315 research outputs found

    Facilitating Joint Chaos and Fractal Analysis of Biosignals through Nonlinear Adaptive Filtering

    Get PDF
    Background: Chaos and random fractal theories are among the most important for fully characterizing nonlinear dynamics of complicated multiscale biosignals. Chaos analysis requires that signals be relatively noise-free and stationary, while fractal analysis demands signals to be non-rhythmic and scale-free. Methodology/Principal Findings: To facilitate joint chaos and fractal analysis of biosignals, we present an adaptive algorithm, which: (1) can readily remove nonstationarities from the signal, (2) can more effectively reduce noise in the signals than linear filters, wavelet denoising, and chaos-based noise reduction techniques; (3) can readily decompose a multiscale biosignal into a series of intrinsically bandlimited functions; and (4) offers a new formulation of fractal and multifractal analysis that is better than existing methods when a biosignal contains a strong oscillatory component. Conclusions: The presented approach is a valuable, versatile tool for the analysis of various types of biological signals. Its effectiveness is demonstrated by offering new important insights into brainwave dynamics and the very high accuracy in automatically detecting epileptic seizures from EEG signals

    EEG signal analysis via a cleaning procedure based on multivariate empirical mode decomposition

    Get PDF
    IJCCI 2012Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural networks. For both cases, the classification rate is improved about 20%

    Spectro-spatial Profile for Gender Identification using Emotional-based EEG Signals

    Get PDF
     Identifying gender has become essential specially to support automatic human-computer interface applications and to customize interactions based on affective responses. The electroencephalogram (EEG) has been adopted for recording the neuronal information as waveforms from the scalp. The objective of this study was twofold. First, to identify genders from four different emotional states using spectral relative power biomarkers. Second, to develop Spectro-spatial profiles that afford additional information for gender identification using emotional-based EEGs. The dataset has been collected from ten healthful volunteer students from the University of Vienna while watching short emotional audio-visual clips of angry, happiness, sadness, and neutral emotions. Wavelet (WT) has been used as a denoising technique, the spectral relative power features of delta (), theta (), alpha (), beta () and gamma () were extracted from each recorded EEG channel. In the subsequent steps, analysis of variance (ANOVA) and Pearson’s correlation analysis were performed to characterize the emotional-based EEG biomarkers towards developing the Spectro-spatial profile to identify gender differences. The results show that the spectral set of features may provide and convey reliable biomarkers for identifying Spectro-spatial profiles from four different emotional states. EEG biomarkers and profiles enable more comprehensive insights into various human behavior effects and as an intervention on the brain. The results revealed that almost high relative powers from all emotional states appear in females compared to males. Particularly,  was the most prominent for anger,  and  were widely observed in happiness,  was the most appears in sadness,  and  were the powers that appears widely in neutral. Moreover, in females, neut was correlated with and _ang, _neut was mostly correlated with _ang. Besides, _neut was correlated with _ang, _neut was correlated with _ang, _neut was mostly correlated with _sad. Moreover, in males, _neut showed a very strong correlation with _sadness whereas _neut was correlated with _hap and _neut was correlated with _hap. Therefore, the proposed system using the WT denoising method, spectral relative power markers, and the spectro-spatial profile plays a crucial role in characterizing the emotional-based EEGs towards gender identification. The classification results were 89.46% for SVM and 90% for the KNN. Therefore, the proposed system using the WT denoising method, spectral relative powers features, SVM, and KNN classifiers were crucial in gender identification and characterizing the emotional EEG signals

    Wired, wireless and wearable bioinstrumentation for high-precision recording of bioelectrical signals in bidirectional neural interfaces

