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Preface

State-of-the-art microwave systems always require higher performance and lower cost 
microwave components. Constantly growing demands and performance requirements 
of industrial and scientific applications often make employing traditionally designed 
components impractical. For that reason, the design and development process remains a 
great challenge today. This problem motivated intensive research efforts in microwave design 
and technology, which is responsible for a great number of recently appeared alternative 
approaches to analysis and design of microwave components and antennas. This book 
highlights these new trends focusing on passive components such as novel resonators, 
filters, diplexers, power dividers, directional couplers, impedance transformers, waveguides, 
transmission lines and transitions as well as antennas, metamaterial-based structures, and 
various electromagnetic analysis and design techniques.

Modelling and computations in electromagnetics is a quite fast-growing research area. The 
recent interest in this field is caused by the increased demand for designing complex microwave 
components, modeling electromagnetic materials, and rapid increase in computational power 
for calculation of complex electromagnetic problems. The first part of this book is devoted to 
the advances in the analysis techniques such as method of moments, finite-difference time-
domain method, boundary perturbation theory, Fourier analysis, mode-matching method, 
and analysis based on circuit theory. These techniques are considered with regard to several 
challenging technological applications such as those related to electrically large devices, 
scattering in layered structures, photonic crystals, and artificial materials. 

The second part of the book deals with waveguides, transmission lines and transitions. This 
includes microstrip lines (MSL), slot waveguides, substrate integrated waveguides (SIW), 
vertical transmission lines in multilayer media as well as MSL to SIW and MSL to slot line 
transitions. 

Impedance matching is an important aspect in the design of microwave circuitry since 
impedance mismatches may severely deteriorate performance of the overall system. Different 
techniques for wideband matching are presented in the third part of this book. The design 
of compact microwave resonators and filters is also covered in this part. Compact, high-
performance microwave filters are essential for high-efficiency miniaturized microwave 
systems. The filter circuit size is large in traditionally designed planar bandpass filters due to 
a high number of large area resonators. The rejection level in the upper stopband of the filters 
is usually degraded by the spurious response at twice the passband frequency. Several types 
of resonators have been designed to overcome these problems, such as miniaturized hairpin 
resonators, stepped-impedance hairpin resonators, and slow-wave open-loop resonators.  
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Miniaturized resonators lead to a reduced filter size, but not always improve the spurious 
response. Another method relies on various resonator combinations within one filter structure 
to reduce the circuit size, such as the loop resonator or hairpin resonator incorporated with 
one or several open stubs.

Recently, microwave filters based on electromagnetic bandgap structures and artificial 
materials have attracted a great deal of interest because of improved characteristics in 
comparison to traditional filter design. Such artificial materials can be realized using periodic 
inclusion of variously shaped metals into a host medium. The most prominent candidate for 
such structures has been the split-ring resonator.  In addition to the split-ring resonator there 
are several alternative realizations based on lumped elements, quasi-lumped LC resonators 
and other planar microwave resonators which are in details discussed in the fourth part of 
this book.    

Antennas are key components in most microwave devices and systems. They are used 
everywhere where a transformation between a guided wave and a free-space wave (or vice 
versa) is required. The final part of the book is dedicated mainly to the design and applications 
of planar antennas and arrays including metamaterial-based antennas, monopoles, slot 
antennas, reflector antennas and arrays.

The book concludes with a chapter considering accuracy aspects of antenna gain measurements. 

Editor

Vitaliy Zhurbenko
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1. Introduction  
 

The electromagnetic wave interaction with layered structures constitutes a crucial topic of 
current interest in theoretical and experimental research. Generally speaking, several 
modelling and design problems, encountered, for instance, in SAR (Synthetic Aperture Radar) 
application, GPR (Ground Penetrating Radar) sensing, radar altimeter for planetary 
exploration, microstrip antennas and MMICs (Monolithic Microwave Integrated Circuits), 
radio-propagation in urban environment for wireless communications, through-the-wall 
detection technologies, optics, biomedical diagnostic of layered biological tissues, 
geophysical and seismic exploration, lead to the analysis of the electromagnetic wave 
interaction with multilayered structure, whose boundaries can exhibit some amount of 
roughness.  
This chapter is aimed primarily at providing a comprehensive analytical treatment of 
electromagnetic wave propagation and scattering in three-dimensional multilayered 
structures with rough interfaces. The emphasis is placed on the general formulation of the 
scattering problem in the analytic framework of the Boundary Perturbation Theory (BPT) 
developed by Imperatore et al. A systematic perturbative expansion of the fields in the 
layered structure, based on the gently rough interfaces assumption, enables the transferring 
of the geometry randomness into a non-uniform boundary conditions formulation. 
Subsequently, the fields’ expansion can be analytically evaluated by using a recursive matrix 
formalism approach encompassing a proper scattered field representation in each layer and 
a matrix reformulation of non-uniform boundary conditions. A key-point in the 
development resides in the appropriate exploitation of the generalized reflection/transmission 
notion, which has strong implications in order to make the mathematical treatment 
manageable and to effectively capture the physics of the problem. Two relevant compact 
closed-form solutions, derived in the first-order limit of the perturbative development, are 
presented. They refer to two complementary bi-static configurations for the scattering, 
respectively, from and through layered structures with arbitrary number of rough 
interfaces. The employed formalism is fully-polarimetric and suitable for applications. In 
addition, it is demonstrated how the symmetrical character of the BPT formalism reflects the 
inherent conformity with the reciprocity theorem of the electromagnetic theory.  

1
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Fig. 1. Geometry for an N-rough boundaries layered medium 

 
2. Statement of the problem   
 

When stratified media with rough interfaces are concerned, the possible approaches to cope 
with the EM scattering problem fall within three main categories. First, the numerical 
approaches do not permit to attain a comprehensive understanding of the general functional 
dependence of the scattering response on the structure parameters, as well as do not allow 
capturing the physics of the involved scattering mechanisms. In addition, the numerical 
approach turns out to be feasible for non-fully 3D geometry or configurations in which a 
very limited number of rough interfaces is accounted for. Layered structures with rough 
interfaces have been also treated resorting to radiative transfer theory (RT). However, coherent 
effects are not accounted for in RT theory and could not be contemplated without 
employing full wave analysis, which preserves phase information. Another approach relies 
on the full-wave methods. Although, to deal with the electromagnetic propagation and 
scattering in complex random layered media,  several analytical formulation involving some 
idealized cases and suitable approximations have been conducted in last decades, the 
relevant solutions usually turn out to be too complicated to be generally useful in 
applications, even if simplified geometries are accounted for. The proliferation of the 
proposed methods for the simulation of wave propagation and scattering in stratified media 
and the continuous interest in this topic are indicative of the need of appropriate modelling 
and interpretation of the complex physical phenomena that take place in layered structures. 
Indeed, the availability of accurate, sound physical and manageable models turns out still to 

 

be a strong necessity, in perspective to apply them, for instance, in retrieving of add-valued 
information from the data acquired by microwave sensors.  
Generally speaking, an exact analytical solution of Maxwell equations can be found only for 
a few idealized problems. Subsequently, appropriate approximation methods are needed. 
Regarding the perturbative approaches, noticeable progress has been attained in the analytic 
investigation on the extension of the classical SPM (small perturbation method) solution for 
the scattering from rough surface to specific layered configurations. Most of previous 
existing works analyze different layered configurations in the first-order limit, using 
procedures, formalisms and final solutions that can appear of difficult comparison (Yarovoy 
et al., 2000), (Azadegan and Sarabandi, 2003), (Fuks, 2001). All these formulations, which 
refer to the case of a single rough interface, have been recently unified in (Franceschetti et al, 
2008). On the other hand, solution for the case of two rough boundaries has also been 
proposed in (Tabatabaeenejad and Moghaddam, 2006).  
Methodologically, we underline that all the previously mentioned existing perturbative 
approaches, followed by different authors in analyzing scattering from simplified geometry, 
imply an inherent analytical complexity, which precludes the treatment to structures with 
more than one (Fuks, 2001) (Azadegan et al., 2003) (Yarovoy et al., 2000) or two 
(Tabatabaeenejad er al., 2006) rough interfaces.  
The general problem we intend to deal with here refers to the analytical evaluation of the 
electromagnetic scattering from and through layered structure with an arbitrary number of 
rough interfaces (see Fig.1). As schematically shown in fig.1, an arbitrary polarized 
monochromatic plane wave 
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is considered to be incident on the layered medium at an angle i
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direction from the upper half-space, where in the field expression a time factor exp(-jt) is 
understood, and where, using a spherical frame representation, the incident vector wave 
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i ˆˆ k  is the two-dimensional projection of incident wave-number vector on 
the plane z=0. The parameters pertaining to layer m with boundaries –dm-1 and -dm are 
distinguished by a subscript m. Each layer is assumed to be homogeneous and characterized 
by arbitrary and deterministic parameters: the dielectric relative permittivity m, the magnetic 
relative permeability μm and the thickness m=dm-dm-1. With reference to Fig.1, it has been 
assumed that in particular, d0=0. In the following, the symbol  denotes the projection of the 
corresponding vector on the plan z=0. Here  z, rr , so we distinguish the transverse 
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spatial coordinates  yx,r  and the longitudinal coordinate z. In addition, each mth rough 
interface is assumed to be characterized by a zero-mean two-dimensional stochastic process 

)(  rmm   with normal vector mn̂ . No constraints are imposed on the degree to which 
the rough interfaces are correlated.  
A general methodology has been developed by Imperatore et al. to analytically treat EM 
bistatic scattering from this class of layered structures that can be described by small 
changes with respect to an idealized (unperturbed) structure, whose associated problem is 
exactly solvable. A thorough analysis of the results of this theoretical investigation (BPT), 
which is based on perturbation of the boundary condition, will be presented in the 
following, methodologically emphasizing the development of the several inherent aspects. 
 

 
Fig. 2.  Geometry for a flat boundaries layered medium 
 
3. Basic definition and notations 
 

This section is devoted preliminary to introduce the formalism used in the following of this 
chapter. The Flat Boundaries layered medium (unperturbed structure) is defined as a stack of 
parallel slabs (Fig.2), sandwiched in between two half-spaces, whose structure is shift 
invariant in the direction of x and y (infinite lateral extent in x-y directions). With the 
notations p

mmT 1
and p

mmR 1
, respectively, we indicate the ordinary transmission and reflection 

coefficients at the interface between the regions m-1 and m+1,  
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with the superscript p{v, h} indicating the polarization state for the incident wave and may 
stand for horizontal (h) or vertical (v) polarization (Tsang et al., 1985) (Imperatore et al. 2009a), 
and where  

  mmmzm kkk cos22  k ,     (9) 

where mmm kk 0  is the wave number for the electromagnetic medium in the mth layer, 

with  /2/0  ck , and where ykxk yx ˆˆ k  is the two-dimensional projection of 
vector wave-number on the plane z=0. In addition, we stress that: 
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3.1 Generalized reflection formalism 
The generalized reflection coefficients p

mm 1  at the interface between the regions (m-1) and m, 

for the p-polarization, are  defined  as  the  ratio  of  the  amplitudes  of  upward-  and  
downward-propagating  waves  immediately above  the  interface, respectively. They can be 
expressed by recursive relations as in (Chew W. C., 1997) (Imperatore et al. 2009a):  
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Furthermore, it should be noted that the factors 
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Furthermore, it should be noted that the factors 
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take into account the multiple reflections in the mth layer.  
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where p {v, h}. The generalized transmission coefficients in upward direction p
m 0  are then 

given by 
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As a counterpart of (17), we have 
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Equations (17) and (18) formally express the reciprocity of the generalized transmission 
coefficients for an arbitrary flat-boundaries layered structure (Imperatore et al. 2009b).  
Here we introduce notion of layered slab, which refers to a layered structure sandwiched 
between two half-spaces. Accordingly, the generalized transmission coefficients in downward 
direction for a layered slab between two half-spaces (0, N), )(
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It should be noted that the parenthesized superscript slab indicates that both the media 0 
and N are half-space. Similarly, the generalized transmission coefficients in downward direction 
for the layered slab between two half-spaces (m+1, N), )(
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Moreover, we consider the generalized transmission coefficients in upward direction for the 
layered slab between two half-spaces (m, 0), )(

0
slabp

m , which are defined as 
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The generalized transmission coefficients in downward direction for the layered slab between 
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It should be noted that the p
m0  are distinct from the coefficients )(

0
slabp
m , because in the 

evaluation of p
m0  the effect of all the layers under the layer m is taken into account, 

whereas )(
0
slabp
m  are evaluated referring to a different configuration in which the 

intermediate layers 1...m are bounded by the half-spaces 0 and m.  
We stress that generalized reflection and transmission coefficients do not depend on the 
direction of k . In the following, we shown how the employing the generalized 
reflection/transmission coefficient notions not only is crucial in obtaining a compact closed-
form perturbation solution, but it also permit us to completely elucidate the obtained 
analytical expressions from a physical point of view, highlighting the role played by the 
equivalent reflecting interfaces and by the equivalent slabs, so providing the inherent connection 
between the global scattering response. 

 
4. Stochastic characterization for the 3-D geometry description 
 

In this section, the focus is on stochastic description for the geometry of the investigated 
structure, and the notion of wide-sense stationary process is detailed. First of all, when the 
description of a rough interface by means of deterministic function )( rm is concerned, the 
corresponding ordinary 2-D Fourier Transform pair can be defined as  
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take into account the multiple reflections in the mth layer.  
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We stress that generalized reflection and transmission coefficients do not depend on the 
direction of k . In the following, we shown how the employing the generalized 
reflection/transmission coefficient notions not only is crucial in obtaining a compact closed-
form perturbation solution, but it also permit us to completely elucidate the obtained 
analytical expressions from a physical point of view, highlighting the role played by the 
equivalent reflecting interfaces and by the equivalent slabs, so providing the inherent connection 
between the global scattering response. 

 
4. Stochastic characterization for the 3-D geometry description 
 

In this section, the focus is on stochastic description for the geometry of the investigated 
structure, and the notion of wide-sense stationary process is detailed. First of all, when the 
description of a rough interface by means of deterministic function )( rm is concerned, the 
corresponding ordinary 2-D Fourier Transform pair can be defined as  
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Let us assume now that )( rm ,  which describes the generic (mth) rough interface, is a 2-D 
stochastic process satisfying the conditions 

   0)(  rm ,    (27) 

  )()()( ρrρr mBmm    ,   (28) 

where the angular bracket denotes statistical ensemble averaging, and where )(ρmB  is the 
interface autocorrelation function, which quantifies the similarity of the spatial fluctuations 
with a displacement . Equations (27)-(28) constitute the basic assumptions defining a wide 
sense stationary (WSS) stochastic process: the statistical properties of the process under 
consideration are invariant to a spatial shift. Similarly, concerning two mutually correlated 
random rough interfaces m and n , we also assume that they are jointly WSS, i.e. 

  )()()( ρrρr nmBnm    ,   (29) 

where )(ρnmB  is the corresponding cross-correlation function of the two random processes.  
It can be readily derived that 

 )()( ρρ  mnnm BB  .    (30) 

The integral in (25) is a Riemann integral representation for )( rm , and it exists if )( rm  is 
piecewise continuous and absolutely integrable. On the other hand, when the spectral analysis 
of a stationary random process is concerned, the integral (25) does not in general exist in the 
framework of theory of the ordinary functions. Indeed, a WSS process describing an 
interface )( rm of infinite lateral extension, for its proper nature, is not absolutely integrable, 
so the conditions for the existence of the Fourier Transform are not satisfied. In order to 
obtain a spectral representation for a WSS random process, this difficulty can be 
circumvented by resorting to the more general Fourier-Stieltjes integral (Ishimaru, 1978); 
otherwise one can define space-truncated functions. When a finite patch of the rough 
interface with area A is concerned, the space-truncated version of (25) can be introduced as 
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is not an ordinary function. Nevertheless, we will 

use again the (25)-(26), regarding them as symbolic formulas, which hold a rigorous 
mathematical meaning beyond the ordinary function theory (generalized Fourier 
Transform). We underline that by virtue of the condition (27) directly follows also that 
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where the asterisk denotes the complex conjugated, and where the operations of average 
and integration have been interchanged. When jointly WSS processes m  and n are 
concerned, accordingly to (29), the LHS of (32) must be a function of   rr only; therefore, 
it is required that  

)()()(~)(~ *
  kkkkk  mnnm W ,  (33) 

where (·) is the Dirac delta function, and where )(κmnW  is called the (spatial) cross power 
spectral density of two interfaces m  and n , for the spatial frequencies of the roughness. 
Equation (33) states that the different spectral components of the two considered interfaces 
must be uncorrelated. This is to say that the (generalized) Fourier transform of jointly WSS 
processes are jointly non stationary white noise with average power )( kmnW . Indeed, by 
using (33) into (32), we obtain 

)()()( )(
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where the RHS of (34) involves an (ordinary) 2D Fourier Transform. Note also that as a 
direct consequence of the fact that )( rn  is real we have the relation )(~)(~ *

  kk nn  . 
Therefore, setting   rrρ in (34), we have  

)()( κκρ ρκ
mn

j WedB nm
 .   (35) 

The cross-correlation function )(ρnmB   of two interfaces m  and n  is then given by the 
(inverse) 2D Fourier Transform of their (spatial) cross power spectral density, and Equation (35) 
together with its Fourier inverse 

  )()2()( 2 ρρκ ρκ
nmBedW j

mn    ,  (36) 

may be regarded as the (generalized) Wiener-Khinchin theorem. In particular, when n=m, (33) 
reduces to  

  )()()(~)(~ *
  kkkkk  mmm W ,  (37) 

where )(κmW is called the (spatial) power spectral density of nth corrugated interface m and 
can be expressed as the (ordinary) 2D Fourier transform of n-corrugated interface 
autocorrelation function, i.e., satisfying the transform pair: 

  )()2()( 2 ρρκ ρκ
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m    ,   (38) 

  )()( κκρ ρκ
m

j WedB m
 ,    (39) 
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which is the statement of the classical Wiener-Khinchin theorem. We emphasize the physical 
meaning of yxyxmm dκdκ,κκWdW )()( κκ : it represents the power of the spectral 
components of the mth rough interface having spatial wave number between x and x +dx  
and y and y +dy,  respectively, in x and y direction. Furthermore, from (30) and (36) it 
follows that  

   )()( * κκ nmmn WW  .    (40) 

This is to say that, unlike the power spectral density, the cross power spectral density is, in 
general, neither real nor necessarily positive. Furthermore, it should be noted that the 
Dirac’s delta function can be defined by the integral representation 
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By using in (37) and (33) the relation 2)2/();0(  AA  , we have, respectively, that the 
(spatial) power spectral density of nth corrugated interface can be also expressed as  
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and the (spatial) cross power spectral density of two interfaces m  and n  is given by  
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It should be noted that the domain of a rough interface is physically limited by the 
illumination beamwidth. Note also that the different definitions of the Fourier transform are 
available and used in the literature: the sign of the complex exponential function are 
sometimes exchanged and a multiplicative constant 2)2(  may appear in front of either 
integral or its square root in front of each expression (25)-(26). Finally, we recall that the 
theory of random process predicts only the averages over many realizations. 

 
5. Boundary Perturbation Theory (BPT)  
 

In this section, we first introduce the general perturbative expansion on which the BPT 
formulation is based. A systematic matrix reformulation, which enables the formal 
evaluation of pertinent scattered field solutions, is then presented.  

 
5.1 Perturbative formulation  
With reference to the geometry of Fig.1, in order to obtain a solution valid in each region of 
the structure, we have to enforce the continuity of the tangential fields: 
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and where  is the nabla operator in the x-y plane. In order to study the fields mE  and mH  
within the generic mth layer of the structure, we assume then that, for each mth rough 
interface, the deviations and slopes of the interface, with respect to the reference mean plane 
z=-dm, are small enough in the sense of (Ulaby et al, 1982) (Tsang et al., 1985), so that the 
fields can be expanded about the reference mean plane. Assume that the fields can be 
expanded about the reference mean plane z=-dm as: 
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where the dependence on r  is understood. Then (48), (49) are the fields expansions in 
perturbative orders of the fields and their derivatives at the interfaces of the structure; they 
can be injected into the boundary conditions (44-45). Retaining only up to the first-order 
terms with respect to m and m, we obtain:  

m
mm

dz

m
m

dz
mm

dz
m z

zz





 



EEE ˆˆ  ,  (50) 

m
mm

dz

m
m

dz
mm

dz
m z

zz





 



HHH ˆˆ   . (51) 

The field solutions can then be represented formally as 

  ...),( )2()1()0(  mmmm z EEErE   ,   (52)  

...),( )2()1()0(  mmmm z HHHrH  .   (53) 

where the parenthesized superscript  refers to the perturbation field of  order n: )0()0( , mm HE  is 

the unperturbed solution and )1()1( , mm HE is correction to the first-order of m and m. It should 
be noted that the unperturbed solution represents the field existing in flat boundaries 
stratification, and satisfying: 
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where the dependence on r  is understood. Then (48), (49) are the fields expansions in 
perturbative orders of the fields and their derivatives at the interfaces of the structure; they 
can be injected into the boundary conditions (44-45). Retaining only up to the first-order 
terms with respect to m and m, we obtain:  
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The field solutions can then be represented formally as 

  ...),( )2()1()0(  mmmm z EEErE   ,   (52)  

...),( )2()1()0(  mmmm z HHHrH  .   (53) 

where the parenthesized superscript  refers to the perturbation field of  order n: )0()0( , mm HE  is 

the unperturbed solution and )1()1( , mm HE is correction to the first-order of m and m. It should 
be noted that the unperturbed solution represents the field existing in flat boundaries 
stratification, and satisfying: 
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The fields expansion (52)-(53) can be then injected into the boundary conditions (50)-(51), so 
that, retaining only up to the first-order terms, the following nonuniform boundary conditions 
can be obtained (Imperatore et al. 2008a) (Imperatore et al. 2008b) (Imperatore et al. 2009a)  
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Therefore, the boundary conditions from each mth rough interface can be transferred to the 
associated equivalent flat interface.  In addition, the right-hand sides of Eqs. (55) and (56) 
can be interpreted as effective magnetic ( )1(p

HmJ ) and electric ( )1(p
EmJ ) surface current densities, 

respectively, with p denoting the incident polarization; so that we can identify the first-order 
fluctuation fields as being excited by these effective surface current densities imposed on the 
unperturbed interfaces. Accordingly, the geometry randomness of each corrugated 
interfaces is then translated in random current sheets imposed on each reference mean plane 
(z=-dm), which radiate in an unperturbed (flat boundaries) layered medium. As a result, 
within the first-order approximation, the field can be than represented as the sum of an 
unperturbed part )0()0( , nn HE  and a random part, so that ,),( )1()0(

nnn z EErE    
)1()0(),( nnn z HHrH  . The first is the primary field, which exists in absence of surface 

boundaries roughness (flat-boundaries stratification), detailed in (Imperatore et al. 2009a); 
whereas )1()1( , nn HE  can be interpreted as the superposition of single-scatter fields from each 
rough interface. In order to perform the evaluation of perturbative development, the 
scattered field in each region of the layered structure is then represented as the sum of up- 
and down-going waves, and the first-order scattered field in each region of the layered 
structure can be then characterized by adopting the following field spectral representation in 
terms of the unknown coefficients )()1(
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where Zm is the intrinsic impedance of the medium m, and where  
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is a basis for the horizontal/vertical polarization vectors. 

