54 research outputs found

    A Comprehensive Survey of 'Metamaterial Transmission-Line Based Antennas: Design, Challenges, and Applications'

    Get PDF
    In this review paper, a comprehensive study on the concept, theory, and applications of composite right/left-handed transmission lines (CRLH-TLs) by considering their use in antenna system designs have been provided. It is shown that CRLH-TLs with negative permittivity (epsilon < 0) and negative permeability (mu < 0) have unique properties that do not occur naturally. Therefore, they are referred to as artificial structures called "metamaterials". These artificial structures include series left-handed (LH) capacitances (C-L), shunt LH inductances (L-L), series right-handed (RH) inductances (L-R), and shunt RH capacitances (C-R) that are realized by slots or interdigital capacitors, stubs or via-holes, unwanted current flowing on the surface, and gap distance between the surface and ground-plane, respectively. In the most cases, it is also shown that structures based on CRLH metamaterial-TLs are superior than their conventional alternatives, since they have smaller dimensions, lower-profile, wider bandwidth, better radiation patterns, higher gain and efficiency, which make them easier and more cost-effective to manufacture and mass produce. Hence, a broad range of metamaterial-based design possibilities are introduced to highlight the improvement of the performance parameters that are rare and not often discussed in available literature. Therefore, this survey provides a wide overview of key early-stage concepts of metematerial-based designs as a thorough reference for specialist antennas and microwave circuits designers. To analyze the critical features of metamaterial theory and concept, several examples are used. Comparisons on the basis of physical size, bandwidth, materials, gain, efficiency, and radiation patterns are made for all the examples that are based on CRLH metamaterial-TLs. As revealed in all the metematerial design examples, foot-print area decrement is an important issue of study that have a strong impact for the enlargement of the next generation wireless communication systems

    A comprehensive survey of "metamaterial transmission-line based antennas: design, challenges, and applications"

    Get PDF
    In this review paper, a comprehensive study on the concept, theory, and applications of composite right/left-handed transmission lines (CRLH-TLs) by considering their use in antenna system designs have been provided. It is shown that CRLH-TLs with negative permittivity (ε < 0) and negative permeability (μ < 0) have unique properties that do not occur naturally. Therefore, they are referred to as artificial structures called "metamaterials". These artificial structures include series left-handed (LH) capacitances (CL), shunt LH inductances (LL), series right-handed (RH) inductances (LR), and shunt RH capacitances (CR) that are realized by slots or interdigital capacitors, stubs or via-holes, unwanted current flowing on the surface, and gap distance between the surface and ground-plane, respectively. In the most cases, it is also shown that structures based on CRLH metamaterial-TLs are superior than their conventional alternatives, since they have smaller dimensions, lower-profile, wider bandwidth, better radiation patterns, higher gain and efficiency, which make them easier and more cost-effective to manufacture and mass produce. Hence, a broad range of metamaterial-based design possibilities are introduced to highlight the improvement of the performance parameters that are rare and not often discussed in available literature. Therefore, this survey provides a wide overview of key early-stage concepts of metematerial-based designs as a thorough reference for specialist antennas and microwave circuits designers. To analyze the critical features of metamaterial theory and concept, several examples are used. Comparisons on the basis of physical size, bandwidth, materials, gain, efficiency, and radiation patterns are made for all the examples that are based on CRLH metamaterial-TLs. As revealed in all the metematerial design examples, foot-print area decrement is an important issue of study that have a strong impact for the enlargement of the next generation wireless communication systems

