPUs and coprocessors together, splitting size of workload

into appropriate one for each device in order to leverage their maximum strength.

This scenario is called multi-way heterogeneity. Programming on different devices
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requires dealing with different software libraries, which increases the complexity

of developing high performance applications on heterogeneous platforms. In this

chapter, we present a unified programming model that alleviates the complexity of

dealing with multiple software stacks for computing, communication, and software

libraries. This programming model addresses the design of high-performance dense

linear algebra (DLA) in heterogeneous environments, consisting of a mix of multi-core

CPUs, GPUs, and Intel Xeon Phi coprocessors (MICs). This mix can consist of two

levels: (1) combination of different accelerators; (2) combination of same accelerator

with various capabilities, e.g., GPUs from different vendors and GPUs from the same

vendor under different device generations. While the main goal is to reach as high

fraction of the peak performance as possible for an entire heterogeneous system, a

competing secondary goal is to propose a programming model that would alleviate

the burden from development. To achieve these two goals, a generic lightweight

environment is designed by utilizing a task-based runtime, and several popular dense

linear algebra routines are implemented in this environment. We demonstrate the

new algorithms, their performance, and the programming model design using the

Cholesky factorization.

The rest of the chapter is organized as follows: Section 3.2 introduces and the

background of one-sided factorizations in dense linear algebra, including programming

model for heterogeneous platforms and looking ahead technique Strazdins (1998)

to overlap imbalance. Section 3.3 presents the design of static scheduling in

clMAGMA Cao et al. (2014) to implement high performance dense linear algebra

for hybrid systems consisting of CPUs and OpenCL devices. Section 3.4 presents

the design of dynamic scheduling using a task-based runtime (QUARK in our

implementation) and several optimization schemes. Section 3.5 describes the

extension to support distributed-memory environment. Section 3.6 shows the

experimental results and Section 3.7 concludes this chapter.

The portion of this chapter has been published in the following publications of

mine:
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• Chongxiao Cao, Jack Dongarra, Peng Du, Mark Gates, Piotr Luszczek,

Stanimire Tomov, “clMAGMA: High performance dense linear algebra with

OpenCL”, 1st International Workshop on OpenCL (IWOCL)

• Azzam Haidar, Chongxiao Cao, Asim YarKhan, Piotr Luszczek, Stanimire

Tomov, Khairul Kabir, Jack Dongarra, “Unified Development for Mixed

Multi-GPU and Multi-coprocessor Environments Using a Lightweight Runtime

Environment”, Parallel and Distributed Processing Symposium, 2014 IEEE

28th International

• Azzam Haidar, Asim YarKhan, Chongxiao Cao, Piotr Luszczek, Stanimire

Tomov, Jack Dongarra, “Flexible linear algebra development and scheduling

with cholesky factorization”, 2015 IEEE 17th International Conference on High

Performance Computing and Communications

3.2 One-sided Factorizations in Dense Linear Al-

gebra

In this section, we present the linear algebra aspects of our generic solution for

development of either Cholesky, Gauss (LU), and Householder (QR) factorizations

based on block outer-product updates of the trailing matrix. Conceptually, one-sided

factorization maps a matrix A into a product of matrices X and Y :

F :

A11 A12

A21 A22

 7→
X11 X12

X21 X22

×
Y11 Y12

Y21 Y22


Algorithmically, this corresponds to a sequence of in-place transformations of A,

whose storage is overwritten with the entries of matrices X and Y (Pij indicates
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currently factorized panels):


A

(0)
11 A

(0)
12 A

(0)
13

A
(0)
21 A

(0)
22 A

(0)
23

A
(0)
31 A

(0)
32 A

(0)
33

→

P11 A

(0)
12 A

(0)
13

P21 A
(0)
22 A

(0)
23

P31 A
(0)
32 A

(0)
33

→

→


XY11 Y12 Y13

X21 A
(1)
22 A

(1)
23

X31 A
(1)
32 A

(1)
33

→

XY11 Y12 Y13

X21 P22 A
(1)
23

X31 P32 A
(1)
33

→

→


XY11 Y12 Y13

X21 XY22 Y23

X31 X32 A
(2)
33

→

XY11 Y12 Y13

X21 X22 Y23

X31 X32 P33

→

→


XY11 Y12 Y13

X21 XY22 Y23

X31 X32 XY33

→ [
XY

]
,

where XYij is a compact representation of both Xij and Yij in the space originally

occupied by Aij.

Table 3.1: BLAS and LAPACK routines for three one-sided factorizations.

Cholesky Householder Gauss

PanelFactorize xPOTF2 xGEQF2 xGETF2
xTRSM

xSYRK2 xLARFB xLASWP
TrailingMatrixUpdate xGEMM xTRSM

xGEMM

Observe two distinct phases in each step of the transformation from [A] to [XY ]:

panel factorization (P ) and trailing matrix update: A(i) → A(i+1). Implementation

of these two phases leads to a straightforward iterative scheme shown in Algorithm 1.

Table 3.1 shows (Basic Linear Algebra Subprograms)) BLAS and LAPACK Anderson
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et al. (1999) routines that should be substituted for the generic routines named in

the algorithm.

Algorithm 1: Two-phase implementation of a one-sided factorization.

for Pi ∈ {P1, P2, . . . , Pn} do
PanelFactorize(Pi)

TrailingMatrixUpdate(A(i))

Algorithm 2: Two-phase implementation with a split update.

for Pi ∈ {P1, P2, . . .} do
PanelFactorize(Pi)

TrailingMatrixUpdateKepler(A
(i))

TrailingMatrixUpdatePhi(A
(i))

The utilization of multiple accelerators for the computations complicates the

simple loop from Algorithm 1: we have to split the update operation into multiple

instances for each of the accelerators. This was done in Algorithm 2. Notice that

PanelFactorize() is not split for execution on accelerators because it is considered

a memory-bound workload which faces a number of inefficiencies on throughput-

oriented devices. Considering the fact that the trailing matrix update requires

the majority of floating point operations and accelerators provide high performance

to carry out these operations, the trailing matrix update is split and assigned to

corresponding accelerator. Computational activities for the same matrix block are

moved between the main memory of CPU and device memory of accelerator. The

distinction of different address spaces requires data transfer and synchronization

between CPU and accelerator, and is included in the implementation shown in

Algorithm 3.

This algorithm is also required to be modified further to achieve closer to hardware

peak performance, as the current performance is bounded by imbalance. The

imbalance comes from the fact that the bandwidth between the CPU and the devices
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Algorithm 3: Two-phase implementation with a split update and explicit
communication.

for Pi ∈ {P1, P2, . . .} do
PanelFactorize(Pi)
PanelSendKepler(Pi)

TrailingMatrixUpdateKepler(A
(i))

PanelSendPhi(Pi)

TrailingMatrixUpdatePhi(A
(i))

is orders of magnitude too slow to sustain computational rates of accelerators∗. The

classical technique to alleviate this imbalance is to use lookahead Strazdins (1998).

Algorithm 4: Lookahead of depth 1 for the two-phase factorization.

PanelFactorize(P1)
PanelSend(P1)
TrailingMatrixUpdate{Kepler,Phi}(P2)
PanelStartReceiving(P2)

TrailingMatrixUpdate{Kepler,Phi}(R
(1))

for Pi ∈ {P2, P3, . . .} do
PanelReceive(Pi)
PanelFactorize(Pi)
PanelSend(Pi)
TrailingMatrixUpdate{Kepler,Phi}(Pi+1)
PanelStartReceiving(P(i+1))

TrailingMatrixUpdate{Kepler,Phi}(R
(i))

PanelReceive(Pn)
PanelFactor(Pn)

An example of setting lookahead depth as 1 is shown in Algorithm 4. In

this example, trailing matrix update is divided into three steps: (1) update of

next panel on accelerator side; (2) transfer next panel from accelerator to CPU;

(3) update of remaining trailing matrix R on accelerator side. By using this

division, the communication of panel is overlapped with the update operation.

Due to different communication bandwidth and accelerator peak performance, a

∗The bandwidth for current generation PCI Express is at most 16 GB/s and the devices achieve
over 1000 Gflop/s performance.
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different lookahead depth might be required for optimal performance on different

heterogeneous platforms. In fact, the optimal value of lookahead depth is decided

by a thorough research of targeted factorization, in order to fully overlap massive

trailing matrix update on accelerator side with sequential panel factorization and

panel communication on CPU side.

3.3 Static Scheduling in clMAGMA

In this chapter, we introduce the design of the clMAGMA library Cao et al. (2014),

an open source, high performance OpenCL Khronos OpenCL Working Group (2009)

library that incorporates various methods of optimization, and in general provides the

dense linear algebra functionality of the popular LAPACK library on heterogeneous

architectures. We consider a redesign of the LAPACK algorithms to facilitate their

OpenCL implementation, and to add efficient support for heterogeneous systems of

multi-core processors with GPU accelerators and coprocessors.

The hybridization methodology used in MAGMA Agullo et al. (2009) library is

now used in clMAGMA. It is an extension of the task-based approach for parallelism

and developing dense linear algebra on homogeneous multi-core systems. The

hybridization methodology is described as below:

• The factorization is split into BLAS-based tasks of various granularities, with

their data dependencies.

• Small, latency-bound tasks with significant control-flow are executed on the

CPUs.

• Large, compute-bound tasks are executed on GPUs.

The difference between multi-core algorithms and hybridization is the task splitting,

which are of various granularities to make different tasks suitable for particular

hardware. An example of static scheduling of Cholesky factorization, demonstrating
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how GPU part computation and CPU part computation is overlapped, is shown

in Figure 3.1. In line 4, next available panel (next diagonal block in Cholesky

factorization) is transferred to CPU from GPU. This data transfer is asynchronous,

meaning that GPU starts to update remaining part of trailing matrix while

data is being transferred. Line 7 is a synchronization barrier to guarantee that

communication has completed. Also, line 8 is panel factorization on CPU side, which

is overlapped with GPU computation in line 6. Line 6 is an asynchronous request

from CPU side to start the ZGEMM operation on GPU side. After panel factorization

is finished on CPU side, the resulting panel is sent to GPU by using asynchronous

communication. After the communication is synchronized in line 13, GPU starts to

perform ZTRSM operation.

Figure 3.1: Cholesky factorization in clMAGMA.

In OpenCL, performing work on a device, such as executing kernels or moving

data to and from the device’s local memory, is done using a corresponding command-

queue Khronos OpenCL Working Group (2009). A command-queue is an interface

for a specific device to launch its associated work. The host (usually, a CPU) places

device kernels into a command-queue and then submits it to the device. For example,

in Figure 3.1, line 6 puts a ZGEMM kernel in a command-queue queue. The host

still must submit the ZGEMM to the device for execution, due to the standard

implementation in OpenCL 1.1, the kernel may start on device side immediately.
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As a result, it is possible that when CPU starts the panel factorization at line

8, the ZGEMM on device side hasn’t started. Thus, although our high-level

algorithm is designed to overlap CPU and GPU work, overlap may not happen

in practice. From OpenCL standard 1.1, in order to force the command-queue

to immediately submit the command queued to the appropriate device, host must

call clFlush(queue) Khronos OpenCL Working Group (2009) after launching the

command-queue. Therefore, all BLAS wrappers in clMAGMA are implemented in

two steps: the corresponding OpenCL BLAS is firstly queued and a clFlush is called

to force the kernel to start immediately on device side.

While CPU computation and GPU computation is overlapped, communication

and computation on GPU side are executed sequentially as they are submitted to

the same command-queue and OpenCL only support in order execution inside a

queue. One way to overlap CPU-GPU communication and GPU computation is

using multiple command-queues. Here, two queues are created, one queue is used

for executing communication and the other is used for executing kernel computation.