 
5.2 Matrix reformulation  
In this section, we reformulate the non-uniform boundaries condition (55, 56), reducing the 
scattering problem to the formal solution of a linear system of equations; the unknowns are 
the scalar amplitudes, )()1(
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mS , of the scattered fields. Eqs. (55, 56) can be rewritten by 

using their spectral representation: 
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with respect to k , of the right-hand sides of (55) and (56), respectively, so that: 
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where )(~
km  is the spectral representation (2D-FT) of the corrugation )( rm , and where 
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Therefore, a solution valid in each region of the layered structure can be obtained from (57)-
(62) taking into account the non uniform boundary conditions (63)-(64). In order to solve the 
scattering problem in terms of the unknown expansion coefficients )()1(


 kq
mS , we arrange 

their amplitudes in a single vector according to the notation: 
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Subsequently, the nonuniform boundary conditions (63)-(64) can be reformulated by employing 
a suitable matrix notation, so that for the (q=h) horizontal polarized scattered wave we have 
(Imperatore et al. 2008a) (Imperatore et al. 2009a): 
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  (69) 

is the term associated with the effective source distribution, where the expressions of the 
effective currents )1(~ p

EmJ and )1(~ p
HmJ , imposed on the (flat) unperturbed boundary z = −dm, for 

an incident polarization p {v, h} are detailed in (Imperatore et al. 2009a); and where Z0 is 
the intrinsic impedance of the vacuum. Furthermore, the fundamental transfer matrix operator 
is given by:  
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with the superscripts q  {v, h} denoting the polarization. Moreover, it should be noted that 
on a (kth) flat interface Eq. (68) reduces to the uniform boundary conditions, thus getting: 
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We emphasize that equations (68) state in a simpler form the problem originally set by Eqs. 
(55)-(56): as matter of fact, solving Eq. (68) m implies dealing with the determination of 
unknown scalar amplitudes )()1(


 kq
mS  instead of working with the corresponding vector 

unknowns )1()1( , mm HE . Therefore, the scattering problem in each mth layer is reduced to the 
algebraic calculation of the unknown expansion scattering coefficients vector (67). As a 
result, when a structure with rough interfaces is considered, the enforcement of the original 
non uniform boundary conditions through the stratification (m=0, ..., N-1) can be addressed 
by writing down a linear system of equations with the aid of the matrix formalism (68)-(69) 
with m=0, ..., N-1. As a result, the formulation of non-uniform boundary conditions in matrix 
notation (68)-(69) enables a systematic method for solving the scattering problem: For the N-
layer stratification of Fig.1, we have to find 2N unknown expansion coefficients, using N 
vectorial equations (68), i.e., 2N scalar equations. It should be noted that, for the considered 
configuration, the relevant scattering coefficients )(),( )1(

0
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 kk qq
N SS are obviously 

supposed to be zero. The scattering problem, therefore, results to be reduced to a formal 
solution of a linear equation system. It can be demonstrated that, making use of a recursive 
approach involving the key-concept of generalized transmission/reflection (see also Sect. 3), 
the system of equations (68, 69) is susceptible of a straightforward closed form solution, so 
that the first-order perturbation fields anywhere in the upper half-space that arise from each 
mth rough interface can be formally found (Imperatore et al. 2009a) (Imperatore et al. 2009b). 

 

In conclusion, the derivation of scattering field contribution, due to each rough interface, for 
instance in the upper or the lower half-space, can be then accomplished by avoiding the use 
of the cumbersome Green functions formalism. 
We finally emphasize that here we are interested in the scattering from and through the 
stratification; therefore, the determination of the pertinent unknown expansion coefficients 
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NS 
 k  of the scattered wave, respectively, into the upper and the lower 

half-space, is required only. Full expressions for these coefficients are reported in 
(Imperatore et al. 2009a) (Imperatore et al. 2009b).   

 
6. BPT closed-form solutions 
 

The aim of this section is to present the relevant BPT solutions for the scattering from and 
through the 3-D layered rough structure pictured schematically in Fig.1. We underline that 
the corresponding first-order solutions refer to two complementary bistatic configuration: in 
the first case, both the transmitter and the receiver are into the same half-space, whereas, in 
the second case, each one is located in a different half-space. 

 
6.1 Scattering from layered structure with an arbitrary number of rough interfaces  
First we consider the case of one rough interface embedded in the layered structure. The 
field scattered upward in the upper half-space in the first-order limit can be written in the 
form (see (57)-(60)):  
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By employing the method of stationary phase, we evaluate the integral (72) in the far field zone, 
obtaining: 
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with q  {v, h} is the polarization of the scattered field. Taking into account the expressions 
for the unknowns expansion coefficients )()1(
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where )( i
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zm kkk  , )( s
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s
zm kkk  , p

m0 and p
m 0 are, respectively, the generalized 

transmission coefficients in downward direction and the generalized transmission coefficients 

in upward direction (see (16)-(17)), and p
mm 1

 
are the generalized reflection coefficients (see 

eq. (11)). The coefficients 1,~ mm
qp are relative to the p-polarized incident wave impinging on 

the structure from upper half space 0 and to the q-polarized scattering contribution from 
structure into the upper half space, originated from the rough interface between the layers 
m, m+1. Finally, we emphasize that the total scattering from the N-rough interfaces layered 
structure can be straightforwardly obtained, in the first-order approximation, by 
superposition of the different contributions pertaining each rough interface: 
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6.2 Scattering through layered structure with an arbitrary number of rough interfaces 
Similarly, when one rough interface embedded in the layered structure is concerned, the 
field scattered into the last half-space, through the 3-D layered structure, in the first-order 
limit can be then written in the form:  
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then we use the method of stationary phase and obtain: 
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where )( i
zm

i
zm kkk  , )( s

zm
s
zm kkk  , p

m0 and p
m 0 are, respectively, the generalized 

transmission coefficients in downward direction and the generalized transmission coefficients 

in upward direction (see (16)-(17)), and p
mm 1

 
are the generalized reflection coefficients (see 

eq. (11)). The coefficients 1,~ mm
qp are relative to the p-polarized incident wave impinging on 

the structure from upper half space 0 and to the q-polarized scattering contribution from 
structure into the upper half space, originated from the rough interface between the layers 
m, m+1. Finally, we emphasize that the total scattering from the N-rough interfaces layered 
structure can be straightforwardly obtained, in the first-order approximation, by 
superposition of the different contributions pertaining each rough interface: 
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transmission coefficients in downward direction and the generalized transmission coefficients 

in downward direction given, respectively, by (16) and (21), and p
mm 1 are the generalized 

reflection coefficients (see (11)). The coefficients 1,0 ~ mm
qpN  are relative to the p-polarized 

incident wave impinging on the structure from half-space 0 and to q-polarized scattering 
contribution, originated from the rough interface between the layers m and m+1, through 
the structure into last half-space N. Finally, we emphasize that the total scattering through 
the N-rough interfaces layered structure can be straightforwardly obtained, in the first order 
approximation, by superposition of the different contributions pertaining each rough 
interface: 
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As a result, the relevant final solutions (79) and (88) turn out formally identical, provided 

that the coefficients 1,~ mm
qp are replaced with the complementary ones 1,0 ~ mm

qpN . 

 
7. Bi-static scattering cross sections  
 

In this section, we calculate the bi-static scattering cross sections of the layered structure 
arising from the BPT solutions, which have been derived in the first-order approximation in 
the previous sections. The estimate of the mean power density can be obtained by averaging 
over an ensemble of statistically identical interfaces. 

 
7.1 Scattering Cross Section of an arbitrary layered structure with an embedded 
rough interface  
In this section, we focus on the scattering property of a single rough interface embedded in 
the layered structure. The bi-static scattering cross section of a generic (nth) rough interface 
embedded in the layered structure can be then defined as 
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where < > denotes ensemble averaging, where q  {v, h} and p  {v, h} denote, respectively, 
the polarization of scattered field and the polarization of incident field, and where A is the 
illuminated surface area. Therefore, by substituting (74) into (89) and considering that the 
(spatial) power spectral density )(κnW of nth corrugated interface is defined as in (42), the 
scattering cross section relative to the contribution of the nth corrugated interface, according 
to the formalism used in [Franceschetti et al. 2008], can be expressed as 
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with p, q  {v, h} denoting, respectively, the incident and the scattered polarization states, 
which may stand for horizontal polarization (h) or vertical polarization (v); Furthermore, we 
stress when the backscattering case ( 0ˆˆ  

is kk ) is concerned, our cross-polarized scattering 
coefficients (75)-(78) evaluated in the plane of incidence vanish, in full accordance with the 
classical first-order SPM method for a rough surface between two different media (Ulaby et 
al, 1982) (Tsang et al., 1985). 

 
7.2 Scattering Cross Section into last half-space of an Arbitrary Layered Structure 
with an Embedded Rough Interface  
As counterparts of the configuration considered in the last subsection, we now refer to the 
complementary one in which the scattering through the structure is concerned. The bi-static 
scattering cross section into last half-space of the structure with one embedded (nth) rough 
interface can be defined as 
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where < > denotes ensemble averaging, where the index q  {v, h}  index p  {v, h} and 
denote, respectively, the polarization of scattered field and the polarization of incident field, 
A is the surface area, and where we have considered the Poynthing power density of the 
transmitted wave in Nth region normalized to the power density of the incident wave. 
Therefore, by substituting (82) into (91) and considering that the (spatial) power spectral 
density )(κnW of nth corrugated interface is defined as in (42), as final result, we obtain: 
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7.3 Scattering Cross Section of a Layered Structure with N-rough interfaces  
We now show that the solutions, given by the expressions (90) and (92) respectively, are 
susceptible of a straightforward generalization to the case of arbitrary stratification with N-
rough boundaries. Taking into account the contribution of each nth corrugated interface (see 
(79)), the global bi-static scattering cross section of the N-rough interface layered media can be 
expressed as: 
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qpN  are relative to the p-polarized 

incident wave impinging on the structure from half-space 0 and to q-polarized scattering 
contribution, originated from the rough interface between the layers m and m+1, through 
the structure into last half-space N. Finally, we emphasize that the total scattering through 
the N-rough interfaces layered structure can be straightforwardly obtained, in the first order 
approximation, by superposition of the different contributions pertaining each rough 
interface: 
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stress when the backscattering case ( 0ˆˆ  
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7.3 Scattering Cross Section of a Layered Structure with N-rough interfaces  
We now show that the solutions, given by the expressions (90) and (92) respectively, are 
susceptible of a straightforward generalization to the case of arbitrary stratification with N-
rough boundaries. Taking into account the contribution of each nth corrugated interface (see 
(79)), the global bi-static scattering cross section of the N-rough interface layered media can be 
expressed as: 
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with p, q  {v, h}, where the asterisk denotes the complex conjugated, where 1,~ ii
qp are given 

by (75)-(78), and where the cross power spectral density ijW , between the interfaces i and j, for 
the spatial frequencies of the roughness is given by (43).  
Likewise, the solution given by the expression (92), is susceptible of a straightforward 
generalization to the case of arbitrary stratification with N-rough boundaries. Taking into 
account the contribution of each nth corrugated interface (see (88)), the global bi-static 
scattering cross section into last half-space of the N-rough interface layered media can be 
expressed as: 
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where p, q  {v, h}, where the asterisk denotes the complex conjugated, 1,0 ~ ii
qpN  are given by 

(84)-(87), and where the cross power spectral density ijW , between the interfaces i and j, for the 
spatial frequencies of the roughness is given by (43).  
 
Some final considerations are now in order. As a matter of fact, the presented closed-form 
solutions permit the polarimetric evaluation of the scattering for a bi-static configuration, from 
or through the layered rough structure, once the three-dimensional layered structure’s 
parameters (shape of the roughness spectra, layers thickness and complex permittivities), 
the incident field parameters (frequency, polarization and direction) and the observation 
direction are been specified. As a result, an elegant closed form solution is established, 
which takes into account parametrically the dependence of scattering properties on 
structure (geometric and electromagnetic) parameters. Therefore, BPT formulation leads to 
solutions which exhibit a direct functional dependence (no integral evaluation is required) 
and, subsequently, permit to show that the scattered field can be parametrically evaluated 
considering a set of parameters: some of them refer to an unperturbed structure 
configuration, i.e. intrinsically the physical parameters of the smooth boundary structure, 
and others which are determined exclusively by (random) deviations of the corrugated 
boundaries from their reference position. Note also that the coefficients 1,~ mm

qp  and 1,0 ~ ii
qpN   

depend parametrically on the unperturbed structure parameters only. Procedurally, once 
the generalized reflection/transmission coefficients are recursively evaluated, the coefficients 

 

1,~ ii
qp and/or 1,0 ~ ii

qpN   can be than directly computed, so that the scattering cross sections 
(93) and/or (94) for the pertinent structure with rough interfaces can be finally predicted. 
Furthermore, the scattering from or through the rough layered media is sensitive to the 
correlation between rough profiles of different interfaces. In fact, a real layered structure 
will have interfaces cross-correlation somewhere between two limiting situations: perfectly 
correlated and uncorrelated roughness. Consequently, the degree of correlation affects the 
phase relation between the fields scattered by each rough interface. Obviously, when the 
interfaces are supposed to be uncorrelated, the second terms respectively in (93) and (94) 
vanish and accordingly, in the first-order approximation, the total scattering from or 
through the structure arises from the incoherent superposition of radiation scattered from 
each interface. We emphasize that the effects of the interaction between the rough interfaces 
can limited be treated, in the first-order approximation, only when the rough interfaces 
exhibit some correlation. In addition, it has been demonstrated that the proposed global 
solution turns out to be completely interpretable with basic physical concepts, clearly 
discerning the physics of the involved scattering mechanisms (Imperatore et al 2008c) 
(Imperatore et al. 2009c). Finally, it should be noted that the method to be applied needs 
only the classical gently-roughness assumption, without any further approximation.  
 

 
Fig. 3.  Reciprocity for scattering from and through a layered structure with rough 
interfaces. 
 
8. Reciprocal character of the BPT solutions 
 

In this section, the emphasis is placed on the reciprocal character of the final BPT scattering 
solutions, which evidently constitutes a crucial point in the formal framework of the BPT.  
Generally speaking, the reciprocity principle is a statement that expresses some form of 
symmetry in the laws governing a physical system. Analytically speaking, both the BPT 
final solutions (79) and (88), respectively, from and through the layered structure with N-
rough interfaces can be expressed in a common formal frame exhibiting a symmetric nature: 
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with p, q  {v, h}, where the asterisk denotes the complex conjugated, where 1,~ ii
qp are given 

by (75)-(78), and where the cross power spectral density ijW , between the interfaces i and j, for 
the spatial frequencies of the roughness is given by (43).  
Likewise, the solution given by the expression (92), is susceptible of a straightforward 
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where p, q  {v, h}, where the asterisk denotes the complex conjugated, 1,0 ~ ii
qpN  are given by 
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These formal relations are not only a mere matter of aesthetic; in fact their symmetry 
inherently reflects the conformity with the reciprocity principle of the electromagnetic 
theory. We emphasize that the relations (95), (96) imply that the wave amplitude for the 
scattering process si kk  equals that of reciprocal scattering process is kk  .Therefore, 
(95) and (96) are also reciprocity relationships for the scattering, respectively, from and 
through a layered structure with an (mth) embedded rough interface. This is to say that for 
the presented scattering solutions the role of the source and the receiver can be exchanged 
(see Fig.3), in conformity with the reciprocity principle of the electromagnetic theory. It 
should be noted that when the N-rough interfaces structure is concerned the properties (95)-
(96) are satisfied as well, since the solutions in first-order limit are obtainable by 
superposition of the contribution of each (mth) rough interface. In order to provide general 
demonstration of these fundamental relationships, we found a more compact expression for 
(75)-(78) and (84)-(87), respectively. First, we introduce the following suitable notation: 
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Next, when the solution for the scattering from the layered structure with an embedded 
rough interface is concerned, substituting relations (17) into (75)-(78), we obtain the 
alternative and more compact expressions for the relevant solution: 
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Then, by direct inspection of (99)-(102) we ultimately find Eq. (95).  

 

On the other hand, when the solution for the scattering through the layered structure with 
an embedded rough interface is concerned, we proceed similarly as done previously. 
Substituting relations (18) into (84)-(87), we obtain the alternative and more compact 
expressions for the relevant solution: 
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Then, by direct inspection of (103)-(106) we ultimately find Eq. (96). This is to say that BPT 
formalism satisfies reciprocity.  

 
9. Conclusion 
 

The problem of electromagnetic scattering in 3D layered rough structures can be analytical 
treated by relying on effective results of the Boundary Perturbation Theory (BPT), whose 
formulation has been introduced by P. Imperatore and his coauthors in many different 
papers. A structured presentation of the pertinent theoretical body of results has been 
provided in this chapter. The first-order scattering models obtained in the framework of the 
BPT allow us to polarimetrically deal with the (bi-static) scattering, from and through three-
dimensional layered structures with an arbitrary number of gently rough interfaces.  
Analytically speaking, two relevant closed-form solutions, obtained for two different 
configurations, respectively, for the scattering from and through the structure, are presented 
in a common formal frame. As a matter of fact, beyond a certain economy and mathematical 
elegance in the final analytical solutions, their inherent symmetry is intimately related to the 
reciprocity. 
Some remarkable considerations on the meaning of the BPT solutions are in order. It can be 
demonstrated that, beyond the technicalities of the BPT formulation, the pertinent analytical 
results are also susceptible of a powerful physical interpretation; so that the fundamental 
interactions contemplated by the BPT can be revealed, gaining a coherent explanation and a 
neat picture of the physical meaning of the BPT theoretical construct (Imperatore et al 2008c) 
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These formal relations are not only a mere matter of aesthetic; in fact their symmetry 
inherently reflects the conformity with the reciprocity principle of the electromagnetic 
theory. We emphasize that the relations (95), (96) imply that the wave amplitude for the 
scattering process si kk  equals that of reciprocal scattering process is kk  .Therefore, 
(95) and (96) are also reciprocity relationships for the scattering, respectively, from and 
through a layered structure with an (mth) embedded rough interface. This is to say that for 
the presented scattering solutions the role of the source and the receiver can be exchanged 
(see Fig.3), in conformity with the reciprocity principle of the electromagnetic theory. It 
should be noted that when the N-rough interfaces structure is concerned the properties (95)-
(96) are satisfied as well, since the solutions in first-order limit are obtainable by 
superposition of the contribution of each (mth) rough interface. In order to provide general 
demonstration of these fundamental relationships, we found a more compact expression for 
(75)-(78) and (84)-(87), respectively. First, we introduce the following suitable notation: 
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Next, when the solution for the scattering from the layered structure with an embedded 
rough interface is concerned, substituting relations (17) into (75)-(78), we obtain the 
alternative and more compact expressions for the relevant solution: 
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Then, by direct inspection of (99)-(102) we ultimately find Eq. (95).  

 

On the other hand, when the solution for the scattering through the layered structure with 
an embedded rough interface is concerned, we proceed similarly as done previously. 
Substituting relations (18) into (84)-(87), we obtain the alternative and more compact 
expressions for the relevant solution: 
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Then, by direct inspection of (103)-(106) we ultimately find Eq. (96). This is to say that BPT 
formalism satisfies reciprocity.  

 
9. Conclusion 
 

The problem of electromagnetic scattering in 3D layered rough structures can be analytical 
treated by relying on effective results of the Boundary Perturbation Theory (BPT), whose 
formulation has been introduced by P. Imperatore and his coauthors in many different 
papers. A structured presentation of the pertinent theoretical body of results has been 
provided in this chapter. The first-order scattering models obtained in the framework of the 
BPT allow us to polarimetrically deal with the (bi-static) scattering, from and through three-
dimensional layered structures with an arbitrary number of gently rough interfaces.  
Analytically speaking, two relevant closed-form solutions, obtained for two different 
configurations, respectively, for the scattering from and through the structure, are presented 
in a common formal frame. As a matter of fact, beyond a certain economy and mathematical 
elegance in the final analytical solutions, their inherent symmetry is intimately related to the 
reciprocity. 
Some remarkable considerations on the meaning of the BPT solutions are in order. It can be 
demonstrated that, beyond the technicalities of the BPT formulation, the pertinent analytical 
results are also susceptible of a powerful physical interpretation; so that the fundamental 
interactions contemplated by the BPT can be revealed, gaining a coherent explanation and a 
neat picture of the physical meaning of the BPT theoretical construct (Imperatore et al 2008c) 
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(Imperatore et al. 2009c). The consequent phenomenological implications on the practical 
applications are then considerable. 
Therefore, the formally symmetric, physically revealing, and fully polarimetric BPT solutions 
are amenable of direct and parametric numerical evaluation and, therefore, can be 
effectively applied to several practical situations of interest. We underline that it can be also 
demonstrated that all the previous existing perturbative scattering models, introduced by 
other authors to deal with simplified layered geometry with one (Yarovoy et al., 2000), 
(Azadegan and Sarabandi, 2003), (Fuks, 2001) or two rough interfaces (Tabatabaeenejad and 
Moghaddam, 2006), can be all rigorously regarded as a special cases of the general BPT 
solutions (see also Franceschetti et al, 2008).  This analytical consistency also provides a 
unifying perspective on the perturbative approaches. Finally, the body of the BPT 
theoretical results can be also regarded as a generalization to the case of layered media with 
rough interfaces of the classical SPM for rough surface.  
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1. Introduction     
 

Numerical analysis of planar periodic multilayer structures is often carried out with the aid 
the method of moments (MoM). The advantage of the technique against the other, more 
general methods (like FEM and FDTD) is in faster computation of reflection and 
transmission properties of a periodic structure. Besides of computation speed, usage of 
MoM typically results in lower memory requirements when compared to FEM and FDTD. 
The method of moments can be either formulated in the spatial or spectral domain. For 
analysis of periodic structures the spectral formulation is more advantageous – a discrete 
space spectrum (Scott, 1989). Thus, the original integral equations reduce into algebraic ones 
(that is double summations are being used instead of surface integrals). The disadvantage of 
the spectral formulation is that double summations arising in MoM formulation are slowly 
convergent and a high number of Floquet modes is needed for analysis of periodic 
structures having fine patch details inside the periodic cell or densely stacked structures. 
Simple spectral domain MoM codes for analysis periodic structures consider uniform mesh 
of cells and utilize FFT to accelerate the double summations (Cwick & Mittra, 1987; Wan & 
Encinar, 1995). These simple MoM codes also typically use small domain basis functions 
(like rooftops (Cwick & Mittra, 1987), or triangular (RWG) basis functions (Kipp & Chan, 
1994)). If more general geometry is to be analyzed, then a non-uniform mesh of rectangular 
or quad shaped cells (Kolundzija, 1998) must be used. From the computational point of view 
it also highly desirable to consider use of higher order large domain basis functions for 
representation of surface currents. Then, the conductive currents in patches may be 
accurately described with a small number of unknown expansion coefficients. 
Solution of reflection/transmission properties of a multilayer periodic structure can be 
performed either directly (Wu, 1995) or by the use of a cascade approach (Mittra et. al, 1988) 
or (Wan & Encinar, 1995). The cascade approach is suitable for periodic structures which 
with a large or a medium electrical thickness of individual dielectric layers. When the 
electrical thickness of a particular dielectric layer becomes too small then a large number of 
Floquet modes must be used during the cascade process (Wan & Encinar, 1995). In such a 
case, which is a typical for periodic structures with microscopically thin layers (e.g. carbon 
fibre composite materials) the direct approach is being used. 

