488 research outputs found

    5GHz CMOS all-pass filter-based true time delay cell

    Get PDF
    Analog CMOS time-delay cells realized by passive components, e.g., lumped LC delay lines, are inefficient in terms of area for multi-GHz frequencies. All-pass filters considered as active circuits can, therefore, be the best candidates to approximate time delays. This paper proposes a broadband first-order voltage-mode all-pass filter as a true-time-delay cell. The proposed true-time-delay cell is capable of tuning delay, demonstrating its potential capability to be used in different systems, e.g., RF beam-formers. The proposed filter achieves a flat group delay of over 60 ps with a pole/zero pair located at 5 GHz. This proposed circuit consumes only 10 mW power from a 1.8-V supply. To demonstrate the performance of the proposed all-pass filter, simulation results are conducted by using Virtuoso Cadence in a standard TSMC 180-nm CMOS process.Postprint (published version

    Timed array antenna system : application to wideband and ultra-wideband beamforming receivers

    Get PDF
    Antenna array systems have a broad range of applications in radio frequency (RF) and ultra-wideband (UWB) communications to receive/transmit electromagnetic waves from/to the sky. They can enhance the amplitude of the input signals, steer beams electronically, and reject interferences thanks to beamforming technique. In an antenna array beamforming system, delay cells with the tunable capability of delay amount compensate the relative delay of signals received by antennas. In fact, each antenna almost acts individually depending upon time delaying effects on the input signals. As a result, the delay cells are the basic elements of the beamforming systems. For this purpose, novel active true time delay (TTD) cells suitable for RF antenna arrays have been presented in this thesis. These active delay cells are based on 1st- and 2nd-order all-pass filters (APFs) and achieve quite a flat gain and delay within up to 10-GHz frequency range. Various techniques such as phase linearity and delay tunability have been accomplished to improve the design and performance. The 1st-order APF has been designed for a frequency range of 5 GHz, showing desirable frequency responses and linearity which is comparable with the state-of-the-art. This 1st-order APF is able to convert into a 2nd-order APF via adding a grounded capacitor. A compact 2nd-order APF using an active inductor has been also designed and simulated for frequencies up to 10 GHz. The active inductor has been utilized to tune the amount of delay and to reduce the on-chip size of the filter. In order to validate the performance of the delay cells, two UWB four-channel timed array beamforming receivers realized by the active TTD cells have been proposed. Each antenna channel exploits digitally controllable gain and delay on the input signal and demonstrates desirable gain and delay resolutions. The beamforming receivers have been designed for different UWB applications depending on their operating frequency ranges (that is, 3-5 and 3.1-10.6 GHz), and thus they have different system requirements and specifications. All the circuits and topologies presented in this dissertation have been designed in standard 180-nm CMOS technologies, featuring a unity gain frequency ( ft) up to 60 GHz.Els sistemes matricials d’antenes tenen una àmplia gamma d’aplicacions en radiofreqüència (RF) i comunicacions de banda ultraampla (UWB) per rebre i transmetre ones electromagnètics. Poden millorar l’amplitud dels senyals d’entrada rebuts, dirigir els feixos electrònicament i rebutjar les interferències gràcies a la tècnica de formació de feixos (beamforming). En un sistema beamforming de matriu d’antenes, les cèl·lules de retard amb capacitat ajustable del retard, compensen aquest retard relatiu dels senyals rebuts per les diferents antenes. De fet, cada antena gairebé actua individualment depenent dels efectes de retard de temps sobre el senyals d’entrada. Com a resultat, les cel·les de retard són els elements bàsics en el disseny dels actuals sistemes beamforming. Amb aquest propòsit, en aquesta tesi es presenten noves cèl·lules actives de retard en temps real (TTD, true time delay) adequades per a matrius d’antenes de RF. Aquestes cèl·lules de retard actives es basen en cèl·lules de primer i segon ordre passa-tot (APF), i aconsegueixen un guany i un retard força plans, en el rang de freqüència de fins a 10 GHz. Diverses tècniques com ara la linealitat de fase i la sintonització del retard s’han aconseguit per millorar el disseny i el rendiment. La cèl·lula APF de primer ordre s’ha dissenyat per a un rang de freqüències de fins a 5 GHz, mostrant unes respostes freqüencials i linealitat que són comparables amb l’estat de l’art actual. Aquestes cèl·lules APF de primer ordre es poden convertir en un APF de segon ordre afegint un condensador més connectat a massa. També s’ha dissenyat un APF compacte de segon ordre que utilitza una emulació d’inductor actiu per a freqüències de treball de fins a 10 GHz. S’ha utilitzat l'inductor actiu per ajustar la quantitat de retard introduït i reduir les dimensions del filtre al xip. Per validar les prestacions de les cel·les de retard propostes, s’han proposat dos receptors beamforming basats en matrius d’antenes de 4 canals, realitzats por cèl·lules TTD actives. Cada canal d’antena aprofita el guany i el retard controlables digitalment aplicats al senyal d’entrada, i demostra resolucions de guany i retard desitjables. Els receptors beamforming s’han dissenyat per a diferents aplicacions UWB segons els seus rangs de freqüències de funcionament (en aquest cas, 3-5 i 3,1-10,6 GHz) i, per tant, tenen diferents requisits i especificacions de disseny del sistema. Tots els circuits i topologies presentats en aquesta tesi s’han dissenyat en tecnologies CMOS estàndards de 180 nm, amb una freqüència de guany unitari (ft) de fins a 60 GHz.Postprint (published version