Figure 3.2 shows a part of the trace of double precision LU factorization based on

the optimization of using two queues. The first row is the execution trace of CPU,

where the black panel represents panel factorization; the second row is the execution

trace of queue 1 on GPU focusing on trailing matrix update, where the red panel

represents DGEMM operations and green panel represents DTRSM operations; and

the third row is the execution trace of queue 2 on GPU focusing on communication,

where yellow panel represents the data movement from GPU to CPU and the grey

panel is data movement from CPU to GPU. It is important to note that CPU-GPU

communication is overlapped with GPU computation by splitting corresponding work

into separate command-queues.

The importance of overlapping CPU and GPU work is quantified in Figure 3.3

for the example of LU factorization in double precision (the DGETRF routine). The

heterogeneous platform is composed of one six-core AMD Phenom CPU and one AMD

Radeon 7970 GPU. The blue curve is the performance of DGETRF(LU factorization)
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Figure 3.2: Partial CPU-GPU execution trace of a hybrid LU factorization in
clMAGMA based on the two command-queues’ optimization.

without overlapping CPU computation and GPU computation. It achieves up to

195 Gflop/s. After using clFlush command to overlap CPU computation and

GPU computation, the red curve shows the corresponding performance of DGETRF.

It achieves up to 280 Gflop/s, i.e., gaining about 1.4× speedup. Other further

optimizations are also shown in Figure 3.3. The overlap of CPU-GPU communications

with GPU computation is achieved by using two command queues. Device memory

is also pinned on GPU side in order to reach high bandwidth between CPU-GPU

communication. By combing all these optimizations together, the best performance of

LU factorization is shown with the purple curve. It achieves up to 326 Gflop/s, which

is almost a 60% speedup compared to the original version without any optimization.

Figure 3.3: Advanced performance optimizations of LU factorization in clMAGMA.
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3.4 Dynamic Scheduling using a Task-based Run-

time

Since the management of performance optimizations for static scheduling algorithms

is tedious, it is desirable to utilize a dynamic task-based runtime to schedule

algorithms efficiently and to maintain performance portability. However, due to the

homogeneity inherent in most of the existing runtime systems, it is difficult to manage

different types of computing devices on a mixed platform. Also, common scheduling

techniques, such as task stealing, are not applicable here due to the disjoint address

spaces from different devices and the associated large overhead of moving tasks. These

challenges are dealt with comprehensively in the remainder of this section.

3.4.1 Task Superscalar Scheduling

Task-superscalar execution is an abstraction of instruction-level out-of-order pipeline

that operates at the task level. Like instruction-level parallelism pipelines, which

uncover parallelism in a sequential instruction stream, task-superscalar execution

takes a serial sequence of tasks as input and schedules them for execution in parallel,

by discovering data dependencies between tasks during runtime. The dependencies

between the tasks are inferred through the resolution of three data hazards: Read

after Write (RaW), Write after Read (WaR) and Write after Write (WaW). The

dependencies between tasks are annotated in original serial code by application

developers using data definition interfaces provided by runtime system, indicating

the data property to be Read and/or Written. The RaW hazard, often referred to as

the true dependency, is the most common one when exploring parallelism. It shows

the race condition that one task is writing some data and another tasks is reading

that data. In order to avoid race condition, the reading task has to wait until the

writing task finishes. Also, in another scenario, if multiple tasks request to read

the same data, there is no need for them to execute in sequential as race condition
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doesn’t exist. Multiple read requests to be same data can be executed in parallel.

Task-superscalar execution is a kind of asynchronous and data-driven execution,

which can be represented by the form of DAG, where the tasks are the vertices

in the graph and the edges correspond to data movement between the tasks. Task-

superscalar execution is a powerful tool for exploring parallelism and maintaining

performance portability. The effort of using task-superscalar execution is to annotate

data dependencies in serial code correctly. The runtime system takes the serial code as

input, explores concurrent execution of multiple available tasks by avoid data hazards

and guarantees correct result.

By implementing task superscalar execution, the runtime can achieve parallelism

by executing tasks with non-conflicting data dependencies (e.g., simultaneous reads

of data by multiple tasks). Superscalar execution also enables lookahead technique

in the serial code, as future tasks in sequential execution can be executed as soon

as their data dependencies are fulfilled. In this section, we implement our unified

design by using QUARK runtime, as QUARK provides lower level control support

on task location and binding that would be harder to utilize when using the other

superscalar runtime systems. However, our conceptual design can be incorporated

into any existing task-based runtime system, so here QUARK is just treated as a

simple representation of a lightweight, task-superscalar runtime environment.

3.4.2 Efficient and Scalable Programming Model Across

Multiple Devices

GPU accelerators and coprocessors have much higher peak performance compared

with CPUs. For simplicity in the design here, we refer to both GPUs and coprocessors

as accelerators. Also, different types of accelerators provide different computing

capabilities, which makes it challenging to develop an algorithm that can achieve

high performance and keep good scalability. From the hardware point of view, an

accelerator communicates with the CPU using I/O commands and (Direct memory
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access) DMA memory transfers, whereas from the software standpoint, the accelerator

is a computing platform interacted with CPU through a programming interface. The

key features considered in our design are the device’s computing capability (CPUs,

GPUs, Xeon Phi), the memory access cost, and the communication cost. From the

CPU’s side of serving as a host, the access cost to the device memory for accelerators

is much more expensive comparing with benefit from accelerators’ peak performance.

Hierarchical caches have been designed to improve the long memory access latency and

bandwidth issues on CPU side. This does not solve the slow memory access problem

completely but is often effective. On the other hand, accelerators use multithreading

operations that access large data sets that would hide the memory access latency. The

reason of hiding memory access latency is to take advantage of accelerator’s massive

lightweight threads. When one of the accelerator’s threads issues an instruction to

access device memory, that thread stalls until memory access completes. Meanwhile,

the accelerator’s scheduler switches to another hardware thread, and continues to

execute instructions on that thread. By keeping switching to active hardware thread,

an accelerator is able to exploit program parallelism to keep functional units busy

while waiting the memory to fulfill past requests. By comparison with CPUs, the

device memory delivers higher absolute bandwidth (around 180 GB/s for Xeon Phi

and 160 GB/s for Kepler K20c). To solve memory access issues, a strategy is

developed in this section to prioritize the data-intensive operations to be executed

by the accelerator, and to keep the memory-bound ones for the CPUs since the

hierarchical caches with out-of-order superscalar scheduling are more appropriate to

handle it. Moreover, in order to utilize accelerators more efficiently, a hardware

guided data distribution strategy is designed to distribute optimal size of workloads

to different accelerators to keep them busy and achieve optimal performance.

From a programming model point of view, it is not possible to hide the

distinction when applying two different levels of parallelism. In order to solve the

distinction, linear algebra algorithms are redesigned and divided into a host part

and an accelerator part. Every computational routine running on accelerator side
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Algorithm 5: Cholesky implementation for multiple devices.

Task Flags panel flags = Task Flags Initializer
Task Flag Set(&panel flags, PRIORITY, 10000)

memory-bound → locked to CPU

Task Flag Set(&panel flags, BLAS2, 0)
for k ∈ {0, nb, 2× nb, . . . , n} do

Factorization of the panel dA(k:n,k)

Cholesky on the tile dA(k,k)
TRSM on the remaining of the panel dA(k+nb:n,k)

DO THE UPDATE: SYRK task has been split into a set of parallel
compute intensive GEMM to increase parallelism and enhance the
performance. Note that the first GEMM consists of the update of the
next panel, thus the scheduler check the dependency and once finished
it can start the panel factorisation of the next loop on the CPU.

if panel m > panel n then

SYRK with trailing matrix

for j ∈ {k + nb, k + 2nb, . . . , n} do
GEMM dA(j:n,k) × dA(j,k)T = dA(j:n,j)

is extracted into specific kernel function targeted for different hardware. It is also

necessary to optimize kernel functions on the accelerator, including instruction level

optimization and algorithmic level optimization. Several optimization schemes have

been applied to optimize kernels for specific device, e.g., loop unrolling, trading

slower memory-bound operations with compute-intensive ones with introducing extra

marginal computational cost, and reordering task sequence to utilize device memory

more efficiently. The host part code manages device memory allocation, CPU-device

data transfer and launching device kernel. The runtime engine from QUARK is also

redesigned to provide easier programming interfaces for simplifying scheduling. This

simplified support to able to alleviate users’ effort of maintaining a single version

of serial code and to utilize runtime to provide performance portable execution for

different devices. The intention in this work is to simplify most of the hardware

details, while giving application developers finer levels of control. Algorithm 5 shows

the pseudo code for the Cholesky factorization from an algorithm designer’s point of
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view. It consists of a sequential code that is simple to comprehend and independent

of the architecture. Each of these calls represents a task that is inserted into the

scheduler, which stores it to be executed when all of its dependencies are satisfied.

Each task by itself consists of a call to a kernel function that could either be a

CPU or an accelerator function. After wrapping kernel functions for different devices

into a generic interface, the differences between hardware is hidden and the runtime

scheduler is able to handle data movement automatically. Also, low-level optimization

schemes are designed for accelerators to accommodate hardware- and library-specific

tuning and requirements. Furthermore, we implemented a set of directives that are

evaluated at runtime in order to fully map the algorithm to the hardware and run close

to the peak performance of the system. Using these strategies, application developers

are able to design simple serial code in a lightweight environment. The efforts related

to performance improvement and portability is transferred to the runtime system.

3.4.3 Optimizations for Performance Improvement

Since there is no simple way to express the difference in the workload-capabilities

between the CPUs and accelerators. Clearly, we cannot balance the load, if we

treat them as peers and assign them equivalent amount of work. Such a naive

strategy would cause the accelerator to be substantially idle. As described above,

in our programming model we propose to assign the latency-bound operations to the

CPUs and the compute-intensive ones to accelerators. In order to support multi-

way heterogeneous hardware, QUARK is extended with a mechanism for distributing

tasks based on the computing capabilities of each device. For each device i and

each kernel type k, QUARK maintains an αik parameter which corresponds to the

effective performance rate that can be achieved on that device. In the context of

linear algebra algorithms, this means that we need an estimation of performance for

Level 1, 2, and 3 BLAS operations. This can be done either by the developer during

the implementation where the user gives a directive to QUARK that this kernel is
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either bandwidth-bound or compute-bound function (as shown in Algorithm 5 with

a call to Task Flag Set with BLAS2 argument) or estimated according to the volume

of data and the elapsed time of a kernel by the QUARK engine at runtime.
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Figure 3.4: A trace of the Cholesky factorization on one 16-core Sandy Bridge CPU
and one K20c GPU.

Figure 3.4 shows the execution trace of the Cholesky factorization on a system

consisting of one multi-core CPU and one NVIDIA K20c GPU. It is observed that the

memory-bound operations (e.g., the panel factorization for the Cholesky algorithm)

have been assigned to the CPU while the compute-bound ones (e.g., the update

performed by DSYRK) have been assigned to the accelerator. The initial data is

assumed to be on the device, and when the CPU is executing a task, data is required

to transfer from device to CPU. Also when CPU completes the panel factorization,

the panel is transferred back to device to update the trailing matrix. The data

transfer is represented by the purple color in the trace. The CPU panel computation

is represented by the gold color. The trailing matrix update is represented in green

color. For clarity, we varied the intensity of the green color representing the update

from light to dark for the first 5 steps of the factorization. From this trace, we can

see that the GPU is kept busy all the way until the end of execution. The use of the

lookahead technique described in Algorithm 4, does not require any extra effort since

it is automatically handled by the QUARK runtime engine through the resolution of

36



data dependencies. As defined by the data dependencies, the next panel (panel of

step k+ 1) is updated on GPU side as soon as possible, and transferred to CPU side

to be factorized. Meanwhile on GPU side, the remaining part of the trailing matrix of

step k continues to be updated. Also, the QUARK engine manages the data transfer

to and from the CPU automatically. The advantage of such strategy is not only to

hide the data transfer cost between the CPU and GPU (since it is overlapped with

the GPU computation), but also to keep the GPU’s computing queues (i.e., CUDA

streams for NVIDIA GPU) busy by providing enough tasks to execute. As shown in

Figure 3.4, we can see that the panel of step 1 is quickly updated by the GPU and

sent to the CPU to be factorized and sent back to the GPU, which is a perquisite

to perform the trailing matrix update of step 1, before the GPU has already finished

the update of trailing matrix of step 0, and so on.