2
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The chapter is organized as follows. In section 2, the formulation of MoM in the spectral 
domain is described. The formulation is based on (Wu, 1995) and in the further text it will be 
referenced as a direct approach. Section 3 describes approximation of surface currents with 
small domain rooftops defined over a non-uniform mesh of rectangular cells and use of 
higher order domain basis functions defined over quadrilaterals. Computation of reflection 
and transmission coefficients is described in section 4. Numerical examples are given in 
section 5. These examples fall into two different groups. First group belongs to the area of 
frequency selective surfaces, where results from our in-house MoM code called FSSMQ are 
compared with those existing in literature. Second group of examples spans into the area of 
composite materials, where FSSMQ code is used for prediction of shielding effectiveness of 
a composite with partially conductive carbon fibres. Finally, concluding remarks are given 
in section 6.  

 
2. Spectral domain method of moments 
 

In this section, a detail overview of the spectral domain method of moments is given. The 
formulation and notation being used is based on (Wu, 1995) and (Mittra et al., 1988). The 
formulation is based in the immitance approach developed originally by (Itoh, 1980) and is 
slightly different from the notation being used by other authors (Scott, 1989). As a new, 
when compared to existing papers related to the spectral domain MoM, incorporation of 
non-uniform mesh rectangular cells and mesh of quadrilateral cells is presented in section 3. 

 
2.1 Multilayer problem – formulation (EFIE) 
Let’s consider a planar periodic multilayer structure according to Fig. 1. As an example 
structure with 2 dielectric layers is given. Metal layers are denoted as M0, M1 and M2. The 
top of the dielectric structure is a placed at position z = 0.  
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Fig. 1. Left) Multilayer FSS – layer definition, Right) Periodic cell and definition of angles of 
incidence 
 
The reflection/transmission from the multilayer structure is solved within a single periodic 
cell dimensioned a and b. The structure is illuminated by the TE or TM polarized plane wave 
with the angles of incidence I  and I .  The formulation of MoM in the spectral domain 
starts with expressing an electric intensity of the incident and scattered wave in space and 

 

spectral domain (equations 1 and 2). Then, the electric field integral equation (EFIE), (Scott, 
1989) and (Wu, 1995) is formulated in the spectral domain (3). 
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where ii stands for the index of metal layer (ii=0,1,2, …), ),( yxinc

iiE  is electric intensity of 
the incident wave at the iith metal layer (but with all metal layers removed). The components 
of intensity ),( yxinc

iiE  can be calculated according to a procedure given in section 4. The 

symbol ),( yxscat
iiE  stands for the electric intensity at iith layer arising from conductive 

currents from iith and all remaining metal layers placed above and beneath the iith metal 
layer. As metal layers may be lossy, with a finite conductivity ii [S/m], then the total 
tangential electric field is not completely vanishing on the conductors. Such a situation may 
be approximated with the so called surface impedance Zs. The surface impedance is 
determined from the sheet resistance Rs (Cwick & Mittra, 1987) as Zs = (1+j)Rs , where Rs is 

calculated as iiiisR  2/ . The concept of sheet resistance is valid when skin depth 

is less than the metal thickness. Last two symbols 0  and 0 to be explained, stand for x 

and y components of the wave vector of the incident wave. Time dependence of tje  is 
assumed in this chapter. 
In the subsequent paragraphs, double index ii or jj will used for the index of a metal layer, 
while the single index i will stand for an integer index of a dielectric layer. 
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with jjii
xxG  , jjii

xyG  , jjii
yxG   and jjii

yyG  standing for components of the self and 

mutual impedance matrix ][ ijG which relates the scattered electric field at iith metal layer 
through the conductive currents at jjth layer. Nm is index of a maximal metal layer in the 
analyzed multilayer structure. Symbols m and n have a meaning of integer indexes (Floquet 
harmonics). These indexes range from –M to +M, resp. –N to +N, where M, N represent the 
maximal Floquet harmonics. 
 jj

ij
ii G JE ][   (4) 

Components of ][ ijG are evaluated by the immitance approach (Itoh, 1980) and (Wu, 1995). 

The evaluation of ][ ijG  is different for the case with ii=jj (self-impedance matrix) and 
jjii   (mutal impedance matrix).  
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The chapter is organized as follows. In section 2, the formulation of MoM in the spectral 
domain is described. The formulation is based on (Wu, 1995) and in the further text it will be 
referenced as a direct approach. Section 3 describes approximation of surface currents with 
small domain rooftops defined over a non-uniform mesh of rectangular cells and use of 
higher order domain basis functions defined over quadrilaterals. Computation of reflection 
and transmission coefficients is described in section 4. Numerical examples are given in 
section 5. These examples fall into two different groups. First group belongs to the area of 
frequency selective surfaces, where results from our in-house MoM code called FSSMQ are 
compared with those existing in literature. Second group of examples spans into the area of 
composite materials, where FSSMQ code is used for prediction of shielding effectiveness of 
a composite with partially conductive carbon fibres. Finally, concluding remarks are given 
in section 6.  

 
2. Spectral domain method of moments 
 

In this section, a detail overview of the spectral domain method of moments is given. The 
formulation and notation being used is based on (Wu, 1995) and (Mittra et al., 1988). The 
formulation is based in the immitance approach developed originally by (Itoh, 1980) and is 
slightly different from the notation being used by other authors (Scott, 1989). As a new, 
when compared to existing papers related to the spectral domain MoM, incorporation of 
non-uniform mesh rectangular cells and mesh of quadrilateral cells is presented in section 3. 

 
2.1 Multilayer problem – formulation (EFIE) 
Let’s consider a planar periodic multilayer structure according to Fig. 1. As an example 
structure with 2 dielectric layers is given. Metal layers are denoted as M0, M1 and M2. The 
top of the dielectric structure is a placed at position z = 0.  
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Fig. 1. Left) Multilayer FSS – layer definition, Right) Periodic cell and definition of angles of 
incidence 
 
The reflection/transmission from the multilayer structure is solved within a single periodic 
cell dimensioned a and b. The structure is illuminated by the TE or TM polarized plane wave 
with the angles of incidence I  and I .  The formulation of MoM in the spectral domain 
starts with expressing an electric intensity of the incident and scattered wave in space and 

 

spectral domain (equations 1 and 2). Then, the electric field integral equation (EFIE), (Scott, 
1989) and (Wu, 1995) is formulated in the spectral domain (3). 
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symbol ),( yxscat
iiE  stands for the electric intensity at iith layer arising from conductive 

currents from iith and all remaining metal layers placed above and beneath the iith metal 
layer. As metal layers may be lossy, with a finite conductivity ii [S/m], then the total 
tangential electric field is not completely vanishing on the conductors. Such a situation may 
be approximated with the so called surface impedance Zs. The surface impedance is 
determined from the sheet resistance Rs (Cwick & Mittra, 1987) as Zs = (1+j)Rs , where Rs is 

calculated as iiiisR  2/ . The concept of sheet resistance is valid when skin depth 

is less than the metal thickness. Last two symbols 0  and 0 to be explained, stand for x 

and y components of the wave vector of the incident wave. Time dependence of tje  is 
assumed in this chapter. 
In the subsequent paragraphs, double index ii or jj will used for the index of a metal layer, 
while the single index i will stand for an integer index of a dielectric layer. 
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with jjii
xxG  , jjii

xyG  , jjii
yxG   and jjii

yyG  standing for components of the self and 

mutual impedance matrix ][ ijG which relates the scattered electric field at iith metal layer 
through the conductive currents at jjth layer. Nm is index of a maximal metal layer in the 
analyzed multilayer structure. Symbols m and n have a meaning of integer indexes (Floquet 
harmonics). These indexes range from –M to +M, resp. –N to +N, where M, N represent the 
maximal Floquet harmonics. 
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Components of ][ ijG are evaluated by the immitance approach (Itoh, 1980) and (Wu, 1995). 

The evaluation of ][ ijG  is different for the case with ii=jj (self-impedance matrix) and 
jjii   (mutal impedance matrix).  
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2.2 Self impedance matrixes 
In the case of self-impedance matrixes, the total admittance looking up and down from the 
iith layer is evaluated in series of steps described below (Wu, 1995). As an example, situation 
for the two layer dielectric structure is given in Fig . 2.  
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Fig. 2. Multilayer FSS – example of evaluation of up and down looking admittance for the 
metal layer M1.  
 
Evaluation of up and looking admittance is performed with the aid of the equation (5) 
known the transmission line theory 
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where TE
iY and TM

iY are TE and TM admittances of the iith dielectric layer. According to 
(Wu, 1995) these impedances can be expressed as  
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Symbol   stands for the angular frequency, the complex permittivity and permeability of 
the iith dielectric layer are denoted as i and i . Last symbol i being used in (6a,b) 
represents the complex propagation constant in the z-direction (for the ith dielectric layer). 
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The propagation constant i is determined upon the transversal propagation constant 

22
, nmixyk   and the wave number ik valid for the ith dielectric layer. 

 

Components of the transversal propagation constant ixyk , are called as Floquet harmonics 

and may be expressed as 
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Wave numbers 0 and 0 are the fundamental (zeroth order) spectral harmonics and they 

are directly linked with the incident angles I  and I by equations (9a) and (9b) 
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The total TE and TM impedances connected to the iith metal layer are then 
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Finally, components of ][ iiG can be written (Wu, 1995) as 
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2.2 Self impedance matrixes 
In the case of self-impedance matrixes, the total admittance looking up and down from the 
iith layer is evaluated in series of steps described below (Wu, 1995). As an example, situation 
for the two layer dielectric structure is given in Fig . 2.  
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Fig. 2. Multilayer FSS – example of evaluation of up and down looking admittance for the 
metal layer M1.  
 
Evaluation of up and looking admittance is performed with the aid of the equation (5) 
known the transmission line theory 
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where TE
iY and TM

iY are TE and TM admittances of the iith dielectric layer. According to 
(Wu, 1995) these impedances can be expressed as  
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Symbol   stands for the angular frequency, the complex permittivity and permeability of 
the iith dielectric layer are denoted as i and i . Last symbol i being used in (6a,b) 
represents the complex propagation constant in the z-direction (for the ith dielectric layer). 
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Wave numbers 0 and 0 are the fundamental (zeroth order) spectral harmonics and they 

are directly linked with the incident angles I  and I by equations (9a) and (9b) 
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Finally, components of ][ iiG can be written (Wu, 1995) as 
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2.3 Mutual impedance matrixes 
Mutual impedance matrixes ][ ijG are evaluated with the aid of self impedance matrix for the 
iith layer and the transfer impedance Zt (Wu, 1995). 
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The transfer impedances TE
jjiitZ , and TM

jjiitZ , are calculated with application of the 

cascade matrix. As known from the transmission line theory, the matrix relates input and 
output voltages and currents on the section (or several sections) of a transmission line. 
When the source and destination metal layers are distanced by one dielectric layer (that is 

1 jjii ) , equation (17) applies to the case 
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with TMTE
iY

, being admittances of the dielectric layer between the iith and jjth metal layers. 

Admittance TMTE
iiLY

,
, is the total load admittance connected to the iith metal layer, when 

looking from jjth  to iith  layer. 
 
Finally, the global impedance matrix [Z] valid for the structure from Fig. 2 (2 dielectric and 3 
metal layers) is then  
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which links total currents densities in metal layers 0,1 and 2 and the scattered electric 
intensities at these layers. Matrix [Z] actually represents the matrix written in the EFIE 
according to equation (3). 
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3. Approximation of surface currents 
 

This section discusses use of two different current expansion basis functions. First, non-
uniform rooftops and their Fourier transform is given. Second, large domain basis functions 
defined over quad elements are presented.  As a last subsection of this section, solution of 
the EFIE via the Galerking method (method of moments) is briefly mentioned. 

 
3.1 Roof-top basis functions 
Roof-top basis functions are most common basis functions being used for approximation of 
currents within simple spectral domain codes. Typically, uniform rooftops are being 
incorporated in order to use FFT for acceleration of double summations (Cwick & Mittra, 
1987) or (Wan & Encinar, 1995). If non-uniform rooftops are incrorporated, then FFT cannot 
be used. As an advantage a wider class geometries can analyzed without the restriction of 
snapping into the uniform grid. This is especially valuable when tuning characteristics of 
the periodic structure or making optimization of the structures with gradient methods (e.g. 
Newton one).  
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Fig. 3. Non-uniform roof-tops – definition and example of approximation of surface current 
density 
 
Non-uniform rooftop basis functions are defined in Fig. 3. For example the rooftops being 
used for approaximation of x-directed currents have lengths of their left and right part 
denoted as Lx and Rx . The width of the Jx curent cell is denoted as .y  The y-directed 
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2.3 Mutual impedance matrixes 
Mutual impedance matrixes ][ ijG are evaluated with the aid of self impedance matrix for the 
iith layer and the transfer impedance Zt (Wu, 1995). 
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which links total currents densities in metal layers 0,1 and 2 and the scattered electric 
intensities at these layers. Matrix [Z] actually represents the matrix written in the EFIE 
according to equation (3). 
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3. Approximation of surface currents 
 

This section discusses use of two different current expansion basis functions. First, non-
uniform rooftops and their Fourier transform is given. Second, large domain basis functions 
defined over quad elements are presented.  As a last subsection of this section, solution of 
the EFIE via the Galerking method (method of moments) is briefly mentioned. 
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Roof-top basis functions are most common basis functions being used for approximation of 
currents within simple spectral domain codes. Typically, uniform rooftops are being 
incorporated in order to use FFT for acceleration of double summations (Cwick & Mittra, 
1987) or (Wan & Encinar, 1995). If non-uniform rooftops are incrorporated, then FFT cannot 
be used. As an advantage a wider class geometries can analyzed without the restriction of 
snapping into the uniform grid. This is especially valuable when tuning characteristics of 
the periodic structure or making optimization of the structures with gradient methods (e.g. 
Newton one).  
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Fig. 3. Non-uniform roof-tops – definition and example of approximation of surface current 
density 
 
Non-uniform rooftop basis functions are defined in Fig. 3. For example the rooftops being 
used for approaximation of x-directed currents have lengths of their left and right part 
denoted as Lx and Rx . The width of the Jx curent cell is denoted as .y  The y-directed 
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rooftops are defined analogically with indexes L and R being replaced by B (bottom) and T 
(top). Fouried transform of the non-uniform rooftops is given in equations (20a) and (20b) 
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where  and  stand for the space frequency. Symbols xc and yc represent x and y co-
ordinates of the centre of the Jx or Jy rooftop. 
 
Global approximation of surface currents on conductive patches of the periodic structure, is 
typically written as  
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where nxxB ,  and nyyB , are Jx and Jy rooftop basis functions and nxxI , , nyyI , are 

unknown current expansion coefficients. 
 
Rooftops have generally advantage in easier program implementation and provide good 
accuracy when analyzing “Manhattan shaped” geometries.  Their disadvantage is in the 
inability to model general or curves patches. Rooftops also provide accurate modelling of 
amplitude characteristics of FSS. While, the convergence of phase is very slow. These 
elements are inefficient when analyzing phase shifters in planar reflector antennas (Gona, 
2004). In this case, suitable large domain basis functions (e.g. composed from sinusoidal and 
Tchebyschev functions) must be used. 

 
3.2 Higher-order basis functions defined over quad elements 
As a large domain basis functions, historically sinusoidal and cosinusoidal functions were 
used to represent Jx and Jy current densities over the rectangular patch (Scott, 1989). 
Alternatively combination of sinusoidal and Tchebyshev functions (Mittra et. al, 1988) may 
be used. In this case, singular edge currents are well modelled for with low order of 
expansion functions (typically 2 to 3). During 1990’s (Kolundzija, 1998) and (Notaros et al., 
2001) extended the use of entire domain basis functions into quadrilaterals (equation 22). 
These functions satisfy conditions for a local continuity of density and are successfully being 
used within the modern spatial domain MoM calculations.  Their use the spectral domain 
codes, is less common. 
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Fig. 4. Quadrilateral element – definition 
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where u,v = <-1;1> 
 
Large domain basis functions defined according to equation (22) are orthogonal and their 
Fourier Transform is as following 
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where ),(1 vuJ is Jacobian. The Jacobian can be expressed by equations (23b) 
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Constants c0,c1,c2 are found as 
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where r1x,r1y ; r2x,r2y; r3x,r3y; r4x,r4y are x and y co-ordinates of quadrilateral vertices. 
Further details about analytical or semianalytical expressions for the Fourier transform of 
the Ju current component are beyond the extent of the chapter. 
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rooftops are defined analogically with indexes L and R being replaced by B (bottom) and T 
(top). Fouried transform of the non-uniform rooftops is given in equations (20a) and (20b) 
 

]
)()(

][)2/(sin[)},({ 2
c

LR
c xj

RL

xj
R

xj
LRLyj

yyx e
xx

exexxxecBF 





 







  (20a) 

])2/(sin][
)()(

[)},({
2

cc
BT xj

xx
yj

TB

yj
T

yj
BTB

y ece
yy

eyeyyy
BF 





 







  (20b) 

 
where  and  stand for the space frequency. Symbols xc and yc represent x and y co-
ordinates of the centre of the Jx or Jy rooftop. 
 
Global approximation of surface currents on conductive patches of the periodic structure, is 
typically written as  
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where nxxB ,  and nyyB , are Jx and Jy rooftop basis functions and nxxI , , nyyI , are 

unknown current expansion coefficients. 
 
Rooftops have generally advantage in easier program implementation and provide good 
accuracy when analyzing “Manhattan shaped” geometries.  Their disadvantage is in the 
inability to model general or curves patches. Rooftops also provide accurate modelling of 
amplitude characteristics of FSS. While, the convergence of phase is very slow. These 
elements are inefficient when analyzing phase shifters in planar reflector antennas (Gona, 
2004). In this case, suitable large domain basis functions (e.g. composed from sinusoidal and 
Tchebyschev functions) must be used. 
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where u,v = <-1;1> 
 
Large domain basis functions defined according to equation (22) are orthogonal and their 
Fourier Transform is as following 
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where ),(1 vuJ is Jacobian. The Jacobian can be expressed by equations (23b) 
 
 vcuccvuJ 2101 ),(   (23c) 
 
Constants c0,c1,c2 are found as 
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where r1x,r1y ; r2x,r2y; r3x,r3y; r4x,r4y are x and y co-ordinates of quadrilateral vertices. 
Further details about analytical or semianalytical expressions for the Fourier transform of 
the Ju current component are beyond the extent of the chapter. 
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3.3 Solution of current expansion coefficients 
Once the suitable current approximation (e.g. rooftops) is selected and the metal patches in 
all layers are divided into cells, the unknown current expansion coefficients can be 
determined by the Galerkin method (Scott, 1989) or (Wu, 1995). As a result of the Galerkin 
testing procedure, a system of linear equations is obtained and unknown current expansion 
coefficients are solved by the matrix inversion. After solution of the system of equations, 
current density is evaluated in the spectral domain and scattered electric intensity Escat in all 
layers is calculated using equation (4).  
Generation of elements a matrix of equations for large number of unknowns is time 
consuming due to the presence of double summations in the electric field equation. Several 
methods were introduced during last 20 years. One of them is acceleration of double 
summations by use of a Poission summation formula or more newly by using hybrid 
spatial-spectral domain approach (Kipp & Chan, 1994). 

 
3.4 Reflection and transmission coefficients 
Prior definition of reflection and transmission coefficients, let’s assume that the periodic 
structure is independently illuminated by a plane wave with parallel (TM) and orthogonal 
(TE) polarizations (transverse to z). The x and y components of the incident electric intensity 
are then  
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To compute the reflection and transmission coefficients for a multilayer periodic structure, 
the electric intensity in the most top (reflected wave Erefl) and the electric intensity at the 
most bottom (transmitted wave Etrans) air to dielectric interfaces must be calculated. These 
intensities are given by equations (25) 
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where coefficients TM , TE and TM , TE are computed according to the procedure 
described in section 4.  
 
Reflection and transmission coefficients are defined differently by different authors. Most 
common definition is upon the z-directed potentials (Cwick & Mittra, 1987) or the tangential 
components of the electric intensity (Wan & Encinar, 1995). In this section, the definition 
from thesis (Gona, 2004) will be used. The definition is being used in physics related 

 

textbooks and assumes that the electric intensity of the incident and reflected wave are 
expressed by E   and E components (Fig. 5).  
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Fig. 5. Definition of reflection coefficients 
 
Reflection coefficients defined by spherical components of the electric intensity are given by 
the matrix (26). 
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The advantage of the definition is that the cross-polarized reflection coefficients   and 

  are equal. 

The definition of reflection coefficients by the tangential components of the electric intensity 
is more common (Wan & Encinar, 1995) and is given by matrix (27), with cross-polarized 
terms being different 
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A relation between definitions (26) and (27) as given in the thesis (Gona, 2004) and is as 
follows 
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Once the tangential components of the electric intensity of incident and transmitted wave 
are evaluated with the aid of equations (25) and (4) then the fundamental mode ((0,0) 
Floquet mode) reflection transmission coefficients can be obtained by equations (29). 
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electric intensity of the reflected wave at the most top layer of the periodic structure (Parallel 
polarization of the incident plane wave is assumed). According to the example given in Fig. 
1, the most top layer is M2. Similarly the coefficients for the orthogonal polarization (TE) are 
defined 
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where 1inc
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Calculation of transmission coefficients is also done with equations (29) but intensities for 

reflected wave are replaced by intensities from transmitted fields and spherical angles I  

and I are replaced with I and  I . 

 
4. Reflection and transmission from a multilayer dielectric structure 
 

The derivation of reflection and transmission coefficients for a multilayer dielectric structure 
can be found in (Wu, 1995), for example. The derivation makes use of the unitary z-
components of the vector potentials Az and Fz.  
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As known from the electromagnetic theory, the TE and TM polarized plane waves can be 
derived from the unit Az and Fz potentials by application of a complete set Maxwell 
equations (that is Maxwell equations with both electric and magnetic currents). 
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By expressing tangential components Ex and Hy with applications of equations (31) and 
enforcing continuity of components Ex and Hy  at all dielectric and air-to dielectric interfaces, 
the TM/TE reflection coefficients may be found by solution of matrix equations (32).  
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where TM/TE reflection and transmission coefficients are denoted as ΓTM, ΓTE and TTM, TTE 
respectively. As an example, the matrixes [MTE] and [MTM] for the three-layer dielectric 
structure (Fig. 6) are given. From the tables 1 and 2 the structure of the [MTE] and [MTM] 
matrixes for a dielectric structure with general number of layers can be easily derived. 
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Fig. 6. The 3-layer dielectric structure 
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Table 2. Matrix MTE (3 layer – dielectric structure) 

 

5. Numerical examples 
 

This section presents numerical results for reflection and transmission coefficients for 
periodic structures with different elements (patches). Where available the numerical results 
are compared with results obtained by other authors. All numerical examples given, were 
calculated by our in-house periodic MoM code called FSSMQ. The code was written upon 
the theory presented in the previous sections. At the present, the code allows analysis of 
periodic structures having up to 4 dielectric and 5 metal layers. At each metal layer, 
arbitrarily shaped patches may be present.  These patches are meshed with uniform or non-
uniform rectangular elements depending on the graphical editor being used. As current 
approximation basis functions, non-uniform rooftops are used. The FSSMQ code is based on 
a direct approach, that is the global impedance matrix, which relates interactions among all 
metal layers, is being used for description of interactions among the layers. The program is 
written in Matlab and can be used for analysis of any planar periodic structures. Its target 
applications are frequency selective surfaces, composite materials and potentially 
metamaterials. During solution of a system of linear equations for unknown current 
expansion coefficients, Matlab’s matrix inversion is being used. With this type of solver and 
speed optimized program architecture, multilayer periodic structures with several hundreds 
of unknowns may be analyzed within few seconds per frequency (Celeron M, 1.6 GHz). 
Program allows also interactive postprocessing of currents (surface and vector plots) and 
total electric intensities at selected layers.  

