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IMPROVED VISIBLE LIGHT COMMUNICATION RECEIVER PERFORMANCE BY

LEVERAGING THE SPATIAL DIMENSION

by

MD RASHED RAHMAN

Under the Direction of Ashwin Ashok, PhD

ABSTRACT

In wireless communications systems, signals can be transmitted as time (temporal) or spatial

variants across 3D space, and in both ways. However, using temporal variant communication

channels in high-speed data transmission introduces inter-symbol interference (ISI) which

makes the systems unreliable. On the other hand, spatial diversity in signal processing

reduces the ISI and improves the system throughput or performance by allowing more signals

from different spatial locations at the same time. Therefore, the spatial features or properties

of visible light signals can be very useful in designing a reliable visible light communication

(VLC) system with higher system throughput and making it more robust against ambient

noise and interference. By allowing only the signals of interest, spatial separability in VLC



can minimize the noise to a greater extent to improve signal-to-noise ratio (SNR) which

can ensure higher data rates (in the order of Gbps-Tbps) in VLC. So, designing a VLC

system with spatial diversity is an exciting area to explore and might set the foundation

for future VLC system architectures and enable different VLC based applications such as

vehicular VLC, multi-VLC, localization, and detection using VLC, etc. This thesis work is

motivated by the fundamental challenges in reusing spatial information in VLC systems to

increase the system throughput or gain through novel system designing and their prototype

implementations.

INDEX WORDS: Visible Light Communication, Optical Wireless Sensing and Localiza-
tion, LED-Camera Communication, Spatial Signal Processing, High
Speed VLC, Multiple Access, Vehicular VLC.
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CHAPTER 1

INTRODUCTION

1.1 Visible Light Communication (VLC)

The significant growth in the wireless data traffic has initiated the need for expanding the

range of frequencies used for wireless data communication. This has opened up new oppor-

tunities for utilizing the unused bands of the electromagnetic spectrum such as optical fre-

quencies for wireless data communication through the Visible Light Communication (VLC)

technology [2; 3]. VLC is a wireless communication technology that operates unregulated in

the visible–light band (400–800 THz frequencies or 380–780 nm wavelengths) of the electro-

magnetic spectrum, and is enabled by light emitting elements such as light emitting diodes

(LED) and light receiving elements such as photodiodes (PD).

The semiconductor properties of LEDs and PDs enable them to be switched at extremely

high rates thus allowing transmission/reception of light beams at extremely high frequencies.

VLC is a line-of-sight (LOS) technology, which means it requires the light transmitter and

receiver to be within the distance and angular range (field–of–view (FOV)) of one another.

The LOS requirement enables efficient space reuse allowing spatial–multiplexing of VLC

links between multiple transmitters and receivers. The availability of a huge unrestricted

visible-light spectrum and the spatio-temporal qualities makes VLC a strong proponent for

high–speed wireless communication.

Over the past few years, VLC technology has garnered significant interest in both aca-

demic and industrial fronts. Research and development in VLC has exemplified VLC applica-
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Figure 1.1: Visible light wavelength band in electromagnetic spectrum [1].

tions across diverse areas including smart sensing for human-computer interaction [4], precise

indoor localization [5], inter-vehicular and vehicular to infrastructure communication [2] and

underwater communication [6]. Operating over an unrestricted 400THz of bandwidth, VLC

is capable of extremely high data rate communication, of the order of Gbps and beyond.

VLC channel studies [7; 8; 9] estimate its data capacity to the order of Tbps. However, in

practice, VLC systems are still operating in the range of Kbps–Mbps. So, there is a large

gap to fill to reach ultra–high data rates or system throughput in VLC. Mobility is another

huge challenge for VLC as optical links are highly directional and thus even the slightest

movements of the transmitter and/or receiver can significantly degrade the link quality. The

use of VLC as a next generation mobile wireless technology can be justified only if it can

offer mobility in addition to high data communication speeds. Handling mobility can incur

communication and processing overheads which can significantly degrade the VLC link data
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rate. Therefore, from an VLC architecture design standpoint, mobility and high data rate

solutions have to be developed together. Also, there has long been interest in enabling visual

interactions with phone cameras [10; 11; 12], including to assist local communication by ob-

taining a security token with the camera. Using VLC technology in sensing and leveraging

light’s directionality to improve localization accuracy is still one of the open research areas

in the wireless sensing community.

Figure 1.2: Illustration of a typical indoor VLC (left) and outdoor vehicular VLC system
(right).

By definition, Spatial Signal Processing offers the fundamental mathematical models

and the spatial information of the signals including their physical properties, sources of the

signals, and also, the geometric locations of each of the sources[13; 14; 15]. Utilizing such

spatial information in VLC can ensure the following benefits:

• Accessibility: By measuring signals at different spatial locations and then allowing

multiple signals into the receiver, the overall VLC system performance can be improved
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substantially.

• Spatial Filtering: To identify the incoming signals and blocking most of the noise

outside the directions of interest will increase the SINR of the system and leads ultra

high data rates in VLC.

• Spatial Resolvability: helps to distinguish between all the incoming signals from

various sources into the VLC receiver and such capability can enable multiple access

in VLC system even using a single receiver.

• Spatial Locality: Using geometric properties of a spatial domain, it is very much

possible to locate the sources of all the incoming light signals and can be applicable in

different VLC based object localization applications.

While it is clear that spatial signal processing can surely augment the overall system

throughput or performance, therefore, in this thesis, we aim to explore new VLC systems

and their implementations using the spatial dimensions of light signals.

1.2 Scopes of the thesis

In the beginning of this thesis, we developed a novel pixelated shutter based VLC receiver

which can ensure higher signal reception by canceling noise and interference based on spatial

selections of incoming signals. Our designed novel VLC receiver can select the exact area

over which the transmitted signal is detected on the pixelated shutter array. Through this

single photodiode (PD) based VLC receiver, we introduced a shutter controlling algorithm
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to enable multiple access in VLC without compromising higher data rates capability which

eventually improved the overall system performance. Then, the thesis focused to utilize VLC

enabled active LED transmission in object detection and localization applications. Using

optical blinking sequence of LED transmitter, we proposed an optical correlation based

signal decoding algorithm in camera receiver to localize the light emitter precisely which

can be applicable in detecting and localizing identical objects. This correlation algorithm

has the capability to be integrated in the existing visual SLAM (Simultaneous Localization

And Mapping) techniques to enhance the system performance by improving the detection,

localization, and tracking accuracy. In summary, this thesis addressed the following open

research questions or challenges of VLC and mobile vehicular VLC applications through

several novel systems and algorithms designing, and their prototype implementations:

• How to improve the signal to interference and noise ratio (SINR) and lower the bit error

rate (BER) in VLC to enhance the system throughput, even in mobile environments?

• How to identify and then cancel or disallow the incoming noise & interference signals

on VLC receiver?

• How to enable multiple access in VLC without compromising the higher data rates or

system throughput?

• How can we implement visual tag features of VLC to localize and track identical objects

(vehicles) precisely?



6

• How can active LED transmission enable precise and accurate localization without any

prior information of LED transmitter’s position or other related parameters?

Figure 1.3: Thesis contributions: Spatial features in VLC systems.

1.3 Contributions

This thesis represents the following research contributions of mine throughout my doctoral

journey to solve some open fundamental challenges in VLC and VLC enabled mobile appli-

cations, such as vehicular VLC:

Contributions 1: VLC System Throughput Gain by Spatial Filtering

• Designing of a Novel Pixelated VLC Receiver using Spatial Optical Filtering
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This research approached the problem of achieving high system throughput in VLC

from the perspective of a high-speed receiver design. In this part of the thesis, we

presented a new VLC architecture to achieve high signal quality reception through a

hybrid design that can leverage the advantage of photodiodes to achieve high data rates

and the noise isolation property of image sensors. The hybrid design acts as single

pixel ultra-high-speed-camera which has been validated through a proof-of-concept

experimentation with significant SNR improvement [16; 17].

Contributions 2: Enabling Multiple Access in VLC through Spatial Resolvability

• Spatial Multiplexing using Pixelated Shutter

In this work, we proposed, designed and evaluated a novel architecture for VLC that

can enable multiple-access reception using a single photoreceptor receiver (photodiode).

The novel design includes a liquid-crystal-display (LCD) based shutter system that has

been automated to control and enable selective reception of light beams from multiple

transmitters [16; 18].

• Automated Shutter Control Protocol Design

To identify and separate noise and interference from the desired optical signals, this

thesis introduced an automated shutter controlling algorithm (fast spatial tracking

mechanism) in the pixelated shutter receiver. In our research efforts, we have demon-

strated the feasibility of our VLC receiver architecture by conducting measurements
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study of noise and interference identification and separation using our designed shutter

controlling algorithm [16; 18].

Contributions 3: Precise Object Localization through VLC Spatial Locality

• VLC Embedded Optical Sequences Correlation to Localize Identical Objects

In this research effort, we developed a camera based visual identification solution using

our proposed spatio-temporal optical correlation based localization algorithm. Trace-

based evaluation of the identification or localization accuracy under real-world condi-

tions including indoor, outdoor, static and mobile scenarios, showed that our designed

optical correlation outperforms the comparative traditional machine learning (ML) and

non-ML techniques for LED detection or localization [19].
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CHAPTER 2

SPATIAL OPTICAL FILTERING BASED VLC RECEIVER PROTOTYPE
DESIGN

Theoretical models estimate visible light communication (VLC) data capacity to be of the

order of Tera-bits-per-second (Tbps). However, practical limitations in receiver designs have

limited state-of-the-art VLC prototypes to (multiple) orders of magnitude lower data rates.

In light of the technological challenges in VLC systems this research work introduces a new

hybrid architecture to realize ultra high-speed visible light communication systems. The key

idea of our proposed design is to leverage the fast sampling rates of photodiode receivers and

integrate an image sensor–like shutter mechanism that filters noise and interference. Through

adaptive selection of the exact receiver area over which the transmitted light is detected, the

signal-to-noise-ratio (SNR) can be dramatically increased yet not compromising the high

sampling rate achievable using state-of-the-art photoreceptors.

2.1 Introduction

The growing number of mobile devices and applications is straining the capacity of wireless

mobile spectrum and has created what can be referred to as spectrum-crunch [20]. The

significant growth in the wireless data traffic has initiated the need for expanding the range

of frequencies used for wireless data communication. This has opened up new opportunities

for utilizing the unused bands of the electromagnetic spectrum such as optical frequencies for

wireless data communication through the Visible Light Communication (VLC) technology

[21] [3] .
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Today, VLC is going through an interesting transition from a purely academic concept to

standardization through the efforts of IEEE 802.15.7 task group [22], and to commercializa-

tion through the concept of Li-Fi [23]. However, even with such rapid advancements in the

technology, the state-of-the art data rates in VLC is dramatically less than its actual wireless

data capacity. Achieving ultra-high data rates in VLC close to its wireless data capacity is

the key vision of this proposal.

Considering the insufficiency of bandwidths in today’s wireless technologies, achieving

ultra–high–speed VLC is not only an opportunity but also is a necessity. Achieving data

rates close to capacity in VLC requires significant advancements in science and engineering

of highly efficient and robust VLC architectures. The fundamental issue with traditional

VLC architectures is that, photodiodes can sample light signals at extremely high rates but

signal quality suffers under high ambient noise scenarios. Multiple–input Multiple–Output

(MIMO) through photodiode arrays and imaging receivers can spatially isolate noisy pixels

due to the definite array structure, however, are extremely limited in sampling rates. Such

architectural differences create a data–rate versus signal quality trade off in VLC.

2.2 Related Works

The survey paper [24] presents a consolidated list of existing VLC systems and the challenges

in the domain from a scientific research perspective. The survey paper [25] discusses those

challenges from a standardization and commercialization perspective. We will review state–

of–the–art developments in achieving high speed VLC. In addition, we will also review some
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of the new application dimensions in VLC to give an idea as to how the technology is

diversifying as a promising wireless technology.

LiFi. The state–of–the–art in commercialized VLC technology is the LiFi–X system [23].

LiFi–X includes a modified LED light bulb transmitter and a receiver hardware dongle with

USB support that connects to a PC. LiFi–X is capable of 40Mbps uplink and downlink du-

plex VLC using a white LED transmitter and a high power, high–cost avalanche photodiode

receiver. However, even adding an extra photodiode in this receiver can be extremely chal-

lenging due to the form–factor limitations, driving amplifier load, and the firmware overhead

for processing an additional receiver element.

IEEE 802.15.7 standard. While the IEEE VLC standard theoretically supports data

rates upto 96 Mbps [22], the simulation studies in the draft revision to the standard, IEEE

802.15.7r1 [26], claim Gbps data rates capability using orthogonal frequency division mul-

tiplexing (OFDM) [27] modulation. OFDM requires knowledge of the channel parameters

to allot sub–channels for multiplexing, and this is proposed to be achieved by channel esti-

mation using feedback loops. The practical viability and reliability of such designs can be

extremely challenging considering scale and mobility.

Multiple–Input Multiple–Output (MIMO). The concept of MIMO, using arrays of

LEDs and photoreceptors, has gained prominence in VLC architecture design. Using array

transmitters and receivers allows for scaling the the data rate by the multiplexing data

communication across multiple LED–photoreceptor channels. Multiple array elements also

increases the field–of–view of the receiver thus allowing for some mobility within LOS. Array
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photoreceptors can be either a set of photodiodes arranged in a specific fashion or correspond

to a set of pixel elements of an image sensor. The challenge with photodiode arrays is they

allow more noise, from ambient light (sunlight and artificial lighting), into the receiver due

to the wide field–of–view, thus affecting received signal quality and data rate. To account

for this it requires very high amplification and noise reduction which can be complex and

costly [28]. Image sensors can help isolate the noise because of its spatial structure, however,

are extremely limited in sampling rates or frame–rates. Even the fastest image sensors can

sample only at the order of 1000 FPS [29], which is orders of magnitude less than that of a

single photodiode (106 − 109 samples/second).