    Get PDF
    It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Furthermore, electrical stimulation of specific target brain regions has been shown to alleviate symptoms of neurological disorders, such as Parkinson’s disease, essential tremor, dystonia, epilepsy etc. In recent years, the traditional practice of continuously stimulating the brain using static stimulation parameters has shifted to the use of disease biomarkers to determine the intensity and timing of stimulation. The main motivation behind closed-loop stimulation is minimization of treatment side effects by providing only the necessary stimulation required within a certain period of time, as determined from a guiding biomarker. Hence, it is clear that high-quality recording of local field potentials (LFPs) or electrocorticographic (ECoG) signals during deep brain stimulation (DBS) is necessary to investigate the instantaneous brain response to stimulation, minimize time delays for closed-loop neurostimulation and maximise the available neural data. To our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording ECoG signals, which are of particular importance in closed-loop DBS and epilepsy DBS. In addition, existing recording systems lack the ability to provide artefact-free high-frequency (> 100 Hz) LFP recordings during DBS in real time primarily because of the contamination of the neural signals of interest by the stimulation artefacts. To address the problem of limited mobility often encountered by patients in the clinic and to provide a wide variety of high-precision sensor data to a closed-loop neurostimulation platform, a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless multi-instrument (55 × 80 mm2) was designed and developed. The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5 – 500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile tool to be utilized in a wide range of applications and environments. Moreover, in order to offer the capability of sensing and stimulating via the same electrode, novel real-time artefact suppression methods that could be used in bidirectional (recording and stimulation) system architectures are proposed and validated. More specifically, a novel, low-noise and versatile analog front-end (AFE), which uses a high-order (8th) analog Chebyshev notch filter to suppress the artefacts originating from the stimulation frequency, is presented. After defining the system requirements for concurrent LFP recording and DBS artefact suppression, the performance of the realised AFE is assessed by conducting both in vitro and in vivo experiments using unipolar and bipolar DBS (monophasic pulses, amplitude ranging from 3 to 6 V peak-to-peak, frequency 140 Hz and pulse width 100 µs). Under both in vitro and in vivo experimental conditions, the proposed AFE provided real-time, low-noise and artefact-free LFP recordings (in the frequency range 0.5 – 250 Hz) during stimulation. Finally, a family of tunable hardware filter designs and a novel method for real-time artefact suppression that enables wide-bandwidth biosignal recordings during stimulation are also presented. This work paves the way for the development of miniaturized research tools for closed-loop neuromodulation that use a wide variety of bioelectrical signals as control signals.Open Acces

    Analysis of the EEG Rhythms Based on the Empirical Mode Decomposition During Motor Imagery When Using a Lower-Limb Exoskeleton. A Case Study

    Get PDF
    The use of brain-machine interfaces in combination with robotic exoskeletons is usually based on the analysis of the changes in power that some brain rhythms experience during a motion event. However, this variation in power is frequently obtained through frequency filtering and power estimation using the Fourier analysis. This paper explores the decomposition of the brain rhythms based on the Empirical Mode Decomposition, as an alternative for the analysis of electroencephalographic (EEG) signals, due to its adaptive capability to the local oscillations of the data, showcasing it as a viable tool for future BMI algorithms based on motor related events.by the Spanish Ministry of Science and Innovation, the Spanish State Agency of Research, and the European Union through the European Regional Development Fund in the framework of the project Walk—Controlling lower-limb exoskeletons by means of brain-machine interfaces to assist people with walking disabilities (RTI2018-096677-B-I00);and by the Consellería de Innovación, Universidades, Ciencia y Sociedad Digital (Generalitat Valenciana) and the European Social Fund in the framework of the project Desarrollo de nuevas interfaces cerebro-máquina para la rehabilitación de miembro inferior (GV/2019/009Authors would like to thank specially Kevin Nathan and the rest of the laboratory of JC-V for their help during the experimental trials and Atilla Kilicarslan for his help with the implementation of H∞ algorithm

    Classification of operator’s workload based on physiological response

    Get PDF
    People spend most of their lives at work, during which time they are exposed to mechanical and environmental conditions that can harm their health. This risk can occur in an hour- long or over long periods, even when performed at a light to moderate intensity due to cumulative fatigue. Several measures have been proposed in order to prevent or reduce fatigue-inducing repetitive work. However, these measures are essentially subjective or only measure fatigue locally. Wearables are an attractive solution to measure work-related fatigue globally and at any time. The purpose of this study is to quantify biosignals information for the determination of fatigue while performing repetitive work. Electrocardiogram (ECG), electromyography (EMG), respiratory inductance plethysmography (RIP) and Accelerometer (ACC) signals were collected from 25 healthy participants. The participants were instructed to perform a repetitive task after induced fatigue. Their biosignals were processed, and different families of features were extracted. These features were used to fit a classifier in order to evaluate fatigue. Self-Similarity Matrix (SSM) was used to select and segment the data in Baseline and Fatigue. Autocorrelation of inertial measures, respiratory synchrony, and the root mean square of the cardiovascular load features achieved 88% of accuracy. It was possible to verify that the ACC’s features lead to the best classification results, followed by the RIP, EMG and finally the ECG’s features. Multimodal data allows global classification of when a person is working after expe- riencing fatigue. Motor information contributes significantly to this classification due to compensations that occur while performing the repetitive task. More studies should be done to develop an index characterising the fatigue state.As pessoas passam a maior parte da sua vida a trabalhar. A exposição a condições mecânicas e ambientais no trabalho pode ser prejudicial à sua saúde. Este risco pode ocorrer devido à fadiga cumulativa. Lesões podem surgir tanto em curtos como em longos períodos, mesmo quando a tarefa tem uma intensidade leve a moderada. Várias medidas foram propostas para prevenir ou reduzir o trabalho repetitivo que induz fadiga, no entanto, estas medidas são essencialmente subjetivas ou apenas medem a fadiga localmente. Os wearables são uma solução interessante para medir a fadiga relacionada ao trabalho a nível global e em qualquer momento. O objetivo deste estudo foi quantificar informações de biosinais para a determinação da fadiga durante a realização de trabalhos repetitivos. Os sinais de eletrocardiograma (ECG), eletromiografia (EMG), pletismografia de indutância respiratória (RIP) e acelerómetro (ACC) foram recolhidos de 25 participantes saudáveis. Os participantes realizaram uma tarefa repetitiva onde fadiga foi provocada. Os biosinais foram processados, e diferentes famílias de métricas foram extraídas. Estas métricas foram usadas para classificar a fadiga. Recorreu-se a Matrizes de Auto-Similaridade (SSM) para selecionar e segmentar os dados em fadiga e não fadiga. A autocorrelação das medidas inerciais, a sincronia respiratória e o quadrado médio da raiz da carga cardiovascular alcançaram 88% de precisão. Foi possível verificar que as features do ACC tiveram os melhores resultados de classificação, seguindo-se do RIP, EMG e, por último, de ECG. Os dados multimodais permitiram a classificação global de quando uma pessoa está a trabalhar, após sentir fadiga. A informação motora contribui, significativamente, para esta classificação devido às compensações que ocorrem durante a realização da tarefa repetitiva. Futuro trabalho deve ser feito com fim a determinar um índice que possa caracterizar o estado de fadiga