Improved Task Priorities: In order to highlight the importance of task priority,

we recall, that the panel factorization tasks of most of the one-sided factorizations

(e.g., the Cholesky, QR and LU algorithms) are on the critical path of execution. In

other words, only if a panel computation is done in its entirety, its corresponding

update computation (compute-bound operation) can proceed. In the traces in

Figure 3.4, it can be observed that the panel factorization on the CPU occurs at

regular intervals (e.g., the lookahead depth is one). By changing the priority of

the panel factorization tasks (using QUARK’s task priority flags as mentioned in

Algorithm 5), the execution of panel factorization can be scheduled earlier. Moving

panel factorization earlier implies that a higher lookahead depth is used, unfolding

more parallelism and generating more trailing matrix update tasks for the accelerator.

Using priorities to improve lookahead results in approximately 5% improvement in

the overall performance of the factorization. Figure 3.5 shows the update tasks being

executed earlier in the trace.

Data layout: 1-D block cyclic data layout is applied to support multiple

accelerators. Original matrix is initialized across all accelerators in a block-column

cyclic fashion, with an approximately equal number of columns distributed to every
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Figure 3.5: Trace of the Cholesky factorization on one 16-core Sandy Bridge CPU
and one K20c GPU, using priorities to improve lookahead.

accelerator. It is important to note that data is allocated as one contiguous

memory block on every accelerator, combining distinct column blocks together. This

contiguous data layout allows large update operations to take place over a number

of columns via a single Level 3 BLAS operation. It is much more efficient than

storing distinct column blocks in separate memory segments and having multiple

BLAS operations.

Hardware-Guided Data Distribution: It is demonstrated in experiments that

the standard 1-D block cyclic data layout is hindering performance in heterogeneous

multi-accelerator environments. Figure 3.6 shows the trace of the Cholesky factoriza-

tion for a matrix of size 30, 000 on a hybrid system consisting of one K20c GPU, one

Intel Xeon Phi (MIC) and one K20-beta GPU. The trace shows that the execution

flow is bound by the performance of the slowest machine (the K20-beta GPU, second

row) and thus we expect lower performance on this machine. We propose to re-adjust

the data layout distribution to be hardware-guided by the use of the capability-

weights. Using the QUARK runtime, the data is either distributed or redistributed

in an automatic fashion so that each device gets the appropriate volume of data to

match its capabilities. So, for example, for this system, using capability weights of

K20c:MIC:K20-beta of 10:8:5 would result in a cyclic distribution of 10 columns of

data being assigned to the K20c, for each 8 columns assigned to the MIC, and each 5
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Figure 3.6: Cholesky factorization trace on one 16-core Sandy Bridge CPU and
multiple accelerators (one K20c GPU, one Xeon Phi, and one K20-beta GPU),
without enabling heterogeneous hardware-guided data distribution.

columns assigned to the K20beta. The superscalar execution environment can do this

capability-weighted data assignment at runtime. Figure 3.7 shows the trace of the

Cholesky factorization for the same example as above (a matrix of size 30K a node of

the system D) when using the hardware-guided data distribution (HGDD) strategy. It

is clear that the execution trace is more compact meaning that all the heterogeneous

hardware are fully loaded by work and thus one can expect an increase in the total

performance. For that we represent in Figure 3.8 the performance comparison of the

Cholesky factorization when using the HGDD strategy. The curves in blue shows the

performance obtained for a one K20c and one XeonPhi experiments. The dashed line

correspond to the standard 1-D block-column cyclic distribution while the continuous

line illustrate the HGDD strategy. We observe that we can reach an improvement

of about 200-300 Gflop/s when using the HGDD technique. Moreover, when we add

one more heterogeneous device (the K20beta GPU), here it comes to the complicated

hardware situation, we can notice that the standard distribution do not exhibit any

speedup. The dashed red curve that represents the performance of the Cholesky

factorization using the standard data distribution on the system consisting of three

different devices behaves closely and less efficiently than the one obtained with the
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Figure 3.7: Cholesky factorization trace on one 16-core Sandy Bridge CPU and
multiple accelerators (one K20c GPU, one Xeon Phi, and one K20-beta GPU), using
the heterogeneous hardware-guided data distribution techniques (HGDD) to achieve
higher hardware usage.

same standard distribution on two devices (dashed blue curve). This was expected,

since adding one more device with lower capability may decrease the performance as

it may slow the fast device down. The blue and red curves in Figure 3.8 illustrate that

the HGDD technique exhibits a very good scalability for both algorithms. The graph

shows that the performance of the algorithm is not affected by the heterogeneity of

the machine, our proposed implementation is appropriate to maintain a high usage

of all the available hardware.

3.5 Supporting Distributed-memory Heterogeneous

Platforms

The compute nodes of large-scale machines contain a mixed-core approach to

hardware, combining multi-core CPUs and GPUs or coprocessors, each of which

appropriates for various work granularities. In this section, we describe the extended

work of utilizing QUARK to develop Cholesky factorization in a distributed-memory

environment. The extension includes a number of new contributions varying from the
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Figure 3.8: Performance comparison of the Cholesky factorization when using the
hardware-guided data distribution techniques versus a 1-D block-column cyclic, on
heterogeneous accelerators consisting of one K20c GPU (1dev), one Xeon Phi (2dev),
and one K20-beta GPU (3dev).

way data is stored and moved to the way algorithms are split into tasks and scheduled

for execution.

We extend the classical Lapack algorithms into heterogeneous algorithms for dis-

tributed systems and give a description for the case of the Cholesky factorization. We

designed a two-level block-cyclic distribution method to support the heterogeneous

algorithms, as well as an adaptive task scheduling method to determine the splitting

of work over the devices.

Algorithm 6 shows the starting point of our algorithmic considerations. The

decomposition of the input matrix across both rows and columns is matched by

the decomposition in double-nested loop to allow for static mapping to the hardware

and flexible scheduling at runtime. This two-fold decomposition in the data domain

and the algorithmic domain serves as facility of introducing lookahead Strazdins

(1998) to increase efficiency through temporal and spacial overlap of communication,

computation, and the mix thereof. Through this partitioning, we can take this concept

beyond its inception and apply it in both domains (across matrix dimensions and
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Algorithm 6: Right-looking blocked and tiled Cholesky factorization with a
fixed blocking factor nb.

Input : A—Symmetric positive definite
Input : nb—Blocking factor
Output: L—Lower triangular
for Ai,i ∈ {A1,1, A2,2, A3,3, . . . A∗,∗} do

Ai,i ∈ Rnb×nb

Li,i ← UnblockedCholesky(Ai,i)

for Aj,i ∈ {Ai+1,i, Ai+2,i, Ai+3,i, . . . A∗,i} do
Aj,i ∈ Rnb×nb

Aj,i ← L−1i,i × Aj,i

for Aj,k where j, k > i do
Aj,k ∈ Rnb×nb

Aj,k ← Aj,k − Lj,i × Li,k

loop nests) simultaneously. The proper tracking of these, admittedly more complex,

dependencies are offloaded to the runtime and thus only a minor burden is left to

the algorithm developer – the custodial task of invoking the runtime and informing

it about the dataflow structure.

Data Distribution: We use a multi-level hierarchy of data blocking rather than

fixed blocking across nodes, cores, and devices. At the coarsest (global distributed)

level we employ a 2D block cyclic distribution Choi et al. (1996), the main reasons

being scalability and load balance, both of which are of concern at the level of

parallelism and hardware size that we target. Inside a single node, the amount of

concurrency can still be staggering, especially when we count GPU threads, floating-

point ALUs, and hyper-threading contexts. More appropriate, however, is modeling

the single node hardware unit as a moderately parallel entity with at most tens of

computational units, be it GPU compute units or CPU cores. For such a hardware

model, a 1D cyclic distribution is adequate to balance the load while still scaling

efficiently. This 1D distribution has some additional benefits for matching the data

layout to the panel-update style linear algebra algorithm.
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MPI Communication: Our goal is to provide a level of abstraction that delivers

portable performance on many kinds of heterogeneous systems. To that end, we

propose a new methodology that avoids the all too common issue of the classical

distributed programming model – the “bulk-synchronous” Valiant (1990) lock-step

execution, which was used by ScaLapack Blackford et al. (1996). This model does

not cope productively with the heterogeneity of the current processing units (large

core-count many-core and heterogeneous systems), and neither can they overlap the

communication nor account for the variability in runtime performance behavior. In

a distributed-memory environment, explicit data movement tends to be the source

of many parallel, and thus hard to develop. To alleviate the issue and to keep

the overall ease of use and consistent notion of task-based runtime, we propose

encapsulating MPI communication calls inside tasks. This turns the message passing

primitives into data sources and sinks, which in turn makes it possible to ease the

burden of manual tracking of asynchronous calls throughout the code and ensuring

proper progress of the communication protocol. Additionally, the runtime provides

basic flow control to limit the number of outstanding asynchronous events, which

dovetails the issue of how many such non-blocking calls are acceptable for a given MPI

implementation – a purely software engineering limitation that could potentially be

hard to accommodate if done manually across a number of open source and vendor

MPI libraries. When utilizing QUARK in a distributed-memory environment, the

situation changes only slightly when one of the cores is devoted to only handle MPI-

related activities. On occasion, the communication core might go underutilized due to

high computation demand and low communication load but in the overall hardware

mix with tens of cores per node, this does not pose an appreciative loss in total

achieved performance. On the contrary, at the periods of heavy communication, the

thread is either busy queuing new asynchronous sends and/or receives or providing

progress opportunity to already executing MPI calls. With this scheme we achieve

on-demand communication between nodes from the single message passing thread

and shared memory concurrency within the node.
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Figure 3.9: Performance scalability of Cholesky factorization on a multicore CPU
and multiple GPUs (up to 6 K20c GPUs).

By combing all the extensions together, Figure 3.9 gives an overview of the

design of Cholesky factorization in a distributed memory environment. Its algorithm

looks like LAPACK (left), while a task superscalar runtime executes the underlying

distributed algorithm (right). The execution can be viewed as a DAG with the tasks

executed on nodes where the 2D block-cyclic data is located. In the example of

Figure 3.9, a matrix consisting of 5 × 5 block-cyclic distributed tiles is executed on

four distributed nodes, marked by different colors. MPI communication tasks, not

shown for simplicity, are between nodes of different colors. One SYRK task is shown

having adaptive grain sizes, depending on the hardware that the task is assigned to

(CPU, GPU, Phi).

3.6 Experimental Results

In this chapter, several algorithmic and programming techniques have been proposed

to address the challenge of obtaining good performance across multiple accelerators.
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The efficient strategies used to schedule and exploit parallelism across multi-

way heterogeneous platforms will be highlighted in this section through extensive

experiments performed on the four hybrid systems.

3.6.1 Performance in shared-memory environment

Our experiments are performed on a number of shared-memory systems with different

accelerators.
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Figure 3.10: Performance scalability of Cholesky factorization on a multi-core CPU
and multiple GPUs (up to 6 K20c GPUs).

Figure 3.10 shows the performance scalability of the Cholesky factorization in

double precision on a system equipped with dual-socket, 8-core Intel Xeon E5-

2670 (Sandy Bridge) processors and six NVIDIA K20c GPUs. The curves show

performance in terms of Gflop/s. We note that this also reflects the elapsed time,

e.g., a performance that is two times higher, corresponds to an elapsed time that is

two times shorter. On this system, our heterogeneous multi-device implementation of

Cholesky factorization shows very good scalability. For a 60, 000 matrix, the Cholesky

factorization achieves 5.1 Tflop/s when using all the 6 K20c GPUs. Figure 3.11 shows
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Figure 3.11: Performance scalability of Cholesky factorization on a multi-core CPU
and multiple Xeon Phi coprocessors (up to 3 Xeon Phi coprocessors).

similar performance trends of Cholesky factorization when using a system equipped

with dual-socket, 8-core Intel Xeon E5-2670 (Sandy Bridge) processors and three Intel

Xeon Phi KNC coprocessors. For a matrix of size 40, 000, the Cholesky factorization

reaches up to 2.3 Tflop/s when using the 3 Intel Xeon Phi KNC coprocessors.