 
5.1 Jerusalem cross 
Jerusalem Cross is one of the oldest elements. It was developed to produce stable reflection 
coefficients within a large range of angles of incidences (Mittra et al., 1988). The element was 
analyzed thoroughly by (Cwick & Mittra, 1987) and (Mittra at al., 1988). In this subsection 
more newer results from (Weile & Michielssen, 2001) are being compared with results from 
the FSSMQ code.  
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Fig. 7. Jerussalem cross element. Dimensions of the periodic cells a = b = 17.8 mm. 
Discretization 32x32 cells. Relative permittivity 1.0. Maximal number of Floquet harmonics 
M = N =18 
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Fig. 7. Jerussalem cross element. Dimensions of the periodic cells a = b = 17.8 mm. 
Discretization 32x32 cells. Relative permittivity 1.0. Maximal number of Floquet harmonics 
M = N =18 
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Geometry of the Jerusalem cross which was analyzed is shown in Fig. 7. Dimensions of the 
periodic cell are a = b = 17.8 mm. Periodic cell is divided into 32x32 cells. It is considered that 
the element resides in free-space and the structure is illuminated by the 40 degree TM 
polarized wave. Frequency dependence of the TM power reflection coefficient is shown in 
Fig. 8. It can be seen, that the FSSMQ produces identical results with those given in (Weile & 
Michielssen, 2001) where resonance arising for oblique incidence is well captured. 

 
Fig. 8. Power reflection coefficient versus frequency (parallel polarization) , normalization 
frequency was fn = c/a = 16.842 GHz, υI = 40 deg, φI = 0 deg 
 
5.2 Cross element 
Cross element is often used in practise in design or reflector antennas. However it does not 
show as superior performance as loop elements (e.g. Fourlegged or square ring element). 
The element was analyzed by many authors. In this subsection results from (Wan & Encinar, 
1995) serve as a reference. In figures 9 and 10, reflection coefficient for a single and a double 
layer cross element FSS are compared. For the purpose of validation of the FSSMQ code for 
a single and multilayer case, the same number of Floquet modes as in (Wan, 1995) was 
selected.  In both cases, excellent agreement is observed.  

 
Fig. 9. Left) FSS with cross elements – an elementary cell (a = b = 10 mm, 16x16 grid) Right) 
FSS with two identical cross elements placed in metal layers M0 and M1. 
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Fig. 10. Power reflection coefficient versus frequency (FSS with cross elements) - comparison 
of results produced by FSSMQ code and results from (Wan & Encinar, 1995) - cell period a = 
b = 10mm, length of cross dipole a’ = b’ = 6.875 mm, width of cross dipole wx = wy = 0.625 
mm, 16x16 grid). Left) single dielectric and single metal layer, substrate thickness d = 0.5 
mm, Relative permittivity was 2.0. Right) double cross element, d = 2.362 mm, r= 2.58 

 
5.3 Four-legged element 
This element is reported as one of the best elements in terms of stability of reflection 
coefficient with respect to the angle of incidence (Munk, 2000). If properly designed in 
combination with suitable selection of the relative permittivity of a dielectric substrate, 
reflection coefficient stays stable well beyond the 45 degrees for all frequencies within the 
operating band.  
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= r2 = 2.2) 
 
The geometry of the four-legged element being analyzed is shown in Fig. 11. Its dimensions 
and properties of the dielectric profile were overtaken from (Munk, 2000). The element was 
meshed with non-uniform rooftops (Fig. 11, left), contrary to the (Munk, 2000) where large 
domain basis functions were used. The total number of unknown current expansion 
coefficients was Nx+Ny = 26+26 = 52.  The calculation of reflection properties was performed 
from 1 to 20 GHz, considering an oblique incidence (45 degrees). As seen from Fig. 12, a 



Numerical	Analysis	of	Planar	Periodic	Multilayer	Structures	by	Method	of	Moments 43

 

Geometry of the Jerusalem cross which was analyzed is shown in Fig. 7. Dimensions of the 
periodic cell are a = b = 17.8 mm. Periodic cell is divided into 32x32 cells. It is considered that 
the element resides in free-space and the structure is illuminated by the 40 degree TM 
polarized wave. Frequency dependence of the TM power reflection coefficient is shown in 
Fig. 8. It can be seen, that the FSSMQ produces identical results with those given in (Weile & 
Michielssen, 2001) where resonance arising for oblique incidence is well captured. 

 
Fig. 8. Power reflection coefficient versus frequency (parallel polarization) , normalization 
frequency was fn = c/a = 16.842 GHz, υI = 40 deg, φI = 0 deg 
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1995) serve as a reference. In figures 9 and 10, reflection coefficient for a single and a double 
layer cross element FSS are compared. For the purpose of validation of the FSSMQ code for 
a single and multilayer case, the same number of Floquet modes as in (Wan, 1995) was 
selected.  In both cases, excellent agreement is observed.  

 
Fig. 9. Left) FSS with cross elements – an elementary cell (a = b = 10 mm, 16x16 grid) Right) 
FSS with two identical cross elements placed in metal layers M0 and M1. 
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Fig. 10. Power reflection coefficient versus frequency (FSS with cross elements) - comparison 
of results produced by FSSMQ code and results from (Wan & Encinar, 1995) - cell period a = 
b = 10mm, length of cross dipole a’ = b’ = 6.875 mm, width of cross dipole wx = wy = 0.625 
mm, 16x16 grid). Left) single dielectric and single metal layer, substrate thickness d = 0.5 
mm, Relative permittivity was 2.0. Right) double cross element, d = 2.362 mm, r= 2.58 

 
5.3 Four-legged element 
This element is reported as one of the best elements in terms of stability of reflection 
coefficient with respect to the angle of incidence (Munk, 2000). If properly designed in 
combination with suitable selection of the relative permittivity of a dielectric substrate, 
reflection coefficient stays stable well beyond the 45 degrees for all frequencies within the 
operating band.  
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The geometry of the four-legged element being analyzed is shown in Fig. 11. Its dimensions 
and properties of the dielectric profile were overtaken from (Munk, 2000). The element was 
meshed with non-uniform rooftops (Fig. 11, left), contrary to the (Munk, 2000) where large 
domain basis functions were used. The total number of unknown current expansion 
coefficients was Nx+Ny = 26+26 = 52.  The calculation of reflection properties was performed 
from 1 to 20 GHz, considering an oblique incidence (45 degrees). As seen from Fig. 12, a 
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very good agreement was obtained between the two approaches. The slight disagreements 
are attributed to readout errors from the graphs given in (Munk, 2000).  
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Fig. 12a.  FSS with four-legged element (TM reflection coefficient versus frequency) 

 
Fig. 12b.  FSS with four-legged element (current density at resonance (10 GHz), TM 
incidence) 

 
5.4 Composite materials – reflectivity study 
In this subsection a study of reflection properties of a composite material is presented. The 
composite material consists from 10 micrometers wide flat fibres (which approximate real 
rounded ones). Fibres are placed in the y direction with a period of a = 20 micrometers (Fig. 
13). Different composite materials have fibres with conductivity ranging from 100 to 10000 
S/m. For more details about physical properties of composite materials see for example 
paper (Jayasree at el, 2008). In this example conductivity γ = 10000 S/m was selected. Three 
different simulations were performed. First, the composite with a single layer of wires was 

 

analyzed assuming the infinite wire conductivity (Fig. 14). Second, the effect of the finite 
conductivity was studied. It has been found that shielding effectiveness at 1 GHz was 
reduced from -85 to -18 dB. Third, three layers of lossy wires distanced 100um apart were 
analyzed. In this case, the shielding effectiveness improved by 10 dB at 1 GHz. Simulations 
were performed at frequency range 1-18 GHz.  Since at frequencies 1-18 GHz the skin depth 
was larger than the thickness of the flat wire, the sheet resistance Rs could be approximated 
as Rs = 1/(γ*t). 
At each metal layer, flat wire was meshed by 50 cells. Number of Jx and Jy current expansion 
coefficients per one layer was 40 + 50 = 90. For a three layer structure, the global impedance 
matrix sized 270x270 was assembled. Solution time per one frequency was about 5 seconds 
(Celeron M, 1.6 GHz). 
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Fig. 13. Composite material with carbon fibres (a = 20um, w = 10um, t = 10um) Left) Meshed 
fibre, Right) Profile of the composite (t1 = t2 = 100 um, r1 = r2 = 1) 
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Fig. 14. Transmission coefficient of the composite structure (Number of Floquet harmonics 
M = N = 18), angle of incidence υI=0 deg, φI = 90 deg (electric intensity parallel with wire). 

 
6. Conclusions 
 

In this chapter, numerical analysis of planar periodic multilayer structures by the spectral 
domain method was addressed. Compared to other authors, use of non-uniform rooftops 
and a direct approach of analysis periodic structure with the global impedance matrix, was 
presented. Briefly, large domain basis functions defined over quadrilateral elements were 
outlined. Based, on the theory described in previous sections, capabilities of written FSSMQ 
simulation program were demonstrated on several examples. A very good agreement with 
results presented by other authors was obtained with the use of the code. 
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In this chapter, numerical analysis of planar periodic multilayer structures by the spectral 
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Abstract 
The book chapter will aim at introducing the background knowledge, basic theories, 
supporting techniques, numerical results, and future research for the high-order symplectic 
finite-difference time-domain scheme. The theories of symplectic geometry and Hamiltonian 
are reviewed in Section 2 followed by the symplectiness of Maxwell’s equations presented 
in Section 3. Next, the numerical stability and dispersion analyses are given in Section 4. 
Then, in Section 5, we will make a tour of the supporting techniques but do not discuss them 
in detail. These techniques involve source excitation, perfectly matched layer, near-to-far-
field transformation, inhomogeneous boundary treatments, and parameter extractions. The 
numerical results on propagation, scattering, and guided-wave problems are shown in 
Section 6. The high-order symplectic finite-difference time-domain scheme demonstrates the 
powerful advantages and potentials for the time-domain solution of Maxwell’s equations, 
especially for electrically-large objects and for long-term simulation. Finally, the conclusion 
and future research are summarized in Section 7. 
 
Keywords: Symplectic Finite-Difference Time-Domain Scheme; High-Order Techniques; 
Symplectic Geometry and Hamiltonian; Numerical Stability and Dispersion; Maxwell’s 
Equations. 

 
1. Introduction 
 

The traditional finite-difference time-domain (FDTD) method [1-4] , which is explicit 
second-order-accurate in both space and time, has been widely applied to electromagnetic 
computation and simulation. The main advantages of the FDTD-based techniques for 
solving electromagnetic problems are computational simplicity and low operation count. 
Furthermore, it is well suited to analyze transient problems and is good at modeling 

3
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inhomogeneous geometries. Most important of all, the method can readily be implemented 
on the massive computers. 
However, the FDTD method has two primary drawbacks, one is the inability to accurately 
model the curved complex surfaces and material discontinuities by using the staircasing 
approach with structured grids, and another is the significant accumulated errors from 
numerical instability, dispersion and anisotropy. Hence fine grids are required to obtain 
satisfying numerical results, which leads to vast memory requirements and high 
computational costs, especially for electrically-large domains and for long-term simulation. 
For the first pitfall, a variety of alternative methods in conjugation with unstructured grids 
were proposed to reduce the inaccuracy owing to the staircase approximation, including the 
finite-volume time-domain (FVTD) [5], finite-element time-domain (FETD) [6], and 
discontinuous Galerkin time-domain (DGTD) methods [7]. Although the methods are easy 
to treat boundaries, they are less efficient than the traditional FDTD method. Meanwhile, for 
the traditional FDTD method, a variety of conformal [8-11] and subgridding strategies [12] 
were proposed also.  
To overcome the second problem, other high-order spatial discretization strategies were 
developed. The multi-resolution time-domain (MRTD) [13] and pseudo-spectral time-
domain (PSTD) [14] methods reduce the spatial sampling rate drastically, but they are 
difficult to handle the material interface for modeling the three-dimensional complex objects 
[15, 16]. Another approach is the staggered fourth-order FDTD method [17-21], which 
retains the simplicity of the original Yee algorithm and can save computational resources 
with coarse grids compared to the traditional FDTD method. However, the approach must 
set lower Courant-Friedrichs-Levy (CFL) number to comply with the stability criterion.  
Furthermore, the high-order compact difference [22, 23] is easier to treat the inhomogeneous 
boundaries,  but it requires the sparse matrix inversion for each time step. 
Except for the solvers in space direction, novel solvers in time direction were proposed as 
well. The Runge-Kutta (R-K) method used in [3, 22] can achieve the high-order accuracy. 
However, it will consume additional memory and has amplitude error. The alternative 
direction implicit time-stepping strategy [24-26] is unconditionally stable, but it suffers from 
the intolerable numerical dispersion once the CFL number is too large. Moreover, the 
strategy will consume more CPU times caused by the sparse matrix inversion. For the time 
direction, does a high-order-accurate and energy-conserving solver with low computational 
costs exist? Surprisingly, Yes! 
Most physical and chemical phenomenons can be modeled by Hamiltonian differential 
equations whose time evolution is symplectic transform and flow conserves the symplectic 
structure [27-29]. The symplectic schemes include a variety of different temporal 
discretization strategies designed to preserve the global symplectic structure of the phase 
space for a Hamiltonian system. They have demonstrated their advantages in numerical 
computation for the Hamiltonian system, especially for long-term simulation. Since 
Maxwell’s equations can be written as an infinite-dimensional Hamiltonian system, a stable 
and accurate solution can be obtained by using the symplectic schemes, which preserve the 
energy of the Hamiltonian system constant. The symplectic schemes can be explicit or 
implicit and can be generalized to high-order with controllable computational complexity. 
Recently, researchers from computational electromagnetics society have focused on the 
symplectic schemes for solving Maxwell’s equations. Symplectic finite-difference time-
domain (SFDTD) scheme [30-41], symplectic discrete singular convolution method [42], 

 

symplectic pseudo-spectral time-domain approach [43], symplectic wave equation strategy 
[44], and multi-symplectic method [45, 46] were proposed and studied. This chapter we will 
focus on the explicit high-order symplectic integration schemes with the high-order 
staggered spatial differences for solving the Maxwell’s equations. 

 
2. Mathematical foundations 
 

The partial mathematical proofs are cited from [28, 29, 47]. 
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inhomogeneous geometries. Most important of all, the method can readily be implemented 
on the massive computers. 
However, the FDTD method has two primary drawbacks, one is the inability to accurately 
model the curved complex surfaces and material discontinuities by using the staircasing 
approach with structured grids, and another is the significant accumulated errors from 
numerical instability, dispersion and anisotropy. Hence fine grids are required to obtain 
satisfying numerical results, which leads to vast memory requirements and high 
computational costs, especially for electrically-large domains and for long-term simulation. 
For the first pitfall, a variety of alternative methods in conjugation with unstructured grids 
were proposed to reduce the inaccuracy owing to the staircase approximation, including the 
finite-volume time-domain (FVTD) [5], finite-element time-domain (FETD) [6], and 
discontinuous Galerkin time-domain (DGTD) methods [7]. Although the methods are easy 
to treat boundaries, they are less efficient than the traditional FDTD method. Meanwhile, for 
the traditional FDTD method, a variety of conformal [8-11] and subgridding strategies [12] 
were proposed also.  
To overcome the second problem, other high-order spatial discretization strategies were 
developed. The multi-resolution time-domain (MRTD) [13] and pseudo-spectral time-
domain (PSTD) [14] methods reduce the spatial sampling rate drastically, but they are 
difficult to handle the material interface for modeling the three-dimensional complex objects 
[15, 16]. Another approach is the staggered fourth-order FDTD method [17-21], which 
retains the simplicity of the original Yee algorithm and can save computational resources 
with coarse grids compared to the traditional FDTD method. However, the approach must 
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Furthermore, the high-order compact difference [22, 23] is easier to treat the inhomogeneous 
boundaries,  but it requires the sparse matrix inversion for each time step. 
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well. The Runge-Kutta (R-K) method used in [3, 22] can achieve the high-order accuracy. 
However, it will consume additional memory and has amplitude error. The alternative 
direction implicit time-stepping strategy [24-26] is unconditionally stable, but it suffers from 
the intolerable numerical dispersion once the CFL number is too large. Moreover, the 
strategy will consume more CPU times caused by the sparse matrix inversion. For the time 
direction, does a high-order-accurate and energy-conserving solver with low computational 
costs exist? Surprisingly, Yes! 
Most physical and chemical phenomenons can be modeled by Hamiltonian differential 
equations whose time evolution is symplectic transform and flow conserves the symplectic 
structure [27-29]. The symplectic schemes include a variety of different temporal 
discretization strategies designed to preserve the global symplectic structure of the phase 
space for a Hamiltonian system. They have demonstrated their advantages in numerical 
computation for the Hamiltonian system, especially for long-term simulation. Since 
Maxwell’s equations can be written as an infinite-dimensional Hamiltonian system, a stable 
and accurate solution can be obtained by using the symplectic schemes, which preserve the 
energy of the Hamiltonian system constant. The symplectic schemes can be explicit or 
implicit and can be generalized to high-order with controllable computational complexity. 
Recently, researchers from computational electromagnetics society have focused on the 
symplectic schemes for solving Maxwell’s equations. Symplectic finite-difference time-
domain (SFDTD) scheme [30-41], symplectic discrete singular convolution method [42], 
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The partial mathematical proofs are cited from [28, 29, 47]. 
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where H  denotes complex conjugate transpose or adjoint. 
The complex-symplectic inner product has the following properties: 
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where ),,( 0
00 tqpH  is the Hamiltonian function,   is the phase space, and I  is 

the extended phase space. 

Theory 3. If the solution of (3) at any time t  is ),(  qp  and ),(  qp  still satisfies the 

equation (3), the Jacobi matrix   is a symplectic matrix 
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Theory 4. If the time evolution operator of (3) from 0t  to t  is ),( 0tt  and 
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3. Symplectic framework of Maxwell’s equations 
 

A Helicity generating function [48] for Maxwell’s equations in free space is introduced as 
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where T
zyx EEE ),,(E  is the electric field vector, T

zyx HHH ),,(H  is the 

magnetic field vector, and 0  and 0  are the permittivity and permeability of free space. 
The differential form of the Hamiltonian is 
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According to the variation principle, we can derive Maxwell’s equations of free space from 
(7) 
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where 33}0{   is the 33  null matrix and R  is the three-dimensional curl operator. 
However, the Helicity generating function has little physical meaning.  
It is known however that the total stored energy of electromagnetic field is constant in an 
energy conserving system. Hence, the total stored energy is taken to be the Hamiltonian 

dVG
V
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It is well known that 
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AE                 (13) 

where A  and   are the vector and scalar potentials and can be uniquely defined by using 
a Lorentz gauge or a Coulomb gauge. If we define the conjugate momentum and coordinate 
as 

)(0 t



AΠ                 (14) 

 AQ                 (15) 
The Hamiltonian can be rewritten as 

dVG
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The equations of motion is to be 
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If we define / t     and 0 0A
t

  
  


 (Lorentz gauge), the above is equivalent to 

Maxwell’s equations. 
The time evolution of (8) from 0t  to tt   can be written as 

)0(ˆ)exp()(ˆ 
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where )exp( Lt  is the time evolution matrix (TEMA) or symplectic flow of Maxwell’s 
equations. 
For infinite-dimensional real space, we define the inner product 





 rrrrr dtGtFtGtF ),(),(),(),,(      (19) 

where zy zyx eeer x   is the position vector and t  is the time variable. According 

to the identity both in the generalized distribution space and in the Hilbert space 
  /,,/ GFGF , zyx ,,     (20) 

we can know  /  is a skew-symmetric operator. Hence R  is a symmetric operator, i.e. 
TRR  . Based on Theory 6, the TEMA of Maxwell’s equations is a symplectic-orthogonal 

matrix in real space. 
For infinite-dimensional complex space, we define the inner product 

rrrrr dtGtFtGtF 




________

),(),(),(),,(      (21) 

The forward and inverse Fourier transforms for electromagnetic field components are 
respectively 





 rrkrk 00 djtFtF )exp(),(

2
1),(~ 0

           (22) 





 000 krkkr djtFtF )exp(),(~

2
1),( 0

          (23) 

where 0j  is the imaginary unit and zzyyx kkk eeek x0   is the wave vector. For 

simplicity, we use the shorthand notations FF ~  and FF ~1 .  
In the beginning, with the help of Parseval theorem 

  GFGF ~,~, 1           (24) 

we know that the Fourier operator   is a unitary operator, i.e. H 1 . 

Next, using the differential property of Fourier transform zyxFkjF ,,,~0 

 
  , 

we can obtain the spectral-domain form of Maxwell’s equations 
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where R~  is a Hermitian matrix, i.e. RR H ~~  . 
Finally, considering the unitary property of the Fourier operator, we can convert the 
spectral-domain form (25) into the spatial-domain form (27) 
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where 3 3 ( )diag   . It is easy to show that 3 3 3 3 3 3
HR R      is a Hermitian matrix, i.e. 

HRR  . Based on Theory 7, the TEMA of Maxwell’s equations is a symplectic-unitary 
matrix in complex space. 
It is well known that the total energy of electromagnetic field in free space can be 
represented as 
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No matter in complex space or in real space, the TEMA )exp( Lt  accurately conserves 

the total energy of electromagnetic field. In other words, the TEMA )exp( Lt  only rotates 
the electromagnetic field components (Theory 5). In addition, if an algorithm can accurately 
conserve the total energy of electromagnetic field, it is to be unconditionally stable. 
Both in complex space and in real space, we can split L  into U  and V  
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The split TEMA can be approximated by the explicit m-stage pth-order symplectic 
integration scheme [32, 49] 
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where lc  and ld  are the symplectic integrators and satisfy the time-reversible [49] or 
symmetric relations [50], i.e. 

)1(1 mlcc lml   , )11(   mldd lml , 0md  (32) 

)1(1 mlcd lml       (33) 
Table 1 lists the three-order symmetric symplectic integrators and the fourth-order time-
reversible symplectic integrators [40]. The time-stepping diagram for the five-stage fourth-
order symplectic scheme [32] is shown in Fig. 1.  
 

 
Table 1. The three-order symmetric symplectic integrators and the fourth-order time-
reversible symplectic integrators. 
 

 

Fig. 1. Time-stepping diagram for the five-stage fourth-order symplectic scheme. 
 

For real space, TRR   and therefore U  and V  are the infinitesimally real-symplectic 

matrices. Likewise, for complex space, HRR   and therefore U  and V  are the 

infinitesimally complex-symplectic matrices. In particular, we have: (1) U  and V  can be 
composed of Lie algebra semicolon at Line 11. (2) )exp( Vd tl  and )exp( Uc tl  are the 
symplectic matrices.  
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where R~  is a Hermitian matrix, i.e. RR H ~~  . 
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where 3 3 ( )diag   . It is easy to show that 3 3 3 3 3 3
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The split TEMA can be approximated by the explicit m-stage pth-order symplectic 
integration scheme [32, 49] 

 

   1
1

)exp()exp()(exp 



  p
ttl

m

l
tlt OUcVdVU         (31) 

where lc  and ld  are the symplectic integrators and satisfy the time-reversible [49] or 
symmetric relations [50], i.e. 

)1(1 mlcc lml   , )11(   mldd lml , 0md  (32) 

)1(1 mlcd lml       (33) 
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Fig. 1. Time-stepping diagram for the five-stage fourth-order symplectic scheme. 
 