Free–space optics inspired. Recent work in fiber–wireless–fiber based architectures in

free–space optics design, estimate data rates of the order of 10s to 100s of Gbps [30]. These

systems use high power and high cost elements such as Laser diodes controlled by optical–

fiber elements at the transmitter/receiver. These systems require bulky spatial light modula-

tors (SLM) to direct the laser beam using mechanical steering to cover a wide angular range,

if not, use high–cost avalanche photodiodes at the receiver [28]. Due to the high cost, high

power and complex hardware design, such architectures will not be appropriate for generic

VLC systems.

The Smart Lighting Research Center [31] at Boston University identifies the design of

fast–switching and power–efficient LEDs for smart space solutions as one of its key re-

search thrusts. Other thrusts include, LED–to–LED communication [32], power–line VLC

networks [33], duplex VLC [34], backscatter VLC [35]. These efforts promote the diverse
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Figure 2.1: Proposed pixelated shutter based hybrid VLC architecture

use–cases of VLC. However, there is a consensus that high data rate VLC system design is

a need of the day.

2.3 System Design

We combine the advantages of photodiodes and image sensors, and propose a novel receiver

architecture that emulates the functionality of image sensor arrays using a single photodiode.

The core idea of this design is to utilize the high–speed sampling of a photodetector and

augment features of a typical image sensing array. We provide a conceptual overview of the

architecture in Figure 2.1.

The key components of the proposed design are the high–speed photodiode, a shutter

mechanism, the computing unit and a panoramic lens. The shutter mechanism enables to

spatially filter the noise and interference from the actual optical signal from the light source.
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In this regard, we use an off–the–shelf liquid–crystal–device (LCD) shutter array[36], where

each element of the LCD array, or pixel, doubles up as a digital shutter based on the input

voltage. Depending on the input voltage, the liquid crystals occupy a certain polarity thus

allowing light to traverse through the pixel only if the polarity matches that of the incoming

light beam, if not blocks the same. The receiver uses this functionality to control which light

beam must be processed and what must be eliminated by the photodiode. The computing

unit enables high sampling rate processing and hosting a software stack to incorporate control

and other processing mechanisms. A typical software defined radio (SDR) unit, such as an

Universal Software Radio Peripheral (USRP) [37] or an FPGA device, can serve as the

computing unit. A panoramic lens fit to the PD–LCD array will provide a wide–angle (180

degree) FOV to the receiver. The LCD array with the lens expands the effective FOV of

the photodiode yet preserving its high sampling rate and eliminates the need for multiple

photodiodes to achieve the array structure. The LCD array and photodiode will be controlled

independently using the computing unit. Such a modulo hardware architecture makes this

design re-configurable.

2.4 Implementation and Evaluation

The strength of the proposed hybrid architecture lies on two fundamental notions, that, (a)

light sampling can be controlled using a digital shuttering mechanism, and (b) unwanted

optical signals can be eliminated by separating signal from noise and interference directly in

spatial domain.
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Figure 2.2: General experiment setup

Through a proof-of-concept experimentation, in our initial research effort [16], we have

studied the feasibility of noise and interference reduction through our hybrid architecture.To

this end, we meticulously arranged an optical measurement setup on an optical table to care-

fully quantify the signal, noise and interference signals. We ensured there are no vibrations

or any movement that can impact the quality of our measurements. The measurements were

conducted indoor, in an academic lab. The lighting involved the ceiling florescent white

lamps and the ambient sunlight from across the room through the glass window. The ex-

periment was conducted on the less bright side of the room at a distance of 20ft from the

glass window.

The general experiment setup is shown in Figure 2.2, and consists of an off–the–shelf

PIN photodiode [38], a red LED [39], a laser LED (acting as noise source) [40], an TFT

LCD shutter [41]. We used a Keithley 2231A-30-3 digital power supply [42] to power our
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LEDs and a Tektronix digital oscilloscope [43] to monitor the output from the photodiode.

We also used a digital multimeter to record the photodiode output voltage and current. We

setup a RaspberryPi camera [44] on a plane parallel but translated from the LCD shutter

center for visual verification.

To ensure the photodiode signals are registered on the multimeter and the scope, we

amplified the photodiode output using a LM358N operational amplifier [45]. We used the

circuit in non–inverting mode with a resistance of R = 510kΩ and the voltage output Vo =

RIpd, where Ipd was the received photocurrent. In the setup, we used an off–the–shelf aspheric

condenser lens [46] to focus the light wave onto the photodiode. The focal length of the lens

is 27mm and the photodiode was placed at the focal point of the lens in our experiment. The

lens was placed behind the shutter covering the area of the shutter. The distance between

the lens (shutter) and the photodiode is 2.7cm (focal length of the lens) and the distance

between the shutter and LED transmitter is 16cm.

Figure 2.3: Our measurement setups for (left) Open box testing and (right) Closed box
testing

Figure 2.3 shows a closeup view of our experiment setups. We setup two modes for our



17

experiments, (a) closed box, where we covered the setup using a cardboard box to create a

dark-room type environment by blocking the ambient light, and (b) open box, where we let

the top part of the box open while one of the sides was covered with cardboard to block the

sunlight from the glass window. In our experiments we physically blocked the sunlight and

hence the ambient noise in our experiments is primarily from the ceiling white lights. As

you can observe from the setup figures, we used a LASER LED and another RED LED light

source which played the role of interfering (noise) sources for the primarily LED-Photodiode

link.

2.4.1 Spatial Noise Filtering

Using the setup shown in Figure 2.3 (b), we conducted an experiment to measure the SNR

for different choices of reception area on the LCD shutter. We conducted the experiment in

a closed–box setting to ensure no ambient lighting impacted the noise measurement. Hence,

the noise measured in this experiment corresponds to the limited ambient lighting within

the box (negligible) and the noise from the signal (typically very low). The main goal of this

experiment is to understand the relative SNR improvements if the area of the reception was

centered around the area of the photodiode.

The experiment involved shining an LED in direct current mode (no modulation) on the

photodiode by concentrating through the center pixels of the shutter. The LED transmitted

1mW of optical power. We ensured that that the angle between the transmission and recep-

tion axis was zero. We measured the received voltage on the photodiode with the LED in

OFF mode, as Vn, and as Vr when the LED was ON. We compute the signal–to–noise–ratio
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Figure 2.4: SNR versus selected area of reception. Here A = 57.40mm2. Set resolution of
LCD shutter = 240 x 320 pixels, side length of the LCD shutter pixel = 0.2mm

as,

SNR =
V 2
r − V 2

n

V 2
n

& SNRdB = 10 log10(SNR) (2.1)

We conduct the measurements for different area of shutter opening. For each area of

selection we open the appropriate number of pixels considering it as a square region. Consider

A = 57.40mm2, we conducted these measurements for 4 area selections:

(i) 1A: Only the area corresponding to the actual area of the photodiode was open

(ii) 10.78A :An area in between the LED illumination and PD surface area was open

(iii) 4.5A: Only the area corresponding to the LED illumination on the shutter was open

(iv) 54.85A: Entire shutter was open
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We plot the SNR versus different areas of shutter opening in Figure 2.4. We report the

minimum SNR over 10 trials for each area setting. We can observe from the SNR decreases

significantly with increase in shutter opening area. This is in line with our theoretical un-

derstanding of the dependency of SNR on area of reception. In particular, if the receiver

has a larger area of opening, it allows for more photons to be registered on the photodiode.

However, if the desired signal occupies only a fraction of that area, the rest corresponds to

accumulating noise and other undesired photons. Due to the additive nature of photon en-

ergy, separating signal from noise becomes extremely challenging if the SNR is low. The SNR

values suggest that, if it can be ensured that the receiver photodiode is collecting only the

photons corresponding to the actual signal, then the effect of noise on the receiver becomes

almost negligible. The improvement in SNR, as can be observed from these measurements,

is such that when the area corresponding to the exact photodiode area is opened while other

parts of the shutter are closed, the SNR is at 17dB, compared to the -1dB SNR value when

the entire shutter was open. The negative SNR indicates that the noise component over

powered the signal and hence demodulation is impossible. We also observe that the area of

reception corresponding to the LED (4.5A) is not necessarily the best choice. This is be-

cause, the LED signal when projected on the shutter, acts like a diffuse source. The optical

energy from the LED is distributed over a larger area (than the photodiode), thus, relatively,

allowing for more noise photons to be registered at the receiver. It is also notable that 18dB

increase in SNR can be considered dramatic in terms of communication systems and are

usually achieved only through extremely sophisticated and complex signal processing. Our
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measurements suggest that it may be achieved through a rethinking of the receiver hardware.

2.4.2 Spatial Interference Cancellation

We conducted an interference and noise cancellation measurement experiment using the open

box and closed box setups shown in Figure 2.3. We treat the RED LED as light source,

another RED LED as interfering source and the RED LASER as noise source. The ambient

lighting in the room (white light from ceiling) is accounted as an additional noise source.

We conducted measurements of received signal voltage Vr, noise voltage Vn and interference

voltage VI across open box and closed box setups, and along two modes of area selection: (i)

Shutter fully open, (ii) Only pixels corresponding to noise LED and interference LASER LED

projections were closed. During these measurements, all the light sources were input with

a constant power and were set to operate in their maximum optical power output (supply

maximum forward current). We compute the SINR using the voltage measurements as,

SNR =
V 2
r − (V 2

I + V 2
n )

V 2
I + V 2

n

(2.2)

Setup Vr VI Vn SNRdb

Openbox+Shutter open 5.0 3.7 0.7 -1.18
Openbox+Shutter (I+N) closed 4.1 0 0.7 15.22

Closed box+Shutter open 4.9 3.6 0.4 -0.81
Closed box +Shutter (I+N) closed 4.2 0 0.2 26.43

Table 2.1: SINR measurements in open box and closed box setups when all optical sources
are in always-ON (DC) mode. All voltage values are in Volts. Shutter (I+N) closed means
the pixels corresponding to interference and noise projections on the shutter were closed.
The closed box setup was not a totally dark setup. There is slight ambient light entry which
was measured and calibrated to be 0.2V.

We report our measurements and SINR values in Table 2.1. We can observe from Table
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2.1 that when the shutter is fully open or when the interference area was closed, the signal

power almost remained constant. However, the interference can significantly overpower the

signal if it were allowed to register on the photodiode. We can observe that the laser source

which has a significantly higher optical power than the LEDs can completely overpower

the system and hence lead to SINRs that are almost useless (close to zero or negatives).

We also can observe that, even with an overpowering interfering source, through spatial

filtering, the SINR can be dramatically improved, in ranges of 15-25dB. In the next set of

experiments, we set up to modulate the LEDs using a single frequency pulse waveform. We

connected the signal and noise LEDs to the GPIO pins of RaspberryPi .We modulated each

LED using a separate Raspberry Pi, which was controlled using MATLAB on a laptop. The

waveform input to the LED was generated in MATLAB and communicated to the LED

via the RaspberryPi. The signal LED was modulated at 300Hz (the pulse waveform read as

295Hz due to some distortions in the RaspberryPi link) with a 8V peak-peak pulse waveform.

The noise LED was input with a 3V peak-peak pulse waveform at 100Hz. The laser LED

was set in DC mode.
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Figure 2.5: Illustrating additive interference from alternating (AC) signals on the photodiode
receiver. The measurement was taken with the shutter opened and shutter closed in closed
box setup.

We can observe the additive property of optical signals in Figure 2.5 . We can observe

that the two signals plus the DC noise (laser beam) is added in the output. When signals of

the same frequency are accumulated on the phototodiode, due to a phase difference of 0 (or

2π), the resultant signal is essentially an amplified version of the original signals. When the

phase difference is non–zero (or not2π), then the effective phase-shift will be captured in the

additive signal on the photodiode output. Assuming, we know at least one of the transmit

frequencies, through a cross correlation mechanism we can find out the phase difference and

hence differentiate the wave forms at the receiver. However, the temporal separation of the

waveform will be possible only when the receiver can ensure that it is exactly sampling the

signals and not any unwanted optical energy. Also it requires knowledge of at least one of

the frequencies in the set. Hence, resolving the signal from noise from this cumulative signal

is extremely challenging without calibrating the noise and interference levels, which adds

complexity and usability constraints on the VLC system.
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2.5 Conclusion

This work presents a new architecture that combines the high-speed sampling advantage of

photodiodes with the spatial filtering capability of image sensor receivers. We presented a

hybrid architecture design that uses a high-speed photodetector and an LCD shutter acting

as a programmable image sensor aperture. As the first step, we conducted measurements to

study noise and interference separability in our receiver. Our measurements indicate that the

spatial separability, if achieved correctly, can help improve the signal quality in the receiver

and almost completely eliminate noise. In this preliminary research outcome, the notion of

the prototype implementation was to show a proof-of-concept understanding. Through the

knowledge gained from the measurements using this setup, in future, we will design a custom

receiver that leverages the advantages claimed by the design.
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CHAPTER 3

SPATIAL MULTIPLEXING ENABLED MULTIPLE ACCESS USING A
SINGLE PHOTODIODE VLC RECEIVER

The directionality of optical signals provides an opportunity for efficient space reuse of optical

links in visible light communication (VLC). Space reuse in VLC can enable multiple-access

communication from multiple light emitting transmitters. Traditional VLC system design

using photo-receptors requires at least one receiving photodetector element for each light

emitter, thus constraining VLC to always require a light-emitter to light-receptor element

pair. In this paper, we propose, design and evaluate a novel architecture for VLC that

can enable multiple-access reception using a photoreceptor receiver that uses only a single

photodiode. The novel design includes a liquid-crystal-display (LCD) based shutter system

that can be automated to control and enable selective reception of light beams from multiple

transmitters. We evaluate the feasibility of multiple access on a single photodiode from two

light emitting diode (LED) transmitters and the performance of the communication link

using bit-error-rate (BER) and packet-error-rate (PER) metrics. Our experiment and trace

based evaluation through proof-of-concept implementation reveals the feasibility of multiple

LED reception on a single photodiode. We further evaluate the system in controlled mobile

settings to verify the adaptability of the receiver when the LED transmitter changes position.