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Distributed radiofrequency signal processing based on space-division multiplexing fibers

    Full text link
    [EN] Space-division multiplexing fibers emerged as a promising solution to overcome the imminent capacity crunch of conventional singlemode fiber networks. Despite these fibers were initially conceived as distribution media for long-haul high-capacity digital communications, they can be applied to a wide variety of scenarios including centralized radio access networks for wireless communications, data-center interconnects, Microwave Photonics signal processing and fiber sensing. Particular interest is raised by emerging communications paradigms, such as 5G and The Internet of Things, which require a full integration between the optical fiber and the wireless networks segments. Microwave Photonics, discipline that focuses on the generation, processing, control and distribution of radiofrequency signals by photonics means, is called to play a decisive role. One of the major challenges that Microwave Photonics has to overcome to satisfy next-generation communication demands relates to the reduction of size, weight and power consumption while assuring broadband seamless reconfigurability and stability. There is one revolutionary approach that has however been left untapped in finding innovative ways to address that challenge: exploiting space, the last available degree of freedom for optical multiplexing. In this Thesis, we propose to exploit the inherent parallelism of multicore and few-mode fibers to implement sampled discrete true time delay lines, providing, in a single optical fiber, a compact and efficient approach for both Microwave Photonics signal distribution and processing. For the multicore fiber approach, we study the influence of the refractive index profile of each heterogeneous core on the propagation characteristics as to feature specific group delay and chromatic dispersion values. We designed and fabricated two different heterogeneous trench-assisted 7-core fibers that behave as sampled true time delay lines. While one of them was fabricated by using 7 different preforms to feature a plenary performance, the other one employed a single preform with the aim of minimizing fabrication costs. In the case of few-mode fibers, we propose the implementation of a tunable true time delay line by means of a custom-designed fiber with a set of inscribed long period gratings that act as mode converters to properly tailor the sample group delays. We designed and fabricated a true time delay line on a 4-mode fiber by inscribing 3 long period gratings at specific positions along the fiber link. As a proof-of-concept validation, we experimentally demonstrated different Microwave Photonics signal processing functionalities implemented over both multicore and few-mode fiber approaches. This work opens the way towards the development of distributed signal processing for microwave and millimeter wave signals in a single optical fiber. These true time delay lines can be applied to a wide range of Information and Communication Technology paradigms besides fiber-wireless communications such as broadband satellite communications, distributed sensing, medical imaging, optical coherence tomography and quantum communications.[ES] La multiplexación por división espacial en fibras ópticas surgió como una solución prometedora al inminente colapso en la capacidad de las redes de fibra monomodo convencionales. Aunque estas fibras fueron concebidas inicialmente como medio de distribución en comunicaciones digitales de larga distancia y alta capacidad, pueden emplearse en una amplia variedad de escenarios, incluyendo redes de acceso radio centralizadas para comunicaciones inalámbricas, interconexiones en centros de datos, así como procesado de señal en Fotónica de Microondas y sensado en fibra. Los paradigmas de comunicaciones emergentes despiertan un interés particular, como 5G y el Internet de las Cosas, que requieren una integración total entre el segmento de red de fibra óptica y el inalámbrico. La Fotónica de Microondas, disciplina que se focaliza en la generación, procesado, control y distribución de señales de radiofrecuencia por medio de la fotónica, está destinada a jugar un papel decisivo. Uno de los mayores desafíos que la Fotónica de Microondas debe superar para satisfacer los requisitos de las nuevas generaciones de comunicaciones se basa en la reducción de tamaño, peso y consumo de potencia, mientras se garantiza reconfiguración y estabilidad de banda ancha. Encontramos aquí un enfoque revolucionario capaz de abordar este desafío de una manera innovadora que, sin embargo, no ha sido aprovechado en este contexto: la explotación del espacio, el último grado de libertad para multiplexación óptica. En esta Tesis, proponemos explotar el paralelismo inherente de las fibras ópticas multinúcleo y de pocos modos para implementar líneas de retardo en tiempo real muestreadas que proporcionan, en una sola fibra óptica, una solución compacta y eficiente tanto para distribución como para procesado de señales de Fotónica de Microondas. En el caso de fibras multinúcleo, estudiamos la influencia del perfil de índice de refracción de cada núcleo heterogéneo en las características de propagación para que exhiba unos valores concretos de retardo de grupo y dispersión cromática. Diseñamos y fabricamos dos fibras distintas de 7 núcleos con zanjas que se comportan como líneas de