For real space, TRR   and therefore U  and V  are the infinitesimally real-symplectic 

matrices. Likewise, for complex space, HRR   and therefore U  and V  are the 

infinitesimally complex-symplectic matrices. In particular, we have: (1) U  and V  can be 
composed of Lie algebra semicolon at Line 11. (2) )exp( Vd tl  and )exp( Uc tl  are the 
symplectic matrices.  
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Although the orthogonal properties can not be retained by the two matrices )exp( Vd tl  

and )exp( Uc tl , the determinants of them are equal to 1 [51]. Thus the explicit 
symplectic integration scheme is conditionally stable and does not have amplitude error. 

 
4. Numerical stability and dispersion analyses 
 

We first present the numerical stability and dispersion analyses for the one-dimensional 
problem, then extend them to the three-dimensional problem. 

Given the field components  ),( n
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n
y EHnF  at the n-th time step, the field components  

),( 11   n
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n
y EH1nF  at the (n+1)-th time step can be represented as 

n1n FF S               (34) 
where S   is the amplification matrix. 
The well-known plane wave expansions are 
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where 0k  is the numerical wave number, and   and  are spherical angles. 
Using the q-th staggered differences to approximate the spatial first-order derivatives, we 
get 
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where 
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the spatial difference coefficients [40] as shown in Table 2. 
The continuous Maxwell’s equations 
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can be semi-discretized as 
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If we set 
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, and use the symplectic integration 

scheme for approximating the TEMA of Maxwell’s equations, the amplification matrix S  
can be written as 
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Each stage of (40) is the symplectic transform, and therefore   1)exp(det  Uc tl  and 

  1)exp(det  Vd tl  [51], which can be easily testified by (40). As a result, 1det S . 
The amplification matrix is 
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and  its eigenvalues  satisfy the following equation 
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Notice that 2211)( SSStr   and 1det)( 21122211  SSSSS , (42) can be rewritten 
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where 

1

0 v  is the velocity of light. 
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Although the orthogonal properties can not be retained by the two matrices )exp( Vd tl  

and )exp( Uc tl , the determinants of them are equal to 1 [51]. Thus the explicit 
symplectic integration scheme is conditionally stable and does not have amplitude error. 
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We first present the numerical stability and dispersion analyses for the one-dimensional 
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where S   is the amplification matrix. 
The well-known plane wave expansions are 
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where 0k  is the numerical wave number, and   and  are spherical angles. 
Using the q-th staggered differences to approximate the spatial first-order derivatives, we 
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the spatial difference coefficients [40] as shown in Table 2. 
The continuous Maxwell’s equations 

















































x

y

x

y

E
H

z

z
E
H

t 01

10



            (38) 

can be semi-discretized as 
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If we set 
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, and use the symplectic integration 

scheme for approximating the TEMA of Maxwell’s equations, the amplification matrix S  
can be written as 
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Each stage of (40) is the symplectic transform, and therefore   1)exp(det  Uc tl  and 

  1)exp(det  Vd tl  [51], which can be easily testified by (40). As a result, 1det S . 
The amplification matrix is 
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and  its eigenvalues  satisfy the following equation 
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where 

1

0 v  is the velocity of light. 
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For the three-dimensional problem, the continuous-time discrete-space Maxwell’s equations 
can be written as 
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where K  is the tensor matrix defined by the spherical angles [52]. Although (47) is a 66  
matrix, it has only two independent eigenvalues related to TE and TM waves. Hence, (47) 
and (39) are isomorphic. Using the similar technique, we can get  
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Generally speaking，the stability limit maxCFL  for a time-domain solver can be written as 
[16, 40] 

S

TCFL



max               (49) 

where S  is the spatial stability factor which can be defined as 

sS Wd           (50) 

where 3,2,1d  are the spatial dimensions, and sW  is the summation of the spatial 

difference coefficients as shown in Table 2. T  is the time stability factor, which can be 

obtained by the spatial stability factor and the constraint 2|)(| Str . The form (49) 
decoupling the spatial stability factor from the time stability factor is more flexible and 
convenient for analyzing the stability limits of SFDTD(p,q) schemes, where p is the order for 
the time-stepping scheme and q is the order for the spatial differences. The stability limits 
[40] for the time-domain solvers are listed in Table 3. 
 
 
 
 
 

 

Order (q) 1W  2W  3W  4W  SW  

2 1    2 
4 9/8 -1/24   7/3 
6 75/64 -25/384 3/640  149/60 

8 1225/1024 -
245/3072 49/5120 -5/7168 2161/840 

Table. 2. The spatial difference coefficients. 
 

Algorithms CFL number 

FDTD(2,2) 0.577 

FDTD(2,4) 0.495 
J-Fang(4,4) 0.577 

R-K(4,4) 0.700 
SFDTD(4,4) 0.858 

Table. 3. The stability limits for different algorithms.  
 

The disperision relation can be written as 
 2/)(arccos Strt            (51) 

and the phase velocity error can be defined as 

0

0
10log20

v
vv

Err p           (52) 

where 
0k

vp


  is the numerical phase velocity. The phase velocity error as a function of 

points per wavelength (PPW) is shown in Fig. 2. The SFDTD(4,4) scheme is superior to the 
traditional FDTD(2,2) method, FDTD(2,4) approach [18], and R-K(4,4) [3] strategy. Although 
the J-Fang(4,4) method [17] is the best solver, but it suffers from the intractable boundary 
treatments. 
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Fig. 2. Numerical dispersion comparisons. Dispersion curves for a plane wave traveling at 
60  and 30 . 

 
 
 

 

5. Supporting techniques 
The basic formulations of the high-order SFDTD scheme are presented in [32, 38]. The 
perfectly matched layer (PML) absorbing boundary conditions are given in [31, 41-43]. The 
total field and scattered field techniques are developed in [34, 53]. The near-to-far-field 
transformation is put forward in [38]. The high-order subcell and the high-order conformal 
strategies are proposed in [38, 39, 54, 55, 56].  The parameter extraction and source excitation 
techniques are discussed in [41]. 
A function of space and time evaluated at a discrete point in the Cartesian lattice and at a 
discrete stage in the time step can be notated as 
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tlzyx

mln nkjiFtzyxF               (53) 

where x , y , and z  are, respectively, the lattice space increments in the x , y , and z  

coordinate directions, t  is the time increment, i , j , k , ,n  l , and m  are integers, 

mln /  denotes the thl   stage after n  time steps, m  is the total stage number, and 

l  is the fixed time with respect to the thl   stage. 
Take the SFDTD(p,4) scheme for example, the update equation for the scaled electric field 
component is given by 
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where r  is the relative permittivity. For the cubic grid,  zyx  and 

CFLCFLCFLCFL zyx  . 

The source conditions for xÊ  field at the plane 2kk   are given as follows 
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where incyH ,  is the one-dimensional incident wave source. 

The discretized y  subcomponent of xÊ  field in the PML region can be deduced as 
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where y  is the local electric conductivity at 





  kji ,,

2
1

 in the PML region. Polynomial 

conductivities are employed varying from zeros at the vacuum-layer interface to max,y  at 

the outer side of the PML layer, i.e. 
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where   is the layer thickness,   is the distance from the interface, and   is the 
polynomial order. When 3 , max,y  can be set as 
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where  b
r  and b

r  are the permittivity and permeability of the background media. For the 
free space, 1b b

r r   .Considering the electric and magnetic fields are interleaved in the 
space lattice at intervals of half space increments, we must use efficient interpolation 
method to obtain the values of the scattered field components at the same locations. At one 
virtual plane 1kk   on the rectangular locus, the one-dimensional fourth-order cubic 
interpolation formula for the electric field can be defined as 
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where mln
xE

/ˆ   is the averaged value of the scaled electric field component mln
xE

/ˆ  . The 
two-dimensional interpolation formula for the magnetic field can be expressed in the form 











 







 






 











 










 







 






 







 






 







 






 











 













 







 






 











 






 



















2
1,

2
1,1

2
1,

2
1,

2
1,

2
1,1

2
1,

2
1,

256
81

2
3,

2
1,1

2
3,

2
1,

2
1,

2
1,2

2
1,

2
1,1

2
1,

2
1,2

2
1,

2
1,1

2
3,

2
1,1

2
3,

2
1,

256
9

2
3,

2
1,2

2
3,

2
1,1

2
3,

2
1,2

2
3,

2
1,1

256
1,

2
1,

2
1

1
/

1
/

1
/

1
/

1
/

1
/

1
/

1
/

1
/

1
/

1
/

1
/

1
/

1
/

1
/

1
/

1
/

kjiH

kjiHkjiH

kjiHkjiH

kjiHkjiH

kjiHkjiH

kjiHkjiH

kjiHkjiH

kjiHkjiH

kjiHkjiH

mln
x

mln
x

mln
x

mln
x

mln
x

mln
x

mln
x

mln
x

mln
x

mln
x

mln
x

mln
x

mln
x

mln
x

mln
x

mln
x

mln
x

       (66) 



The	High-Order	Symplectic	Finite-Difference	Time-Domain	Scheme 63

 

where r  is the relative permittivity. For the cubic grid,  zyx  and 

CFLCFLCFLCFL zyx  . 

The source conditions for xÊ  field at the plane 2kk   are given as follows 
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where incyH ,  is the one-dimensional incident wave source. 

The discretized y  subcomponent of xÊ  field in the PML region can be deduced as 
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where y  is the local electric conductivity at 
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 in the PML region. Polynomial 

conductivities are employed varying from zeros at the vacuum-layer interface to max,y  at 

the outer side of the PML layer, i.e. 
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where   is the layer thickness,   is the distance from the interface, and   is the 
polynomial order. When 3 , max,y  can be set as 
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where  b
r  and b

r  are the permittivity and permeability of the background media. For the 
free space, 1b b

r r   .Considering the electric and magnetic fields are interleaved in the 
space lattice at intervals of half space increments, we must use efficient interpolation 
method to obtain the values of the scattered field components at the same locations. At one 
virtual plane 1kk   on the rectangular locus, the one-dimensional fourth-order cubic 
interpolation formula for the electric field can be defined as 
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where mln
xE

/ˆ   is the averaged value of the scaled electric field component mln
xE

/ˆ  . The 
two-dimensional interpolation formula for the magnetic field can be expressed in the form 
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where mln
xH /  is the averaged value of the x  component of magnetic field mln /H . 

 
6. Numerical results 
 
a. One-dimensional propagation problem 

A Gaussian pulse can be defined by 
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method, the SFDTD(4,4) scheme agrees with the analytical solution very well. 
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Fig. 4. The normalized averaged energy of two-dimensional waveguide resonator calculated 
by the R-K(4,4) approach and the SFDTD(4,4) scheme. 
 
b. Two-dimensional waveguide resonator problem 
A two-dimensional waveguide resonator with size cmcm 016.1286.2   is driven in 

21TE  mode. Calculated by the above mentioned SFDTD(4,4) scheme and the R-K (4,4) 
approach, the normalized averaged energy per three periods is drawn in Fig. 4. The uniform 
space increment mm27.1 , the CFL number is chosen to be 0.797, and the time step 

5100n . To obtain high-order accuracy, we use the analytical solution to treat the perfect 
electric conductor (PEC) boundary. Compared with the SFDTD(4,4) scheme, the R-K (4,4) 
approach has obvious amplitude error. Furthermore, within given numerical precision, the 
required memory of the R-K approach is four times more than that of the symplectic 
scheme. 
 
c. Three-dimensional waveguide resonator  problem 
The resonant frequency is analyzed for a rectangular waveguide cavity. The size of the 
waveguide resonator is mmmmmmcba 288.14525.9050.19  . Other 
parameters are taken as mm381.2 , CFL=0.4, and 10000max n . The frequency of 
the cosine-modulated Gaussian pulse ranges form 12GHz to 21GHz. Within the frequency 
range, all possible resonant modes include 101TE , 110TE ( 110TM ), 011TE , and 

111TE ( 111TM ). In particular, the PEC boundary is treated with the image theory [15] for 
the SFDTD(3,4) scheme. Fig. 5 shows the curves of the normalized total energy and their 
peaks correspond to the resonant frequencies. One can see that compared with the high-
order FDTD(2,4) approach and the traditional FDTD(2,2) method, the SFDTD(3,4) scheme 
can find the resonant frequencies better. 



The	High-Order	Symplectic	Finite-Difference	Time-Domain	Scheme 65

 

where mln
xH /  is the averaged value of the x  component of magnetic field mln /H . 

 
6. Numerical results 
 
a. One-dimensional propagation problem 

A Gaussian pulse can be defined by 

















 


2

04exp



tt

 with st 8
0 10  and 

s81033.1  . The space increment is set as mz 1.0 , and the CFL number is 
chosen to be 0.5. The time-domain waveforms are recorded in Fig. 3 after the pulse travels 
10000 cells. Compared with the traditional FDTD(2,2) method and the staggered FDTD(2,4) 
method, the SFDTD(4,4) scheme agrees with the analytical solution very well. 
 

0 20 40 60 80 100 120
−0.5

0

0.5

1

Relative Cells

E
x (V

/m
)

 

 
FDTD(2,2)
Analytical

0 20 40 60 80 100 120
−0.5

0

0.5

1

Relative Cells

E
x (V

/m
)

 

 
FDTD(2,4)
SFDTD(4,4)
Analytical

 
Fig. 3. The time-domain waveforms of the Gaussian pulse by the traditional FDTD(2,2) 
method, the staggered FDTD(2,4) method, and the SFDTD(4,4) scheme. 

 

0 10 20 30 40 50 60 70 80 90 100 110
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Periods

N
or

m
al

iz
ed

 A
ve

ra
ge

d 
E

ne
rg

y

 

 
R−K(4,4)
SFDTD(4,4)

 
Fig. 4. The normalized averaged energy of two-dimensional waveguide resonator calculated 
by the R-K(4,4) approach and the SFDTD(4,4) scheme. 
 
b. Two-dimensional waveguide resonator problem 
A two-dimensional waveguide resonator with size cmcm 016.1286.2   is driven in 

21TE  mode. Calculated by the above mentioned SFDTD(4,4) scheme and the R-K (4,4) 
approach, the normalized averaged energy per three periods is drawn in Fig. 4. The uniform 
space increment mm27.1 , the CFL number is chosen to be 0.797, and the time step 

5100n . To obtain high-order accuracy, we use the analytical solution to treat the perfect 
electric conductor (PEC) boundary. Compared with the SFDTD(4,4) scheme, the R-K (4,4) 
approach has obvious amplitude error. Furthermore, within given numerical precision, the 
required memory of the R-K approach is four times more than that of the symplectic 
scheme. 
 
c. Three-dimensional waveguide resonator  problem 
The resonant frequency is analyzed for a rectangular waveguide cavity. The size of the 
waveguide resonator is mmmmmmcba 288.14525.9050.19  . Other 
parameters are taken as mm381.2 , CFL=0.4, and 10000max n . The frequency of 
the cosine-modulated Gaussian pulse ranges form 12GHz to 21GHz. Within the frequency 
range, all possible resonant modes include 101TE , 110TE ( 110TM ), 011TE , and 

111TE ( 111TM ). In particular, the PEC boundary is treated with the image theory [15] for 
the SFDTD(3,4) scheme. Fig. 5 shows the curves of the normalized total energy and their 
peaks correspond to the resonant frequencies. One can see that compared with the high-
order FDTD(2,4) approach and the traditional FDTD(2,2) method, the SFDTD(3,4) scheme 
can find the resonant frequencies better. 



Passive	Microwave	Components	and	Antennas66

 

 
Fig. 5. The resonant frequencies of the rectangular waveguide cavity. 
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Fig. 6.  The scattering parameter of the dielectric-loaded waveguide. 
 
d. Three-dimensional waveguide discontinuity problem 
Partially filled with a dielectric of permittivity 3.7, the WR-3 waveguide is driven in 10TE  

dominant-mode. The size of the waveguide is mmmm 4318.08636.0  , and the length 

 

of the loaded-dielectric is mm504.0 . The settings are taken as mm072.0  and 
CFL=0.5. The ten layered PML is used to truncate the two waveguide ports, and the 
sinusoidal-modulated Gaussian pulse is employed as the excitation source. In particular, the 
PEC boundary is treated with the image technique [15], and the air-dielectric interface is 
modeled by the scheme proposed in [38]. As shown in Fig. 6, the wide-band scattering 
parameter is extracted after 5000 time steps. Compared with the traditional FDTD(2,2) 
method, the SFDTD(3,4) scheme can obtain satisfying numerical solution under the coarse 
grid condition. 

 
e. Three-dimensional scattering problem of electrically-large sphere 
The next example considered is the scattering from a electrically-large conducting sphere of 
diameter 14 wavelengths. In particular, we use only 7 PPW to model the curved surfaces. 
From Fig. 7 and Fig. 8, compared with the low-order conformal (LC)-FDTD(2,2) method [8] 
and the High-order staircased (HS)-SFDTD(3,4) approach, the high-order conformal (HC)-
SFDTD(3,4) scheme [55, 56] agrees with the analytical solution very well. The relative two-
norm errors of the bistatic RCS by different methods in the E-plane and H-plane are listed in 
Table 4. The numerical error of the HC-SFDTD(3,4) scheme is controlled by 1%. It can be 
clearly seen that the locations of the error peaks for the HS-SFDTD(3,4) and the LC-
FDTD(2,2) methods are different. The error by the HS-SFDTD(3,4) method is due to the 
staircase approximation, while the error by the LC-FDTD(2,2) method is due to the 
numerical dispersion. Within the same relative two-norm errors bound (1%), we change the 
settings of the space step and the CFL number, and the CPU time and memory consumed by 
different algorithms are recorded in Table 5. From the table, the HC-SFDTD(3,4) scheme 
saves considerable memory and CPU time. 
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Fig. 7. The E-plane bistatic RCS of the conducting sphere. 
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Fig. 8.  The H-plane bistatic RCS of the conducting sphere. 
 

Error HS-SFDTD(3,4) LC-FDTD(2,2) HC-SFDTD(3,4) 
E-plane 9.89% 11.08% 1.35% 
H-plane 12.33% 7.31% 0.85% 

Table 4. The relative two-norm errors of bistatic RCS. Seven points per wavelength are 
adopted.  

 
Algorithms PPW CFL Time (s) Memory (MB) 

HC-SFDTD(3,4) 7 0.50 5891 258 
HS-SFDTD(3,4) 16 1.00 56279 1318 
LC-FDTD(2,2) 13 0.20 23359 820 

Table 5. The consumed CPU time and memory under the same relative two-norm errors 
condition. 

 
7. Conclusion and future work 
 

The SFDTD scheme, which is explicit high-order accurate in both space and time, is energy-
conserving, highly stable, and efficient. On one hand, the scheme can achieve high-order 
accuracy by using the high-order spatial differences with the simple Yee lattice. On the other 
hand, by using the symplectic integrators, the scheme demonstrates satisfying numerical 
performances under long-term simulation. Finally, with the supporting techniques, the 
scheme is suitable for the electromagnetic modeling of complex structures and media.  The 
future work will focus on the following aspects: (1) The other symplectic integrators, such as 
composite symplectic integrators [57], can be introduced and optimized for computational 
electromagnetics; (2) The symplectic integration scheme can be combined with other spatial 
discretization methods, such as multi-resolution expansion method; (3) The high-order 
implicit symplectic scheme can be developed for some engineering applications; (4) The 

 

symplectic integration scheme is a general solver for a variety of Hamiltonian systems and 
can be applied to the multi-physics simulation. 
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Abstract
In this paper, we provide a general Fourier transform formalism suitable for studying the
electromagnetic response of material media. This approach can handle media that exhibit
natural optical activity, magnetoelectric effects, spatial dispersion, etc. Moreover, it is a pow-
erful method in addressing the impact of electromagentic systems on the spatial structure of
the field, particulary at the nanoscale (e.g., near-field nano-optics, subwavelength imaging,
etc.) The formalism is employed to analyze the localization of electromagnetic energy around
radiating sources and also to provide a new paradigm for thinking about metamaterials.

1. Introduction

Traditionally, the research area known under the label “artificial materials,” or what has be-
come popular nowadays as “metamatrials,” is based on the idea of mimicking the way natural
media respond to an applied electromagnetic field. The mechanism responsible of the elec-
tromagnetic character of the medium, for example the optical properties, can be applied to
repeat the whole process artificially in the sense that the atomic constituents of matter are in-
dividually manipulated and controlled in order to achieve a desired electromagnetic profile.
The conventional approach to describe material responses rely on assuming that the external
field induce multipole electric and magnetic moments in the medium, giving rise to polariza-
tion and magnetization density vectors. This approach, as will be demonstrated in this paper,
has its merits although theoretically problematic. It provides an extremely simple mathemat-
ical model that is adequate for a very wide range of applications. However, on the other
hand, with the exploding progress in nanotechnology and experimental research, it is becom-
ing increasingly pressing to employ a more general mathematical formalism that allows us
to explore new dimensions in the material response that go beyond the traditional multipole
description.
It is the vision of the present authors that a large proportion of the future research in the field
of artificial and metamaterials should be invested in studying the spatial degrees of freedom of
the medium response, a space hitherto unexplored in depth with few notable exceptions (1),
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(2). The purely spatial effects, for example spatial dispersion, has been often neglected because
natural materials happen to have very small interatomic spacing to operating wavelength ra-
tio, which implies that when a macroscopic field measurement is employed, all microscopic
spatial information are washed away. However, there is nothing in principle prohibiting de-
signing artificial media with arbitrary spatial response profile.1 The possibility of controlling
wave propagation through a given device by manipulating both the temporal and spatial dis-
persion was already proposed in conjunction with realizing the so-called negative refraction
metamaterials (4).
In this paper, we review a Fourier-space formalism suitable for modeling the spatial effects
of a given natural or artificial medium. The formalism is compatible with the traditional
multipole approach but is conceptually easier to understand. The Fourier transform method
we introduce here is inspired by techniques developed in the physics community to attack
plasma problems (1), (2).
There is a plethora of advantages in employing this particular point of view in this setting.
The chief advantage is that the Fourier-space formalism is more general in its applicability to
fluctuating fields with higher frequencies. Also, it naturally provides a complete characteriza-
tion of the field in both space and time. Finally, being a spectral method, it allows for deeper
understanding of localization phenomena and coupling mechanisms.
Some of the disadvantages is that it requires an additional mathematical background that is
not usually part of the training of professional electromagnetic engineers. It also does not
apply to static field problems. In general, the Fourier formalism does not conform with the
conventional literature standards of notation and usage. For this reason, the current paper will
provide, in a pedagogically illuminating way, a review of the space formalism starting from
the ground, Maxwell’s equations, and building up to advanced applications in the concluding
section.

2. Maxwell’s Equation

We start with the fundamental equations governing the free Maxwellian fields B and E. These
are

∇× E = − ∂B
∂t

, (1)

∇× B = µ0J +
(

1
/

c2
) ∂E

∂t
, (2)

∇ · E =
ρ

ε0
, (3)

∇ · B = 0, (4)

where c is the speed of light and ε0 = 8.854 × 10−12 F/m and µ0 = 4π × 10−7 H/m are the
permittivity and permeability of free space, respectively.
We notice that these set of Maxwell’s equations are complete since they capture everything
related to electromagnetic interactions. However, in order to solve Maxwell’s equations in the
presence of matter, one has to supply suitable decompositions of the source terms appearing in
(2) and (3) in the following manner

ρ = ρext + ρind (5)

1 The implementation of a particular solution of Maxwell’s equations coupled with a suitable mechanical
model is a technological problem, not a theoretical one. In this sense, the present paper should be
viewed as a theoretical contribution.

and
J = Jext + Jind, (6)

where ρext and Jext are the imposed sources supplied externally. Matter will interact with
the fields radiated by these sources and respond by generating induced sources ρind and Jind.
These induced sources cannot be deduced from Maxwell’s equations themselves. They must
be found upon constructing an appropriate mechanical model for matter in the radiation field.