3.1 Introduction

Visible Light Communication (VLC), is an emerging wireless communication technology

that operates unregulated in the visible–light band (400–800 THz frequencies or 380–780
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nm wavelengths) of the electromagnetic spectrum, and is enabled by light emitting elements

such as light emitting diodes (LED) and light receiving elements such as photodiodes (PD).

Due to directionality of light beams, VLC is a line-of-sight (LOS) technology that requires

the light transmitter and receiver to be within each others field-of-view (FOV) [47]. The LOS

requirement provides novel opportunities for efficient space and time reuse in VLC where

multiple light emitting transmissions could be multiplexed.

Traditional VLC [2] that operates using a single non-array photodiode receiver based

reception, requires to incorporate specific multiple access mechanisms to enable reception

from different light emitters. By leveraging the directionality of optical signals and that

light emitters can be spatially differentiated, it is possible to multiplex signals by combining

space division multiple access (SDMA) with time/frequency/code (TDMA/FDMA/CDMA)

division access schemes, however, the nature of photoreceptors to collectively add all the

detected photons within its FOV limits makes differentiation of multiple transmissions and

from ambient noise very challenging. This limits VLC to the effective communication using

only one light beam (or transmitter) at each instance of time. The key challenge in using

multiple access mechanisms in single-photodiode non-array VLC receiver systems is that the

incoming signals, through may be spatially and temporally separated, but once they reach

the receiver collector (lens), the signals are mixed (leading to interference) with each other

and thus cannot be differentiated. Unlike radio-frequency communication, where polarity

of signals and thus representing signals as complex numbers is possible, in optical wireless,

the received signals are essentially the positive-sum of all photons, which carry no polarity.
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With stringent constraints that there cannot be an extra channel and that the signals must be

easily identified from each LED on the photodiode, multiple access in VLC is very challenging

without the use of array receivers or side information. Therefore, unless there is extra

information regarding the signals (possibly through an extra control channel) or custom

detection mechanisms incorporated into the system, the ability to spatially and temporally

differentiate optical signals using a single non-array photodiode receiver remains an open

challenge.

Multiple-Input Multiple-Output (MIMO) architectures for VLC that have been proposed

and designed before [9; 28] require multiple photoreceptor elements, for example, as in pho-

todetector arrays and image sensing arrays or cameras. The use of array elements in a

receiver limits the sampling bandwidth (photodiode sampling frequency or camera frames-

per-second) of the receiver hence limiting the achievable throughput of the system.Therefore,

enabling multiple-access while retaining the high-speed sampling capacity of photodiodes is

the other key open challenge that remains to be addressed.

To address the challenges presented above, this paper explores the use of spatial filter-

ing mechanisms using a new hardware design for VLC receivers, to enable multiple access.

In essence, this work presents a proof-of-concept study of using liquid crystal displays (LCD)

to potentially enable multiple access in single non-array photodiode receivers. We propose

a receiver design that uses LCDs to differentiate multiple LED transmissions and enable

multiplexed communication using a single photodiode in the receiver. To this effect, we

build our system over a baseline architecture from our prior work [16], where a liquid crystal
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display (LCD) panel was used as a digital gate or shutter, to allow or disallow signals onto

a photodiode receiver. In this paper, we extended this baseline design to build a single

photodiode receiver equipped with a LCD shutter array controlled by an automated signal

selection protocol to differentiate reception from multiple LED transmissions (conceptual

diagram in Figure 3.1 (left)). This protocol helps relax the assumption (considered in our

prior work) of the apriori knowledge of which LCD shutter should be opened (or closed),

and enables on-the-fly determination of the intended shutter state. The proposed receiver

architecture, to be referred to as pixelated shutter receiver for the rest of the paper, sets

the foundation for future VLC system architectures to achieve MIMO communication using

only a single photodiode receiver. Achieving MIMO first requires multiple access reception

capability demonstration, and to be best of our knowledge, our work in this paper presents

the first design and evaluation of a novel multiple access VLC receiver. In summary, the key

contributions of this paper are:

1. Design of an automated shutter control protocol for selective reception of multiple

LEDs using a pixelated shutter receiver.

2. Implementation of a prototype pixelated shutter receiver multiple access system with

2 × 2 LCD panels, single photodiode and a software-defined radio.

3. Experimental trace based evaluation of the pixelated shutter receiver which employs

the bespoke proposed automated shutter protocol, for 2 independent LED transmitter

scenario using (a) bit-error, (b) packet error and (c) latency metrics.
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4. Experimental evaluation of the automated shutter control protocol under controlled

mobile environment.

3.2 Related Works

Background. In our prior work [16], we introduced a new architecture for VLC that uses

a high–speed photodetector and an LCD shutter acting as a programmable image sensor

aperture. In this work, our measurement studies proved that noise and interference can be

separated spatially using our VLC receiver to improve the Signal to Noise Ratio (SNR) and

Signal to Noise Interference Ratio (SINR) significantly. Through a proof-of-concept experi-

mentation, in our previous work [16] we have studied the feasibility of noise and interference

reduction by manually selecting one of the shutter pixel apertures for higher signal recep-

tion. In this paper, we relax the assumption (considered in our prior work) of the a priori

knowledge of which shutter should be opened (or closed), and advance the design by propos-

ing a novel automated shutter control to help differentiate LED signals on the photodiode.

This paper leads and consolidates the idea of multiple access in VLC by adopting a shutter

controlling algorithm in the receiver. We evaluate the system for high speed reception (up

to 2MHz data transmission frequency) for multiple access from 2 LEDs and feasibility of

automation under controlled mobile settings.

In the rest of this section, we discuss some of the existing works that are closely related to

the challenges targeted in our system. However, we emphasize that no prior work has shown

the capability of achieving high-speed multiple access in VLC using a single photodiode

receiver, which remains the key focus of this paper’s contribution.
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Existing VLC technologies. Recent years have seen active development of VLC re-

search prototype systems. However, these systems have specific limitations owing to the

customizations in their hardware/software design. PureLiFi [23] devices have shown the

capability of Mbps-Gbps data rates, but their performance is limited to static VLC settings

and carry high hardware overheads, complex signal processing, thus requiring a huge cost for

the product. OpenVLC1.3 [48] is an open-source embedded VLC prototype based on simpler

protocols that offers data rates upto 400kbps. The customized hardware and requirement

of modifying the operating system kernel makes this option very challenging to generalize.

With a 1.4kbps data rate, LocalVLC [49] presents a low-cost VLC prototype for indoor IoT

applications based on morse code modulation, however, fails to motivate its usage for typical

indoor IoT applications where higher throughput is typically required. Other VLC systems

including Purple VLC [50; 51; 52], have similar challenges as discussed above. With achieving

high data rate remaining a key challenge for existing VLC systems, the addition of multiple

access requirement can either require significant modifications to these designs or may not be

feasible at all. Our proposed design can potentially address high-data rate, multiple access

and mobility all at once through a unified design. By using the shutter control mechanism

efficiently, signals can be differentiated from noise and interference, thus enabling cleaner

signal reception or higher Signal-to-Noise (SNR) and/or Signal-to-Interference-and-Noise

Ratios (SINR). With a cleaner signal, the signal modulation mechanisms can be kept simple

with more focus laid on achieving multiple access, high-throughput reception and mobility.

Non-Orthogonal Multiple Access in VLC. Recent works have proposed non-orthogonal
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multiple access (NOMA) schemes for VLC [53; 54; 55] to improve spectral efficiency and en-

able multiple access in VLC. However, the common challenge in these designs is the reliance

on channel state information (CSI) and the requirement for the transmitter and receiver

to be informed a priori about CSI. For example, the work in Reference [53] introduces a

power domain based multiple access protocol so that the users can use the entire bandwidth

during the communication session, but requires the CSI and only works in small indoor

environments. NOMA is a good contender for multiple access in VLC however the designs

have been largely limited to showing the feasibility of interference cancellation under strong

assumptions which limit the effective throughput performance of the VLC system.

Multiple Access using MIMO Techniques. Using the MIMO technique proposed

in Reference [56], several works have presented different multiple access schemes using dif-

ferent equalization [57] and modulation schemes such as OFDM [58; 59], optical spatial

modulation (OSM) with OFDM [60]. Reference [61], introduces an Optical Code Division

Multiple Access (OCDMA) technique and Reference [62] used intensity modulation to sup-

port multiple users in MIMO VLC system. A key challenge with photodiode arrays is that

they allow more noise, from ambient light (sunlight and artificial lighting), into the receiver

due to the wide field–of–view, thus affecting received signal quality and data rate. The work

in Reference [63] proposes multi-color LEDs based MIMO VLC system to ensure higher

data rates (upto 1Gbps) but the system requires complex signal processing and equalization

techniques. Reference [64] presents a precoding technique to mitigate inter-cell and intra-cell

ambient light interferences in multi-cell VLC systems to improve the bandwidth efficiency,
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where specific spatial regions are considered as cells, similar to cellular communication.

The complexity of the MIMO techniques for real-time implementation and performance,

and the necessity of high efficiency and costly photoreceptors (avalanche photodiodes [28])

for improving data rates, remain challenges yet to be solved for MIMO VLC systems.

Wavelength Division Multiplexing (WDM). In Reference [65], the authors intro-

duce a bi-directional VLC in full duplex mode by parallel transmission of three (RGB)

channels and use OFDM modulation demodulation to increase the aggregate data rate.

In another work [66], a color-shift keying CDMA (CSK-CDMA) based VLC system has been

developed to increase the VLC throughput and for allowing multiple access.To provide ultra

high data rates (> 35 Gb/s) in a wide range of coverage, a WDM system of four-colour mul-

tiplexed using MEMS based beam-steering has been presented by Chun et al. [67]. While

such systems could potentially avoid interference across specific wavelengths, the complexity,

high bit-error-rates, and costly hardware elements limit the usage of these approaches.

3.3 System Design

We have designed a pixelated shutter based VLC receiver that automatically identifies and

selects/isolates signals from multiple LEDs. The key components of the system, as illustrated

in Figure 3.1 (left), include a photodiode (capable of high-speed sampling), a LCD shutter

array, a shutter control unit, a computing unit, and a condenser lens for optical focusing.

The key idea of proposed design is to allow signals from multiple LED transmitters to

be correctly detected and decoded using a single photodetector VLC receiver. With the



32

knowledge and assurance that only one LED signal impinges on the photodiode at each of

its sampling instance, the receiver can be operated at the bandwidth matched to the LED’s

transmission, resulting in high SNR and thus potentially high data rate reception.

Figure 3.1: (left) Conceptual diagram of pixelated shutter visible light communication (VLC)
receiver. (right) LED Positioning geometrical analysis to ensure focus of only 1 LED per
shutter pixel.

The shutter uses LCDs which act as a digital aperture that allows (disallows) the im-

pinging light beams, to reach the photodiode, based on the input voltage to the shutter.

Using this digital aperture as a control the receiver is able to select which of the incoming

light beams are to be decoded by the photodiode at each instance of time. The comput-

ing unit at the receiver hosts the decoding algorithms and mechanisms to efficiently decode

the signal that has been selected. The digital control of the shutter is integrated with the

decoding modules in the computing unit, such that there is active feedback on the quality

of the received signal. The feedback information includes the received signal-to-noise-ratio

(SNR) and a digital identification of the signal using packet header bits. This design enables

a seamless functioning of the selective control of the reception and the decoding in tandem.

The selection of the desired signal(s) is a one-time process and needs to be repeated only
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when there is mobility or during link failures.

3.3.1 Spatial Multiplexing using Pixelated Shutter

We describe the multiple access capability through the spatial multiplexing setup illustrated

in Figure 3.1 (right). Consider two LEDs placed in space (at same height but separated along

the horizontal) aiming to focus their signals (using the condenser lens) onto a photodetector

(not shown in Figure 3.1 (right)) by passing through a 1 × 2 LCD shutter pixel system, where

the pixels are aligned next to each other along the horizontal axis. Let us consider that each

pixel i is responsible for signals from corresponding LED i. In this way, when the signals

from the LEDs are beamed onto the photodiode, each pixel can selectively allow/disallow

the signals provided the signals are independently identified (and differentiated) and the

information on which signal (LED) should be selected is feedback to the shutter control unit

(not shown in Figure 3.1 (right)).

To ensure that the signals do not overlap onto a single shutter surface area, our design

requires that each LED signal can be spatially separated onto independent shutter pixels.