3.6.2 Performance in distributed-memory environment

We also evaluate our unified programming model on distributed-memory systems.

We conduct our experiments on two distributed systems, featuring GPUs and MICs,

respectively: System A has 120 nodes connected with Mellanox InfiniBand QDR.

Each node has two Intel Xeon hexa-core X5660 CPUs running at 2.8 GHz, and

three NVIDIA Fermi M2090 GPUs. System B has 48 nodes connected by an FDR

InfiniBand interconnect providing 56 Gb/s of bi-directional bandwidth. Each node

features two 8-core Intel Xeon E5-2670 CPUs (Sandy Bridge), running at 2.6 GHz,

and two Intel Xeon Phi 5110P coprocessors with 8 GiB of GDDR memory each. We

use weak scalability to evaluate the capability of our algorithm to solve potentially
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larger problems when more computing resources are available. We set the problem

size for a single node to 30 000× 30 000 matrix.

1 4 9 16 25 36 64 100
0

10

20

30

40

50

60

70

80

Nodes

Pe
rfo

rm
an

ce
 T

flo
p/

s

 

 

Our algo 3 Nvidia M2090
Our algo 2 Nvidia M2090
Our algo 1 Nvidia M2090
Our algo     12 CPUs cores
ScaLapack 12 CPUs cores

Figure 3.12: Weak scalability (horizontal reading) strong scalability (vertical
reading) of the distributed multi-device Cholesky factorization on System A.
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Figure 3.13: Weak scalability (horizontal reading) strong scalability (vertical
reading) of the distributed multi-device Cholesky factorization on System B.

Figure 3.12 illustrates the performance of the Cholesky factorization on System A

– distributed platform with GPU accelerators. We plotted the best performance

obtained by the state-of-the-art ScaLapack software as implemented by the Intel

MKL, and tuned for the best blocking factor nb across multiple runs. We also

plotted the performance obtained by our algorithm when using only the CPUs.
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This allowed us to compare fairly with the ScaLapack approach. We can see

that our implementation is between 15% to 20% faster than its ScaLapack

counterpart and we achieved perfect weak scaling – a result we were expecting. The

ScaLapack approach follows the classical “bulk-synchronous” technique, meaning

that, at every phase of the factorization there is a synchronization. Thus, there is a

synchronization between the three phases of the Cholesky algorithm. The bottleneck

of the ScaLapack approach compared to our proposed dynamic technique can be

summarized by the following observations:

• during the diagonal tile factorization, only one processor is working in ScaLa-

pack while in our technique, when a processor is performing the diagonal

factorization of step i, the other processors are still applying updates from

step i− 1.

• ScaLapack cannot hide the overhead of the communication because it issues

only blocking message passing calls, while in our approach, the communication is

hidden since it is handled by a separate thread and thus when a communication

is in progress, the other threads are busy with computational kernels.

• Close to the end of the factorization, there is not enough work to keep the

processors fully occupied, this is a bottleneck for the ScaLapack approach,

while its effect is minimized for the algorithm we proposed because of the multi-

dimensional lookahead technique.

Figure 3.12 also shows the weak scalability for our algorithm when adding either

1, 2, or 3 GPUs. This experiment demonstrates a good weak scalability when using

heterogeneous hardware. Enabling more GPUs on each node brought the performance

up in a proportionate fashion. The performance obtained on 100 nodes using 3

NVIDIA M2090 GPUs is about 78 Tflop/s for a fixed problem size of 30 000 per

node. Similarly, our experiments on System B illustrates the same behavior. Our

approach exhibits a very good scalability when using 1 or 2 Intel Xeon Phi KNC 5110P
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coprocessors. The performance obtained on 36 nodes using 2 Xeon Phi coprocessors

is about 28 Tflop/s for a fixed problem size of 30 000 per node.

3.7 Conclusion

This chapter proposes a unified programming model for developing high-performance

dense linear algebra in multi-way heterogeneous environments using a task-based

runtime. In particular, we present best practices and methodologies from the

development of high-performance dense linear algebra for accelerators. We also

present how judicious modifications to a task-based runtime are used to ensure that we

meet two competing goals: (1) to obtain high fraction of the peak performance for the

entire heterogeneous system, (2) to employ a programming model that would simplify

the development. Our task superscalar runtime environment allows simple serial

algorithmic implementations that are flexible enough to achieve high performance on

both shared-memory and distributed-memory heterogeneous environments.
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Chapter 4

Soft Error Resilient Design for a

Task-based Runtime

4.1 Introduction

As the scale of modern computing systems grows, failures will happen more frequently.

On the way to exascale computing, a generic, low-overhead and resilient extension

becomes a desired aptitude of any programming paradigm. In this chapter we

explore three additions to a dynamic task-based runtime to build a generic framework

providing soft error resilience to task-based programming paradigms. The first

recovers data corruption by re-executing the minimum number of tasks, the second

takes critical checkpoints of the data flowing between tasks to minimize the necessary

re-execution, while the last one takes advantage of algorithmic properties to recover

data corruption without re-execution. These three resilient mechanisms have been

implemented in the PaRSEC task-based runtime framework Cao et al. (2015).

Experimental results validate our design and quantify the overhead introduced by

these mechanisms.

The rest of this chapter is organized as follows: Section 4.2 introduces and the

background of task-based scheduling using PaRSEC and the impact of soft errors
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on applications using task graph scheduling. Section 4.3 proposes three mechanisms

to protect applications against soft errors, including: correcting Sub-DAG strategy,

sub-DAG & data logging composite strategy and algorithm based fault tolerance

strategy. Section 4.4 describes the design of merging data logging mechanism into

PaRSEC runtime level to provide automatic resilience for application running on

PaRSEC. Section 4.5 shows the experimental results on Titan supercomputer at Oak

Ridge National Laboratory and Section 4.6 concludes this chapter.

The portion of this chapter has been published in the following publication of

mine:

• Chongxiao Cao, Thomas Herault, George Bosilca, Jack Dongarra, “Design for

a Soft Error Resilient Dynamic Task-based Runtime”, Parallel and Distributed

Processing Symposium (IPDPS), 2015 IEEE International

4.2 Problem Statement

While most of the techniques introduced are generic, in this chapter, we will illustrate

the soft error resilient design using the tiled Cholesky factorization Buttari et al.

(2009). This algorithm factors an N × N , symmetric, positive-definite matrix A

into the product of a lower triangular matrix L and its transpose, i.e., A = LLT (or

A = UTU , where U is upper triangular). We implement it using a tiled linear algebra

algorithm in which linear algebra operations are represented as a set of tasks that

operate on square blocks of data (the tiles), and are dynamically scheduled based on

the dependencies among them and on the availability of computational resources.

Algorithm 7 describes the tiled Cholesky factorization algorithm and Figure 4.1

shows the snapshot of this factorization on a 4 × 4 tile matrix at step k = 1. The

algorithm consists of four computational kernels: POTRF (Cholesky factorization),

TRSM (triangular solver), SYRK (symmetric rank-k update) and GEMM (general

matrix-matrix multiplication) that each operates on a tile (the matrix A is tiled in

NT×NT tiles of size nb×nb, and A[m][n] represents a whole tile of A). It is important
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Algorithm 7: Tiled Cholesky Factorization Algorithm

for k = 0...NT − 1 do
A[k][k]← POTRF (A[k][k])
for m = k + 1...NT − 1 do

A[m][k]← TRSM(A[k][k], A[m][k])

for n = k + 1...NT − 1 do
A[n][n]← SY RK(A[n][k], A[n][n])

for m = n+ 1...NT − 1 do
A[m][n]← GEMM(A[m][k], A[n][k], A[m][n])

to note that only the lower or upper triangular part of the input matrix is allocated

and initialized as Cholesky factorization operates on a symmetric matrix. Figure 4.1

also demonstrates that all operations only update data in lower triangular part of the

matrix. In order to implement this tiled algorithm on a distributed-memory platform,

the classical 2D block cyclic distribution is applied as it guarantees good scalability

and satisfactory load balancing following the “owner computes” strategy. As shown

in Figure 4.2, a 4 × 4 tile symmetric matrix is distributed evenly on a 2 × 2 grid of

processes. Implemented in PaRSEC, the Cholesky factorization can be described in

the form of DAG consisting of tasks and data dependencies. Figure 4.3 shows the

corresponding DAG for Cholesky factorization of a 4×4 tile matrix on a 2×2 process

grid. Each of the four computational kernels has been represented by different type

of tasks. Data dependencies between tasks can be local or remote, depending on the

position the predecessor task generating the input flow. Also, the input dataflow may

also be overwritten after the task execution. For example, in Figure 4.3, a TRSM

task overwrites the input from its predecessor task GEMM, and a POTRF task

overwrites the input from its predecessor task SYRK.

Soft errors can happen at random moment and memory location, normally in the

form of a bit flip. Figure 4.4 demonstrates how data corruption is propagated in

a DAG when a soft error occurs. If this failure happens during the execution of a

TRSM task on Node 1 (marked using a red cycle in the figure), till the end of the
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Figure 4.1: Step k = 1 of a Cholesky factorization of 4x4 tile matrix.
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Figure 4.2: Example of a tile 2D block cyclic distribution.

factorization the corrupted data flow would have been propagated to the following 6

tasks (marked using blue cycles in the figure), ruining in total 35% of the tasks in

this example.

As stated in the beginning of this chapter, we plan to design a solution at the

runtime level that has low overhead and is applicable to a wide range of applications.

One possible technique to offer low overhead solution is to prevent the corrupted data

flow from propagating to the failed task’s successors, therefore the failed task should

be recovered right after the soft error happens, and before it is able to propagate the

corrupted data flow. By utilizing task graph scheduling, the recovery of a failed task

can be also represented in the form of a DAG. By inferring the data dependencies in

recovery, a task-based runtime is able to exploit maximum parallelism by overlapping
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Figure 4.3: DAG of the Cholesky factorization of a 4x4 tile matrix on a 2x2 process
grid.

the recovery with original execution. Dependency conflict is solved correctly by

runtime and the concurrent recovery provides a low-overhead solution to deliver

correct result. Also, as task graph scheduling only triggers the recovery when a

failure happens, this dynamic feature avoids extra synchronization in a distributed-

memory environment, keeping the failure free execution almost unaltered from the

original, non resilient, execution.

On the other hand, algorithmic methods to mitigate the impact of data corruption

on specific applications are well developed. For example, in dense linear algebra,
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Figure 4.4: DAG of the Cholesky factorization of a 4x4 tile matrix on a 2x2 process
grid, and a possible scenario of a soft error propagation (starting from the task
surrounded by a red line).

Sherman-Morrison formula is applied to recover from one soft error during an LU

factorization, by introducing very small overhead Du et al. (2011a). However, in this

chapter, we are not going to design fault tolerant techniques based on modifying the

original algorithm of an application. As this algorithmic level design is not generic

and requires modification for every targeted application. We are focusing on dealing

with the challenge of designing an independent generic strategy that can be easily

applicable to any task-based programming paradigm.
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4.3 Design of Soft Error Resilience in PaRSEC

4.3.1 Sub-DAG Mechanism

For any task graph based application, its represented DAG is required to be stored

during execution as this DAG provides hints for task discovery and scheduling. In

PaRSEC, a DAG is represented by a concise format called Parameterized Task Graph

(PTG), which expresses the tasks and their data dependencies in a symbolic way,

independent of the problem size Bosilca et al. (2013). PaRSEC runtime engine

takes advantage of this concise representation to discover and schedule tasks without

unfolding the entire DAG in memory, reducing the memory requirement for storing

the DAG and exchanging the computation cycles to traverse the DAG with cycles to

compute the successors of a task.