retardo en tiempo real muestreadas. Mientras que una de ellas se fabricó utilizando 7 preformas diferentes para garantizar un funcionamiento completo, la segunda se fabricó utilizando una única preforma con el objetivo de minimizar costes de fabricación. En el caso de fibras de pocos modos, proponemos la implementación de líneas de retardo en tiempo real sintonizables mediante el uso de una fibra específicamente diseñada y la inscripción de un conjunto de redes de difracción de periodo largo que actúan como conversores de modos para ajustar adecuadamente el retardo de grupo de las muestras. Diseñamos y fabricamos una línea de retardo en tiempo real en una fibra de 4 modos mediante la inscripción de 3 redes de difracción de periodo largo en posiciones concretas a lo largo de enlace de fibra. Como validación de prueba de concepto, demostramos experimentalmente diferentes funcionalidades de procesado de señal de Fotónica de Microondas implementadas en fibras multinúcleo y de pocos modos. Este trabajo abre el camino hacia el desarrollo del procesado de señal distribuido para señales de microondas y ondas milimétricas en una única fibra óptica. Además, las líneas de retardo en tiempo real desarrolladas pueden aplicarse a una amplia variedad de paradigmas de Tecnologías de la Información y Comunicaciones más allá de las comunicaciones radio sobre fibra, como es el caso de las comunicaciones de banda ancha por satélite, el sensado distribuido, la imagen médica, la tomografía óptica coherente y las comunicaciones cuánticas.[CA] La multiplexació per divisió espacial en fibres òptiques va sorgir com una solució prometedora a l'imminent col·lapse en la capacitat de les xarxes de fibra monomode convencionals. Encara que estes fibres foren concebudes inicialment com a mitjà de distribució en comunicacions digitals de llarga distància i alta capacitat, poden emprar-se en una àmplia varietat d'escenaris, incloent xarxes d'accés radio centralitzades per a comunicacions sense fils, interconnexions en centres de dades, així com processat de senyal en Fotònica de Microones i sensat en fibra. Els paradigmes de comunicacions emergents desperten un interès particular, com el 5G i la Internet de les Coses, que requereixen una integració total entre els segments de xarxa de fibra òptica i el de sense fils. La Fotònica de Microones, disciplina que es focalitza en la generació, processat, control i distribució de senyals de radiofreqüència per mitjà de la fotònica, està destinada a jugar un paper decisiu. Un dels majors desafiaments que la Fotònica de Microones ha de superar per satisfer els requisits de les noves generacions de comunicacions es basa en la reducció de grandària, pes i consum de potència, mentre es garanteix reconfiguració i estabilitat de banda ampla Trobem ací un enfocament revolucionari capaç d'abordar aquest desafiament d'una manera innovadora que, no obstant això, no ha sigut aprofitat encara en este context: la explotació de l'espai, l'últim grau de llibertat per a multiplexat òptic. En aquesta Tesi, proposem explotar el paral·lelisme inherent de les fibres òptiques multinucli i de pocs modes per a implementar línies de retard en temps real de mostres discretes que proporcionen, en una sola fibra òptica, una solució compacta i eficient tant per a distribució com per a processat de senyals de Fotònica de Microones. En el cas de fibres multinucli, estudiem la influència del perfil d'índex de refracció de cada nucli heterogeni en les característiques de propagació perquè exhibisca uns valors concrets de retard de grup i dispersió cromàtica. Dissenyem i fabriquem dues fibres distintes de 7 nuclis amb rases que es comporten com a línies de retard en temps real mostrejades. Mentre que una d'elles es va fabricar utilitzant 7 preformes diferents per a garantir un funcionament complet, la segona va fabricar-se utilitzant una única preforma amb l'objectiu de minimitzar costos de fabricació. En el cas de fibres de pocs modes, proposem la implementació de línies de retard en temps real sintonitzables mitjançant l'ús d'una fibra específicament dissenyada i la inscripció d'un conjunt de xarxes de difracció de període llarg que actuen com a convertidors de modes per tal d'ajustar adequadament el retard de grup de les mostres. Dissenyem i fabriquem una línia de retard en temps real en una fibra de 4 modes mitjançant la inscripció de 3 xarxes de difracció de període llarg en posicions concretes al llarg de l'enllaç de fibra. Com a validació de proba de concepte, demostrem experimentalment diferents funcionalitats de processat de senyal de Fotònica de Microones implementades en fibres multinucli i de pocs modes. Aquest treball obri el camí cap al desenvolupament del processat de senyal distribuït per a senyals de microones i ones mil·limètriques en una única fibra òptica. A més, aquestes línies de retard en temps real poden aplicar-se a una àmplia varietat de paradigmes de Tecnologies de la Informació i Comunicacions més enllà de les comunicacions radio sobre fibra, com es el cas de les comunicacions de banda ampla per satèl·lit, el sensat distribuït, la imatge mèdica, la tomografia òptica coherent i les comunicacions quàntiques.Agradezco al Ministerio de Economía y Competitividad del Gobierno de España por la financiación recibida mediante la ayuda FPI.García Cortijo, S. (2020). Distributed radiofrequency signal processing based on space-division multiplexing fibers [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/147858TESI