This depends on the size of the shutter, distance of communication and the spatial separation

of the LEDs. Through lens equation [68] and using simple trigonometrical calculations, we

derive that the minimum distance of separation between the LEDs must be h = dS1/BFL

where d is the distance between two shutter pixel centers (considering a square pixel it is the

pixel side length), S1 is the distance from LED to the lens, and BFL is the back focal length

which is the focal length of the lens. We also derive the minimum angle of separation between

the LED beams as α = 2arctan( h
2S1

). These equations provide the designer the control of
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placing the LEDs in space so as to allow multiple access reception on the single photodiode

receiver. We determine that the minimum horizontal separation between the LEDs has to be

h = 14.88cm and α = 51.2o for the component values from our proof-of-concept prototype

system (section 3.4), where S1 = 15.5cm, S2 = 8.2cm and BFL = 3.75cm and d = 3.6cm,

radiation angle of the LED is 50o. at a distance of 10m the equivalent minimum separation

distance would be close to 10m, however, this distance can be reduced if the d were to be

increased. By merely doubling the size (d) of the shutter, the required distance h now can

be 5m. This means that the selection of separation between LEDs in space and the size of

the shutter involves a tradeoff. The tradeoff between h and d can also be adjusted by using

LASER type emitters or LEDs which have smaller radiation angle.

3.3.2 Automated Shutter Control Protocol Design

The shutter control protocol operates in tandem with the decoding process running in the

computing unit connected to the photodiode. The control protocol, discussed in Algorithm 1

and demonstrated as block diagram in Figure 3.2 involves two steps:

Step 1: Discovery phase, where the receiver does a preliminary pruning of all signals

that do not represent a transmit signal by using the signal-to-noise-ratio from each shutter

pixel i (SNRpxi). SNR is computed as ratio of signal power to noise power, where power

is computed as the mean-squared photodiode voltage reading divided by the sampling time

interval. This step helps to filter ambient light, DC noise sources and other known noise

sources. This way, only a subset of the shutter pixel array are kept OPEN and are to be

processed, thus limiting the processing to a smaller subset of signals.
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Step 2: Identification phase, where the receiver does a fine tuning of identifying each

transmit signal and selectively opening the corresponding shutter pixels to allow/disallow the

signal for continued reception at the photodiode. The identity of the signals are maintained

through unique header sequences (barker codes) in the data packets. We consider that a

unique ID of each transmitter will be registered at the receiver apriori during the first setup

of the system (one time) and update the identity look-up table as necessary.

Figure 3.2: Block diagram of shutter controlling algorithm.

The shutter control protocol enables multiple access where information from multiple

LED transmitters can be decoded by a single photodiode receiver. By enabling which signals

to receive at which instance of time, the receiver can choose time-slots to receive and decode

specific signals. Our system by default functions as a space and time-division multiple access

(SDMA and TDMA) system where each transmission is decoded across a time-slot duration

of Ts seconds, and the selection of spatially separated LED emissions is controlled through

the LCD functions. While transmitters could potentially transmit at different rates and

that time slots of transmission and reception may incur synchronization issues, the spatial

separation through the LCD enables to first find which signal is intended and which is not,
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and then physically allow only the signal intended. Without the LCD the other possibility

to achieve the same functionality is to use an array receiver, however, as mentioned before,

array receivers can significantly increase the complexity of the system. This work aims to

study how a non-array receiver could still function such multiple access schemes, albeit with

some practical and minimalist hardware additions.

The choice of the value of Ts depends on the application. For example, a slot duration

of 1–2 seconds may work for beaconing and repetitive transmission such as in sensor or IoT

applications, however, for streaming applications the slot has to be made much smaller (order

of few ms). A smaller slot duration also implies that the pixel switching control must happen

as fast as the selected slot duration. Depending on the type of LCD shutters, the switching

time can vary from few micro to 10s of milli seconds.

3.4 Prototype Implementation

We implemented a prototype pixelated shutter receiver as shown in the setup in Figure 3.3.

The design parameters are all listed in Table 3.1. The key components of the hardware

system include 2 RED LEDs, a PDA10A2 Amplified Photodetector, a custom made 1 ×

2 pixelated LCD shutter and an aspheric condenser lens (outer diameter 80 mm and BFL

= 37.5 mm). We implemented the automated shutter control algorithm in a Raspberry

Pi 3 Model B+ which interfaces with a 2 × 2 pixelated shutter, built using off-the-shelf

LCD shutter elements from AdafruitDue to the leakage of LED light we use the 2 × 2

LCD setup in 1 × 2 reception mode. We used two N210 USRPs as the computing units
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Algorithm 1 Automated Shutter Control Protocol

OUTPUT: Allow desired optical signals and block interference

Initialization:
Open all shutter pixels (px1, px2, px3.....pxn) to allow signals
Set a fixed switching time (Ts) for all pxi (i = 1, 2...N)
Preset an empirical threshold SNR value (SNRth)
Refresh unique identifier (ID) look-up table

Step 1: Discovery
Iterate each pixel OPEN and all others CLOSED for duration Ts and record SNR
IF SNRpxi ≥ SNRth

(a) OPEN shutter pixels pxi
(b) CLOSE all other pixels
(c) Proceed to Step 2:Identification
ELSE CLOSE all the pixels and refresh the program

Step 2: Identification
Correlate decoded signal ID with look-up table IDs
IF ID matches
(a) OPEN only matched ID containing pixels
(b) CLOSE all the remaining pixels
ELSE CLOSE all the pixels and goTo Step 1: Discovery

at the transmitter (controlling LED transmissions) and receiver ends (decoding signals from

photodiode). We used a LFTX daughterboard capable of operation from 0–30MHz and

a RFTX daughterboard. The 2 LEDs were controlled using two different USRPs, each

hosting a LFTX, and one of the USRPs hosting a LFRX that also conducted the reception.

We used GNU Radio blocks (block diagram of GNU applications shown in Figure 3.4) to

transmit and receive signals using the USRPs. We chose to use the state-of-the-art Gaussian

Minimum Shift Keying (GMSK) as the modulation strategy in our design, however, any

type of modulation can be used in the system. We use 13-bit and 11-bit barker sequences

for LED1 and LED2 header bits, respectively. We have implemented the transmissions in

the form of UDP packets of size 2096 bits (as per IEEE 802.15.7 VLC standard [69] packet
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definitions).

Figure 3.3: General setup of the pixelated shutter receiver system. This picture shows a 2
LED transmitter setup with a single photodiode receiver and 2 × 2 liquid-crystal-displays
(LCDs) fit in a 1 × 2 shutter pixels configuration.

Figure 3.4: USRP GNU Radio block diagram for (a) transmitter LED 1, (b) transmitter
LED 2, a and (c) pixelated shutter receiver. Note that the vector source values shown are
only example values. The setup uses 2 N210 USRPs with LFTX daughterboard for the
transmitters and 0-30MHz LFRX daughterboards for the receiver.
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LED Specifications

Number of LEDs 02
LED Type and Size Red, T-1 3/4 (5 mm)

Horizontal distance between LED’s [cm] 14.88 cm
Viewing Angle of LED [deg.] 30◦

Luminous Intensity at each LED [mcd] 3500 mcd
Optical Output Power at each LED [mW] 125 mW

Wavelength of each LED [nm] 650 nm

Photodiode (PD) Specifications

Physical Active Area of the PD [mm2] 0.8 mm2

Wavelength Range of PD [nm] 200 to 1100 nm
Bandwidth of PD [MHz] 150 MHz

Peak Response of PD [A/W] 0.44 A/W

Lens Specifications

Lens Type Aspheric Condenser Lens
Outer Diameter [mm] 80 mm

Back Focal [mm] 37.5 mm

LCD Shutter Specifications

LCD Type TN, Transmissive, Positive
Dimensions of LCD Pixel 36 × 36 mm
Driving Voltage of LCD [V] 3–5 V
Maximum Opaqueness (%) 95%

Table 3.1: LED, Photodiode, Lens and LCD specifications

3.5 Evaluation

We evaluate our system to study the feasibility of our system to achieve high speed recep-

tion and the performance of the automated shutter protocol for multi channel visible light

signal reception on a single photodiode receiver. All the experiments were conducted in a

lab setting, indoors, under ceiling white ambient lighting. Unless mentioned, the distance

between the LED and photodiode in our experiments was set to 15.5 cm.
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3.5.1 BER Analysis

We conducted two types of experiments to evaluate the bit error rate performance of our

system: (a) BER under different types of interference, and (b) BER under selective mapping

of signal and shutter pixels. We calculated the BER as the ratio of total number of bit

decoding errors to the total number of transmitted bits per trial. The BER experiments

involved, in general, transmitting a random stream of 30,000 bits and logging the decoded

bits at the receiver. Each experiment trial was repeated 5 times, BER was computed per trial

and the average BER is reported. Unless otherwise specified, the BER values reported in

this paper refer to the average BER over 5 experiment trials. We chose LED 1 as the desired

transmitter and LED 2 as interference. The LEDs were modulated using the baseband signal

from the USRP, where a pulse waveform at a specific (generation) transmit frequency was

input to the LEDs which mapped a 1 to pulse HIGH and 0 to pulse LOW. Since the operation

was in baseband, the transmit frequency is essentially equal to the transmitter data rate.

The data rates were thus chosen as per the experiment goals:

• Goal A: The 100 bits/sec is chosen arbitrarily, as the primarily goal of this experiment

is to validate the additive nature of optical signal at the photodiode receiver.

• Goal B: We chose operation at (500k, 1M, 2M) bits/sec rates and measured the BER

and PER at different shutter configurations at those rates for our proposed pixelated

LCD architecture. The 2Mbps (2MHz) limit for evaluation was due to the limited

operable range of the LFTX/LFRX USRP daughterboard. In our future work we
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intend to evaluate our system for Gbps range using SLD Laser type transmitters and

using FPGA (Field-programmable Gate Array) computing nodes.

3.5.1.1 BER and Interference Patterns (Goal A)

We set the transmit frequency to be 100Hz and conducted the BER experiment under four

signaling types:

• Type 1: Only the transmit signal.

• Type 2: The transmit signal and ambient DC noise.

• Type 3:Transmit signal and Interference signal sending identical patterns in phase.

• Type 4: Transmit signal and Interference signal sending identical patterns at 180 deg

out-of-phase.

We report the BER from these experiments in Table 3.2. We can observe from the

BER values from Case 1 that the error rates for the system are generally high when the

desired signals and the interference are combined at the photodetector. We observe that

the BER is practically low (for feasible data communication) when the pixels are selectively

OPEN/CLOSE to allow only the desired signal, which has been achieved without major

changes to the receiver. We can also observe from the BER values, the additive property of

the receiver, where the BER is low when the interference signal is identical and of same phase

(as the effective received signal amplitude is doubled) and high when the same interfering

signal is out-of-phase.
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Type 1 Type 2 Type 3 Type 4

Case I
Case

II
Case I

Case

II
Case I Case II Case I Case II

5 ×

10−4

5 ×

10−4

4.9 ×

10−1

8 ×

10−4

2.2 ×

10−4

2.1 ×

10−4

4.9 ×

10−1

5.1 ×

10−4

Table 3.2: Bit error rate (BER) at 100 Hz signaling under different interference patterns.
Case 1: All pixels OPEN, Case 2: Only desired signal pixel is OPEN.

3.5.1.2 BER and Selective Signaling (Goal B)

Consider pixel-1 as the pixel corresponding to LED 1 and pixel-2 as the one for LED 2. We

conducted the BER experiments under three different configurations of the shutter pixel and

under three different transmit frequencies. The results from Table 3.3 indicate that the BER

is at least an order low when only the desired signal is received versus when the interference

is also sampled on the single photodiode receiver. The BER values, though relatively high

(which can be reduced using error control coding) for data streaming applications, how-

ever, indicate the feasibility of multiple access using our proposed architecture. Considering

Goodput ≈ (1−BER) ∗ transmitsymbols/sec ∗ bits/symbol ∗ errorcontrolcoderate, we note

with an assumed code rate of 1/2, 2 Mhz (2 M symbols/sec) transmit rate and 2bits/symbol

modulation rate, the effective Goodput per LED in our preliminary system is about 1.9 Mbps.
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Frequency (Hz) Configuration 1 Configuration 2 Configuration 3

500 KHz 0.015 0.039 0.21
1 MHz 0.015 0.035 0.21
2 MHz 0.015 0.030 0.21

Table 3.3: BER at different shutter pixel configurations. Configuration 1: ONLY pixel-1
is OPEN. Configuration 2: ONLY pixel-2 is OPEN. Configuration 3: BOTH, pixel-1
and pixel-2 are OPEN.

We observed after our experiments and analysis that the positioning of our custom built

LCD array on pixel 2 location was slightly tilted thus causing a focussing issue of any light

beam falling on it to the photodiode. The lens was placed at exactly the optical focal length

distance from the photodiode to ensure convergence of the rays, however, due to the tilt the

LED 2 signal falling on pixel 2 was actually defocused. After a breakdown of the equipment

we measured that the signal intensity was reduced by almost 50%. This actually confirms our

finding that the BER is little more than 2x that of LED1-pixel 1. We report these numbers

as is and believe it is a honest representation of our experiments and that it actually helps

make key observations.

3.5.2 PER and Signal Selection

We conducted 5 PER evaluation trials each for considering LED 1 or LED 2 as the desired

signal. We collected traces from these trials and determined the PER through offline cal-

culations. In each trial we transmit a continuous stream of packets of size 2096 bits, where

each packet has a random stream of bits as payload and a 13 bits header. The header served

as the unique ID for each LED. The header would be the same for all packets from a specific
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transmitter. For LED 1 we chose a 13 bits sampled from barker sequences as ID, and for

LED 2 we chose a 11 bits sampled from barker sequence plus a 2 bit (11) padding. We chose

the time slot (Ts) duration to be 2 seconds for each iteration over a pixel. We recorded the

received and decoded bits from packets in each iteration of pixel OPEN cycles. We collected

the received signal traces from each iteration of each STEP of the automated shutter control

protocol (Algorithm 1). We iterated over 1 cycle of each pixel OPENING and then choosing

either of the pixels that corresponds to the desired signal. We can observe from Table 3.4

that the PER is around 3%-6% which is comparable to typical PERs observed in traditional

multiple access wireless communication systems. We estimate the theoretical throughput

considering a PER range of 3% to 6%, and error control code rate of 1/2 as 0.94–0.97 Mbps,

where Throughput ≈ (1− PER) ∗ packets/sec ∗ bits/packet ∗ errorcontrolcoderate.