When a soft error happens, the output, and potentially some of the input, of the

failed task is corrupted. A low-overhead solution to recover data corruption is to

suspend all the successors of the failed task until it is recovered. A generic way to

recover a failed task in a DAG is to re-execute it to deliver correct result. The re-

execution requires its predecessors to provide the input again. However, task graph

scheduling releases input dataflow after a task completes in order to reduce memory

cost during execution. As a result, the input dataflow for a failed task is not saved,

and it requires its predecessors to be re-executed as well. This backward traverse will

go along the opposite direction of the original data flow until it reaches the source task

of each of the necessary data. Considering the fact that the input for an application

comes from a read-only stable storage and is not affected by soft errors, as long as the

runtime is able to retrieve any information of the DAG, the correct result of any task

in the DAG can be regenerated. According to runtime’s feature of expanding DAG

at any level during execution, a straightforward idea to recover from soft errors is to

reuse the original data and DAG to recompute the missing data. Based on this idea,

we exploit the capability of PaRSEC’s PTG representation to dynamically retrieve
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all the predecessors of a failed task. In this mechanism, a failed task is replaced by

re-executing a correcting sub-DAG consisting of this task and all its predecessors.

The runtime provides the functionality of regenerating and scheduling the sub-DAG

dynamically.

Figure 4.5 demonstrates an example of the correcting sub-DAG for the failed

TRSM task in Figure 4.4. Compared with the original DAG, the size of this

sub-DAG has been reduced to minimum, only consisting of tasks related to re-

executing the failed task. Re-executing this sub-DAG ensures that the failed task

and its predecessors are recomputed only once from the original input data. As

analyzed before, the recovery here is not sequential, it is executed in parallel with

other available tasks in the original DAG. When implementing this correct sub-DAG

mechanism in PaRSEC, every computing node on a distributed-memory platform

owns its scheduling engine and is able to parse the concise PTG representation to

unfold the DAG at any level. After a soft error is detected, the computing node

re-executing the failed task triggers a global creation of the correcting sub-DAG by

broadcasting a recovery message to other computing nodes.

Figure 4.5: Correcting sub-DAG for the failed TRSM task.
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This correcting sub-DAG strategy is designed at application level, and treats every

task as a generic object. Thus, it can be integrated into a task-based runtime to

support any application running on it. In the following, we analyze the computing

overhead and storage overhead of this mechanism:

The Computing Overhead is proportional to the position of the failed task in

the DAG. If the failure happens in the early stage of the execution, that means the

size of the correcting sub-DAG is small and the computing overhead will be relatively

low. On the other hand, if the failure happens in the late stage of the execution,

the size of the sub-DAG will be large and the computing overhead will be relatively

high. We analyze the computing overhead by investigating the algorithm. Figure 4.6

shows an example when a failure happens in the middle of the Cholesky factorization.

Failure can strike four types of tasks, and the recovery cost of the POTRF task is

minimum, as it is the predecessor of all the other three types of tasks. We compute

the overhead as the number of additional floating point operations (FLOPs) to re-

execute. The recovery of a POTRF task takes the same amount of FLOPs as a

Cholesky factorization on the top left submatrix that encompasses the failed POTRF

task. On this example, it is a half-size submatrix A[[0, N/2], [0, N/2]], as marked by

dark blue line in Figure 4.6. We use the cost of recovering failed POTRF in Kth

column as the theoretical computing overhead. It is computed as:

FLOPOrig =
1

3
N3 FLOPExtra =

1

3
K3

OverheadComp =
FLOPExtra

FLOPOrig

= (
K

N
)3

Table 4.1 summarizes the computing overhead for Cholesky when failures happen at

different stages of execution. In the failure-free case, the correcting sub-DAG is never

created and there is no performance penalty.
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Figure 4.6: Example when a failure happens in the middle of a factorization.

Table 4.1: Computing overhead of sub-DAG mechanism for Cholesky factorization.

Failure Position Beginning Middle End No Failure

OverheadComp (
nb

N
)3 12.5% 100% 0

Storage Overhead: This sub-DAG mechanism requires extra memory space to

execute the correcting sub-DAG. Thus in the worst case, when the last task in original

DAG is failed, another N × N symmetric, positive-definite matrix is allocated and

the storage overhead is 100%.

4.3.2 Sub-DAG & Data Logging Composite Mechanism

As analyzed above for the correcting sub-DAG mechanism, the re-execution always

starts from the beginning of the DAG because the intermediary data is released during

failure-free execution. The computing overhead explodes when a failure happens

in the late stages of the execution, up to 100% to recover the final task of the

factorization, meaning that the whole application needs to be recomputed.
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In this strategy, the previous approach is augmented by adding a data logging

mechanism to limit the necessary rollback and therefore to reduce the number of re-

executed tasks. When recovering a failed task, only the predecessors after the newest

saved intermediary data are required to be re-executed.

In this approach, every matrix tile is treated as a data logging unit. We define

a logging interval β, meaning that a copy of dataflow is reserved in memory after

every β updates. Logging interval β can be modeled as a function of failure rate,

task execution time and checkpoint time Daly (2006). The optimal value of β is not

discussed in this chapter and we set it to a constant. Dataflow is logged locally on

every computing node. By combining all local logged data together, a fully-fledged

snapshot exists during the execution. Logged data is saved to local memory and we

assume that the probability that both the data and its saved copy are corrupted by

correlated failures is negligible. Figure 4.7 shows an example when β = 2 is applied

. The faded tasks here mean those tasks already completed, and those intermediary

dataflows updated twice are saved into local memory. It is important to mention that

only Read/Write (RW) flows require to be reversed during DAG execution, Read

flows are final results of matrix factorization and will not be modified in future.

Figure 4.8 demonstrates how to recover the last task in Cholesky factorization using

data logging mechanism. Here only those tasks generating intermediary flows below

the logged wave are required to re-execute. Also, tasks generating final results are

not required to re-execute, as final results can be retrieved from corresponding matrix

tiles directly. By utilizing this mechanism, the size of correcting sub-DAG is trimmed

to much smaller compared with original sub-DAG mechanism. In this case, only two

tasks, one SYRK task and one POTRF task are re-executed to the failure.

Computing Overhead: In this mechanism, the computational cost of recovery

does not depend on the failure position. Moreover, in the Cholesky factorization,

the input of any task is either the owner tile for which there was a data copy logged

at most β operations ago, or a final output of another task, that is validated before

the re-executed task could start. Thus, any failed task output can be recovered by
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Figure 4.7: An example of combining correcting sub-DAG with data logging method
when logging interval β = 2.

re-executing at most β previous tasks on the same tile. The number of FLOPs of a

task computed as C · nb3, where C is 1/3 for POTRF, 1 for TRSM, 1 for SYRK

and 2 for GEMM. We set C to 2 to provide a conservative bound when estimating

computing overhead for any failed task. The theoretical computing overhead can be

computed as:

FLOPExtra = β2nb3

OverheadComp =
FLOPExtra

FLOPOrig

=
β6nb3

N3
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Figure 4.8: An example of recovering a soft error with data logging method when
logging interval β = 2.

Table 4.2 summarizes the computing overhead of the Cholesky factorization using

this sub-DAG & data logging composite strategy. The overhead in failure free

execution is close to 0 because the cost of logging data into local memory is negligible.

Table 4.2: Computing overhead of sub-DAG & Periodic Checkpoint mechanism for
Cholesky factorization.

Failure Position Beginning Middle End No Failure

OverheadComp
nb3

N3

β6nb3

N3

β6nb3

N3
≈ 0
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Storage Overhead: This mechanism needs to allocate the same size of matrix as

input to store data flowing snapshot periodically, even if the initial data is available

on a stable storage. Thus, the storage overhead is 100%.

4.3.3 Algorithm-Based Fault Tolerance Mechanism

The two application level mechanisms described above take advantage of the task

graph of the application to recover from failures by re-executing the minimum number

of tasks. A different approach, potentially less generic, is to use an algorithmic

invariant to completely avoid re-execution. This approach is based on Algorithm

Based Fault Tolerance (ABFT) techniques, with well known solutions for most of the

dense and sparse linear algebra kernels. In order to recover from data corruption on

a matrix tile by using ABFT, additional information would be attached to this tile

to provide error correction functionality if necessary.
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Figure 4.9: An ABFT matrix multiplication example.

ABFT was firstly introduced by Huang and Abraham to detect and correct soft

errors in systolic arrays Huang and Abraham (1984). ABFT techniques are based

on the idea of maintaining consistency of the computing data and recovery data,

by applying appropriate mathematical operations on both original data and recovery

data Du et al. (2012). Typically, for linear algebra operations, additional rows and/or

columns are attached to input matrix to be maintained as checksums. An example

of ABFT enabled matrix multiplication is shown in Figure 4.9. The corresponding

matrices A, B, C have the following relationship:
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A ∗B = C

A is appended with a column checksum vector eTA while B is appended with a

row checksum vector Be. It is demonstrated as follows that the checksum relationship

for matrix C keeps consistent after computation:

 A

eTA

[
B Be

]
=

 AB ABe

eTAB eTABe

 =

 C Ce

eTC eTCe


In this task level approach, we attach two column checksum vectors to every tile in

the input matrix. Note that we do not modify the factorization itself: the checksums

are only attached original data layout. Figure 4.10 gives the example of the matrix

snapshot after attaching two column checksum vectors to a 4 × 4 tile matrix. It is

also important to mention that this ABFT based approach also provides an efficient

soft error detector. In order to detect errors in one matrix tile, one checksum vector

is sufficient. Furthermore, detecting and correcting n errors in one matrix tile require

at least n+ 1 checksum vectors Wu and Chen (2014). For example, let’s consider an

n× n matrix A = [a1, a2, ..., an] and two n vectors

e1 = (1, 1, ..., 1)T e2 = (1, 2, ..., n)T

Two column checksum vectors are defined as:

c1 = e1A c2 = e2A

Assume that an error happens at the (i, j) element of A:

a′i,j = ai,j + γ
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Now we can first decide the jth column of A is inconsistent with checksums:

α1 =
n∑

k=1

ak,j − (c1)j = γ 6= 0

ABFT techniques provide an efficient soft error detector, which can be used to

complement or replace existing hardware error detection mechanisms using ECC

memory. By attaching a single checksum vector to every matrix tile, we can also

implement a failure detector for the two application level mechanisms described above.

When a soft error happens, the checksum vector can determine the ith element of the

failed column causes the inconsistency:

α2 =
n∑

k=1

kak,j − (c2)j = iγ

α2/α1 = i

For error correction, the value of ai,j is corrected by simply subtracting α1.

For the remainder of this chapter, we consider the case of a single soft error per

execution. We simulate it by introducing a significant bit-flip into the exponent

of a floating point data and let the runtime detect and recover the state of the

computation. It is to be noted that for some tasks, a single soft-error is propagated

inside a task and translates into multiple data corruption. While the ABFT

mechanism presented here is not able to correct the data in this particular case,

it can still be trusted as a detection mechanism. In this case, the two mechanisms

from Section 4.3.1 and 4.3.2 can successfully complement the ABFT approach. In the

following analysis of overhead, we focus on the case where failures can be recovered

using an ABFT mechanism.

Computing Overhead: Using ABFT techniques, extra FLOPs are introduced

for each task from maintaining the consistency of checksums and validating result.

After attaching checksum vectors, the matrix size becomes (1+2/nb)N×(1+2/nb)N .
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Figure 4.10: Attaching checksum vectors to a 4x4 tile symmetric matrix.