    ISM-Band Energy Harvesting Wireless Sensor Node

    Get PDF
    In recent years, the interest in remote wireless sensor networks has grown significantly, particularly with the rapid advancements in Internet of Things (IoT) technology. These networks find diverse applications, from inventory tracking to environmental monitoring. In remote areas where grid access is unavailable, wireless sensors are commonly powered by batteries, which imposes a constraint on their lifespan. However, with the emergence of wireless energy harvesting technologies, there is a transformative potential in addressing the power challenges faced by these sensors. By harnessing energy from the surrounding environment, such as solar, thermal, vibrational, or RF sources, these sensors can potentially operate autonomously for extended periods. This innovation not only enhances the sustainability of wireless sensor networks but also paves the way for a more energy-efficient and environmentally conscious approach to data collection and monitoring in various applications. This work explores the development of an RF-powered wireless sensor node in 22nm FDSOI technology working in the ISM band for energy harvesting and wireless data transmission. The sensor node encompasses power-efficient circuits, including an RF energy harvesting module equipped with a multi-stage RF Dickson rectifier, a robust power management unit, a DLL and XOR-based frequency synthesizer for RF carrier generation, and a class E power amplifier. To ensure the reliability of the WSN, a dedicated wireless RF source powers up the WSN. Additionally, the RF signal from this dedicated source serves as the reference frequency input signal for synthesizing the RF carrier for wireless data transmission, eliminating the need for an on-chip local oscillator. This approach achieves high integration and proves to be a cost-effective implementation of efficient wireless sensor nodes. The receiver and energy harvester operate at 915 MHz Frequency, while the transmitter functions at 2.45 GHz, employing On-Off Keying (OOK) for data modulation. The WSN utilizes an efficient RF rectifier design featuring a remarkable power conversion efficiency, reaching 55% at an input power of -14 dBm. Thus, the sensor node can operate effectively even with an extremely low RF input power of -25 dBm. The work demonstrates the integration of the wireless sensor node with an ultra-low-power temperature sensor, designed using 65 nm CMOS technology. This temperature sensor features an ultra-low power consumption of 60 nW and a Figure of Merit (FOM) of 0.022 [nJ.K-2]. The WSN demonstrated 55% power efficiency at a TX output power of -3.8 dBm utilizing a class E power amplifier

    ATOM : a distributed system for video retrieval via ATM networks

    Get PDF
    The convergence of high speed networks, powerful personal computer processors and improved storage technology has led to the development of video-on-demand services to the desktop that provide interactive controls and deliver Client-selected video information on a Client-specified schedule. This dissertation presents the design of a video-on-demand system for Asynchronous Transfer Mode (ATM) networks, incorporating an optimised topology for the nodes in the system and an architecture for Quality of Service (QoS). The system is called ATOM which stands for Asynchronous Transfer Mode Objects. Real-time video playback over a network consumes large bandwidth and requires strict bounds on delay and error in order to satisfy the visual and auditory needs of the user. Streamed video is a fundamentally different type of traffic to conventional IP (Internet Protocol) data since files are viewed in real-time, not downloaded and then viewed. This streaming data must arrive at the Client decoder when needed or it loses its interactive value. Characteristics of multimedia data are investigated including the use of compression to reduce the excessive bit rates and storage requirements of digital video. The suitability of MPEG-1 for video-on-demand is presented. Having considered the bandwidth, delay and error requirements of real-time video, the next step in designing the system is to evaluate current models of video-on-demand. The distributed nature of four such models is considered, focusing on how Clients discover Servers and locate videos. This evaluation eliminates a centralized approach in which Servers have no logical or physical connection to any other Servers in the network and also introduces the concept of a selection strategy to find alternative Servers when