Freq(Hz) # Pkts in Ts
Packet Error Rate (PER) (%)

Pixel 1 Pixel 2

500 KHz 477 5.88 % 5.46 %
1 MHz 954 4.83 % 2.63 %
2 MHz 1908 3.36 % 3.25 %

Table 3.4: Packet error rate (PER) calculated from received signal traces from each pixel
OPEN duration of Ts = 2 sec. Pixel 1(2) corresponds to signal from LED 1(2).

3.5.3 Impact of switching latency

The switching latency is the effective time taken by the shutter receiver and its associ-

ated processing to switch the state and control from one pixel to another. Switching la-

tency can impact the signal quality from each pixel during the shutter control phases.

The switching latency is a function of the per-pixel time slot duration Ts and the inter-
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mediate state (open/close) switching time per pixel. We compute the switching latency=

[(pixels− to− scan) ∗ (Ts + switching − time− per− pixel)] + [(no.− of − transmitters ∗

packet− size ∗ switching− time− per− pixel)], where the first part of the sum is the Step

1 latency and second part corresponds to Step 2. We first validated the consistency of the

SNR values under different time slot duration selections for the pixels in our current proto-

type. Considering LED 1 as desired signal and with LED 2 switched OFF, we alternated

pixels 1 and 2 to be OPEN for the specific time slot duration and recorded signal and noise

power. We report the average SNR values in Table 3.5 and observe the consistency of SNR

for short (100 ms) as well as long time slot durations (2 s). The experiments were conducted

in a well lit (white ceiling lighting) lab environment. The ambient light from the ceiling

light is considered as the noise source, with a recorded average voltage was 4.9 mV across

all experiments; to help compare, the LED signal from 16 cm recorded about 0.6 V on the

photodiode without any shutter.

Pixels Pixel 1 Pixel 2 Ts [ms]

SNRdb 19.97 −0.27 100 ms
19.96 0.48 500 ms
19.86 −0.47 1000 ms
20.02 −0.60 1500 ms
19.99 −1.18 2000 ms

Table 3.5: Average Signal to Noise Ratio (SNR) in dB for each pixel OPEN under different
shutter switching times. Here, the LED transmitter is placed such that it illuminates Pixel
1 only.

In our prototype the time slot duration is 100ms, pixel switching time is 1ms, and there

are 2 transmitters sending 2096 bits packets. We measure the Step 1 (discovery) phase
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switching latency to be about 400 ms (2 × (100 ms + 1 ms)) with a 5 s periodicity, and Step

2 (identification) phase switching latency to be about 4.2 s (2 × 2096 × 1 ms). Ideally,

the smallest shutter pixel switching time is desired, however, the hardware choice may cause

a constraint. We observe that our LCD shutters in our prototype can go lowest up to 1ms

operation. If we were to consider practical usage of switching times of Ts = 1 microsecond

(potentially using Digital Micromirror Devices DMDs), and shutter resolutions of 100 ×

100 and 1000 × 1000 pixels, and even considering an overestimated number of 100 effective

transmitters (which map to 100 different pixels) the effective, theoretically estimated, pro-

cessing time (latency) of Steps 1 and 2 in Algorithm 1 would be about 220ms and 1.2 s,

respectively. Such latency numbers can be considered practical for typical VLC applications

including sensing, IoT and low-speed device-device data transfers.

3.6 Extended Evaluation: Mobile Scenario

We extend the evaluation of our prototype system across mobile environments. The mo-

bility considerations in these evaluations refer to the the case when the VLC transmitter

can potentially change its spatial position while transmitting data. The receiver is kept sta-

tionary in all these experiments. When an actively transmitting LED changes its position,

the receiver must be able to actively identify that the movement has happened and that it

needs to adapt its reception area. Using our pixelated shutter approach, we hypothesize that

when the LED changes position, the receiver will identify the movement event based on its

periodic SNR measurements across each pixel and the automated shutter control protocol
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(Algorithm 1) shifts control to the appropriate pixel over which the LED signal is now being

received. The goal of these evaluations is to verify the feasibility of our system to adapt its

reception when the LED changes position.

3.6.1 Experiment Setup and Methodology

To facilitate controlled movements of the LED transmitter across different positions, we set

up our VLC system on a table top with the receiver in static position. We 3D printed a

housing for each of the two LED transmitters to be integrated with a 3-wheel RaspberryPi

controlled robot as shown in Figure 3.5. With a distance of 0.5 m set between the VLC

transmitter and receiver, we consider three key positions of the transmitter; A, B and OFOV

(out of Field-of-View):

1. Position A is the point from where the LED transmitter illuminates Pixel 1 area of

the shutter. When the robot is in position A, the receiver must be able to identify the

signal is on Pixel 1 and only OPEN Pixel 1 (keeping others closed).

2. Position B is the point from where the LED transmitter illuminates Pixel 2 area of

the shutter. When the robot is in position B, the receiver must be able to identify the

signal is on Pixel 2 and only OPEN Pixel 2 (keeping others closed).

3. Out of Field of Views (OFOV) are the marked positions on the straight line trajectory

of the robot where the LED signals are either minimal or out of field-of-view of the

receiver lens and photodiode. When the robot is in this position, the receiver must
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identify there is no active transmission from the LED being received and hence must

close all pixels to avoid any noise or interference signals being sampled on the receiver.

Figure 3.5: LED transmitters placed on GoPiGo RaspberryPi robots

Figure 3.6: Mobility experiments with the variation of LED Transmitter’s position: A (left),
B (center) and Out of Field of Views (OFOV) (right).

3.6.2 Results

We set the robot to move from one end of the table to the other along a straight line

trajectory, traversing positions A, B and two marked out-of-FOV points (see Figure 3.6 for

an illustration). In each experiment trial we chose a specific speed of the robot and shutter
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switching time and move the robot along the calibrated trajectory. The receiver selects the

pixel status as OPEN/CLOSE based on, first computing the SNR on each pixel and flagging

the pixels which have SNR above an empirical threshold (Table 3.5) for each switching time

selection, and then the receiver making a recommendation on which pixels to OPEN/CLOSE

based on whether it has detected the ID sequence (decode bits, correlate with sequence and

flag success if correlation above 90%). We set our experimentation to record the system’s

pixel shutter recommendations in the form of a 2 bit binary representation as listed in

Table 3.6. For example, a 01 implies that the system correctly identified that Pixel 1 should

be open and identified the signal on Pixel 1 using the 5 bit Barker ID sequence transmitted

as payload.

Configurations Binary Representation

Pixel 2 Closed, Pixel 1 Closed 00
Pixel 2 Closed, Pixel 1 Open 01
Pixel 2 Open, Pixel 1 Closed 10
Pixel 2 Open, Pixel 1 Open 11

Table 3.6: Binary mapping of the output or shutter pixels status recommendations

In Figure 3.7, we report our system recommendation output for three speeds of the robot

(20 dps or 0.53 cm/s, 15 dps or 0.4 cm/s, 10 dps or 0.26 cm/s) and 1000 ms shutter switching

time. There is an ERROR case of recommendation where both pixels are open (binary

representation: 11) in both 15 and 10 dps robot’s speed experimentation. During this time,

the robot’s position is at the intersection of A & B, where both pixels are illuminated at the

same time and the measured SNR values in both pixels are higher than the threshold value.

However, we observed over 5 trials, even in the reported least accurate case, the ERROR
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cases occur largely in the transition phase from one pixel to another. This can be resolved

by synchronizing the transition time with the speed of the robot or by speeding up shutter

sampling (smaller intervals) so that even if the error occurs during a transition, there are

enough samples to identify the behavior and a suitable action can be taken on the receiver.

Further, more receiver samples imply possibility of using probabilistic estimation of whether

the LED has changed position or not.

Figure 3.7: Our system’s output (recommendations) at 1s shutter switching time and at
different speeds of the robot: 20 dps (left), 15 dps (center), 10 dps (right). We conducted
5 trials and ordered the highest to least accuracy. These figures represent the least accu-
racy case.

As an extended experiment we evaluate how the system performs for much smaller sam-

pling time intervals such as 100 ms and 50 ms. These sampling intervals can cater to real-time

human-computer interaction applications and other applications using real-time feedback.

While the focus of this work is not necessarily to emphasize only one category of application,

we do explore on the success and limitations of our system under such fast sampling time

settings. We report the results from our robot movement based experiment results, discussed

previously, for these cases and report them in Figures 3.8 and 3.9, respectively. We observe

that in most sampled points the system recommends correctly, however, some cases of error
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when the LEDs are not in FOV or transitioning. These errors can be resolved by employing

statistical filtering to the recommendation/identification results in each sample over the du-

ration of a reasonable and practical time window. For example, even if the sampling duration

is 100ms, the samples across a 1sec time window can be considered for statistical estimation

and filtering noise to ensure the correct receiver sampling area is accounted. Another issue,

the leakage of LED signals through the shutter even if it is CLOSED. We note that we have

used an off-the-shelf LCD shutter, which has only a 95% marked opacity, which means that

5% of the ambient and incoming light on the shutter are still let through. At these short

distances we believe the leakage is causing significant changes in the SNR values and hence

leading to erroneous recommendations when both pixels are CLOSED or both OPEN. One

option is to replace the LCD shutter with Digital Micromirror Device (DMD) based high

speed shutters to ensure much faster and efficient pixel switching. In summary, we note

that the goal of our current work is to explore these mobile scenarios and make observations

of the artifacts arising in our system response. We reserve the optimization of the system

performance for better hardware and across mobile scenarios for future work.

Figure 3.8: Our system’s output (recommendations) at 100 ms shutter switching time and
at different speeds of the robot: 20 dps (left), 15 dps (center), 10 dps (right)
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Figure 3.9: Our system’s output (recommendations) at 50 ms shutter switching time and at
different speeds of the robot: 20 dps (left), 15 dps (center), 10 dps (right)

3.7 Discussion

Ideally, the size of the LCD pixel area has to be matched with the size of the LED signal blob

on the receiver. The size of the blob changes (decreases) with (increasing) distance between

the transmitter and receiver. It will be appropriate to have an extremely small LCD pixel

area to ensure the signal from the maximum range of the LED such that the signal on the

photodiode is above ambient noise (usually meters to 10s of meters). In that regard, we

originally chose to use a TFT LCD pixel array of a small TFT LCD monitor screen (used

for Arduinos and Raspberry Pis). However, due to the hardware and software limitations

in controlling separate pixels, we chose to build a contraption of an LCD pixel array and

the ones we have used are the smallest size that can be obtained off-the-shelf. In our next

iteration of this design we plan to use Digital Micromirror Devices (DMD) to achieve small

areas of reception as well as faster switching times.
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3.8 Conclusion

In this paper, we introduced a novel architecture and a protocol to enable multiple access

reception on a VLC receiver with only a single photodiode element. We designed and evalu-

ated a system that enables transmission from 2 LEDs simultaneously and selectively decodes

packets from each based on a selection algorithm that uses OPEN/CLOSE cycles of LCD

shutter pixels acting as digital apertures for the photodiode signal. Through BER, PER

and latency metrics (processing latency), computed through experiments, we showed the

feasibility and performance of our 2 transmitter-to-1 receiver multiple access system at low

and high signal frequencies. We also successfully verified the feasibility of the use of the

system across controlled mobile settings by setting the LED transmitters on robots and the

pixelated receiver being static. To the best of our knowledge, this work sets the foundation

stage for future work in multiple access using single photodiode receiver.
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CHAPTER 4

CAMERA BASED LIGHT EMITTER LOCALIZATION AND TRACKING
USING OPTICAL BLINKING SEQUENCES

Visual identification of objects using cameras requires precise detection, localization, and

recognition of the objects in the field-of-view. The visual identification problem is very

challenging when the objects look identical and features between distinct objects are indis-

tinguishable, even with state-of-the-art computer vision techniques. The problem becomes

significantly more challenging when the objects themselves do not carry rich geometric and

photometric features, for example, in visual identification and tracking of light emitting

diodes (LED) for visible light communication (VLC) applications. In this paper, we present

a camera based visual identification solution where objects or regions of interest are tagged

with an actively transmitting LED. Motivated by the concept of pilot symbols, typically

used for synchronization and channel estimation in radio communication systems, the LED

actively transmits unique pilot symbols which are detected by the camera across a series of

image frames using our proposed spatio-temporal correlation based algorithm. We setup the

visual identification as a problem of localization of the LED on the camera image, which

involves identifying the (pixels) and the unique ID corresponding to the LED. In this paper,

we present the algorithm and trace-based evaluation of the identification accuracy under

real-world conditions including indoor, outdoor, static and mobile scenarios. In addition to

micro-benchmarking the localization accuracy of our technique across different parameter

configurations, we show that our technique outperforms comparative techniques, including,

color based detection, support-vector machine based (SVM) machine learning, and you only
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Figure 4.1: Depiction of different LED localization application scenarios: (left) indoor robot
localization application, (right) outdoor 3D mapping, V2V and pedestrian localization using
LED and camera.

look once (YOLO), which is a state-of-the-art convolutional neural network (CNN) deep

learning based object identification tool.

