2,395 research outputs found

    Experimental and Analytical Investigations of an Optically Pre-Amplified FSO-MIMO System With Repetition Coding Over Non-Identically Distributed Correlated Channels

    Get PDF
    This paper presents theoretical and experimental bit error rate (BER) results for a freespace optical (FSO) multiple-input-multiple-output system over an arbitrarily correlated turbulence channel. We employ an erbium-doped fiber amplifier at the receiver (Rx), which results in an improved Rx’s sensitivity at the cost of an additional non-Gaussian amplified spontaneous emission noise. Repetition coding is used to combat turbulence and to improve the BER performance of the FSO links. A mathematical framework is provided for the considered FSO system over a correlated non-identically distributed Gamma-Gamma channel; and analytical BER results are derived with and without the pre-amplifier for a comparative study. Moreover, novel closed-form expressions for the asymptotic BER are derived; a comprehensive discussion about the diversity order and coding gain is presented by performing asymptotic analysis at high signal-tonoise ratio (SNR). To verify the analytical results, an experimental set-up of a 2 × 1 FSO-multiple-inputsingle-output (MISO) system with pre-amplifier at the Rx is developed. It is shown analytically that, both correlation and pre-amplification do not affect the diversity order of the system, however, both factors have contrasting behaviour with respect to coding gain. Further, to achieve the target forward error correction BER limit of 3.8 × 10−3 , a 2 × 1 FSO-MISO system with a pre-amplifier requires 6.5 dB lower SNR compared with the system with no pre-amplifier. Moreover, an SNR penalty of 2.5 dB is incurred at a higher correlation level for the developed 2×1 experimental FSO set-up, which is in agreement with the analytical findings

    Improved Visible Light Communication Receiver Performance by Leveraging the Spatial Dimension

    Get PDF
    In wireless communications systems, signals can be transmitted as time (temporal) or spatial variants across 3D space, and in both ways. However, using temporal variant communication channels in high-speed data transmission introduces inter-symbol interference (ISI) which makes the systems unreliable. On the other hand, spatial diversity in signal processing reduces the ISI and improves the system throughput or performance by allowing more signals from different spatial locations at the same time. Therefore, the spatial features or properties of visible light signals can be very useful in designing a reliable visible light communication (VLC) system with higher system throughput and making it more robust against ambient noise and interference. By allowing only the signals of interest, spatial separability in VLC can minimize the noise to a greater extent to improve signal-to-noise ratio (SNR) which can ensure higher data rates (in the order of Gbps-Tbps) in VLC. So, designing a VLC system with spatial diversity is an exciting area to explore and might set the foundation for future VLC system architectures and enable different VLC based applications such as vehicular VLC, multi-VLC, localization, and detection using VLC, etc. This thesis work is motivated by the fundamental challenges in reusing spatial information in VLC systems to increase the system throughput or gain through novel system designing and their prototype implementations

    Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System

    Get PDF
    The limited bandwidth of white light-emitting diode (LED) limits the achievable data rate in a visible light communication (VLC) system. A number of techniques, including multiple-input-multiple-output (MIMO) system, are investigated to increase the data rate. The high-speed optical MIMO system suffers from both spatial and temporal cross talks. The spatial cross-talk is often compensated by the MIMO decoding algorithm, while the temporal cross talk is mitigated using an equalizer. However, the LEDs have a non-linear transfer function and the performance of linear equalizers are limited. In this letter, we propose a joint spatial and temporal equalization using an artificial neural network (ANN) for an MIMO-VLC system. We demonstrate using a practical imaging/non-imaging optical MIMO link that the ANN-based joint equalization outperforms the joint equalization using a traditional decision feedback as ANN is able to compensate the non-linear transfer function as well as cross talk

    Etude et réalisation d'un système de communications par lumière visible (VLC/LiFi). Application au domaine automobile.

    Get PDF
    The scientific problematic of this PhD is centered on the usage of Visible LightCommunications (VLC) in automotive applications. By enabling wireless communication amongvehicles and also with the traffic infrastructure, the safety and efficiency of the transportation canbe substantially increased. Considering the numerous advantages of the VLC technologyencouraged the study of its appropriateness for the envisioned automotive applications, as analternative and/or a complement for the traditional radio frequency based communications.In order to conduct this research, a low-cost VLC system for automotive application wasdeveloped. The proposed system aims to ensure a highly robust communication between a LEDbasedVLC emitter and an on-vehicle VLC receiver. For the study of vehicle to vehicle (V2V)communication, the emitter was developed based on a vehicle backlight whereas for the study ofinfrastructure to vehicle (I2V) communication, the emitter was developed based on a traffic light.Considering the VLC receiver, a central problem in this area is the design of a suitable sensorable to enhance the conditioning of the signal and to avoid disturbances due to the environmentalconditions, issues that are addressed in the thesis. The performances of a cooperative drivingsystem integrating the two components were evaluated as well.The experimental validation of the VLC system was performed in various conditions andscenarios. The results confirmed the performances of the proposed system and demonstrated thatVLC can be a viable technology for the considered applications. Furthermore, the results areencouraging towards the continuations of the work in this domain.La problématique scientifique de cette thèse est centrée sur le développement decommunications par lumière visible (Visible Light Communications - VLC) dans lesapplications automobiles. En permettant la communication sans fil entre les véhicules, ou entreles véhicules et l’infrastructure routière, la sécurité et l'efficacité du transport peuvent êtreconsidérablement améliorées. Compte tenu des nombreux avantages de la technologie VLC,cette solution se présente comme une excellente alternative ou un complément pour lescommunications actuelles plutôt basées sur les technologies radio-fréquences traditionnelles.Pour réaliser ces travaux de recherche, un système VLC à faible coût pour applicationautomobile a été développé. Le système proposé vise à assurer une communication très robusteentre un émetteur VLC à base de LED et un récepteur VLC monté sur un véhicule. Pour l'étudedes communications véhicule à véhicule (V2V), l'émetteur a été développé sur la base d’un pharearrière rouge de voiture, tandis que pour l'étude des communications de l'infrastructure auvéhicule (I2V), l'émetteur a été développé sur la base d'un feu de circulation. Considérant lerécepteur VLC, le problème principal réside autour d’un capteur approprié, en mesured'améliorer le conditionnement du signal et de limiter les perturbations dues des conditionsenvironnementales. Ces différents points sont abordés dans la thèse, d’un point de vue simulationmais également réalisation du prototype.La validation expérimentale du système VLC a été réalisée dans différentes conditions etscénarii. Les résultats démontrent que la VLC peut être une technologie viable pour lesapplications envisagées
    • …
    corecore