Servers are fully loaded. During this investigation, it becomes clear that another entity (called a Broker) could provide a central repository for Server information. Clients have logical access to all videos on every Server simply by connecting to a Broker. The ATOM Model for distributed video-on-demand is then presented by way of a diagram of the topology showing the interconnection of Servers, Brokers and Clients; a description of each node in the system; a list of the connectivity rules; a description of the protocol; a description of the Server selection strategy and the protocol if a Broker fails. A sample network is provided with an example of video selection and design issues are raised and solved including how nodes discover each other, a justification for using a mesh topology for the Broker connections, how Connection Admission Control (CAC) is achieved, how customer billing is achieved and how information security is maintained. A calculation of the number of Servers and Brokers required to service a particular number of Clients is presented. The advantages of ATOM are described. The underlying distributed connectivity is abstracted away from the Client. Redundant Server/Broker connections are eliminated and the total number of connections in the system are minimized by the rule stating that Clients and Servers may only connect to one Broker at a time. This reduces the total number of Switched Virtual Circuits (SVCs) which are a performance hindrance in ATM. ATOM can be easily scaled by adding more Servers which increases the total system capacity in terms of storage and bandwidth. In order to transport video satisfactorily, a guaranteed end-to-end Quality of Service architecture must be in place. The design methodology for such an architecture is investigated starting with a review of current QoS architectures in the literature which highlights important definitions including a flow, a service contract and flow management. A flow is a single media source which traverses resource modules between Server and Client. The concept of a flow is important because it enables the identification of the areas requiring consideration when designing a QoS architecture. It is shown that ATOM adheres to the principles motivating the design of a QoS architecture, namely the Integration, Separation and Transparency principles. The issue of mapping human requirements to network QoS parameters is investigated and the action of a QoS framework is introduced, including several possible causes of QoS degradation. The design of the ATOM Quality of Service Architecture (AQOSA) is then presented. AQOSA consists of 11 modules which interact to provide end-to-end QoS guarantees for each stream. Several important results arise from the design. It is shown that intelligent choice of stored videos in respect of peak bandwidth can improve overall system capacity. The concept of disk striping over a disk array is introduced and a Data Placement Strategy is designed which eliminates disk hot spots (i.e. Overuse of some disks whilst others lie idle.) A novel parameter (the B-P Ratio) is presented which can be used by the Server to predict future bursts from each video stream. The use of Traffic Shaping to decrease the load on the network from each stream is presented. Having investigated four algorithms for rewind and fast-forward in the literature, a rewind and fast-forward algorithm is presented. The method produces a significant decrease in bandwidth, and the resultant stream is very constant, reducing the chance that the stream will add to network congestion. The C++ classes of the Server, Broker and Client are described emphasizing the interaction between classes. The use of ATOM in the Virtual Private Network and the multimedia teaching laboratory is considered. Conclusions and recommendations for future work are presented. It is concluded that digital video applications require high bandwidth, low error, low delay networks; a video-on-demand system to support large Client volumes must be distributed, not centralized; control and operation (transport) must be separated; the number of ATM Switched Virtual Circuits (SVCs) must be minimized; the increased connections caused by the Broker mesh is justified by the distributed information gain; a Quality of Service solution must address end-to-end issues. It is recommended that a web front-end for Brokers be developed; the system be tested in a wide area A TM network; the Broker protocol be tested by forcing failure of a Broker and that a proprietary file format for disk striping be implemented