The number of FLOPs of the Cholesky factorization on this larger matrix is:

FLOPNew =
1

3
((1 +

2

nb
)N)3

The cost of maintaining checksum is:

FLOPChk =
1

3
((1 +

2

nb
)N)3 − 1

3
N3

The computing overhead of maintaining checksums is:

OverheadChk =
FLOPChk

FLOPOrig

= (1 +
2

nb
)3 − 1

The number of extra FLOPs of correcting error in one task comes mostly

from using checksum vectors to detect inconsistency, which is 2nb2. The detection

operation is a matrix vector multiplication and we wrap this operation into the task

definition of POTRF, TRSM, SYRK and GEMM. Failure detection is enabled

upon the completion of every task automatically and doesn’t modify original DAG.
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If one failure is detected, only nb floating point operations are required to locate

the error position and only one FLOPs is required to add the error back to the

corrupted matrix element. These nb+ 1 operations are negligible comparing with the

large amount of operations in maintaining checksums and detecting errors, and thus

are discarded in overhead estimation. There are approximately (N/nb)3/6 tasks in

Cholesky factorization, thus we estimate the total cost of correcting error as:

FLOPCorr =
N3

3nb

The computing overhead of correcting error is:

OverheadCorr =
FLOPCorr

FLOPOrig

=
1

nb

The total computing overhead of this mechanism is:

OverheadComp = OverheadChk +OverheadCorr

= (1 +
2

nb
)3 − 1 +

1

nb

This task level mechanism recovers the soft error internally, avoiding possible task

re-execution. Thus the recovery overhead does not depend on the failure position

in the DAG. As shown in Table 4.3, the computational overhead remains constant

for one failure case as every task itself has become resilient after attaching checksum

vectors.

Table 4.3: Computing overhead of ABFT mechanism for Cholesky factorization.

One Failure No Failure
OverheadComp (1 + 2

nb
)3 − 1 + 1

nb
(1 + 2

nb
)3 − 1 + 1

nb

Storage Overhead: The ABFT mechanism requires allocating extra memory

to store checksum vectors. For every nb × nb tile, the size of 2 checksum vectors is

nb× 2, thus the total storage overhead is 2/nb. In tiled dense linear applications, the
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tile size is tuned to optimize the efficiency of the operation and the parallelism of the

application. This often translates in nb in hundreds, which make the extra memory

requirement of storing checksum vectors negligible.

4.4 Fault Tolerant Layer in PaRSEC

As mentioned is Section 4.3.2, data logging mechanism is generic and low-overhead

in nature and is able to be integrated into any application that can be expressed as a

DAG of tasks with labeled edges designating data dependencies. Here we move this

mechanism into the runtime level of PaRSEC to provide automatic resilience for non

fault tolerant applications on PaRSEC. Three major functionalities are implemented

in this fault tolerant layer to ensure a resilient running environment for DAG-based

applications:

1. Reserving minimum dataflows for protection.

2. Minimizing number of re-executed tasks for recovery.

3. Minimizing extra memory used for data logging.

Also, this fault tolerant layer exports a configuration interface for application

developers and auto tuning tools to setup optimal logging scheme for specific

application. Figure 4.11 explains how this fault tolerant layer works. An original

application without any fault tolerant features is submitted into PaRSEC in a form

of DAG. Whenever a task is completed, fault tolerant layer will check whether any

output dataflow needs to be reserved based on user/tool defined data logging scheme.

Moreover, every time when a dataflow reaches logging point or becomes final data,

this fault tolerant layer will release previous saved version for this dataflow, in order

to keep memory overhead to minimum, and to guarantee that there is always one

active logging wave during application execution for recovering potential failures. On

the other side, if a failure reported from underlying hardware (i.e., ECC memory)
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or application’s own algorithmic feature, this fault tolerant layer will generate a

minimum DAG consisting of all the tasks from the newest logging wave to the failed

task and execute it in parallel with other non failed tasks in original DAG.

Original Non-FT DAG (jdf) 

PaRSEC 

Every Task Done 

Reserve dataflow 
if necessary 

Recover from 
reserved dataflow if 
failed 

Figure 4.11: Fault Tolerant Layer in PaRSEC, Supporting Non Fault Tolerant
Applications.

4.5 Experimental Results

4.5.1 Experiment Setup

The Titan supercomputer at Oak Ridge National Laboratory is used as experimental

platform. Titan has 18, 688 nodes with Cray custom high-speed interconnect, each

node contains a 16-core AMD Opteron 6274 CPU with 32 GiB of DDR3 ECC memory

69



and an Nvidia Tesla K20X GPU with 6 GiB GDDR5 ECC memory. Our experiments

are tested on the CPU section of Titan, and those mechanisms are generic to be

extended to support GPU section of Titan. Up to 256 computing nodes of Titan

are used in performance evaluation, and for every computing node, 8 CPU cores are

used to explore parallelism inside a node. At the software level, we use GCC 4.8.2 as

compiler and Cray LibSci 12.2.0 to provide basic linear algebra subroutines (BLAS).

In the following experiments of validating overhead, we inspect the overhead of

three proposed mechanisms for soft errors and the overhead of protection and recovery

from fault tolerant layer of PaRSEC separately. In order to investigate the practical

overhead of three mechanisms comparing with the theoretical overhead analyzed

before in this chapter, three resilient mechanisms enabled Cholesky factorizations

are tested, and failures are injected as single bit-flip inside one task during the

execution. Failure is triggered in the middle of Cholesky factorization, as indicated

in the Figure 4.6. Also, in order to investigate the protection and recovery overhead

from fault tolerant layer in PaRSEC, we launch a non resilient QR factorization and

inject a failure in the middle of QR factorization.

Both Cholesky factorization and QR factorization are implemented in double

precision with tile size nb = 200 that was tuned to reach the highest performance

of trailing matrix update operation (i.e., the GEMM operation and TSMQR

operation respectively), while still allowing a large amount of parallelism at reasonable

matrix sizes. To serve as a comparison base, we use the standard Cholesky and

QR factorization implemented in PaRSEC without adding any soft error resilient

mechanism.

We pursue weak scalability experiments to evaluate the capability of the proposed

fault tolerant strategies to handle potentially larger problems when more computing

resources are available. For these experiments, we fix the memory used on each node

and increase the matrix size accordingly when we increase the number of nodes. The

input matrix size for single-node experiments is set to 6000 for Cholesky factorization
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and 8000 for QR factorization, and is scaled to 6000
√
P and 8000

√
P respectively,

where P is the number of nodes.

In all experiments reported in this section, we take 5 runs and report the average

(arithmetic mean) performance.

4.5.2 Performance of Sub-DAG Mechanism
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Figure 4.12: Weak scalability of correcting sub-DAG mechanism compared to non
fault tolerant Cholesky.

Figure 4.12 shows the performance and overhead of the Cholesky factorization on

Titan with the correcting sub-DAG mechanism when one failure happens during

the execution. We inject a failure in one GEMM task when factorization goes

to the middle column of the matrix. Here a failure detector is implemented using

ABFT methodology by add one checksum vector to every matrix tile. The red

curve is the performance of non fault tolerant Cholesky factorization implemented

in standard PaRSEC. The blue curve is the performance of fault tolerant version in

failure-free execution. Comparing with non-fault tolerant performance, its overhead
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is introduced by the failure detector. The theoretical overhead for one failure is about

15%, including failure detecting overhead using one checksum vector from Table 4.3

and failure recovering overhead as computed from Table 4.1 (as explained, this is the

cost of computing a Cholesky factorization on a matrix of half size). We can see

that the overhead of one-failure case varies around 15% to 20%, which is close to

theoretical overhead.
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Figure 4.13: Number of total tasks of the correcting sub-DAG mechanism in failure-
free and one-failure cases.

As failure could strike any of the four types of tasks in Cholesky factorization.

Figure 4.13 shows the number of total tasks of the correcting sub-DAG mechanism

in different cases. It indicates that the number of re-executed tasks for four types of

tasks doesn’t change much. Recovering from failures in POTRF requires the fewest

number of task re-executions since POTRF is on the critical path of DAG and is the

predecessors of the other three types of tasks.
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4.5.3 Performance of Sub-DAG & Data Logging Composite

Mechanism
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Figure 4.14: Weak scalability of correcting sub-DAG & data logging composite
mechanism compared to non fault tolerant Cholesky.

Figure 4.14 shows the performance and overhead of the Cholesky factorization

on Titan with the correcting sub-DAG & data logging composite mechanism when

one failure is injected during the execution. The same as the previous experiment, a

failure detector is also implemented using ABFT methodology by add one checksum

vector to every matrix tile. The checkpoint interval β is set to 10, i.e. a copy of one

matrix tile is saved to memory locally after 10 updates. Since data logging mechanism

reserves intermediary dataflow and limits the maximum number of re-executed tasks

to 10, for one failure case, the failure is injected in one GEMM task without loss

of generality. Recovering from data corruption in the other three types of tasks have

similar overhead. Based on the discussion in Section 4.3.2 and Section 4.3.3, the

theoretical overhead includes recovery overhead which is close to 0 (as explained,
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only 10 tasks are required to re-execute comparing with a large number of original

tasks) and failure detection overhead which is close to 2%.

We can see that the overhead of the one-failure case fluctuates around 7%.

Comparing with small theoretical overhead, the practical one also includes the noise

of the measurement. These results validate our analysis that in-memory data logging

mechanism reduces the number of re-executed tasks drastically and the cost spent for

logging intermediary dataflow remains negligible.

4.5.4 Performance of ABFT Mechanism
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Figure 4.15: Weak scalability of ABFT mechanism compared to non fault tolerant
Cholesky.

Figure 4.15 presents the performance and overhead of Cholesky factorization

with task level fault tolerant support using ABFT technique on Titan. ABFT

based mechanism provides both failure detection functionality and failure correction

functionality. Each task in original execution DAG is validated at completion, and

corrective actions are initiated when this validation fails. For the one-failure case, we
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inject the failure in one GEMM task, and the erroneous matrix element will not be

propagated inside the task thus it can be recovered using checksums. The theoretical

overhead is obtained from Table 4.3. The results show that the overhead of recovering

one failure fluctuates from 5% to 7.5%, and does not increase when application size

and number of nodes increase, and remains close to the theoretical overhead. Also, it is

important to note that the difference between failure-free performance and one-failure

performance is negligible. Compared with failure-free case, only nb more FLOPs are

required to locate the error position and only one FLOP is required to correct the

wrong matrix element. These extra nb + 1 operations are negligible considering the

total number of FLOPs is (1/3)N3 in the Cholesky factorization.

Compared with the previous two application level mechanisms, this task level

mechanism has higher overheads in fault-free case because of the cost of maintaining

checksums. At the contrary, the additional cost to recover from failures is very small

in task level mechanism since it does not require task re-execution.

4.5.5 Overhead of Detection Mechanism

For the first two application level mechanisms we use ABFT based method to

provide accurate and effective failure detectors. Here we investigate the practical

detection overhead in Cholesky factorization introduced ABFT based failure detector.

Figure 4.16 presents the performance of a Cholesky factorization with the correcting

sub-DAG mechanism on 60k matrix using 100 nodes, and highlights the cost and

overhead of using ABFT of adding a single checksum to each matrix tile to implement

the soft error detection mechanism. Detection overhead includes extra FLOPs spent

in maintaining the checksum and validating results. This computational cost is paid

on each task, regardless if it is a task of the original DAG, or a task of the correcting

sub-DAG. The results validate that if ABFT detector is enabled, the overhead cost

can increase up to 6%.
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Figure 4.16: Performance and overhead of using ABFT as a detection mechanism
for the correcting sub-DAG approach without failures and with one failure.

4.5.6 Performance of Fault Tolerant Layer in PaRSEC

In this experiment, we investigate the protection and recovery overhead from fault

tolerant layer in PaRSEC by using QR factorization. Failure is injected to a TSMQR

task when the factorization goes to the middle column of the matrix. Figure 4.17

shows the performance of QR factorization running on PaRSEC when fault tolerant

layer is enabled, comparing with fault tolerant layer is disabled. Here we set data

logging interval to 10. The performance of one failure case and failure-free case are

very close as data logging interval is small. Comparing with the performance of QR

factorization running on PaRSEC without resilient support, the overhead from one

failure case and failure free case fluctuate around 2%, which is introduced from the

cost of logging intermediary dataflow and is very small.
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Figure 4.17: Overhead of Fault Tolerant Layer in PaRSEC on QR Factorization.