2.1 The Continuity Equation and Energy Conservation
By imposing the conservation of electric charge density ρ(t,r), the equation of continuity for
electromagnetism takes the following form

∂ρ

∂t
+∇ · J = 0. (7)

Energy conservation is already built into the structure of Maxwell’s equations in continuous
media. Indeed, it is possible to directly derive the following relation

∂

∂t

(
1
2

ε0 |E|2 +
1
2
|B|2

/
µ0

)
+∇ ·

(
1

µ0
E × B

)
= −J · E. (8)

Let us supplement this equation with Lorentz force law

F = qE + v × B. (9)

One can carefully build the interpretation of the terms appearing in the RHS of (8) starting
from the basic law of force (9). As it turns out, the time rate of the volume density of the work
done by the electric current J on the electric field E is given by −J · E. This provides us with
an interpretation of the RHS of (8). Now, in order to interpret (8) as a continuity equation,

we observe that, in vacuum, the quantities ε0 |E|2
/

2 and |B|2
/

2µ0 can straightforwardly be
interpreted as volume densities of electric and magnetic energies, respectively, stored in free
space. It follows then that the last term, that of E × B

/
µ0, can be easily interpreted to stand

for the volume density of the power flow, or the electromagnetic flux.

3. Fourier Transform Approach to the Greens Functions

3.1 Maxwell’s Equations in the Spectral Domain
As we are going to formulate the entire problem in terms of Fourier transform, the usual
spatio-temporal form of Maxwell’s equations must be transformed into the spectral domain.
In this section, we handle the problem of a source radiating in infinite isotropic and homoge-
nous medium. Maxwell’s equations (1)-(4) can be written in the Fourier transform domain
as

k × E (ω,k) = ωB (ω,k) , (10)

ik × B (ω,k) = −iωE (ω,k)
/

c2 + µ0J (ω,k) , (11)

k · E (ω,k) = −iρ (ω,k)
/

ε0, (12)

k · B (ω,k) = 0. (13)

The equation of continuity (7) can be also Fourier transformed into the form

ωρ (ω,k) = k · J (ω,k) . (14)
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where ρext and Jext are the imposed sources supplied externally. Matter will interact with
the fields radiated by these sources and respond by generating induced sources ρind and Jind.
These induced sources cannot be deduced from Maxwell’s equations themselves. They must
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2µ0 can straightforwardly be
interpreted as volume densities of electric and magnetic energies, respectively, stored in free
space. It follows then that the last term, that of E × B
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µ0, can be easily interpreted to stand

for the volume density of the power flow, or the electromagnetic flux.
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3.1 Maxwell’s Equations in the Spectral Domain
As we are going to formulate the entire problem in terms of Fourier transform, the usual
spatio-temporal form of Maxwell’s equations must be transformed into the spectral domain.
In this section, we handle the problem of a source radiating in infinite isotropic and homoge-
nous medium. Maxwell’s equations (1)-(4) can be written in the Fourier transform domain
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k × E (ω,k) = ωB (ω,k) , (10)

ik × B (ω,k) = −iωE (ω,k)
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c2 + µ0J (ω,k) , (11)

k · E (ω,k) = −iρ (ω,k)
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ε0, (12)
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The reader must notice that these equations cannot be used to describe static fields, which may
be tackled on their own by applying the Coloumb gauge. Therefore, throughout this paper,
we restrict ourselves to the case ω �= 0.
The program of performing calculations in electromagnetism using the Fourier transform
method can be elucidated in the following manner

1. Express the magnetic field in terms of the electric field using Maxwell’s equation (10)

B (ω,k) = k × E (ω,k)
/

ω. (15)

2. Express the charge density in terms of the current density using the equation of conti-
nuity (14)

ρ (ω,k) =
1
ω

k · J (ω,k) . (16)

3. End up with a single equation in one unknown, E(ω,k), and forcing term J(ω,k); i.e.,
solve

ω2

c2 E (ω,k) + k × [k × E (ω,k)] = −iωµ0J (ω,k) . (17)

Therefore, the program of solving Maxwell’s equations reduces to solving a single algebraic
equation in terms of the electric field E (ω,k). All the other field and source components can
obtained from the solution of the electric field together with the given form of the source.

3.2 The Greens Function Tensor in the Spectral Domain
To obtain the Greens function in the Fourier domain, we first put equation (17) in a suitable
form. We use the following identity

A × B = εijk AjBk, (18)

where εijk is the permutation tensor.2 Therefore, we have

k × E = εijkkjEk. (19)

Iterating, we obtain

k × k × E = εijkkjεkj′k′kj′ Ek′ = εijkεkj′k′kjkj′ Ek′ . (20)

We use the following basic identity

εabcεijk = δaiδbjδck + δakδbiδcj + δajδbkδci
−δbiδajδck − δakδaiδcj − δbjδakδci.

(21)

Therefore, we have
εiabεijk = δajδbk − δakδbj. (22)

Using this identity in (17), we arrive to
[(

ω2

c2 − k2
)

δnm + knkm

]
Em (ω,k) = −iωµ0 Jn (ω,k) . (23)

2 Throughout this paper, the Einstein (repeated) summation index is used. That is, whenever an index is
repeated in a given expression, summation is implied with respect to these indices.

The Greens function tensor is defined to satisfy the following equation
[(

ω2

c2 − k2
)

δnm + knkm

]
Gml (ω,k) = −iωµ0δnl (ω,k) . (24)

Therefore, by inverting the matrix operator appearing in the equation above, the Greens func-
tion tensor is readily obtained in the following compact closed form

Gnm (ω,k) =
−iωµ0

ω2
/

c2 − k2

(
δnm − c2

ω2 knkm

)
(25)

Finally, we notice that it is possible to separate the field into two components, one transverse
to the direction of the wave vector k (transverse mode), and another perpendicular to this
direction, which we call longitudinal mode. The longitudinal mode is not involved in the
radiation and is related to the near field. It contributes directly to the structure of the field
surrounding the source.

4. Review of the Traditional Description of Electromagnetic Materials in terms of
Multipole Moments

The conventional old description of electromagnetic materials involves the introduction of
two quantities to calculate the induced charge and current distributions. We review here the
traditional view and show how it can be derived by a Fourier transform approach to the
multipole expansion of the source.
The conventional idea is to assume that a given medium responds to both electric and mag-
netic fields by generating an induced polarization density P and magnetization M. However, this
description is strictly valid when both the electric and magnetic responses can be unambigu-
ously separated from each other. This is possible only when the fields are static; otherwise, it
should be viewed as an approximation. Indeed, if rapid field fluctuations at the microscopic
scale are taken into consideration, then the separation becomes ill-defined and problematic.
Let us see how P and M arise from the Fourier transform perspective. Consider an arbitrary
charge and current distribution

ρ (t,k) =
∫

d3re−ik·rρ (t, r) , (26)

J (t,k) =
∫

d3re−ik·rJ (t, r) . (27)

Expand the exponential in Taylor series

e−ik·r = 1 − ik · r +
1
2
(ik · r)2 + · · ·. (28)
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The reader must notice that these equations cannot be used to describe static fields, which may
be tackled on their own by applying the Coloumb gauge. Therefore, throughout this paper,
we restrict ourselves to the case ω �= 0.
The program of performing calculations in electromagnetism using the Fourier transform
method can be elucidated in the following manner

1. Express the magnetic field in terms of the electric field using Maxwell’s equation (10)

B (ω,k) = k × E (ω,k)
/

ω. (15)

2. Express the charge density in terms of the current density using the equation of conti-
nuity (14)

ρ (ω,k) =
1
ω

k · J (ω,k) . (16)

3. End up with a single equation in one unknown, E(ω,k), and forcing term J(ω,k); i.e.,
solve

ω2

c2 E (ω,k) + k × [k × E (ω,k)] = −iωµ0J (ω,k) . (17)

Therefore, the program of solving Maxwell’s equations reduces to solving a single algebraic
equation in terms of the electric field E (ω,k). All the other field and source components can
obtained from the solution of the electric field together with the given form of the source.

3.2 The Greens Function Tensor in the Spectral Domain
To obtain the Greens function in the Fourier domain, we first put equation (17) in a suitable
form. We use the following identity

A × B = εijk AjBk, (18)

where εijk is the permutation tensor.2 Therefore, we have

k × E = εijkkjEk. (19)

Iterating, we obtain

k × k × E = εijkkjεkj′k′kj′ Ek′ = εijkεkj′k′kjkj′ Ek′ . (20)

We use the following basic identity

εabcεijk = δaiδbjδck + δakδbiδcj + δajδbkδci
−δbiδajδck − δakδaiδcj − δbjδakδci.

(21)

Therefore, we have
εiabεijk = δajδbk − δakδbj. (22)

Using this identity in (17), we arrive to
[(

ω2

c2 − k2
)

δnm + knkm

]
Em (ω,k) = −iωµ0 Jn (ω,k) . (23)

2 Throughout this paper, the Einstein (repeated) summation index is used. That is, whenever an index is
repeated in a given expression, summation is implied with respect to these indices.

The Greens function tensor is defined to satisfy the following equation
[(

ω2

c2 − k2
)

δnm + knkm

]
Gml (ω,k) = −iωµ0δnl (ω,k) . (24)

Therefore, by inverting the matrix operator appearing in the equation above, the Greens func-
tion tensor is readily obtained in the following compact closed form

Gnm (ω,k) =
−iωµ0

ω2
/

c2 − k2

(
δnm − c2

ω2 knkm

)
(25)

Finally, we notice that it is possible to separate the field into two components, one transverse
to the direction of the wave vector k (transverse mode), and another perpendicular to this
direction, which we call longitudinal mode. The longitudinal mode is not involved in the
radiation and is related to the near field. It contributes directly to the structure of the field
surrounding the source.

4. Review of the Traditional Description of Electromagnetic Materials in terms of
Multipole Moments

The conventional old description of electromagnetic materials involves the introduction of
two quantities to calculate the induced charge and current distributions. We review here the
traditional view and show how it can be derived by a Fourier transform approach to the
multipole expansion of the source.
The conventional idea is to assume that a given medium responds to both electric and mag-
netic fields by generating an induced polarization density P and magnetization M. However, this
description is strictly valid when both the electric and magnetic responses can be unambigu-
ously separated from each other. This is possible only when the fields are static; otherwise, it
should be viewed as an approximation. Indeed, if rapid field fluctuations at the microscopic
scale are taken into consideration, then the separation becomes ill-defined and problematic.
Let us see how P and M arise from the Fourier transform perspective. Consider an arbitrary
charge and current distribution

ρ (t,k) =
∫

d3re−ik·rρ (t, r) , (26)

J (t,k) =
∫

d3re−ik·rJ (t, r) . (27)

Expand the exponential in Taylor series

e−ik·r = 1 − ik · r +
1
2
(ik · r)2 + · · ·. (28)
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Inserting (28) into (26), we obtain

ρ (t,k) =
∫

d3rρ (t, r)
[
1 − ik · r + 1

2 (ik · r)2 + · · ·
]

=
∫

d3rρ (t, r)−
∫

d3rik · rρ (t, r) + 1
2
∫

d3r (ik · r)2 ρ (t, r) + · · ·

= −
∫

d3riknrnρ (t, r)− 1
2
∫

d3rknrnkmrmρ (t, r) + · · ·

= −ikn
∫

d3rrnρ (t, r)− 1
2 knkm

∫
d3r rnrmρ (t, r) + · · ·

= −ik · p (t)− 1
2 knkmqnm (t) + · · ·,

(29)

where
pn (t) =

∫
d3rrnρ (t) (30)

and
qnm (t) =

∫
d3r rnrmρ (t) (31)

are the dipole and quadrable moments, respectively. We also used the assumption that the
charge distribution is neutral

∫
d3rρ (t, r) = 0. Similarly, by inserting (28) into (27), one obtains

Jn (t,k) =
∫

d3rJn (t, r)
[
1 − ik · r + 1

2 (ik · r)2 + · · ·
]

=
∫

d3rJn (t, r)−
∫

d3r (ik · r) Jn (t, r) + 1
2
∫

d3r (ik · r)2 Jn (t, r) + · · ·

=
∫

d3rJn (t, r)
︸ ︷︷ ︸

µn(t)

−ikm

∫
d3r rm Jn (t, r)

︸ ︷︷ ︸
µmn(t)

− 1
2 klkm

∫
d3r rlrm Jn (t, r) + · · ·

= ∂
∂t pn (t)− ikm

1
2

∂
∂t qmn (t)− iεmnskmms (t) + · · ·

= ∂
∂t pn (t)− ikm

1
2

∂
∂t qmn (t) + iεnmskmms (t) + · · ·,

(32)

where equations (110) and (120) (see Appendix) were utilized in obtaining the fourth equal-
ity, and the relation εnms = −εmns is employed in the writing last equality. By ignoring all
quadrable and higher terms in (29) and (32), we find

ρ (t,k) = −ik · p (t) , (33)

J (t,k) =
∂

∂t
p (t) + ik × m (t) . (34)

Define the polarization and magnetization densities P and M, respectively, by the following
relations

p (t) =
∫

d3rP (t, r) (35)

and
m (t) =

∫
d3rM (t, r) . (36)

Inserting (33) and (34) into (26) and (27), it follows

ρ (t,k) =
∫

d3r [−ik · P (t, r)] , (37)

J (t,k) =
∫

d3r
[

∂

∂t
P (t, r) + ik × M (t, r)

]
. (38)

Therefore, by inverting the Fourier transforms (37) and (38), we obtain

ρind (t, r) = −∇ · P (t, r) , (39)

Jind (t, r) =
∂

∂t
P (t, r) +∇× M (t, r) . (40)

As can be seen now, this derivation ignores higher-order multipole without providing a clear-
cut criterion for when and why this approximation is valid. Since we are attempting to con-
struct a general theory for both near and far fields in the context of material response, it is
important to employ a formulation that does not involve approximations that may not hold
in certain media. Some other difficulties relate to the question of the convergence of the mul-
tipole expansion that is seldom addressed in literature. Finally, there is the incompleteness
issue in the expansion (28), which includes only terms with zero trace.

5. Material Response Through the Fourier Transform Approach

We will now carefully introduce the equivalent representation of the electromagnetic mate-
rial response in terms of the Fourier transform of the fields, not the actual field in space and
time. There are several advantages in this approach that are worthy detailed considerations
in themselves. First, notice that this approach does not apply to static fields, which are better
addressed by the classical P-M approach. On other hand, certain complex electromagnetic
effects, like spatial dispersion (nonlocality) magnetoelectric responses and optical activity, can
be regarded as special case of spatial dispersion.
It appears to the authors that operating directly on material systems with a formalism tai-
lored especially to handle spatial dispersion is very advantageous. Besides its ability to deal
with complex media exhibiting phenomena like magnetoelectric effects and optical activity,
it can also provide a natural window to probe near-field interactions. Although we are still
trying to mathematically identify the meaning of the near field, remember that one of the most
immediate features that come to mind when thinking about fields in the near zone (close to
the radiator or the scatterer) is that they tend to be localized, or, equivalently, contain short
wavelength components that contribute significantly to the field structure. In this case, one is
looking naturally for a mathematical device that characterize electromagnetic wave phenom-
ena in terms of the Fourier spatial modes, i.e., the k-component. Therefore, the formalism
should look for information about the response of the system to particular wavevecotrs k.
This is essentially the goal of integrating spatial dispersion in the theoretical description of
material media.
Let us try to address in more details some of the difficulties in the traditional approach to
electromagnetic material response. By Fourier transforming equation (40) in time, we obtain

Jind (ω,k) = −iωP (ω,k) + ik × M (ω,k) . (41)

The problem here is that there exists no general a priori method to tell how the individual
contributions of the quantities P and M divide in forming the total induced current. In this
sense, one can view these two vectors as mere calculational tools, auxiliary devices used to
compute the actually observed induced current Jind. In particular, there seems to be no harm
in just setting the magnetization density M to zero and considering only a polarization density
P contributing to the induced charge and current densities.
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Inserting (28) into (26), we obtain

ρ (t,k) =
∫

d3rρ (t, r)
[
1 − ik · r + 1

2 (ik · r)2 + · · ·
]

=
∫

d3rρ (t, r)−
∫

d3rik · rρ (t, r) + 1
2
∫

d3r (ik · r)2 ρ (t, r) + · · ·

= −
∫

d3riknrnρ (t, r)− 1
2
∫

d3rknrnkmrmρ (t, r) + · · ·

= −ikn
∫

d3rrnρ (t, r)− 1
2 knkm

∫
d3r rnrmρ (t, r) + · · ·

= −ik · p (t)− 1
2 knkmqnm (t) + · · ·,

(29)

where
pn (t) =

∫
d3rrnρ (t) (30)

and
qnm (t) =

∫
d3r rnrmρ (t) (31)

are the dipole and quadrable moments, respectively. We also used the assumption that the
charge distribution is neutral

∫
d3rρ (t, r) = 0. Similarly, by inserting (28) into (27), one obtains

Jn (t,k) =
∫

d3rJn (t, r)
[
1 − ik · r + 1

2 (ik · r)2 + · · ·
]

=
∫

d3rJn (t, r)−
∫

d3r (ik · r) Jn (t, r) + 1
2
∫

d3r (ik · r)2 Jn (t, r) + · · ·

=
∫

d3rJn (t, r)
︸ ︷︷ ︸

µn(t)

−ikm

∫
d3r rm Jn (t, r)

︸ ︷︷ ︸
µmn(t)

− 1
2 klkm

∫
d3r rlrm Jn (t, r) + · · ·

= ∂
∂t pn (t)− ikm

1
2

∂
∂t qmn (t)− iεmnskmms (t) + · · ·

= ∂
∂t pn (t)− ikm

1
2

∂
∂t qmn (t) + iεnmskmms (t) + · · ·,

(32)

where equations (110) and (120) (see Appendix) were utilized in obtaining the fourth equal-
ity, and the relation εnms = −εmns is employed in the writing last equality. By ignoring all
quadrable and higher terms in (29) and (32), we find

ρ (t,k) = −ik · p (t) , (33)

J (t,k) =
∂

∂t
p (t) + ik × m (t) . (34)

Define the polarization and magnetization densities P and M, respectively, by the following
relations

p (t) =
∫

d3rP (t, r) (35)

and
m (t) =

∫
d3rM (t, r) . (36)

Inserting (33) and (34) into (26) and (27), it follows

ρ (t,k) =
∫

d3r [−ik · P (t, r)] , (37)

J (t,k) =
∫

d3r
[

∂

∂t
P (t, r) + ik × M (t, r)

]
. (38)

Therefore, by inverting the Fourier transforms (37) and (38), we obtain

ρind (t, r) = −∇ · P (t, r) , (39)

Jind (t, r) =
∂

∂t
P (t, r) +∇× M (t, r) . (40)

As can be seen now, this derivation ignores higher-order multipole without providing a clear-
cut criterion for when and why this approximation is valid. Since we are attempting to con-
struct a general theory for both near and far fields in the context of material response, it is
important to employ a formulation that does not involve approximations that may not hold
in certain media. Some other difficulties relate to the question of the convergence of the mul-
tipole expansion that is seldom addressed in literature. Finally, there is the incompleteness
issue in the expansion (28), which includes only terms with zero trace.

5. Material Response Through the Fourier Transform Approach

We will now carefully introduce the equivalent representation of the electromagnetic mate-
rial response in terms of the Fourier transform of the fields, not the actual field in space and
time. There are several advantages in this approach that are worthy detailed considerations
in themselves. First, notice that this approach does not apply to static fields, which are better
addressed by the classical P-M approach. On other hand, certain complex electromagnetic
effects, like spatial dispersion (nonlocality) magnetoelectric responses and optical activity, can
be regarded as special case of spatial dispersion.
It appears to the authors that operating directly on material systems with a formalism tai-
lored especially to handle spatial dispersion is very advantageous. Besides its ability to deal
with complex media exhibiting phenomena like magnetoelectric effects and optical activity,
it can also provide a natural window to probe near-field interactions. Although we are still
trying to mathematically identify the meaning of the near field, remember that one of the most
immediate features that come to mind when thinking about fields in the near zone (close to
the radiator or the scatterer) is that they tend to be localized, or, equivalently, contain short
wavelength components that contribute significantly to the field structure. In this case, one is
looking naturally for a mathematical device that characterize electromagnetic wave phenom-
ena in terms of the Fourier spatial modes, i.e., the k-component. Therefore, the formalism
should look for information about the response of the system to particular wavevecotrs k.
This is essentially the goal of integrating spatial dispersion in the theoretical description of
material media.
Let us try to address in more details some of the difficulties in the traditional approach to
electromagnetic material response. By Fourier transforming equation (40) in time, we obtain

Jind (ω,k) = −iωP (ω,k) + ik × M (ω,k) . (41)

The problem here is that there exists no general a priori method to tell how the individual
contributions of the quantities P and M divide in forming the total induced current. In this
sense, one can view these two vectors as mere calculational tools, auxiliary devices used to
compute the actually observed induced current Jind. In particular, there seems to be no harm
in just setting the magnetization density M to zero and considering only a polarization density
P contributing to the induced charge and current densities.
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As we have just observed in Section 3.1, the program of calculating the fields through
Maxwell’s equations can be reduced to the solution of a single equation, namely (17), which
contains a single unknown, the electric field vector E(ω,k) itself. If the relation between the
induced current density Jind (ω,k) and the electric field is known, then this relation, together
with the master equation (17), can be used to completely solve the problem of light-matter
interaction. It seems natural then to introduce a single material response tensor

(Jind)m (ω,k) = σmn (ω,k)En (ω,k) , (42)

where the matrix σmn (ω,k) is called the conductivity tensor. After solving for the electric field,
all the remaining quantities, the magnetic field B(t, r) and the charge density ρ(t, r), can be
calculated from the knowledge of the total current and the electric field.
One can replace the conductivity tensor by different equivalent representations that may turn
out to be handy in some applications. In particular, we discuss here the polarization tensor
αnm(ω,k) and the equivalent dielectric constant ε

eq
nm (ω,k), defined by the following equation

ε
eq
nm (ω,k) = δnm + i

ωε0
σnm (ω,k)

= δnm + 1
ω2ε0

αnm (ω,k)
= δnm + χnm (ω,k) .

(43)

The reader should notice that the equivalent dielectric function ε0ε
eq
nm (ω,k) is not the same

as the conventional dielectric function defined in terms of the polarization and magnetization
densities appearing in equation (40). In terms of the new dielectric function ε

eq
nm (ω,k), we

write
Dn (ω,k) = ∑

m
ε0ε

eq
nm (ω,k)Em (ω,k). (44)

It follows that in the Fourier transform approach to the material response, we effectively kill
the magnetization vector M and collect all relevant physical processes into a single vector, the
effective polarization density P.