4.1 Introduction

The advent of camera-based automation in mobile systems, advances in autonomous robotic

systems and pervasive use of visual perception as an essential modality in cyber-physical

systems, have urged the need for visual identification of objects in a given scene with high

accuracy and precision. Fundamentally, this problem has long been studied and addressed

along the dimensions of object detection/recognition and localization using computer vi-

sion. The advancements in deep learning have improved vision based recognition fidelity.

Localization, along with 3D environment mapping, have improved significantly using visual

SLAM (Simultaneous Localization and Mapping) [70; 71]; computer vision used with SLAM

to build a map of an unknown environment and perform localization to locate the object or

robot (self) inside the generated map.

Vision based techniques fundamentally reach a bottleneck when the objects of interest are
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identical, making differentiating objects using visual features alone impossible, and that when

the environment is dynamic and mobile, thus causing problems for matching features across

time for reliable visual SLAM. For example, an autonomous driving vehicle mapping the

3D environment suffers from distinguishing different identically looking buildings and other

road side objects. The constantly changing scenery, due to motion, further complicates

the process as the visual features are ‘available’ only for a short duration (even shorter

depending on the speed of the vehicle). To address this issue, we propose that such objects

in the scene, particularly those which can lead to such vision bottlenecks, be tagged with a

light emitting diode (LED) which constantly transmits a unique ID (mapped to the object

of interest in the scene) and a camera is used to localize this LED. The unique ID serves

as a differentiator between objects, and the localization problem boils down to precisely

identifying the pixels in the camera images that correspond to the LED. To this end, we

propose a novel correlation localization technique that is fundamentally motivated by the

concept of pilot symbols correlation used in radio packet communication reception. The

pilot information in the form of barker code binary sequences are transmitted by the LED

that are detected, demodulated on camera image pixels, and the corresponding sequence

of digital data is cross correlated with the known pilot (barker code) sequence. A high

correlation will mean that the particular camera image pixels correspond to the fact that

the LED was detected at those pixels.

Correlation Localization. We setup the visual identification as a problem of localiza-

tion of the LED on the camera image, which involves identifying the (pixels) corresponding
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to the LED. We treat that the unique ID for each LED in vicinity is registered in the camera

system’s database. Note that the purpose of these unique IDs is to differentiate the objects

of interest within the scene in immediate vicinity of the camera. Thus these IDs can be

reused and the number of IDs within a spatial region is finite and will scale linearly (with

number of tagged objects of interest). Motivated by the concept of pilot symbols, typically

used for synchronization and channel estimation in radio communication systems, the LED

actively transmits unique IDs, or pilot symbols, which are detected by the camera across a

series of image frames using our proposed spatio-temporal correlation based algorithm. This

algorithm takes a window of image frames, registers the scene using compute vision image

alignment technique, and performs a one-dimensional n-block correlation across the image

– treating the image matrix of pixel intensity as a linear array of numbers. The n is the

parameter that represents the number of elements in the array used for correlation. The

fundamental idea is that only the pixels corresponding to the LED will follow a intensity

variation pattern in accordance with the pilot symbols, while the other background pixels do

not change significantly or are mostly static. This way, the pixels corresponding to the LED

alone will reveal a high correlation output which thus helps isolate the LED pixel region

with high accuracy and precision.

Applications. LED localization can be very helpful in a plethora of applications, par-

ticularly those relying on location based services and those which use cameras. As depicted

in Figure 4.1 (left), LED localization can significantly assist in autonomous robot navigation

and scene mapping. Active transmissions using LEDs and decoding using cameras is the
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fundamental concept of visible light communication (VLC). Hence, localizing a LED in itself

fundamentally solves the key issue of transmitter identification and tracking in VLC. The

concept of visible light positioning (VLP) has gained much interest in the research commu-

nity for localizing ground objects based on locating LEDs and identifying them by decoding

bits from LED transmissions. However, VLP depends on prior knowledge of the map or

blueprint of LED placements and fundamentally tries to solve the dual problem (localize

the camera device with respect to the local space based on detected LED positions using

geometrical analysis). Accurate localization of the LED in the camera image will enhance

VLP system fidelity. This is applicable even in outdoor scenarios (Figure 4.1 (right)) such

as for mapping infrastructure (e.g. buildings), localizing safety critical events such as a

pedestrian crossing the road, and for tracking target vehicle (transmitter and/or receiver)

for vehicle-to-vehicle (V2V) communication (using VLC and/or radio wireless).

In summary, the key contributions of this work are as follows:

1. Design and implementation of the correlation localization algorithm for localizing LED

on camera images.

2. Real-world trace based experimental evaluation of the correlation algorithm in different

indoor, outdoor, static and motion (car driving) cases.

3. Performance comparison of the optical correlation decoding algorithm with color based

thresholding and support-vector machine learning based localization accuracy metrics.
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4. Comparative evaluation based discussion of advantages and disadvantages of using

deep learning techniques for LED localization in camera images.

(a) BRISK (b) SURF (c) HARRIS (d) ORB

(e) MSER (f) EIGEN (g) KAZE (h) HOG

Figure 4.2: Various feature (key points) extraction techniques tested on an image of an LED
switched ON.

4.2 Design Motivation: Challenges in Vision Feature Extraction

Features play a fundamental role in computer vision based algorithms; used for object de-

tection, recognition, tracking, matching, classification applications and many more. Visual

features in images, also referred to as key points, are essentially visual markers in the regions

of interest (e.g. object) that can help characterize the particular image region. Computer

vision algorithms for localization and tracking are fundamentally dependent on feature ex-

traction from the scene, and every thing else that follows is largely based on the quality of the
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Figure 4.3: Implemented SIFT feature based feature (key points) matching for LED detec-
tion. Note that there are no SIFT key points on the LED region in both cases.

features. Some of the most prominent features that are used in computer vision applications

include ORB [72], scale invariant feature transform (SIFT) [73], SURF [74], histogram of

gradients (HOG) [75], Harris [76]. Other features that have gained prominence also include

BRISK[77], MSER[78], EIGEN[79] and KAZE[80].

As a motivation experiment to demonstrate the challenge in LED localization using

traditional vision techniques, we conducted a feasibility experiment with testing extraction

of all the features listed in the previous paragraph. We used the MATLAB [81] computer

vision toolbox to run each feature extractor on a sample image of a red color (monochrome)

LED placed on a chair in room with some sunlight through the windows and no ambient

artificial lighting. We can observe from Figure 4.2 that most of the feature extractors are

not even able to find a single key point on the LED or close to the LED. Those that detect

key points in this LED scene, such as SURF, KAZE and ORB, are very noisy as they
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are detecting multiple areas not representative of the LED as key points. Differentiating

such key points is extremely challenging without much additional information, which is not

the case. We can observe that HOG does detect some key points in a systematic manner,

however, the problem of differentiating/cleaning the outliers is very challenging. In a more

complex environment (backgrounds) the challenge will only become harder, as the key points

will largely be concentrated on other aspects of the background that may have more visual

characteristics than the LED. Clearly, the failure of traditional vision based feature extraction

is attributed to the lack of knowledge or the ability to define features pertinent to the LED

as it bears no clear and unique geometric or photometric characteristic.

As an additional measure, we tested the SIFT feature extraction and matching on the

indoor LED scene, which worked better than the others, yet noisy. However, when the

same LED was placed in a different setting – outdoor sunlight with trees background – the

SIFT feature matching algorithm could not identify any credible key point on the LED in

the outdoor setting and instead matches (wrongly) the indoor LED with the leaf region on

one of the trees. This example is an additional evidence of the challenge in using feature

extraction based techniques for LED localization.

4.3 Related Works

In this section, we survey related works on object detection and localization.

Feature extraction based Computer Vision. Conventional feature extraction based

computer vision techniques using different descriptors such as SIFT [73], HOG [75], SURF[74],
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Haar[82] to detect and localize the objects from the scenes [83] are commonplace. Feature

based extraction architectures are not robust enough to identify the objects accurately from

the scenes due to the constant changes in the image backgrounds, illumination conditions and

the appearances of the objects. LEDs in particular are feature-less objects making feature

definitions for LEDs in real-world settings very challenging.

Visible light positioning (VLP). Using LED beacons can enable precise object local-

ization through visible light positioning (VLP) [84]. Prior work has explored VLP across

different applications such as, indoor localization, wearable devices, target tracking, etc

[85; 86; 87; 88]. In VLP, the transmitter LED needs to send it’s location information to the

corresponding receiver (can be photodiodes or imaging sensors) to estimate the localization

parameters including the distance and the direction of the light signals. However, such de-

pendency of getting the information of position related parameters beforehand makes the

VLP systems challenging especially in scenarios where the object’s location and environment

are unknown.

Learning based tracking and Re-identification. In intelligent transportation system

(ITS), identifying, locating, and tracking the same or similar type of vehicles is still challeng-

ing for computer vision applications[89]. Recently, deep convolutional neural networks based

approach has been extensively used to solve the vehicle re-identification problem in works

such as PROVID framework [90], DRDL model[91], CityFlow [92], VeRi-Wild [93]. For ex-

ample, in DEx [94], a CNN based dual embedding expansion technique was implemented to

create unique representations from each of the images. However, all the techniques require
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large and diverse datasets of the object in question which can be a bottleneck.

Multi-sensor fused based object detection. Fusing information or data [95] from dif-

ferent sensors to detect and locate objects is one of the common research trends in the com-

munity for the last few years. Sensors data from different 3D detectors such as camera (both

monocular and stereo)[96; 97; 98; 99; 100], LiDar [101; 102], Radar [103; 104] have been fused

in several experiments to tackle the object detection problem. In [105; 106; 107; 108; 109],

the authors propose different fusing techniques either by cascading the camera and LiDAR

information or fusing the region of interest (ROI) features from the sensor information. In

ContFuse [107], the system uses a convolution neural network based deep learning technique

[110] to fuse ROI-wise the camera and LiDAR sensor data. To achieve full multi-sensor

fusion, both point and ROI-wise features fusing have been implemented in [111]. However,

fusing multi-sensor information is not an easy task to perform as there are challenges in

every steps of data association, modality or alignment which needs a rigorous processing

framework resulting in higher computational complexity.

4.4 System Design

The proposed system considers that objects or regions of interest in the space are tagged

with a LED transmitter that serves as the meta identifier for the object and representative

of where it is located within the scene. The LED is set to actively transmit unique IDs as

a sequence of bits using on-off keying (OOK), where bit 1 is mapped to a high intensity

level (ON status) and bit 0 is mapped to a low intensity level (OFF status) of the LED.
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Figure 4.4: Design pipeline for proposed correlation based LED localization system.

We consider that each LED is set to a unique ID sequence, however, this sequence can be

programmatically changed.

At the receiver, a camera that is perceiving the scene registers the LED signals; as long

as the LED is within the camera’s field of view, typically at narrow (± 30-50 deg) or wide (±

50-80 deg) angles for traditional cameras. We consider that the camera receiver is operated at

a frame rate (sampling rate) following the Nyquist criterion – at at least 2x the transmission

rate. Thus, the LED signals are sampled by the camera such that each transmit bit has

at least 2 image frames with at a set of pixels registering a pixel intensity corresponding to

that bit’s transmit signal intensity. If the sampling is clean, the pixels corresponding to the

LED region will register a high pixel intensity when LED transmits a bit 1, and will register

a low pixel intensity when the LED transmits a bit 0. Each camera image at each instance

of time registers an LED’s single state. Hence, for a N bits sequence ID, we consider 2N

consecutive frames and input to our correlation localization algorithm to identify the LED’s
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exact location on the camera pixel domain.

4.4.1 Correlation Localization Algorithm

We define the localization problem as identifying at least a 3 x 3 pixel block in the camera

sampled images that overlaps with the pixels that have registered the LED. The algorithm

is setup as a two-phased approach. Phase 1 extracts the data from the images and prepares

it for the LED pixel location identification using correlation calculations in Phase 2.

4.4.1.1 Phase 1: Data preparation

Image formatting. Each sampled image at the receiver, regardless of the original resolu-

tion, will be resized to VGA resolution (640 x 480 pixels). This is to minimize the image

processing computation time. To ensure the transmissions from the LED are not creating

disturbing flickering effects, we operate the LEDs at a minimum of 50 Hz which thus re-

quires the cameras to operate with at least 100 frames-per-second (FPS) sampling. Today’s

off-the-shelf mobile cameras can reach 100 FPS and beyond but at VGA resolution. The

images are processed further in gray-scale. We use grayscale version of the sampled color

images for post processing only. The camera capture in our experiments is set to capture at

full high-definition (1920 x 1080) resolution in RGB color in uncompressed format.

Registering the Images. When the transmitter and/or receiver is in motion, the images

sampled at each instance (with 1/FPS seconds separation) may not be aligned spatially. This

means that the actual pixel(s) position of the LED will not be the same across successive

image frames. To account for this and to ensure the pixel positions of the LED can be
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spatially overlapped, we register the images using traditional computer vision based image

alignment [71] techniques. The alignment is essentially achieved over an image pair, where

one image is the reference and the other is the motion frame. The effective ‘movement of

the scene in pixels’is estimated and corrected (inversed) using a homography (pixel-to-pixel

spatial relationship between image pairs) calculations. In our algorithm we take a set of

2N (for a N bit ID) consecutive image frames and conducts the image alignment for each

sequential pair; that is, (img1, img2) then (img2, img3) and so on. Each pair of aligned

images are then virtually superimposed onto the reference image’s pixel domain. If the

image alignment was ideal, then the LED pixel regions (and other objects in the scene)

will precisely overlap. Inefficiencies in practical alignment algorithms can lead to slight

mismatches in registration, however, can be considered insignificant as the primarily goal is

to overlap as much of the LED pixels across the 2N frames with allowance of small errors.