4.6 Conclusion

This chapter proposes three soft error resilient mechanisms designed for a dynamic

task-based runtime. The proposed extensions provide resilience at two different levels

of granularity: coarse granularity, automatic solutions at the application level and

fine granularity, algorithm-based solutions at the task level. At the application

level, a correcting sub-DAG mechanism is used to recover from failures by re-

executing minimum number of tasks from beginning to retrieve lost information.

A composite mechanism combining sub-DAG with data logging saves intermediary

dataflow between tasks during the execution to reduce the amount of necessary re-

executions. These two application-level mechanisms are generic and can be integrated

into any task-based dynamic runtime, providing automatic resilient support for

applications running on it. As task-based approaches decompose the application into

smaller and less complicated tasks, it is feasible to take advantage of the intrinsic

algorithm properties of tasks to provide validators allowing to detect, and possibly

77



recover, from soft errors. Additionally, a soft error detector based on ABFT technique

is proposed to provide detection ability for any DAG-based application exhibiting

ABFT properties (as described by Huang and Abraham Huang and Abraham (1984)),

that can successfully complement a hardware-level failure detector. We also present

how the generic data logging mechanism is merged into PaRSEC runtime to provide

automatic resilience for non fault tolerant applications over PaRSEC. Detailed

experiments have been tested on Titan supercomputer at ORNL, and experimental

results validate the proposed fault tolerant mechanisms and highlight the low overhead

of the current implementation in PaRSEC framework.
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Chapter 5

Hard Error Resilient Design for a

Task-based Runtime

5.1 Introduction

While many types of failures can strike a distributed memory cluster Schroeder and

Gibson (2007), the focus of the work in this chapter is on the most common case: the

hard error, that is, the fail-stop model. In this model, failure is in the form of node

outage. The failed cluster nodes stop working and the corresponding data is lost.

When a hard error happens, the application is interrupted due to lost of data and

computing resource. A hard error could occur at any moment and affect any parts of

the application’s data. We introduce two generic approaches, which augment the data

logging mechanism for soft error in Section 4.3 to adapt hard-error environment. To

be more specific, we propose non-volatile storage approach and remote data logging

approach to protect intermediary dataflow and final data for DAG-based applications.

The rest of the chapter is organized as follows: Section 5.2 introduces the impact of

hard errors on distributed memory systems for DAG-based applications. Section 5.3

presents the two mechanisms to protect critical data against hard errors, including
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non-volatile storage mechanism and remote data logging mechanism. Section 5.4

concludes this chapter.

5.2 Problem Statement

A00	

A10	 X	

A20	 A21	 A22	

A30	 X	 A32	 X	

Process	0	

Process	1	

Process	2	

Process	3	

X	 Failure	

Figure 5.1: Global view of the matrix when a process fails.

In this chapter, we continue to use Cholesky factorization as a case study to

illustrate our design as Chapter 4. Here, we consider hard error in the form of

process failure. When a process fails in the process grid, the data resident on that

process will be all gone. Figure 5.1 shows the status of the matrix when a hard error

strikes. The original matrix layout is 2D block cyclic distribution and a hard error

strike process 3 during execution. All the matrix tiles resident on process 3 are gone.

Figure 5.2 shows the corresponding stats in the DAG. Multiple tasks are failed when

process 3 fails. These tasks include: (1) completed tasks generating final data in the

matrix; (2) running tasks generating current intermediary dataflows in the DAG; (3)

future tasks on the failed node. The impact of a hard error is more complicated to

handle compared with a soft error, as there is more dataflow corruption after a hard

error and failures are propagated to more tasks. For example in figure ??, failure is

propagated to all successors requiring data on process 3.
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Figure 5.2: DAG of the Cholesky factorization of a 4 × 4 tile matrix on a 2 × 2
process grid, and a possible scenario of a hard error happens on process 3.

5.3 Design of Hard Error Resilience in PaRSEC

In Chapter 4, data logging mechanism has been presented as a generic and low-

overhead scheme to recover soft errors in DAG-based applications. The idea of data

logging mechanism is based on reducing the size of re-executing DAG for a failed task

by reserving intermediary dataflow during execution. After a hard error occurs, the

status of a DAG-based application can be viewed as an extended one after a soft error

happens, including:
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1. Multiple on-going tasks are failed when a hard error happens.

2. Final result of the application on the failed process which may serve as Read

input for other future tasks, is also unavailable.

In this section, we present two mechanisms, that is, non-volatile storage mecha-

nism and remote data logging mechanism, to extend data logging method to protect

against hard errors.

5.3.1 Non-volatile Storage Mechanism

In the form of process failure, all the data resident on the failed process is lost,

including ongoing dataflow and reserved dataflow. The first mechanism to augment

data-logging mechanism is utilizing non-volatile storage. Non-volatile storage is a

type of computer storage that can retrieve stored information even after having been

power cycled (turned off and back on). Non-volatile storage devices include read-only

memory, flash memory, ferroelectric RAM, most types of magnetic computer storage

devices (e.g. hard disk drives, floppy disks, and magnetic tape), optical discs, and

early computer storage methods such as paper tape and punched cards Wikipedia

(2017b). Non-volatile storage can be served as secondary storage for reserved data

in a hard-error environment. The form of main memory on today’s computer system

is random access memory (RAM), which is volatile, implying that when a compute

node is crashed, any information saved in main memory is lost. By combining non-

volatile storage and main memory together, intermediary dataflow as well as final

data will be saved in both locations. Whenever a hard error happens, failed process

would retrieve saved data from non-volatile storage, while other non-failed processes

would retrieve saved data from main memory, and collaborate together to rebuild the

sub-DAGs for recovery. Considering performance, two types of non-volatile storage

can be utilized in our design:

1. Solid-state drive (SSD): A SSD is a solid-state storage device that uses

integrated circuit assemblies as memory to store data persistently Wikipedia
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(2017c). Compared with hard disk drives, SSDs are typically more resistant to

physical shock, run silently, have lower access time, and lower latency.

2. Non-volatile random-access memory (NVRAM): NVRAM is random-

access memory that retains its information when power is turned off (non-

volatile) Wikipedia (2017d). This feature is different with existing dynamic

random-access memory (DRAM) and static random-access memory (SRAM),

which are only able to save data when power is on. Flash memory is the most

popular NVRAM memory on market today.

Nowadays, building systems equipped with NVRAM remains costly. Due to its

high cost, NVRAM is usually considered as compelling storage technologies for future

supercomputers. For example, the next generation supercomputer at Oak Ridge

Leadership Computing Facility (OLCF), named SUMMIT, will arrive in 2017 and

be ready for users in 2018. In SUMMIT, Each node will have over half a terabyte

of coherent memory addressable by all CPUs and GPUs, plus an additional 800

gigabytes of NVRAM Hemsoth (2015). Here we propose a design of utilizing non-

volatile storage to save necessary information for a dynamic task-based runtime. We

implement our design in machines equipped with local SSDs, and it is applicable for

future machines equipped with NVRAM.

Reviewing the implementation of data logging mechanism in Chapter 4, every

compute core saves necessary output dataflow to main memory after task completion.

After using non-volatile storage as a secondary destination to reserve dataflow and

final result, data movement toward non-volatile storage can be implemented in

following two ways:

1. Every compute core stores its own data to non-volatile storage.

2. Assigning a separate core to handle data movement to non-volatile storage.

Considering the imbalance between slow sequential I/O operations and fast

parallel multi-core task executions, using method 1 would force task execution on
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every compute core to halt until I/O is available. In our design, we use method 2

as it doesn’t require explicit wait for I/O. Figure 5.3 illustrates how data movement

to non-volatile storage is implemented in PaRSEC. In this example, on process 3,

intermediary dataflow is stored every 2 updates (blue flow), and final result (red flow)

is also backed up in SSD. Whenever a compute core completes a task and reaches

saving point, this compute core pushes the target data into the storage queue (using

SSD in our implementation) and continues to execute next available task. A separate

core handles I/O with SSD, it keeps moving data out of the storage queue and saving

in SSD. Data movement to SSD is asynchronous in this case, and there is no idle gap

for any compute core to wait for I/O to be available.

We investigate the overhead of using SSD to reserve necessary data against

hard error by using Cholesky factorization. As every node only backs up data in

local SSD, the overhead is dominated by local SSD access. The configuration of

the experiment platform is: 2 Intel E5520 CPUs running at 2.27 GHz and 1 SSD

connected by SATA interface. The Read/Write bandwidth of this SSD is about

800 MB/s. Cholesky factorization with matrix size 6000 and tile size 200 is tested,

performance is compared with standard PaRSEC without fault tolerant features.

Figure 5.4 shows the performance of using non-volatile storage mechanism with

different saving interval. The Cholesky factorization using standard PaRSEC runs at

about 60 GFlop/s, while performance of using SSD is under 20 GFlop/s. Remember

the result of in Section 4.5, data logging mechanism only introduces close to 0 overhead

as the cost of accessing main memory is negligible. Here, the overhead is dominated

by the cost of saving results into SSD. Bandwidth of current generations of main

memory (Random-access memory) is listed in table 5.1. Comparing with the SSD

bandwidth on the experiment platform, the transfer speed of SSD is 10 − 20 times

slower than main memory, meaning that the saving overhead of using SSD is 10− 20

times larger than using main memory. Also, data movement to SSD is sequential,

and in order to protect again hard errors, more data is saved in this case. These two

factors also contribute the overhead of using SSD. The overhead of this non-volatile
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Figure 5.3: DAG of the Cholesky factorization of a 4x4 tile matrix on a 2x2 process
grid, using non-volatile storage (SSD) mechanism on process 3.

mechanism mostly depends on the transfer bandwidth of underlying storage devices.

In future if faster storage devices such as NVRAMs are available, this mechanism is

adaptable and provides lower overhead. Furthermore, the red bar in the result shows

the performance of using saving interval of 30. As the size of matrix is 6000 and tile

size is 200, the total number of factorization steps is 30. This gives us a measurement

of overhead that if SSD is only used to protect input and output of an application.
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Figure 5.4: Performance of Cholesky Factorization with Non-volatile Storage
Mechanism.

Table 5.1: Bandwidth of Current Generations of RAM

RAM
Type

DDR3-1066 DDR3-1333 DDR3-1600 DDR4-2133 DDR4-2400

Bandwidth 8533 MB/s 10667 MB/s 12800 MB/s 17066 MB/s 19200 MB/s

5.3.2 Remote Data Logging Mechanism

The idea of non-volatile storage mechanism presented in Section 5.3.1 is to put

reserved dataflow and final result into devices that can retrieve information even

after having been power cycled (turned off and back on). The overhead of such

mechanism is limited by the Read/Write bandwidth of storage device. Here we

present another mechanism to extend data logging method in a hard error-prone

environment by utilizing main memory on a remote node. As shown in figure 5.5,

whenever a dataflow in the DAG reaches a logging point or becomes final result of

the application, corresponding compute node generating this dataflow sends a copy

of it to a remote buddy node, and retrieves the copy back from the buddy node if a

hard error occurs later. As using remote buddy node to backup dataflow increases the

amount of data transferred in the network, the selection strategy of buddy node can

impact the performance of protected applications. An optimal selection of a buddy

node involves the application’s algorithmic feature and hardware performance, which
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is not discussed in this work. Here, we use a simplified strategy to set the buddy

node as original node rank +1. Figure 5.6 describes how this remote data logging

mechanism is working on node 3 of Cholesky factorization of a 4 × 4 tile matrix

on a 2 × 2 process grid. Similar as non-volatile storage mechanism in section 5.3.1,

intermediary dataflow is stored every 2 updates (blue flow), and final result (red flow)

is also backed up in remote buddy node. Whenever a compute core completes a task

and reaches saving point, this compute core creates a communication task of sending

this target data, submits this communication task to the communication engine of

PaRSEC and continues to execute next available task. Communication engine on

each node handles data interaction with remote buddy node by using asynchronous

send and receive activities.