    A time-based approach for multi-GHz embedded mixed-signal characterization and measurement /

    Get PDF
    The increasingly more sophisticated systems that are nowadays implemented on a single chip are placing stringent requirements on the test industry. New test strategies, equipment, and methodologies need to be developed to sustain the constant increase in demand for consumer and communication electronics. Techniques for built-in-self-test (BIST) and design-for-test (DFT) strategies have been proven to offer more feasible and economical testing solutions.Previous works have been conducted to perform on-chip testing, characterization, and measurement of signals and components. The current thesis advances those techniques on many levels. In terms of performance, an increase of more than an order of magnitude in speed is achieved. 70-GHz (effective sampling) on-chip oscilloscope is reported, compared to 4-GHz and 10-GHz ones in previous state-of-the-art implementations. Power dissipation is another area where the proposed work offer a superior solution compared to previous alternatives. All the proposed circuits do not exceed a few milliWatts of power dissipation, while performing multi-GHz high-speed signal capture at a medium resolution. Finally, and possibly most importantly, all the proposed circuits for test rely on a different form of signal processing; the time-based approach. It is believed that this approach paves the path to a lot of new techniques and circuit design skills that can be investigated more deeply. As an integral part of the time-based processing approach for GHz signal capture, this thesis verifies the advantages of using time amplification. The use of such amplification in the time domain is materialized with experimental results from three specific integrated circuits achieving different tasks in GHz high-speed in-situ signal measurement and characterization. Advantages of using such time-based approach techniques, when combined with the use of a front-end time amplifier, include noise immunity, the use of synthesizable digital cells, and circuit building blocks that track the technology scaling in terms of area and speed
    • …
    corecore