An example of the registration using image alignment process for a series of three image

pairs is shown in Figure 4.5.

Figure 4.5: Example of misaligned frames in pre-registration (left) and post-registration
(right) cases.
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4.4.1.2 Phase 2: LED pixel localization using correlation

Correlation. The raw pixel intensity (P ) from each pixel coordinate (x, y) from each of

the sets of 2N images are collected as a single 2N element row vector. We prepare another

row vector of size 2N which contains the N ID sequence bits (I) with every alternate bit as

a repetition of an ID sequence bit. These two row vectors are correlated and the effective

correlation value is recorded as the correlation pixel intensity at the x row and y column of

a correlation image matrix. We use the definition of cross-correlation between image pixel

intensity and bit sequence values as follows:

corr(P⃗ , I⃗)[k] =
∞∑

m=−∞

P [m]I[m− k], (4.1)

where, P⃗ represents pixel intensities and I⃗ represents ID bits and k is the index.

Considering that pixel intensities are non-negative values (for 8 bit gray-scale images the

values are in [0 255]), to capture the high-low (ON-OFF) transitions in the bits we consider

that the ID correlation vector has 1 mapped to 255 and 0 mapped to -255. This polarity

introduction can help filter static pixels from intensity varying pixels. For example, if ID

sequence is [1 0 1 1 0], then the correlation ID vector will be [255 255 -255 -255 255 255 255

255 -255 -255]. For the LED region, assuming it were noisy may hold values as [200 195 120

110 210 200 200 198 100 90] compared to a saturated region that will register pixels [255 255

255 255 255 255 255 255 255 255]. The LED pixel to saturated (noise or non-LED) region is

1783:765, which is at least a 2x in differentiation between these regions.

Localization after filtering. Ideally, only the pixels corresponding to the LED in the
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image will yield higher correlation values compared to other regions. However, in reality,

imperfections in image sampling, image artifacts (e.g. blur) and possibility of other things in

the scene that look similar to the LED, will result in possibly multiple pixel regions having

high correlation values that may be very close to set a general threshold for detection. To

address this issue, we first run a correlation and flag the pixels that have high correlation

values that are within 10% difference of each other. We set all the other pixels as 0. From

this coarse filtered set, we further flag all the pixels which have the least set of variations in

their intensity across the 2N images. We identify this by setting a 25% gradient threshold for

pixel intensity changes across the high to low transitions and vice-versa. We flag the pixels

with less than this threshold of variation and set their values as 0, keeping the raw pixel

intensity values intact for others. Then we run the correlation calculation for the modified

column vectors and choose the pixel(s) with the maximum correlation value (within 1%

difference) as the LED pixels.

Unwarping. The registration process essentially warps the set of images to a common pixel

domain spatial reference. The LED pixel localization achieved in the previous step should

be noted as the LED pixel location on the reference image. The actual LED pixel location

on the other images in the set is computed by remapping the pixel coordinates across the

registered images using the unwarping process. In this way, through a one-shot correlation

process, the LED pixel can be spatial and temporally tracked continuously on each sampled

image frame, without any additional computer vision feature extraction.



69

4.4.2 Assumptions and Potential Solutions

The fundamental assumption in our system is that the camera receiver has knowledge of the

dataset of transmission IDs (bit sequences). We justify this assumption using the fact that

such knowledge can be generated using multiple techniques depending on the application

scenario; (a) the transmitter and receiver can agree apriori on the set of IDs (example use-

case: for robot navigation and mapping in finite spaces with small number of LEDs); (b)

the LED can transmit, using the VLC channel, a data packet appended to the bit sequence,

with the sequence serving for coarse spatial detection of the LED region and the data packet

containing the unique ID. The camera receiver can acknowledge reception of the unique ID

using a feedback radio channel (example use-case: localizing in a conference setting a large

number of mobile devices fit with LEDs); (c) the transmitter and receiver, both, can be

connected to a common cloud (wired to infrastructure or cellular) server and commonly be

informed on the unique IDs allotted for each LED at a specific location at specific time-slot

(example use-case: LEDs attached to buildings or road infrastructure and camera on vehicles

used for scene perception).

4.5 Implementation and Evaluation

We evaluate the performance of the optical correlation based localization method through

a experimental trace-based analysis. We setup a LED and camera in indoor (home) and

outdoor settings, and conducted experiments by varying different parameters in each exper-

imentation trial, and collected data traces. Each data trace or sample is a camera image
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(a) (b) (c) (d)

Figure 4.6: Experimental setup samples for LED-Camera communication link (a) indoor
(enclosed room environment), (b) outdoor (open space and parking lot in an apartment
complex area) (c) driving towards LED, and (d) driving parallel to LED.

(a) LED-Camera communication
link in static setups for both indoor
and outdoor

(b) LED-Camera communication
link in car forward and reverse driv-
ing scenarios

(c) LED-Camera communication
link in car driving parallel to LED
scenarios (10 and 20 m distance)

Figure 4.7: Illustration of LED and camera setup in our experiments for, (a) static indoor
and outdoor, (b) driving towards or moving away from LED, and (c) driving parallel to LED
(passing the LED on right side of the car driving direction) cases

frame of a video footage recorded at specific resolution and video capture frame-rate. In our

evaluations, we consider a single LED and a single camera setup, where we used a solid-state

1 Watt LED for indoors and a 10 Watt brake/trail light LED for outdoors, both modulated

at 60 Hz. We used a GoPro Hero 6 as the camera set at 120 frames-per-second. Each trace of

our experiments was 1min long footage. Overall, our dataset for LED localization evaluation

contains about 15000 non-repetitive (LED location on each frame differs from other by at 3-5

pixels) images. We evaluate our system across four different real-world LED-camera settings

(Figure 4.6, under static and motion configurations (Figure 4.7). As a default, we use ‘10110
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’(N = 5) as the bit (ID) sequence and 2N = 10 frames for correlation. Processing was done

on data traces, with analysis conducted offline using MATLAB on an Intel i7 laptop PC.

1. Static-Indoor: indoor room environment enclosed by walls with a LED and camera

set at specific distance in static position. The distances evaluated include 1 m, 2 m and

3 m. The room was well lit with artificial ceiling lighting and in some cases sunlight

from windows and doors.

2. Handheld Camera Motion-Indoor: same setup as in static-indoor but with camera

being hand-held and panned from left to right of the LED in view. Distances evaluated

include 1 m, 2 m and 3 m.

3. Static-Outdoor: In an open outdoor space of apartment complex where the sunlight

is abundant, LED was placed on ground with some slight elevation using a mount and

camera on a tripod. Distances evaluated include 5 m, 10 m and 15 m.

4. Driving Motion-Outdoor: In the outside parking area of apartment complex, same

setup as the static-outdoor but with camera mounted on a tripod, hand-held, with

the experimenter in the passenger seat of a driven car. Keeping the LED within the

field-of-view (FOV) of the camera, the car was driven along the following trajectories:

(a) Drive towards LED at 10-20 mph car speed and distance variable from 25 m to 1

m, (b) Drive away from LED at 10-20 mph car speed and distance variable from 1-25

m, (c) Drive parallel to the LED (passed the LED on the right side of the car’s driving
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direction) at a distance of 10 m, and (d) Drive parallel to the LED at a distance of 20

m.

We evaluate the performance of our localization method using the average localization

accuracy as the metric; defined as the ratio of the total number of camera image frames with

successful localization to the total number of image frames in the data trace, averaged across

multiple experimentation trials. We define a successful localization as when the localization

algorithm detects at least one (non-overlapping) 3 x 3 pixel region that intersects with the

LED region-of-interest (ROI). An LED ROI is the rectangular pixel region that completely

houses the LED in the particular camera image.

This heuristic choice of 3 x 3 pixel ROI corresponds to a strict threshold for the localiza-

tion accuracy evaluation. It is common practice in computer vision analysis to require any

detection ROI be larger than a 1 x 1 pixel. This creates a trade off – large ROI leads to

more outliers and strict ROI can lead to low detection accuracy. However, we chose to use

a strict threshold of 3 x 3 pixels in our evaluation, at a processing resolution of 640 x 480

pixels. We recall our mention from the earlier section that, regardless of the camera capture

resolution, we convert all image frames to 640 x 480, to standardize the processing method

as well as optimize for real-time performance.

The ROI will change with the distance between the camera and LED; at shorter distances

the ROI will be larger thus providing a larger number of ROI intersecting 3 x 3 pixel regions,

which significantly reduces as the distance increases. For example, the ROI of the brake/trail

light LED at 5, 10, 15 and 20 m on the GoPro camera at VGA resolution are listed in
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Distance [m] ROI [pixels]
5 24 x 50
10 18 x 31
15 14 x 27
20 10 x 15

Table 4.1: Camera pixel ROI of LED at different distances experimented in our outdoor
evaluation. The ROI is the set of pixels over a rectangular region in the image where all the
pixels in the ROI encompass the LED. The pixels that correspond to the partial registration
of the LED due to the curvature of the LED shape are not considered in the ROI.

Table 4.1. We observed that even at 20m range, there are at least three 3 x 3 non-overlapping

LED regions that can be marked for localization of the LED.

In summary, we include the following evaluation results,

1. Comparative evaluation of localization accuracy of our optical correlation method in

indoor and outdoor and under static and motion cases. We compare with (i) LED

detection using color based thresholding, (ii) computer vision based technique that

uses aggregate channel features (ACF) and support vector machine (SVM) machine

learning, and (iii) a customized version of convolutional neural network (CNN) based

YOLO v3 deep learning object recognition model.

2. Micro-benchmark evaluation of our optical correlation method across variable, (i) dis-

tance between LED and camera, (ii) number of images used for correlation, and (iii)

car speed variation in localization accuracy.

4.5.1 Comparative evaluation

We compare the localization accuracy of our optical correlation localization method with

traditional techniques. In particular, we consider color thresholding as a basic technique



74

Experimental Color ACF based YOLO v3 indoor YOLO v3 outdoor YOLO v3 combined our Optical
Setup Thresholding(%) ML Detector(%) custom trained on indoor data(%) custom trained on outdoor data(%) custom trained on complete dataset(%) Correlation algorithm(%)

Static, Indoor 69.85 76.0 49.25 0.09 63.78 100
[1m, 2m, 3m]

Motion, Indoor (Hand held) 63.68 73.33 81.91 0.60 92.65 94.76
[1m, 2m, 3m]
Static, Outdoor 68.73 67.5 3.57 97.34 92.78 98.08
[5m, 10m, 15m]

Motion, Outdoor (Driving) 37.78 62.5 0.10 85.84 68.92 86.69
[Forward, Reverse,

Parallel 10m and 20m]

Table 4.2: Average localization accuracy metric based comparative evaluation of optical cor-
relation localization with color thresholding, ACF-ML detector and YOLO v3-Deep learning
classifier.

Experimental
Setup

ACF ML YOLO v3 indoor YOLO v3 outdoor YOLO v3 combined Optical correlation

avg.
P

avg.
R

avg.
F1

avg.
P

avg.
R

avg.
F1

avg.
P

avg.
R

avg.
F1

avg.
P

avg.
R

avg.
F1

avg.
P

avg.
R

avg.
F1

Static,
Indoor

0.76 0.5 0.59 0.73 0.69 0.71 0.05 0.01 0.01 0.81 0.77 0.79 1.0 1.0 1.0

Motion
(hand
held),
Indoor

0.73 0.50 0.61 0.84 0.86 0.85 0.23 0.01 0.02 0.95 0.95 0.95 0.89 1.0 0.94

Static,
Outdoor

0.67 0.73 0.69 0.29 0.07 0.12 0.98 0.98 0.98 0.95 0.95 0.95 0.98 1.0 0.98

Motion
(Driv-
ing),

Outdoor

0.62 0.72 0.68 0 0 Nan 0.89 0.90 0.90 0.81 0.83 0.82 0.86 1.0 0.92

Table 4.3: Localization average precision (P), recall (R) and F1-score metric based compara-
tive evaluation of optical correlation localization with color thresholding, ACF-ML detector
and YOLO v3-Deep learning classifier. True Positive (TP) is when an LED location is ac-
curately localized for a given frame. False Positive (FP) is when the LED is not present in
the scene and but the system provides an erroneous LED localization output. True Negative
(TN) is when the system reveals there is no LED when there is no LED actually. False Neg-
ative (FN) is when the system reveals LED localized pixels when there is no LED actually.
To serve as Negative data, we captured images in different experiment settings used for our
evaluation, without the LED transmitter.

typically used in detection processes using computer vision. Next, we consider a more ad-

vanced feature based LED detection technique called ACF detector that marks a set of

structural features on the object. The features are then set to learn using a SVM ma-

chine learning model. Finally, we compare with state-of-the-art deep learning classification

techniques, particularly, with YOLO v3 that essentially functions as a single-shot classifier.
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4.5.1.1 Baseline for comparison

In each of the comparative methods we use the traditional implementations and make slight

modifications to fit out experimentation to set a common baseline for evaluation.

Color thresholding. Considering the color of the LED is more in the RED space, we set a

threshold for the average intensity of the pixel to be detected as an LED. We calibrate the

threshold for each experiment trace by selecting the average intensity of the HIGH (LED

ON) and LOW (LED OFF) pixels across the images in each 1 min trace.