Original	node	 Buddy	node	

Back	up	

Recover	

Figure 5.5: Remote Data Logging Mechanism.

In the direction of implementing remote data logging mechanism in the runtime

level of PaRSEC, the termination of computer node in a distributed-memory

environment is different in the context of fault tolerant execution compared with the

one in original task graph execution context. In original PaRSEC, tasks are assigned

to different compute node based on data locality. In order to determine when the

computation has completed, every node actively detect whether all assigned tasks

are done and no more data send request to other nodes is pending. Based on such a

termination detection mechanism, every node will close as soon as possible. As shown

in figure 5.7, remote data logging mechanism could not work under this termination
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Figure 5.6: DAG of the Cholesky factorization of a 4x4 tile matrix on a 2x2 process
grid, using remote data logging mechanism on process 3.

scheme because it is not guaranteed that buddy node will terminate later than original

node, leaving data backup and recovery unreliable.

In order to enable remote data logging mechanism to work in PaRSEC, the node

termination agreement in PaRSEC is modified. All compute nodes must agree that

all of them are idle and no more work is available. To implement such a collective way

of termination, many schemes are possible, ranging from centralized schemes using

shared counters and termination detection servers to fully distributed schemes Dinan

(2010). We have implemented a collective version of termination for PaRSEC in fault

tolerant context using shared counters. On every compute node, a shared counter is
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Figure 5.7: Remote data logging mechanism is unreliable in original PaRSEC
termination scheme.

initialized as the number of total compute nodes in current process grid. Whenever

a compute node finishes local tasks, it will broadcast its completion information to

all other nodes to update shared counter. After all nodes reach to idle status, the

shared counter is set to 0 and all nodes are ready to terminate. Figure 5.8 describes

the implementation of this modified termination scheme, under such scheme, a buddy

node will keep running after local tasks are completed, preparing for receiving logged

data and possible recovery.

The overhead of extra messages added to communication level in this remote data

logging mechanism is essential, as it delays the transfer of original dataflows in the

DAG and activation of available tasks. As we take a simplified decision for setting

remote buddy node as original node’s rank +1, it is possible that the buddy node is

one of original node’s direct successors due to application’s algorithmic feature. For

example, in Cholesky factorization, a POTRF task generates final output for current

matrix tile and broadcasts its result to all the matrix tiles below it doing TRSM
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Figure 5.8: Modified PaRSEC termination scheme for remote data logging
mechanism.

tasks. Figure 5.9 demonstrates an example that the remote buddy node happens to

be one of the POTRF task’s successors. In this case, a duplicated data transfer is

committed to communication engine and it should be avoided in optimal scenario for

reducing extra communication cost. In worst case, if an application needs to log data

remotely for every task and remote buddy node belongs to one of the successors in

every step, the overhead of extra messages added to communication engine could be

100%.

A dynamic scheme for selecting remote buddy node has been implemented in

PaRSEC. When a task reaches a logging point, runtime firstly checks whether there

is any remote node exists as one of its successors. If this task doesn’t have successors

or all its successors are local tasks, then its output is logged remotely to original

rank +1. Otherwise, the runtime chooses the first remote successor as the buddy

node automatically. Also, on the receiver’s side, it is important to tell whether an

incoming dataflow needs to be logged or not. A data logging message has been merged
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Figure 5.9: An example of duplicated data transfer in Cholesky factorization using
remote data logging mechanism.

into original dataflow message, and this logging message tells the receiving node to

log the incoming dataflow or not. As the position of remote buddy node is decided

dynamically during execution, it is important to retrieve the same information back

during recovery. In Section 4.3, the PTG feature has been utilized to dynamically

expand the DAG to any direction as wanted. Here during recovery, we take advantage

of PTG representation of tasks in PaRSEC again, expand the DAG one level deeper

for failed tasks on crashed node to find correct buddy node. Also, the buddy node is

failed node’s rank +1 if the failed task has no remote successors.

The overhead of using remote data logging mechanism has been investigated.

We use Cholesky factorization as the application and conduct experiments on a

16 nodes cluster at University of Tennessee. Every node has 2 Intel E5520 CPUs

running at 2.27GHz, and they are connected with Infiniband-20G network. Weak

scalability experiments are carried to evaluate the overhead of this remote data logging

mechanism. We set tile size to be 200 and the matrix input size for single-node

experiments to 6000 for Cholesky factorization, and scale it with 6000
√
P where P
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Figure 5.10: Overhead of remote data logging mechanism in Cholesky Factorization
using infiniband-20G.

is the number of nodes. Figure 5.10 shows the overhead of this mechanism. Data

logging interval is set to 10 and 20 separately, and performance is compared with non

fault tolerant version of PaRSEC. From the results, we can see that the protection

overhead for both data logging intervals are under 10%, this means that the cost of

using remote data logging mechanism to protect application is acceptable and it is

feasible to continue to integrate with fault tolerant MPI library (e.g., ULFM) to design

a recovery mechanism. Another observation from the results is that the overhead of

logging data every 10 updates and logging data every 20 updates is very close. As

factorization goes on, the actual matrix size where tasks are updating is shrinking,

that means the amount of data that needs to be logged remotely is decreasing during

execution. Also, the dynamic scheme of deciding remote buddy node reduces extra

data added to communication engine. Even using 10 interval the data will be logged

more frequently, the total amount of data added to communication engine is close to

using 20 interval.
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Figure 5.11: Overhead of remote data logging mechanism in Cholesky Factorization
using infiniband-10G.

As we know by using remote data logging mechanism, extra massages added to

communication engine would delay the transfer of original dataflow and activation

of available tasks. The bandwidth of network could also impact the performance

of this mechanism. We conduct another set of experiments on another 16 nodes

cluster at University of Tennessee with slower network interconnection. Here, every

node is equipped with 2 Intel Westmere-EP CPUs running at 2.13GHz, and they are

connected with Infiniband-10G network. Network bandwidth is only half compared

with previous cluster and we conduct the same weak scaling experiments for Cholesky

factorization. Figure 5.11 shows the results and we can see can the overhead of using

data logging interval 10 and interval 20 is around 15% to 20%. Compared with the

overhead on faster network interconnection cluster, extra messages related to remote

logging take more time to transfer as the network bandwidth is smaller here, resulting

in higher delay in original DAG execution.
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For today’s supercomputers and future supercomputers, interconnect is high-

bandwidth. For example, Titan supercomputer at Oak Ridge National Laboratory

is equipped with Cray Gemini interconnect which has 20 GB/s bandwidth and

next generation supercomputer Summit at Oak Ridge National Laboratory will use

dual-rail Mellanox EDR InfiniBand interconnects, providing 23 GB/s data sharing

between the nodes Hemsoth (2015). These high-bandwidth interconnection implies

that remote data logging mechanism is an effective solution to protect DAG-based

applications against hard errors on supercomputers.

5.4 Conclusion

This chapter describes two feasible mechanisms designed for a dynamic task-based

runtime, for handling hard errors. The proposed extensions are implemented in

PaRSEC and ensure resilience by utilizing non-volatile storage and remote node for

protection. A non-volatile storage mechanism is proposed to extend data logging

mechanism in previous soft error related work to protect against hard errors, by

storing final result and intermediary dataflow into secondary storage. We also present

a remote data logging mechanism to protect data against hard errors by relying on

compute nodes cooperatively. Critical data will be backed up both in local memory

and in remote buddy node, which makes the rebuild of recovery DAG available when

a hard error happens. We conduct experiments on 16 nodes clusters to measure the

cost of these two mechanisms, and proves the feasibility of this two mechanisms to

protect against hard errors toward exascale computing.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this dissertation, we have identified two critical issues toward future exascale

computing: 1) the gap between hardware peak performance and practical performance

of developing applications on complicated programming environment of today’s and

future supercomputers; 2) lacking efficient resilient support for task-based runtime

systems while future exascale systems will be subject to failures much more frequently

than current petascale systems. To address these existing issues, we designed a

unified programming model to utilize a dynamic task-based runtime to develop

high performance dense linear algebra applications on heterogeneous platforms and

distributed-memory platforms. Moreover, fault tolerant mechanisms for both soft

and hard errors are designed for a task-based runtime and implemented in PaRSEC

system.

Toward alleviating the disparity between hardware peak performance and appli-

cation performance, the unified programming model takes advantage of a lightweight

task-based runtime to manage the resource-specific workload, and to control the

dataflow and parallel execution of tasks. Under unified algorithmic development,

tasks are abstracted across different underlying heterogeneous resources, including
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multi-core CPUs, GPUs and Intel Xeon Phi coprocessors. Several optimization

schemes are presented to improve performance by increasing priorities of critical tasks

and splitting appropriate workload size for different devices. Cholesky factorization

is implemented in this approach in both shared-memory and distributed-memory

platforms, demonstrating the effectiveness of this unified design and proving its full

adaption to a wide range of accelerators.

In addition, to solve the emerging resilient challenge as the scale of modern

computing systems grows, fault tolerant mechanisms are designed for a task-based

runtime to protect applications against both soft and hard errors. For soft errors,

three fault tolerant mechanisms are proposed to provide resilience at two levels of

granularity: At the application level, a correcting sub-DAG mechanism is designed

to recover from data corruption by re-executing minimum number of tasks from

beginning to regenerate correct data. A composite mechanism combining sub-DAG

with data logging saves necessary intermediary dataflows during the execution to

reduce the number of re-executed tasks in recovery. At the task level, ABFT technique

is applied to take advantage of the intrinsic algorithmic properties of tasks in DAG

to provide validators allowing to detect and recover from soft errors. By applying

ABFT mechanism, application is decomposed into smaller and less complicated

tasks with self resilient features. As application level data logging mechanism is

generic and adaptable to any task graph based application, a fault tolerant layer is

implemented in PaRSEC system to provide automatic resilience for non fault tolerant

applications running over PaRSEC. Experiments on large scale cluster have confirmed

the proposed mechanisms all meet the design criteria in terms of error correction

and performance overhead. This altogether offers very promising alternatives to the

currently widely used checkpointing/restart method with much less overhead.

For hard errors, generic data logging mechanism is extended in two ways, by

utilizing local reliable storage and remote compute node’s memory, to guarantee

resilience. A non-volatile storage mechanism is proposed to store final result and

intermediary dataflows into secondary storage. Our implementation in PaRSEC is
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adaptable to different storage devices, ranging from SSD to NVRAM. A remote data

logging mechanism is also designed to protect applications against hard errors. Final

result and intermediary dataflows are saved not only in local memory but also in a

remote buddy node’s memory. When a hard error happens, the task execution on the

failed node is rebuilt by combining saved information on corresponding buddy node

and other non-failed nodes.

6.2 Future Work

With the quick development of accelerators in performance, more and more domain

scientific applications have been re-designed to exploit accelerator’s massive paral-

lelism feature. The utilization of task-based runtime in this work addresses challenges

in developing high performance dense linear algebra applications. Moving the design

of the unified framework using task-based runtime toward supporting the development

of other popular research applications, such as Deep Neural Networks, Computational

Fluid Dynamics, will be addressed as part of the future work.

In addition, this work addresses data protection against hard errors. Implemen-

tation of hard-error recovery for a task-based runtime requires resilient support from

underlying MPI library. ULFM Herault et al. (2015) provides new interfaces for MPI

that enables distributed programs using MPI to restore message passing functionality

affected by hard errors. An interesting area is to integrate fault tolerant design with

ULFM, to meet the goal of providing high reliability against hard errors.

Another interesting area is that every fault tolerant mechanism deals with a single

type of error, either soft error or hard error. In a failure prone context, there is no

guarantee that only one type of error will occur. Future work will include designing

integrated protection against both hard errors and soft errors in task-based runtimes,

providing a robust resilient solution for incoming exascale computing systems.
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