    Composite right/left handed antennas for wireless lan applications

    Get PDF
    The term ‘metamaterial’ has become a buzzword in electromagnetics over the past decade. In recent years, advancement in this new scientific area has given birth to numerous discoveries and inventions based on the exotic properties exhibited by these materials. Some of the exotic properties like negative permittivity, negative permeability, and infinite propagation at a particular non-zero resonant frequency are shown by these artificial materials especially called as Composite Right Left Handed structures. Metamaterials gain these properties from their structural configuration rather than from their material constitution. The electromagnetic characteristics of metamaterials can be exploited to meet the ever increasing demand for lighter, compact, size reduced, multiband antennas. One of the most exciting applications of these CRLH transmission lines (TL) is the Zeroth Order Resonant Antennas. CRLH TL metamaterials when open or short ended produce standing waves and thus behave as resonant antennas. Miniaturization of antennas is possible through these structures as the resonant frequency is independent of the parameters of the antenna aperture. Due to their infinite wavelength propagation property; reduced size, quarter wavelength antennas can be designed

    Passive Microwave Components and Antennas

    Get PDF

    Antennas using left handed transmission lines

    Get PDF
    The research described in this thesis is concerned with the analysis and design of conventional wire antenna types, dipoles and loops, based on the left-handed transmission line approach. The left handed antennas have a unique feature that the wavelength of the induced current becomes shorter with decreasing frequency. The left handed transmission line concept can be extended to construct reduced-size dipole or loop antennas in the VHF frequency band. The use of higher order modes allows orthogonal polarisation to be obtained, which is thought to be a feature unique to these antennas. Efficiency is a key parameter of left handed antennas as the heavy left handed loading increases the resistive loss. A study of the efficiency of small dipole antennas loaded with a left-handed transmission line is specially described, and the comparison with conventional inductive loading dipoles. In a low order mode, the efficiency of L-loading dipole is better with low number of unit cell. If the number of cell increases, CL-loading presents comparable and even better performance. In a high mode the meandered left handed dipole gives the best efficiency due to the phase distribution, presenting orthogonal polarization as well. The optimized dipole loaded with parallel plate capacitors and spiral inductors presents the best performance in impedance and efficiency, even better than the conventional inductive loading. A planar loop antenna using a ladder network of left handed loading is also presented. Various modes can be obtained in the left handed loop antenna. The zero order mode gives rise to omnidirectional patterns in the plane of the loop, with good efficiency. By loading the loop with active components, varactors, a tunable left handed loop antenna with a switchable radiation pattern is implemented. The loop gives an omnidirectional pattern with a null to z axis while working in an n = 0 mode and can switch to a pattern with a null at phi = 45° in the plane of the loop in an n = 2 mode

    Contribution to characterization techniques for practical metamaterials and microwave applications

    Get PDF
    Metamaterials (MTMs) are broadly defined as artificial composite materials specifically engineered to produce desired unusual electromagnetic properties not readily available in nature. The most interesting unusual property achievable with MTMs is probably negative refraction, which is achieved when both the permittivity and the permeability of a medium are negative. Such structures are also referred to as left-handed media (LHM). From the first evidences in the early 2000's showing that materials with a negative refractive index were indeed physically realizable, numerous entirely new devices or improvements of existing devices have been reported in the microwave and antenna fields. In this context, the objective of this thesis is to contribute to the development of new characterization techniques for practical implementations of MTMs, aiming at determining a set of relevant equivalent medium parameters describing the structure from a macroscopic point of view. For this purpose, analysis techniques were developed based on the theory of wave propagation in periodic structures, and tested on selected existing or entirely new MTM structures of the two main reported categories: arrays of resonant particles and loaded transmission lines. In the first part of the work, an improved retrieval procedure which allows the determination of equivalent dyadic permittivity and permeability of MTMs from reflection and transmission coefficients obtained for several incidences was developed and tested, thereby extending current techniques which only dealt with normal incidence. The main achievement obtained with this technique is the ability to evaluate to which extent a given MTM slab can be considered as an equivalent homogeneous medium obeying some specific constitutive relations. This technique was tested on various structures, including a novel highly isotropic artificial magnetic material which was shown to exhibit a negative permeability in the three dimensions. In a second step, MTMs based on the transmission line approach have been investigated. In this context, the theory of the so-called composite right/left-handed transmission line (CRLH TL) has been revisited, and several planar implementations of this structure in various technologies were designed and realized. Subsequently, a volumetric LHM obtained by layering several planar artificial TLs of the CRLH type was proposed and fully characterized. This volumetric structure was shown to support left-handed propagation over a quite large bandwidth, compared to other resonant LHM made of split-ring resonators and wires. We provided an extensive experimental assessment of potential applications of this structure as an exotic substrate for microstrip patch antennas. An important contribution here consisted in the assessment of the ability of such a volumetric structure based on the TL approach to behave as a material filling in this type of configurations. The next part presents an enhanced analysis technique for periodic structures which allows accurately characterizing MTMs exhibiting higher order coupling phenomena between successive cells. This technique also allows an accurate and complete description of more elaborated structures such as periodically loaded multiconductor TLs. The main idea of this technique is to model the periodic structure with an equivalent multiconductor TL, a model which provides all the parameters needed to describe the phase response (dispersion) and terminations (excitation and matching) of finite size periodic structures. In the last part, we introduced and analyzed a novel unit cell topology for the CRLH TL which employs a lattice network in place of the conventional ladder-type topology. This new CRLH TL was shown to exhibit a more wideband behaviour than its conventional counterpart, both in terms of impedance and phase. These performances were numerically and experimentally demonstrated on several practical implementations. The possibilities of using this unit cell to reduce the beam squinting in leaky-wave antennas and in series-fed arrays were highlighted. It is foreseen that this new CRLH TL can be potentially used to improve the performances of many of the well-known CRLH TL applications