Machine learning with aggregate channel features (ACF) [112]. This method is a

supervised machine learning approach. ACF detector uses an effective sliding window detec-

tor to extract the variations in the structural features in the scene. During data labeling, we

labeled by specifying a bounding box region for the LED region in each image. The outcomes

of the ACF detector is the estimated LED detection region of pixels. The intersection over

union (IoU) for the region is set to 0.5 (50%).

Deep learning with YOLO v3 [113]. YOLO v3 (you only look once, version 3) is a state-

of-the-art CNN model which uses 1x1 convolution layers for prediction, and is traditionally

trained on MSCOCO dataset which contains 80 object categories. However, the MSCOCO

dataset does not contain LED images in ON/OFF state. In this regard, we created a LED

dataset by labeling over 15000 images of both LED ON and LED OFF states, equally

distributed. The dataset houses LED images from 1. Static Indoor scenario, 2. Motion

Indoor scenario, 3. Static Outdoor scenario and 4. Motion outdoor scenario to accommodate

all the variations and serve as a representative of the real world scenarios. The labeling of the
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dataset was carried out using an open source tool, labelImg [114] and labels were exported

in the desired YOLO format. To train the model on the custom dataset, a transfer learning

approach was adopted. YOLO v3 uses a variant of Darknet, which originally has 53 layer

network trained on Imagenet [115]. For the task of detection, 53 more layers are stacked

onto it along with residual skip connections, and upsampling layers, forming a 106 layer

fully convolutional underlying architecture for YOLO v3. The pre convolutional weights of

darknet53-conv74 were used to train the custom YOLO model where the weights of darknet

53 model with pre convolutional weights were used for the initial 74 layers the rest were

are trained from scratch on the data set we have collected. We considered three types of

evaluation for the YOLO v3 model used for evaluation. First, we trained entirely on the

indoor images and tested on the same. Next, we trained on the outdoor images and tested

on the same. Last, we trained on the entire dataset and tested on the entire dataset. We

used 60:40 distribution for training:test sets, and randomized the test-set for total 5 trials.

We computed the average of the localization accuracy across such an evaluation.

4.5.1.2 Results

We summarize the performance of our approach compared with the baseline techniques using

average localization accuracy metric in Table 4.2. We observe that our optical correlation

technique outperforms the comparative techniques in general. We make the following specific

observations from the evaluation results:

• We observe that the localization accuracy of our approach is relatively lesser in motion

cases. Upon analysis we learned that the localization errors in motion cases are pri-
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marily due to the errors in the image registration process, which may not necessarily

be 100% accurate. However, even with the a simple off-the-shelf image registration

technique used in computer vision, our algorithm outperforms the comparative tech-

niques.

• The comparative techniques perform poorly in locating the LED from the scenes,

especially for those frames where the LED is in ’OFF’ state. Extracting LED locations

in ’OFF’ frames is challenging, as LED in general is not a feature-rich object. The

LED OFF state further adds to the challenge as the intensity of the pixel region is very

low and thus making geometric and photometric feature dependent analysis, such as

color thresholding and ACF, very challenging. The lack of features fails to effectively

train the YOLO v3 deep learning model for LED OFF states.

• The YOLO v3 deep learning model performs the best when it is trained and tested

across the entire dataset. When trained and tested on a specific setting such as only

indoor or only outdoor, the model performs poorly. This is attributed to the lack of

variations in features across the dataset which limits the learning process efficiency.

We observe that there is no clear insight that can be gained about the learning process

of YOLO v3 for LED detection as the accuracy numbers do not necessarily follow any

trend. In this work, we setup a baseline deep learning LED recognition, which shows

some potential, however, not better than optical correlation. We posit that these

evaluation results reveal the need to further explore machine/deep learning models for

LED localization. We have provided some examples of success and failure cases of
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YOLO v3 LED localization performance in Appendix A.

• We also present the average precision, average recall, and average F1-score values for

our evaluation in Table 4.3. The fidelity of the optical correlation method is reflected

in its high average recall values and F1- scores.

4.5.2 Microbenchmarks

4.5.2.1 Distance between transmitter and receiver

Figure 4.8: Average localization accuracy of optical correlation in indoor and outdoor, (i)
static (left), and (ii) motion (right).

Figure 4.9: Outdoor static experimental setup with trail light LED (left) placed in a shaded
area (right) placed in a bright spot where sunlight directly falls onto the LED.

From Figure 4.8, it can be observed that for both indoor and outdoor static cases, the

average LED locating accuracy is about perfect, when the LED-Camera distance is up to
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Figure 4.10: Number of Input frames in Correlation Vs Accuracy Analysis for (left) Outdoor
Static & LED is at shaded spot, (middle) Outdoor Static & LED is at bright spot, (right)
Outdoor Motion (Car Driving) cases.

10 m. However, at 15 m distance in outdoor experiment, the average accuracy is about

94%. In outdoor setup, when the LED is kept in a spot where the sun/ambient light shines

bright on the LED (right image of Figure 4.9), due to the presence of saturated regions

in the image which do not correspond to the LED. The intensity changes in the ON and

OFF patterns will be impacted leading to detection errors. Such saturated regions might

have higher correlation values under optical correlation leading to LED localization outliers.

We consider both bright and shaded spot outdoor setup (shown in Figure 4.9) with the

variations of distance in our analysis, and present the accuracy results in Figure 4.8. We

report that with 20 input frames, when LED is placed at bright spot at 15 m distance, the

average accuracy is about 88.5% and with the same specifications, at shaded spot the LED

can be almost perfectly localized. These results clearly explain the impacts of LED-Camera

distance and sunlight reflections on optical correlation localization accuracy.
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4.5.2.2 Number of input frames for correlation

For all the outdoor static setups, we also test our system by varying the number of input

image frames (from 10 to 100 images) in each execution of the correlation and report the

results in Figure 4.10. We consider both, shaded and bright spot LED, cases while changing

the correlation input frames in our analysis and show both results in left and middle illus-

trations of the Figure 4.10. We notice that with the increase in the number of input frames

during correlation, the optical correlation method reaches near-perfection, even when LED is

kept in extreme bright spot scenarios. Having more images during correlation helps generate

a robust correlation value that can be easily delineated from outliers as there are more bits

(values) being multiplied in the cross correlation process. Also, with larger number of images

the chances that the scene can precisely mimic the variations in the ON/OFF (1/0) inten-

sities become lower. In particular, we observe that with 10 frames, the accuracy is sub-par

especially at distances beyond 10 m and static cases. However, just by increasing the input

frames to 20, the accuracy can be significantly improved. In contrary to the characteristics

and results of the static experiments, in motion driving cases, accuracy is higher when the

number of input image frames in correlation is smaller. We report this behavior for all four

driving patterns in Figure 4.10 (right). Under motion, the smaller the number of frames be-

ing considered for alignment is better as the amount of actual physical motion in the scene

may be (almost insignificant) low. For example, 10 frames at 120 FPS is about 9 ms time

span. The amount of motion that can happen within such a duration is typically low, except

when the vehicle is driven at highway speeds. We observed from our analysis that the drop
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in accuracy with increasing frames is primarily due to registration errors, which is in turn a

function of vehicle speed.

4.5.2.3 Car driving speed variation in localization accuracy

To evaluate our system performance in LED localization for outdoor motion cases, we extend

the experimentation with the variation of car driving speed from 5 mph to 30 mph towards

the LED emitter and include the results in Figure 4.12. By placing the LED transmitter as

static on a tripod stand, we drive the car towards the LED attaching the camera on the wing

(side-view) mirror of the car, as shown in Figure 4.11. We observe that the average LED

localization accuracy is about 98% while driving the car at 5 mph and is about 87% when

the car speed increases to 30 mph. As we mentioned earlier, the localization accuracy might

be lesser in motion cases due to the dependency on the image registration performance.

With higher driving speed, the movements in pixels are also greater compared to the static

or slow driving cases. So, the misalignment still exists even after registering the motion

frames. As shown in Figure 4.13, the misalignment in registered frames also increases when

the car drives faster (30 mph) compared to a slower speed (5 mph). We observer that such

misalignments are fairly small and are within the range that can be handled by state-of-

the-art camera motion stabilization, such as by inverting the motion artifacts using motion

vectors generated by inertial measurement units (IMU) or using computer vision optical flow

methods. We target to incorporate such techniques in our future work.



82

Figure 4.11: Outdoor setup: Driving towards LED transmitter (kept at static) with varying
the speed of the car from 5 mph to 30 mph.

Figure 4.12: LED localization accuracy with the variation of car driving speed.

4.5.2.4 Timing analysis of correlation algorithm

We present the execution time of each of the steps in our algorithm in Table 4.4. In static

cases, the algorithm does not require to implement image registration and hence it performs
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Illustration to show how the misalignment due to the movement of car at
different driving speeds (a) 5 mph, (b) 10 mph, (c) 15 mph, (d) 20 mph, (e) 25 mph, (f)
30 mph, reduces the LED localization accuracy of our correlation algorithm, even after
implementing proper image registrations (state-of the-art).

faster than the motion cases. We report that our algorithm takes on average 0.29 seconds

to locate the LED in each of the inputs of motion frames and can process each of the static

images within the average of 0.22 seconds. We also compared the average LED localization

processing time for each images of our algorithm with the other techniques which are used

in our baseline localization performance comparison. We report each execution time of

the implemented algorithms in Table 4.5 and notice that our correlation algorithm takes

less time to process compared to simple color thresholding and machine learning based
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techniques. However, we do note that our technique, though slower than YOLO v3 based

LED detection, we recall that YOLO v3 has much lower localization accuracy. This creates a

trade-off between computation versus accuracy, and we hypothesize that future works could

use a hybrid method that integrates YOLO v3 with correlation to achieve the best of both

worlds.

Correlation algorithm steps Average time taken (seconds)
Reading image inputs (10 frames) 0.337477
Image registration (motion cases) 0.725

LED ID extraction 0.000906
Image correlation with ID 0.827190

Set threshold and decision making 0.874364
Image un-warping and saving coordinates 0.140766
Total processing time (10 input images) 2.90

LED localization time for each input image (motion) 0.29
LED localization time for each input image (static) 0.22

Table 4.4: Timing analysis for each steps in our correlation algorithm to locate LED on the
input image frames.

Implemented System Average time taken (seconds)
Color Thresholding 1.043

ML with ACF 0.538
DL with YOLO v3 0.018

Correlation algorithm 0.29

Table 4.5: Comparing average execution time (seconds) to locate the LED emitter in each
of the input image frames of different algorithms.

4.6 Conclusion

We designed a novel optical correlation based localization to precisely and accurately locate

LED emitters in camera images. We designed and implemented the optical correlation

algorithm and evaluated using real-world experiment traces. Upon evaluation in indoor,

outdoor, static and motion cases, and comparing with traditional ML and non-ML techniques

for LED detection, we showed optical correlation outperforms the comparative techniques.
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We showed that traditional feature based techniques fail due to lack of features in LED image

regions. We learned from the evaluation that our optical correlation technique’s localization

accuracy has a trade off in static and driving cases for the choice of the number of input

correlation frames. Our evaluation also revealed state-of-the-art classification using YOLO

v3 deep learning does not necessarily solve the problem as the training process does not

reveal any evidence that the model is able to learn unique characteristics about the LEDs.

We posit that further exploration in optical correlation assisted deep learning models may

be useful for improving optical camera reception fidelity, particularly in visible light and

camera communication applications.

We note that scalability is a problem when it comes to creating unique blinking sequences

for each LED in the field-of-view of the camera. We note to the reader that this can be re-

solved by using a finite set of sequences and reusing the sequences, but at different frequencies

and different dynamic ranges (difference between ON and OFF intensities). The scalability

question generates an interesting problem of recognizing the LED after it has been detected.

We propose that we can use uniqueness in ID (sequence), frequency and intensity as parame-

ters, which can overall, scale the number of options considering the number of permutations

possible. Further, it is possible to use contextual relevance of the LEDs – what are they

attached to and what are the objects/entities detected and recognized in vicinity – rely on

state-of-the-art computer vision object detection. We believe our current results present a

foundation for the future work that can incorporate such and variations of techniques for

addressing scalability.
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CHAPTER 5

CONCLUSIONS

With the growing interest in VLC systems research and development of optical wireless

technologies and standards, it is evident that VLC and the notion of next generation wireless

technology go hand-in-hand. However, realizing VLC as a front-end commercialized product

requires significant advancements which need to primarily cater addressing its fundamental

challenges, such as noise, interference, and LOS degradation during mobility. This thesis has

focused on addressing these challenges.

The fundamental notion of this thesis is to improve the overall signal reception quality

in VLC systems using spatial dimensions of light signals. In doing so, through this thesis,

my work has designed, prototyped, and evaluated a novel pixelated shutter-based VLC

receiver based on spatial filtering. This filtering mechanism can isolate signal from noise and

interference signals which improves signal to noise Ratio (SNR) ensuring higher data rates

in VLC. Then, we developed a fast spatial tracking mechanism to identify the location of the

signal on the receiver under mobility. This design included a single photodiode based VLC

receiver and successfully demonstrated multiple access. This way, the system performance

was enhanced by allowing more signals from different spatial locations at the same time.

Finally, we introduced a camera based visual identification solution to detect and track LED

transmitter for VLC enabled applications. Such LED localization can significantly assist in

autonomous driving or vehicular VLC based applications.

In conclusion, throughout my doctoral research journey, I have striven to address several
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fundamental challenges in VLC and VLC based applications and the core contributions or

outcomes of my research efforts have been published and presented in top tier conferences

and journals. I believe, my dissertation will set a foundation step towards designing next

generation high speed, robust, reliable, and mobile visible light communication systems.
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