6. Comparison between the Traditional Multipole and the Fourier Transform Ap-
proaches to the Material Response

Within the miltipole approach to the material response, two new fields are traditionally in-
troduced, the electric induction D (the electric displacement vector), and the magnetic field
strength H. These are defined by the relations

D ≡ ε0E + P, (45)

H ≡ 1
µ0

B − M. (46)

The electric susceptibility χe and the magnetic susceptibility χm are defined by the following
equations

P = ε0χeE, (47)

M =
1

µ0
χmB. (48)

The effective dielectric constant, or electric permittivity ε, and the magnetic permeability µ,
can now be defined in terms of the quantities above as

D (ω,k) = εE (ω,k) , (49)

H (ω,k) =
1
µ

B (ω,k) . (50)

We now proceed to derive the equivalence between this traditional approach and the Fourier
formalism of Section 5. First, the current distribution is decomposed into two parts, one due to
external (applied) sources, Jext, and the other, Jind due to the interaction between the medium
and the electromagnetic fields. We write

J (t, r) = Jext (t, r) + Jind (t, r) . (51)

The induced current is written using the conductivity tensor introduced in (42) and the result
is substituted to the master equation (17). After simple re-arranging of terms, we find

ω2

c2 E (ω,k) + k × k × E (ω,k) + iωµ0 ¯̄σ (ω,k) · E (ω,k) = −iωµ0Jext (ω,k) . (52)

Now let us calculate by means of the ε-µ method. In this case, the induced current is written
in terms of both the polarization and magnetization current densities P and M as shown in
(40). Using (47) and (48) in (41), we find

Jind (ω,k) = −iωε0χeE (ω,k) + ik × χm

µ0
B (ω,k) . (53)

But from Maxwell’s equations in the Fourier domain, specifically (10), we know that

ik × B (ω,k) =
i
ω

k × k × E (ω,k) . (54)

The induced current in (53) becomes then

Jind (ω,k) = −iωε0χeE (ω,k) + i
χm

ωµ0
k × k × E (ω,k) . (55)

Combining (51) and (55) and substituting the result into (17), we arrive after some rearranging
to

ω2

c2 E (ω,k) + k × k × E (ω,k)
+ω2

c2 χeE (ω,k)− χmk × k × E (ω,k) = −iωµ0Jext (ω,k)
(56)

By comparing (52) and (56), we conclude that we must have

iωµ0 ¯̄σ (ω,k) · E (ω,k) =
ω2

c2 χeE (ω,k)− χmk × k × E (ω,k) . (57)

In tensor form, equation (57) becomes

iωµ0σnl (ω,k)El (ω,k) =
ω2

c2 χeEn (ω,k)− χm
[
knkl − k2δnl

]
El (ω,k) . (58)

Since the equality holds for arbitrary El , we obtain

σnl (ω,k) =
1

iωµ0

{
ω2

c2 χeδnl − χm
[
knkl − k2δnl

]}
. (59)
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As we have just observed in Section 3.1, the program of calculating the fields through
Maxwell’s equations can be reduced to the solution of a single equation, namely (17), which
contains a single unknown, the electric field vector E(ω,k) itself. If the relation between the
induced current density Jind (ω,k) and the electric field is known, then this relation, together
with the master equation (17), can be used to completely solve the problem of light-matter
interaction. It seems natural then to introduce a single material response tensor

(Jind)m (ω,k) = σmn (ω,k)En (ω,k) , (42)

where the matrix σmn (ω,k) is called the conductivity tensor. After solving for the electric field,
all the remaining quantities, the magnetic field B(t, r) and the charge density ρ(t, r), can be
calculated from the knowledge of the total current and the electric field.
One can replace the conductivity tensor by different equivalent representations that may turn
out to be handy in some applications. In particular, we discuss here the polarization tensor
αnm(ω,k) and the equivalent dielectric constant ε

eq
nm (ω,k), defined by the following equation

ε
eq
nm (ω,k) = δnm + i

ωε0
σnm (ω,k)

= δnm + 1
ω2ε0

αnm (ω,k)
= δnm + χnm (ω,k) .

(43)

The reader should notice that the equivalent dielectric function ε0ε
eq
nm (ω,k) is not the same

as the conventional dielectric function defined in terms of the polarization and magnetization
densities appearing in equation (40). In terms of the new dielectric function ε

eq
nm (ω,k), we

write
Dn (ω,k) = ∑

m
ε0ε

eq
nm (ω,k)Em (ω,k). (44)

It follows that in the Fourier transform approach to the material response, we effectively kill
the magnetization vector M and collect all relevant physical processes into a single vector, the
effective polarization density P.

6. Comparison between the Traditional Multipole and the Fourier Transform Ap-
proaches to the Material Response

Within the miltipole approach to the material response, two new fields are traditionally in-
troduced, the electric induction D (the electric displacement vector), and the magnetic field
strength H. These are defined by the relations

D ≡ ε0E + P, (45)

H ≡ 1
µ0

B − M. (46)

The electric susceptibility χe and the magnetic susceptibility χm are defined by the following
equations

P = ε0χeE, (47)

M =
1

µ0
χmB. (48)

The effective dielectric constant, or electric permittivity ε, and the magnetic permeability µ,
can now be defined in terms of the quantities above as

D (ω,k) = εE (ω,k) , (49)

H (ω,k) =
1
µ

B (ω,k) . (50)

We now proceed to derive the equivalence between this traditional approach and the Fourier
formalism of Section 5. First, the current distribution is decomposed into two parts, one due to
external (applied) sources, Jext, and the other, Jind due to the interaction between the medium
and the electromagnetic fields. We write

J (t, r) = Jext (t, r) + Jind (t, r) . (51)

The induced current is written using the conductivity tensor introduced in (42) and the result
is substituted to the master equation (17). After simple re-arranging of terms, we find

ω2

c2 E (ω,k) + k × k × E (ω,k) + iωµ0 ¯̄σ (ω,k) · E (ω,k) = −iωµ0Jext (ω,k) . (52)

Now let us calculate by means of the ε-µ method. In this case, the induced current is written
in terms of both the polarization and magnetization current densities P and M as shown in
(40). Using (47) and (48) in (41), we find

Jind (ω,k) = −iωε0χeE (ω,k) + ik × χm

µ0
B (ω,k) . (53)

But from Maxwell’s equations in the Fourier domain, specifically (10), we know that

ik × B (ω,k) =
i
ω

k × k × E (ω,k) . (54)

The induced current in (53) becomes then

Jind (ω,k) = −iωε0χeE (ω,k) + i
χm

ωµ0
k × k × E (ω,k) . (55)

Combining (51) and (55) and substituting the result into (17), we arrive after some rearranging
to

ω2

c2 E (ω,k) + k × k × E (ω,k)
+ω2

c2 χeE (ω,k)− χmk × k × E (ω,k) = −iωµ0Jext (ω,k)
(56)

By comparing (52) and (56), we conclude that we must have

iωµ0 ¯̄σ (ω,k) · E (ω,k) =
ω2

c2 χeE (ω,k)− χmk × k × E (ω,k) . (57)

In tensor form, equation (57) becomes

iωµ0σnl (ω,k)El (ω,k) =
ω2

c2 χeEn (ω,k)− χm
[
knkl − k2δnl

]
El (ω,k) . (58)

Since the equality holds for arbitrary El , we obtain

σnl (ω,k) =
1

iωµ0

{
ω2

c2 χeδnl − χm
[
knkl − k2δnl

]}
. (59)
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From (43), we reach to

ε
eq
nl (ω,k) = δnl +

i
ωε0

1
iωµ0

{
ω2

c2 χeδnl − χm [
knkl − k2δnl

]}

= δnl + χeδnl − c2

ω2 χm (
knkl − k2δnl

)

= (1 + χe)δnl − c2

ω2 χm (
knkl − k2δnl

) (60)

Finally, we use the definitions (45), (46), (47), (48) to write

ε
eq
nm (ω,k) =

(
ε

ε0

)
δnm − c2

ω2

(
1 − µ0

µ

)(
knkm − k2δnm

)
. (61)

This is the main equation we are looking for. It shows that a medium which is magnetic in the
ε-µ approach translates into spatial dispersion in the Fourier approach. It follows also that the
two dielectric constants are the same only if there is no spatial dispersion.

7. General Properties of the Material Response Tensors

The requirement that the electromagnetic fields should by themselves satisfy Maxwell’s equa-
tions cannot fully specify how the very same fields will behave in a material environment.
Such behavior is dictated by a more complex structure consisting of the mechanical response
coupled with the electromagnetic fields. In this section, we survey and present rigorously
the most important non-electromagnetic restrictions imposed on the material tensor. Such
restrictions can be conveniently gathered under the heading ‘General properties of the Mate-
rial Tensor’ since they involve quite broad characteristics that are wider than the particular
dynamical laws encapsulated by the Maxwell’s equations.
Our main equations will be the relation between the electric flux density vector and the electric
field in both the spatio-temporal and spectral domain. These are, respectively,

Dn (ω,k) = ∑
m

ε0ε
eq
nm (ω,k)Em (ω,k), (62)

Dn (t, r) = ε0

∫
dt′

∫
d3r′ ∑

m
ε
eq
nm

(
t − t′, r − r′

)
Em

(
t′, r′

)
. (63)

These equations describe electromagnetic processes in homogenous, isotropic or anisotropic
media. It is important to keep in mind that within the Fourier-space formalism the equivalent
dielectric tensor is inherently a tensor; even when the medium under consideration is isotropic,
the dielectric function is still generally a tensor. Also, the reader may notice from (63) that the
field induced at particular time t and location r depends generally on the applied field at
different times and locations. We say that the medium exhibit “memory” in both the temporal
and spatial sense. The spatial sense of the this memory, which is going to be the main concern
for us here, is called nonlocality.3

3 Whenever there is no risk of confusion, we drop the superscript ‘eq’ from ε
eq
nm (ω,k) and refer to the

equivalent dielectric function as merely the dielectric tensor.

7.1 The Reality of the Fields
Since the fields appearing in equation (63) are all real, the properties of the Fourier transform
dictate that the negative and positive frequencies appearing in the spectrum of the fields are
both essentially equivalent to each other. Formally, we express this requirement in the follow-
ing relation that any material tensor describing the responses of the medium to real quantities
must satisfy

ε∗nm (ω,k) = εnm (−ω,−k) . (64)

7.2 Dissipative and Non-Dissipative Processes
The material tensorial response is the Fourier transform of a real quantity and hence generally
complex. The real part and the imaginary part of this tensor are usually interpreted as those
responsible for dispersion and losses (dissipation), respectively. In this section, we provide
the mathematical evidence in support of this interpretation.
We start be decomposing an arbitrary response tensor into hermitian and antihermitian parts

εnm (ω,k) = εH
nm (ω,k) + εA

nm (ω,k) , (65)

where
εH

nm (ω,k) =
1
2
[εnm (ω,k) + ε∗mn (ω,k)] , (66)

εA
nm (ω,k) =

1
2
[εnm (ω,k)− ε∗mn (ω,k)] . (67)

It is obvious that the two parts satisfy

εH∗
nm (ω,k) = εH∗

mn (ω,k) , (68)

εA∗
nm (ω,k) = −εA∗

mn (ω,k) . (69)
We now recall our interpretation in Section 2.1 of the term −J · E as the density of the rate of
energy transfer by the current J into the electric field E. The current can be decomposed into
external and induced parts as J = Jex+Jind. Thus, the total work done by the medium on the
electric field is given by integrating −Jind · E in both time and space as

−
∫

dt
∫

d3rJind (t, r) · E (t, r) =
∫ dωd3k

(2π)4 Jind (ω,k) · E∗ (ω,k) , (70)

where the power theorem of Fourier transforms was used in writing the equality. We now
have ∫ dωd3k

(2π)4 Jind (ω,k) · E∗ (ω,k)

=
∫ dωd3k

(2π)4
1
2
[
J∗ind (ω,k) · E (ω,k) + Jind (ω,k) · E∗ (ω,k)

] (71)

In deriving this, the integral was first divided into its negative and positive frequency parts,
and then a transformation of variables was applied to the negative frequencies integral. Fi-
nally, the symmetry condition (reality condition) given in (64) was applied. Employing equa-
tion (42) in (71), we can write

−
∫ dωd3k

(2π)4 Jind (ω,k) · E∗ (ω,k)

=
∫ dωd3k

(2π)4
1
2 [σnm (ω,k)Em (ω,k)E∗

n (ω,k) + σ∗
mn (ω,k)E∗

n (ω,k)Em (ω,k)]

=
∫ dωd3k

(2π)4 σH
nm (ω,k)Em (ω,k)E∗

n (ω,k).

(72)
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From (43), we reach to
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This is the main equation we are looking for. It shows that a medium which is magnetic in the
ε-µ approach translates into spatial dispersion in the Fourier approach. It follows also that the
two dielectric constants are the same only if there is no spatial dispersion.

7. General Properties of the Material Response Tensors

The requirement that the electromagnetic fields should by themselves satisfy Maxwell’s equa-
tions cannot fully specify how the very same fields will behave in a material environment.
Such behavior is dictated by a more complex structure consisting of the mechanical response
coupled with the electromagnetic fields. In this section, we survey and present rigorously
the most important non-electromagnetic restrictions imposed on the material tensor. Such
restrictions can be conveniently gathered under the heading ‘General properties of the Mate-
rial Tensor’ since they involve quite broad characteristics that are wider than the particular
dynamical laws encapsulated by the Maxwell’s equations.
Our main equations will be the relation between the electric flux density vector and the electric
field in both the spatio-temporal and spectral domain. These are, respectively,
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These equations describe electromagnetic processes in homogenous, isotropic or anisotropic
media. It is important to keep in mind that within the Fourier-space formalism the equivalent
dielectric tensor is inherently a tensor; even when the medium under consideration is isotropic,
the dielectric function is still generally a tensor. Also, the reader may notice from (63) that the
field induced at particular time t and location r depends generally on the applied field at
different times and locations. We say that the medium exhibit “memory” in both the temporal
and spatial sense. The spatial sense of the this memory, which is going to be the main concern
for us here, is called nonlocality.3

3 Whenever there is no risk of confusion, we drop the superscript ‘eq’ from ε
eq
nm (ω,k) and refer to the

equivalent dielectric function as merely the dielectric tensor.

7.1 The Reality of the Fields
Since the fields appearing in equation (63) are all real, the properties of the Fourier transform
dictate that the negative and positive frequencies appearing in the spectrum of the fields are
both essentially equivalent to each other. Formally, we express this requirement in the follow-
ing relation that any material tensor describing the responses of the medium to real quantities
must satisfy

ε∗nm (ω,k) = εnm (−ω,−k) . (64)

7.2 Dissipative and Non-Dissipative Processes
The material tensorial response is the Fourier transform of a real quantity and hence generally
complex. The real part and the imaginary part of this tensor are usually interpreted as those
responsible for dispersion and losses (dissipation), respectively. In this section, we provide
the mathematical evidence in support of this interpretation.
We start be decomposing an arbitrary response tensor into hermitian and antihermitian parts
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We now recall our interpretation in Section 2.1 of the term −J · E as the density of the rate of
energy transfer by the current J into the electric field E. The current can be decomposed into
external and induced parts as J = Jex+Jind. Thus, the total work done by the medium on the
electric field is given by integrating −Jind · E in both time and space as

−
∫

dt
∫

d3rJind (t, r) · E (t, r) =
∫ dωd3k

(2π)4 Jind (ω,k) · E∗ (ω,k) , (70)

where the power theorem of Fourier transforms was used in writing the equality. We now
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=
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Therefore, it is the hermitian part of the conductivity tensor which contributes to the dissipa-
tion of energy by the medium. Equivalently, by considering the relation between the conduc-
tivity and the equivalent dielectric tensor (43), we find that it is the antihermitian part of the
dielectric tensor that contributes to energy dissipation by the medium.

7.3 Onsager Relations
Since any material responses tensor is ultimately based on a mechanical model, of which the
dynamical equations must satisfy certain space-time symmetry transformations, there exists
certain general restrictions on the mathematical form of a physically realizable material tensor.
In order to give the reader some idea about such requirement, we list the classical dynamical
equation for the particle motion, namely the Lorentz force (9). By writing the force as F =
dp/dt, where p is the linear momentum, it is an easy matter to verify that the equation of
motion is invariant under the transformations

t →−t, p →−p, B →−B (73)

The same conclusion can be obtained if the Lorentz force law is replaced by the Schrodinger
equation.
Notice that a time-reversal corresponds to the substitution ω → −ω in the Fourier domain.
The reversal of the sign of the momentum corresponds to reversing the sign of the wavevec-
tor. Finally, the reversal of the sign of the magnetic field is shown explicitly in the following
standard form of the Onsager relations4

ε
eq
nm (ω,−k)

∣∣∣
−B

= ε
eq
mn (ω,k)

∣∣∣
B

. (74)

The Onsager relations places severe restrictions on the physically allowable form of the mate-
rial response. We discuss below particular examples of isotropic spatially dispersed media.
Let us focus on materials that don’t respond to the magnetic field. In this case, the Onsager
relations reduces to the situation in which the tensorial responses is required to be invariant
under the transformation

k →−k, n ↔ m. (75)

First, notice that in the Fourier transform approach, even when the medium is isotropic, the
response is still described by a tensorial quantity, c.f. equation (61). For isotropic media that is
spatially dispersive, we can analyze the situation by pure matrix theoretic arguments. Indeed,
the only available vector in this case is km, while the only available tensors are δnm and εnml . It
can be shown that the Onsager relations leads to the result that we can construct only three in-
dependent second-rank tensors. A popular choice in the condensed-matter physics literature
is the following

ε
eq
nm (ω,k) = εL (ω,k)κnκm + εT (ω,k) (δnm − κnκm) + iεR (ω,k)εnmlkl , (76)

where
κm = km

/
k, k = |k| . (77)

Here, the quantities εL(ω,k), εT(ω,k), εR(ω,k) are the longitudinal, transverse, and rotational
permittivities, respectively. The rotatory parts can be ignored in media that don’t exhibit
optical activity. Notice that for media in which both the longitudinal and transverse parts
happen to be equal to each other, the equivalent dielectric tensor reduces to the scalar case.

4 The symmetry relations (64) are used to simplify the final form.

7.4 The Kramers–Kronig Relations
The fact that the dielectric tensor is a response function imposes a restriction on the relation-
ship between the real and imaginary part. This restriction is due to causality and can be
rigourously derived by standard techniques in the theory of complex functions.5 Kramers-
Kronig relations say that the real and imaginary parts of the Fourier transform of a function
that is causal (i.e., a function that its inverse Fourier transform is identically zero for a time
interval in the form −∞ < t < t0) satisfy

ε
eq,H
nm (ω,k)− δnm =

i
π
℘
∫ ∞

−∞
dω′ ε

eq,A
nm (ω′,k)− δnm

ω − ω′ , (78)

ε
eq,A
nm (ω,k) =

i
π
℘
∫ ∞

−∞
dω′ ε

eq,H
nm (ω′,k)

ω − ω′ , (79)

where ℘ symbolizes the Cauchy principal value.6 Equations (78) and (79) show that if dissi-
pation is known, then dispersion can be uniquely determined (and vice versa) by applying
the Hilbert transform operator to the available data.
One can see that when spatial dispersion is present, then in the case of non-dissipative
medium, i.e., a medium with negligible losses which, as can be seen from Section 7.2, cor-
responds to ε

eq,A
nm (ω,k) = 0, the dispersion behavior dictated by ε

eq,H
nm (ω,k) is restricted to

only the class of functions of ω which has zero Hilbert transform. It can be shown that such
functions take the basic form 1

/
(ω − ωm) with constant ωm. This explains partially why such

basic form pops out very frequently in practice. However, they also demonstrate the power
of Kramers-Kronig relations in being able to severely restrict the allowable functional form of
the dispersion in lossless media.
The general lesson we learn from taking casuality into consideration when thinking about
designing artificial media is that once the losses is neglected for the entire frequency range
−∞ < ω < ∞ (or the medium is designed to have small losses globally), the global form of dis-
persion is no more a free degree of freedom but, instead, takes a particular form. However, in
practice we seldom achieve or require particular specifications of the losses and/or dispersion
to hold for the entire frequency range. Noticing that the Hilbert transform relations in (78) and
(79) are global operators, i.e., they involve integration over the entire frequency range in or-
der to know the value at a single frequency (nonlocal or memory-dependent in frequency),
we need just to restrict ourselves to a finite frequency and wavenumber range upon which
the desired losses and dispersion characteristics are required to apply. By this restrictions, the
Kramers–Kronig relations cannot impose a serious restriction on the design and analysis of
artificial media.

8. Advanced Properties of the Material Tensor

In this Section, we look at the material tensor through the point of view of complex analysis.
The motivation for such study is that certain characteristics of signals excited in media, like

5 The causality restriction translates formally to the following setting. Imagine that the medium is excited
by an applied electric field E. The material responses, for example through (47), will appear in the form
of a forced (induced) quantity, here the polarization density P. If the applied field was zero for time
t < 0, then causality implies that there must be no induced polarization in this time interval.

6 These relations represent a Hilbert transform relation between the hermitian and antihermitian parts,
which play the role of real and imaginary parts, respectively, in the case of matrices (linear operators).
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Therefore, it is the hermitian part of the conductivity tensor which contributes to the dissipa-
tion of energy by the medium. Equivalently, by considering the relation between the conduc-
tivity and the equivalent dielectric tensor (43), we find that it is the antihermitian part of the
dielectric tensor that contributes to energy dissipation by the medium.

7.3 Onsager Relations
Since any material responses tensor is ultimately based on a mechanical model, of which the
dynamical equations must satisfy certain space-time symmetry transformations, there exists
certain general restrictions on the mathematical form of a physically realizable material tensor.
In order to give the reader some idea about such requirement, we list the classical dynamical
equation for the particle motion, namely the Lorentz force (9). By writing the force as F =
dp/dt, where p is the linear momentum, it is an easy matter to verify that the equation of
motion is invariant under the transformations

t →−t, p →−p, B →−B (73)

The same conclusion can be obtained if the Lorentz force law is replaced by the Schrodinger
equation.
Notice that a time-reversal corresponds to the substitution ω → −ω in the Fourier domain.
The reversal of the sign of the momentum corresponds to reversing the sign of the wavevec-
tor. Finally, the reversal of the sign of the magnetic field is shown explicitly in the following
standard form of the Onsager relations4
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The Onsager relations places severe restrictions on the physically allowable form of the mate-
rial response. We discuss below particular examples of isotropic spatially dispersed media.
Let us focus on materials that don’t respond to the magnetic field. In this case, the Onsager
relations reduces to the situation in which the tensorial responses is required to be invariant
under the transformation

k →−k, n ↔ m. (75)

First, notice that in the Fourier transform approach, even when the medium is isotropic, the
response is still described by a tensorial quantity, c.f. equation (61). For isotropic media that is
spatially dispersive, we can analyze the situation by pure matrix theoretic arguments. Indeed,
the only available vector in this case is km, while the only available tensors are δnm and εnml . It
can be shown that the Onsager relations leads to the result that we can construct only three in-
dependent second-rank tensors. A popular choice in the condensed-matter physics literature
is the following
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eq
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where
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Here, the quantities εL(ω,k), εT(ω,k), εR(ω,k) are the longitudinal, transverse, and rotational
permittivities, respectively. The rotatory parts can be ignored in media that don’t exhibit
optical activity. Notice that for media in which both the longitudinal and transverse parts
happen to be equal to each other, the equivalent dielectric tensor reduces to the scalar case.