    Algorithms for time series clustering applied to biomedical signals

    Get PDF
    Thesis submitted in the fulfillment of the requirements for the Degree of Master in Biomedical EngineeringThe increasing number of biomedical systems and applications for human body understanding creates a need for information extraction tools to use in biosignals. It’s important to comprehend the changes in the biosignal’s morphology over time, as they often contain critical information on the condition of the subject or the status of the experiment. The creation of tools that automatically analyze and extract relevant attributes from biosignals, providing important information to the user, has a significant value in the biosignal’s processing field. The present dissertation introduces new algorithms for time series clustering, where we are able to separate and organize unlabeled data into different groups whose signals are similar to each other. Signal processing algorithms were developed for the detection of a meanwave, which represents the signal’s morphology and behavior. The algorithm designed computes the meanwave by separating and averaging all cycles of a cyclic continuous signal. To increase the quality of information given by the meanwave, a set of wave-alignment techniques was also developed and its relevance was evaluated in a real database. To evaluate our algorithm’s applicability in time series clustering, a distance metric created with the information of the automatic meanwave was designed and its measurements were given as input to a K-Means clustering algorithm. With that purpose, we collected a series of data with two different modes in it. The produced algorithm successfully separates two modes in the collected data with 99.3% of efficiency. The results of this clustering procedure were compared to a mechanism widely used in this area, which models the data and uses the distance between its cepstral coefficients to measure the similarity between the time series.The algorithms were also validated in different study projects. These projects show the variety of contexts in which our algorithms have high applicability and are suitable answers to overcome the problems of exhaustive signal analysis and expert intervention. The algorithms produced are signal-independent, and therefore can be applied to any type of signal providing it is a cyclic signal. The fact that this approach doesn’t require any prior information and the preliminary good performance make these algorithms powerful tools for biosignals analysis and classification

    Methods for enhanced learning using wearable technologies. A study of the maritime sector

    Get PDF
    Maritime safety is a critical concern due to the potential for serious consequences or accidents for the crew, passengers, environment, and assets resulting from navigation errors or unsafe acts. Traditional training methods face challenges in the rapidly evolving maritime industry, and innovative training methods are being explored. This study explores the use of wearable sensors with biosignal data collection to improve training performance in the maritime sector. Three experiments were conducted progressively to investigate the relationship between navigators' experience levels and biosignal data results, the effects of different training methods on cognitive workload, trainees' stress levels, and their decision-making skills, and the classification of scenario complexity and the biosignal data obtained by the trainees. questionnaire data on stress levels, workload, and user satisfaction of auxiliary training equipment; performance evaluation data on navigational abilities, decision-making skills, and ship-handling abilities; and biosignal data, including electrodermal activity (EDA), body temperature, blood volume pulse (BVP), inter-beat interval (IBI), and heart rate (HR). Several statistical methods and machine-learning algorithms were used in the data analysis. The present dissertation contributes to the advancement of the field of maritime education and training by exploring methods for enhancing learning in complex situations. The use of biosignal data provides insights into the interplay between stress levels and training outcomes in the maritime industry. The proposed conceptual training model underscores the relationship between trainees' stress and safety factors and offers a framework for the development and evaluation of advanced biosignal data-based training systems
    corecore