    Rectangular Waveguide Filled with Uniaxial Medium and Negative Resistance Enhanced Composite Right/Left-Handed Transmission Line

    Get PDF
    Two wave-guiding problems are treated in this work. The first part addresses the problem of a rectangular waveguide filled with a uniaxially anisotropic or uniaxial medium. Different orientations of the optic axis of the uniaxial medium are considered and the wave transmission and modal behaviors are investigated. When the optic axis is aligned with one of the coordinate axes, i. e., x, y, or z axis, the method of wave decomposition with respect to the optic axis orientation is proposed and the complete analytic solutions are presented and compared with conventional transverse-to-z solutions. When the optic axis is tilted but lying in one of the side wall planes, TE0n or TEm0 (transverse to z) modes are shown to be supported. Furthermore, the supported hybrid wave modes in these cases are numerically found from calculations using the proposed boundary condition matrix (BCM) method. Different from the conventional spectral domain calculation methods, the numerically found hybrid wave modes are expressed as a linear combination of ordinary and extraordinary waves. The algorithm is illustrated and numerical examples are given. The validity of the solution is verified by comparing its results with those of the aligned cases that are analytically solved. The second wave-guiding structure is focused on a type of metamaterial realization. Analyses and experimental results of the negative resistance enhanced composite right/left-handed (NR-CRLH) transmission line are presented. As a demonstration of its unique amplitude and phase behaviors and its application, the detailed analysis of the structure is followed by an example of high-directivity leaky-wave antenna (LWA). In contrast to the conventional CRLH unit cell with via terminated stubs, the NR-CRLH unit cell is designed with negative-resistance (NR) terminated stub that compensates the power loss from the orthogonal direction with respect to the direction of guided-wave propagation. The NR is realized using the inverted common collector (ICC) configuration of an RF transistor, a common commercial product often seen for RF amplifier and oscillator applications. This implementation topology allows the active unit cell (AUC) to preserve all the CRLH properties including the unique dispersion relations, constant Bloch impedance in a broad operating frequency range, and bilateral operation. To highlight the advantages of the active metamaterial transmission line (TL), the NR-CRLH TL based LWA that permits the manipulation of the current distributions over the antenna surface is demonstrated. The NR-CRLH based active antenna allows the control of radiation performances including the patterns, beamwidth, and directivity. The measured results of the LWA prototype demonstrate enhanced directivity compared to the conventional CRLH LWA of the same lengths while minimally influencing all the preferable characteristics of full frequency scanning LWA

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications
    corecore