4 The symmetry relations (64) are used to simplify the final form.

7.4 The Kramers–Kronig Relations
The fact that the dielectric tensor is a response function imposes a restriction on the relation-
ship between the real and imaginary part. This restriction is due to causality and can be
rigourously derived by standard techniques in the theory of complex functions.5 Kramers-
Kronig relations say that the real and imaginary parts of the Fourier transform of a function
that is causal (i.e., a function that its inverse Fourier transform is identically zero for a time
interval in the form −∞ < t < t0) satisfy
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where ℘ symbolizes the Cauchy principal value.6 Equations (78) and (79) show that if dissi-
pation is known, then dispersion can be uniquely determined (and vice versa) by applying
the Hilbert transform operator to the available data.
One can see that when spatial dispersion is present, then in the case of non-dissipative
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responds to ε
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basic form pops out very frequently in practice. However, they also demonstrate the power
of Kramers-Kronig relations in being able to severely restrict the allowable functional form of
the dispersion in lossless media.
The general lesson we learn from taking casuality into consideration when thinking about
designing artificial media is that once the losses is neglected for the entire frequency range
−∞ < ω < ∞ (or the medium is designed to have small losses globally), the global form of dis-
persion is no more a free degree of freedom but, instead, takes a particular form. However, in
practice we seldom achieve or require particular specifications of the losses and/or dispersion
to hold for the entire frequency range. Noticing that the Hilbert transform relations in (78) and
(79) are global operators, i.e., they involve integration over the entire frequency range in or-
der to know the value at a single frequency (nonlocal or memory-dependent in frequency),
we need just to restrict ourselves to a finite frequency and wavenumber range upon which
the desired losses and dispersion characteristics are required to apply. By this restrictions, the
Kramers–Kronig relations cannot impose a serious restriction on the design and analysis of
artificial media.

8. Advanced Properties of the Material Tensor

In this Section, we look at the material tensor through the point of view of complex analysis.
The motivation for such study is that certain characteristics of signals excited in media, like

5 The causality restriction translates formally to the following setting. Imagine that the medium is excited
by an applied electric field E. The material responses, for example through (47), will appear in the form
of a forced (induced) quantity, here the polarization density P. If the applied field was zero for time
t < 0, then causality implies that there must be no induced polarization in this time interval.

6 These relations represent a Hilbert transform relation between the hermitian and antihermitian parts,
which play the role of real and imaginary parts, respectively, in the case of matrices (linear operators).
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short-term disturbances and damped waveforms are best understood analytically if viewed
using the mathematical device of Laplace transform instead of the familiar Fourier transform,
the latter being best suited ideally to analyze the steady-state behavior of a given system. As
will be shown below, there are general restrictions on the mathematical form of the response
functions when viewed in the complex plane. Knowledge of such global restrictions is vital in
the theory and practice of meta-materials.

8.1 Stability Restrictions
From the physical point of view, a passive medium cannot generate energy and hence all
propagating signals must be damped or decaying when the distance goes to infinity.7 Math-
ematically, this translates to the requirement that all poles are located in the LHP. We call the
following the statement of the stability condition of material media

All poles of the material tensor must be located in the LHP. (80)

To see why this should be the case, just (Laplace) invert a spectral component in the form
1
/(

ω − ω0 + iγ
/

2
)

and notice the sign of the resulting exponential factor. For signals to ex-
ponentially decay, instead of growing, the algebraic sign of the factor γ must be positive.

8.2 Causality Restrictions
Although we have already looked at casuality in the study of Kramers -Kronig relations, we
want to understand here this topic at a deeper level. Consider the Fourier transform of a
causal function f (t) given by

f (ω) =
∫ ∞

0
dt f (t) eiωt. (81)

Let us study the asymptotic behavior of this function when t → ∞. We first notice that when
Im{ω} > 0, the integral in (81) has a finite value since the integrand approaches zero as t
grows to infinity. Moreover, on repeatedly differentiating this integral, we conclude also that
all derivatives of f (ω) are finite. Therefore, the function f (ω) is analytic in the upper half
complex plane. We have then

A causal function is analytic in the UHP. (82)

An immediate corollary is that

A causal function has no poles or branch points in the UHP. (83)

This principle forms the mathematical background behind the derivation of Kramers-Kronig
relations.

8.3 Landau Condition
The Laplace transform of a signal is defined as

F (s) ≡
∫ ∞

0
dt f (t) e−st. (84)

7 Notice that for a range that is bounded, both growing and decaying signals are possible. For example,
consider a multilayered medium. In one intermediate layer both growing and decaying waves are
permitted.

Therefor, the s-plane and the complex ω-plane are related by s = iω, which means that ‘upper’
and ‘lower’ in one plane translates into ‘right’ and ‘left’, respectively, in the other plane.
The inverse Laplace transform is given by the equation

f (t) =
1

2πi

∫ Γ+i∞

Γ−i∞
ds F (s) est, (85)

where Γ specifies how the integration contour should be chosen. Landau condition states that

The contour in (85) is to the left of all singularites in the s-plane. (86)

Therefore, the integration contour must be above all singularities in the complex ω-plane. It
can be shown then that the resulting function does not depend on the particular path provided
it satisfies the Landau condition.

9. Wave Propagation

9.1 Dispersion Relations
By wave modes or wave propagation we mean electromagnetic disturbances that can propa-
gate in a source-free medium. In our case, the medium response is described by the nonlocal
model of the Fourier approach.
Equation (52) is the inhomogeneous wave equation in our medium. From the definition (42),
the induced current in terms of the vector potential (temporal gauge) is expressed as follows

Jind,m (ω,k) = αmn (ω,k)An (ω,k) . (87)

In tensor form, we can write then (52) as

Ξnm (ω,k)Am (ω,k) = −µ0c2

ω2 Jext,n (ω,k) , (88)

where

Ξnm (ω,k) =
c2

ω2

(
knkm − k2δnm

)
+ χnm (ω,k) . (89)

If the source term in (88) is set to zero, we obtain the homogenous wave equation describ-
ing the propagation of waves in a source-free environment, i.e., the eigenmodes. However,
as we found in Section 7.2, the antihermitian part of the tensor Ξnm (ω,k) is responsible of
dissipation or energy generation in the medium. Such term must be omitted from the final
homogeneous equation describing pure wave propagation. The desired equation of motion is
therefore given by

ΞH
nm (ω,k)Am (ω,k) = 0, (90)

where ΞH
nm (ω,k) describes the hermitian part of the tensor Ξnm (ω,k). The reader should

notice that there is a thermodynamic hypothesis implicit in the derivation of this fundamental
equation. That is, dissipation is treated as equivalent to source, and so the antihermitian part
is removed even when it describes only a passive medium. Such hypothesis, equivalence of
source and sink, is an additional postulate that cannot be derived from Maxwell’s equations
and should be supplied by an external theory, in this case thermodynamics of continuous
media.
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short-term disturbances and damped waveforms are best understood analytically if viewed
using the mathematical device of Laplace transform instead of the familiar Fourier transform,
the latter being best suited ideally to analyze the steady-state behavior of a given system. As
will be shown below, there are general restrictions on the mathematical form of the response
functions when viewed in the complex plane. Knowledge of such global restrictions is vital in
the theory and practice of meta-materials.

8.1 Stability Restrictions
From the physical point of view, a passive medium cannot generate energy and hence all
propagating signals must be damped or decaying when the distance goes to infinity.7 Math-
ematically, this translates to the requirement that all poles are located in the LHP. We call the
following the statement of the stability condition of material media

All poles of the material tensor must be located in the LHP. (80)

To see why this should be the case, just (Laplace) invert a spectral component in the form
1
/(

ω − ω0 + iγ
/

2
)

and notice the sign of the resulting exponential factor. For signals to ex-
ponentially decay, instead of growing, the algebraic sign of the factor γ must be positive.

8.2 Causality Restrictions
Although we have already looked at casuality in the study of Kramers -Kronig relations, we
want to understand here this topic at a deeper level. Consider the Fourier transform of a
causal function f (t) given by

f (ω) =
∫ ∞

0
dt f (t) eiωt. (81)

Let us study the asymptotic behavior of this function when t → ∞. We first notice that when
Im{ω} > 0, the integral in (81) has a finite value since the integrand approaches zero as t
grows to infinity. Moreover, on repeatedly differentiating this integral, we conclude also that
all derivatives of f (ω) are finite. Therefore, the function f (ω) is analytic in the upper half
complex plane. We have then

A causal function is analytic in the UHP. (82)

An immediate corollary is that

A causal function has no poles or branch points in the UHP. (83)

This principle forms the mathematical background behind the derivation of Kramers-Kronig
relations.

8.3 Landau Condition
The Laplace transform of a signal is defined as

F (s) ≡
∫ ∞

0
dt f (t) e−st. (84)

7 Notice that for a range that is bounded, both growing and decaying signals are possible. For example,
consider a multilayered medium. In one intermediate layer both growing and decaying waves are
permitted.

Therefor, the s-plane and the complex ω-plane are related by s = iω, which means that ‘upper’
and ‘lower’ in one plane translates into ‘right’ and ‘left’, respectively, in the other plane.
The inverse Laplace transform is given by the equation

f (t) =
1

2πi

∫ Γ+i∞

Γ−i∞
ds F (s) est, (85)

where Γ specifies how the integration contour should be chosen. Landau condition states that

The contour in (85) is to the left of all singularites in the s-plane. (86)

Therefore, the integration contour must be above all singularities in the complex ω-plane. It
can be shown then that the resulting function does not depend on the particular path provided
it satisfies the Landau condition.

9. Wave Propagation

9.1 Dispersion Relations
By wave modes or wave propagation we mean electromagnetic disturbances that can propa-
gate in a source-free medium. In our case, the medium response is described by the nonlocal
model of the Fourier approach.
Equation (52) is the inhomogeneous wave equation in our medium. From the definition (42),
the induced current in terms of the vector potential (temporal gauge) is expressed as follows

Jind,m (ω,k) = αmn (ω,k)An (ω,k) . (87)

In tensor form, we can write then (52) as

Ξnm (ω,k)Am (ω,k) = −µ0c2

ω2 Jext,n (ω,k) , (88)

where

Ξnm (ω,k) =
c2

ω2

(
knkm − k2δnm

)
+ χnm (ω,k) . (89)

If the source term in (88) is set to zero, we obtain the homogenous wave equation describ-
ing the propagation of waves in a source-free environment, i.e., the eigenmodes. However,
as we found in Section 7.2, the antihermitian part of the tensor Ξnm (ω,k) is responsible of
dissipation or energy generation in the medium. Such term must be omitted from the final
homogeneous equation describing pure wave propagation. The desired equation of motion is
therefore given by

ΞH
nm (ω,k)Am (ω,k) = 0, (90)

where ΞH
nm (ω,k) describes the hermitian part of the tensor Ξnm (ω,k). The reader should

notice that there is a thermodynamic hypothesis implicit in the derivation of this fundamental
equation. That is, dissipation is treated as equivalent to source, and so the antihermitian part
is removed even when it describes only a passive medium. Such hypothesis, equivalence of
source and sink, is an additional postulate that cannot be derived from Maxwell’s equations
and should be supplied by an external theory, in this case thermodynamics of continuous
media.
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Notice that (90) is a matrix equation. From linear algebra, the necessary and sufficient condi-
tion for the existence of a nontrivial solution is that the determinant of the hermitian matrix
ΞH

nm (ω,k) is identically zero. That is, the dispersion relation is given by

det
[
ΞH

nm (ω,k)
]
= 0. (91)

In general, this dispersion relation has potentially many solutions, each is called a mode or
branch. We write the solution of the lth mode of the dispersion equation (91) as

ω = ωl (k) . (92)

For each mode, there corresponds a vector An satisfying equation (90). Such vector is called
the polarization of the wave mode. within the scheme of Fourier-space electromagnetics, there
exists a detailed theory of how to obtain and classify polarization in various types of media,
which is based on direct application of results from tensor calculus. However, we omit such
details for the limitations of space.

9.2 The Greens Function
The solution of the inhomogeneous wave equation (88) can be formally written as

An (ω,k) = −µ0c2

ω2 Gnm (ω,k) Jext,n (ω,k) , (93)

where Gnm (ω,k) is the Greens function dyad in the spectral domain. From matrix theory, an
expression of this dyad can be immediately written as

Gnm (ω,k) =
cofnm [Ξn′m′ (ω,k)]

det [Ξnm (ω,k)]
, (94)

where cofnm is the cofactor matrix. In deriving this result, only the hermitian part of the oper-
ator Ξnm (ω,k) is used, and therefore the Greens dyad as it stands here is hermitian. However,
when inverting the Fourier transform to calculate the fields in the spatio-temporal domain, a
singularity in the spectral domain is encountered around ω = ωl (k). The traditional solution
of this problem is to carefully enforce suitable causality conditions. Technically, the determi-
nant is expanded in the following form

det [Ξnm (ω,k)] ≈ ∂

∂ω
det [Ξnm (ω,k)]

∣∣∣∣
ω=ωl(k)

{ω − ωl (k) + i0} , (95)

where the expansion illustrated here is taken around the lth mode pole. By formally inverting
the Fourier transform using the Dirac delta function, we obtain the following expression for
the antihermitian part of the Greens function

DA
nm (ω,k) = ∑

l
−iπωl (k)e∗l,m (k)el,n (k)Fl [Ξnm (ω,k)]δ (ω − ωl (k)) , (96)

where the Fl [Ξnm (ω,k)] can be directly determined by the dispersion profile of the medium,
but its explicit expression is not of direct concern to us here. The unit vectors el,n (k) describe
the polarization of the lth mode.8 This derivation shows that although the antihermitian part

8 Notice that for the case of transverse modes, the degeneracy of the eigenvalue problems requires a
special treatment. Indeed, in this case one has to resort to the use of polarization matrices. We omit
such details here.

was not originally taken into consideration in writing up the expression of the Greens dyad
(94), causality considerations forces us to introduce an antihermitian part. As we will show in
Section 10.1, it is precisely this antihermitian part that contributes to the radiated field.9

It is interesting to observe again the role played by thermodynamics in the solution of
Maxwell’s equations. Indeed, the ultimate origin of the causality consideration introduced
above can be tracked back to the thermodynamic requirement that energy decays away from
the source and toward the sink. Maxwell’s equations themselves are blind to the direction
of power flow; they can support both (temporally) forward and backward waves. However,
thermodynamics appears to fix the sign of the pole contribution around the real ω-axis and
hence effectively imposes a particular form of the solution of the field equations. The reader
can appreciate better the subtlety of this fact by recalling that the very concepts of source and
sink are thermodynamic in nature and cannot be based ultimately on Maxwell’s equations.
An impulsive excitation, say an ideal Dirac delta function, can be mathematically introduced
to the theory in a straightforward manner, e.g., using generalized function theory. However,
the choice of the signs of the imaginary part of the pole associated with source or sink de-
pends on energetics and dissipation, a topic that is best described macroscopically by classical
thermodynamics. Since the ultimate origin of the antihermitian part of the Greens function, as
shown above in equation (96), is causality, and the particular form of this depends in turn on
thermodynamic consideration, and knowing that it is this part of the Greens dyad that is re-
sponsible of radiation (see Section 10.1), we can claim that the ultimate answer to the question
of why an antenna can radiate appears to be purely thermodynamic in nature.

10. Applications

In this section, we provide some applications for the general Fourier approach toward the
characterization of the material responses to the electromagnetic fields as sketched above.

10.1 Localization of Electromagnetic Energy Radiated by Antennas in Complex Media
In this part, we perform an explicit calculation of the electromagnetic energy radiated by an
arbitrary antenna in a medium described by a nonlocal response tensor. We will show that the
Fourier approach described in this paper provides a direct method to understand the structure
of the near-field surrounding the antenna, and therefore the possibility of localizing energy in
complex artificial media.
The method relies on calculating the total energy of the radiated field using the Fourier in-
tegral. We start from the statement of energy conservation as stated in (8). The current J
appearing at the RHS is replaced by the current distribution on the antenna, which is taken
as an external current Jext. As discussed in Section 2.1, the energy density (work) transferred
to the surrounding field by this current is given by −Jext · E. The trick in performing general
calculation is to introduce a new quantity Ul (k), which is defined as the density in the k-space
of the energy added to the surrounding field by the antenna when radiating through the lth mode. That
is, by energy conservation, the time-averaged total energy added to the field by all modes is
given by the following equation

T/2∫

−T/2

dt
∫

d3rJext (t, r) · E (t, r) = ∑
l

∫ d3k

(2π)3 Ul (k). (97)

9 The hermitian part will contribute to the non-propagating field (near field) surrounding the source.
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Notice that (90) is a matrix equation. From linear algebra, the necessary and sufficient condi-
tion for the existence of a nontrivial solution is that the determinant of the hermitian matrix
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nm (ω,k) is identically zero. That is, the dispersion relation is given by
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In general, this dispersion relation has potentially many solutions, each is called a mode or
branch. We write the solution of the lth mode of the dispersion equation (91) as

ω = ωl (k) . (92)

For each mode, there corresponds a vector An satisfying equation (90). Such vector is called
the polarization of the wave mode. within the scheme of Fourier-space electromagnetics, there
exists a detailed theory of how to obtain and classify polarization in various types of media,
which is based on direct application of results from tensor calculus. However, we omit such
details for the limitations of space.

9.2 The Greens Function
The solution of the inhomogeneous wave equation (88) can be formally written as

An (ω,k) = −µ0c2

ω2 Gnm (ω,k) Jext,n (ω,k) , (93)

where Gnm (ω,k) is the Greens function dyad in the spectral domain. From matrix theory, an
expression of this dyad can be immediately written as

Gnm (ω,k) =
cofnm [Ξn′m′ (ω,k)]

det [Ξnm (ω,k)]
, (94)

where cofnm is the cofactor matrix. In deriving this result, only the hermitian part of the oper-
ator Ξnm (ω,k) is used, and therefore the Greens dyad as it stands here is hermitian. However,
when inverting the Fourier transform to calculate the fields in the spatio-temporal domain, a
singularity in the spectral domain is encountered around ω = ωl (k). The traditional solution
of this problem is to carefully enforce suitable causality conditions. Technically, the determi-
nant is expanded in the following form
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where the expansion illustrated here is taken around the lth mode pole. By formally inverting
the Fourier transform using the Dirac delta function, we obtain the following expression for
the antihermitian part of the Greens function

DA
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−iπωl (k)e∗l,m (k)el,n (k)Fl [Ξnm (ω,k)]δ (ω − ωl (k)) , (96)

where the Fl [Ξnm (ω,k)] can be directly determined by the dispersion profile of the medium,
but its explicit expression is not of direct concern to us here. The unit vectors el,n (k) describe
the polarization of the lth mode.8 This derivation shows that although the antihermitian part

8 Notice that for the case of transverse modes, the degeneracy of the eigenvalue problems requires a
special treatment. Indeed, in this case one has to resort to the use of polarization matrices. We omit
such details here.

was not originally taken into consideration in writing up the expression of the Greens dyad
(94), causality considerations forces us to introduce an antihermitian part. As we will show in
Section 10.1, it is precisely this antihermitian part that contributes to the radiated field.9

It is interesting to observe again the role played by thermodynamics in the solution of
Maxwell’s equations. Indeed, the ultimate origin of the causality consideration introduced
above can be tracked back to the thermodynamic requirement that energy decays away from
the source and toward the sink. Maxwell’s equations themselves are blind to the direction
of power flow; they can support both (temporally) forward and backward waves. However,
thermodynamics appears to fix the sign of the pole contribution around the real ω-axis and
hence effectively imposes a particular form of the solution of the field equations. The reader
can appreciate better the subtlety of this fact by recalling that the very concepts of source and
sink are thermodynamic in nature and cannot be based ultimately on Maxwell’s equations.
An impulsive excitation, say an ideal Dirac delta function, can be mathematically introduced
to the theory in a straightforward manner, e.g., using generalized function theory. However,
the choice of the signs of the imaginary part of the pole associated with source or sink de-
pends on energetics and dissipation, a topic that is best described macroscopically by classical
thermodynamics. Since the ultimate origin of the antihermitian part of the Greens function, as
shown above in equation (96), is causality, and the particular form of this depends in turn on
thermodynamic consideration, and knowing that it is this part of the Greens dyad that is re-
sponsible of radiation (see Section 10.1), we can claim that the ultimate answer to the question
of why an antenna can radiate appears to be purely thermodynamic in nature.

10. Applications

In this section, we provide some applications for the general Fourier approach toward the
characterization of the material responses to the electromagnetic fields as sketched above.

10.1 Localization of Electromagnetic Energy Radiated by Antennas in Complex Media
In this part, we perform an explicit calculation of the electromagnetic energy radiated by an
arbitrary antenna in a medium described by a nonlocal response tensor. We will show that the
Fourier approach described in this paper provides a direct method to understand the structure
of the near-field surrounding the antenna, and therefore the possibility of localizing energy in
complex artificial media.
The method relies on calculating the total energy of the radiated field using the Fourier in-
tegral. We start from the statement of energy conservation as stated in (8). The current J
appearing at the RHS is replaced by the current distribution on the antenna, which is taken
as an external current Jext. As discussed in Section 2.1, the energy density (work) transferred
to the surrounding field by this current is given by −Jext · E. The trick in performing general
calculation is to introduce a new quantity Ul (k), which is defined as the density in the k-space
of the energy added to the surrounding field by the antenna when radiating through the lth mode. That
is, by energy conservation, the time-averaged total energy added to the field by all modes is
given by the following equation

T/2∫

−T/2

dt
∫

d3rJext (t, r) · E (t, r) = ∑
l

∫ d3k

(2π)3 Ul (k). (97)

9 The hermitian part will contribute to the non-propagating field (near field) surrounding the source.
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Expressing the electric field in terms of the vector potential in the temporal gauge as E (ω,k) =
iωA (ω,k), using the Greens function of (93), and employing the Pareseval (power) theorem
of Fourier analysis, we write the LHS as

T/2∫
−T/2

dt
∫

d3rJext (t, r) · E (t, r) = −
∫ dωd3k

(2π)4 J∗ext (ω,k) · E (ω,k)

=
∫ dωd3k

(2π)4
i

ε0ω J∗ext,m (ω,k)Gmn (ω,k) Jext,n (ω,k)

=
∫ dωd3k

(2π)4
i

ε0ω J∗ext,m (ω,k)
[
GA

mn (ω,k) + GH
mn (ω,k)

]
Jext,n (ω,k)

(98)

Due to the presence of the factor i in the integrand, together with the fact that the integral
must be real, it follows from the basic properties of hermitian and antihermitian functions
(operators) that only the antihermitian part of the Greens dyad contributes to the radiation
field. Now, by plugging this part as given in (96) into (98), we finally arrive to the following
expression of the energy density

Ul (k) =
Fl [Ξnm (ω,k)]

ε0
|e∗l (k) · Jext (ωl (k) ,k)|2 . (99)

We will propose an interpretation for the physical meaning of Ul (k). Consider the inverse
Fourier transform

uF,l (r) = �−1
{√

Ul (k)
}

. (100)

Next, we use the Parseval theorem to write
∫

d3r uF,l (r)
(
uF,l (r)

)∗
=

∫ d3k

(2π)3

√
Ul (k)

√
Ul (k). (101)

Since the RHS is by definition the total energy radiated by the antenna in the lth mode, it
follows that the integrand of the LHS, namely ul (r) ≡

∣∣uF,l (r)
∣∣2 can be interpreted as the

spatial distribution of the energy density radiated by the antenna through the lth mode. We
have

ul (r) =
∫ ∫

d3kd3k′
√

Fl [Ξnm(ω,k)]Fl [Ξnm(ω,k′)]∗

ε0
ei(k−k′)·r

×
∣∣e∗l (k) · Jext (ωl (k) ,k)e∗l (k

′) · Jext (ωl (k′) ,k′)
∣∣ .

(102)

This new quantitative measure contains information about the spatial structure of the time-
averaged energy surrounding a radiator specified by its externally enforced current distri-
bution Jext(t,r). For example, it can be directly used in studying the localization of the ra-
diated energy in an antenna inside an artificial medium described by the dispersion profile
χnm (ω,k).

10.2 Nonlocal Electromagnetic Media
10.2.1 General Theoretical Background from the Field of Crystal Optics
By the term nonlocal medium we refer to a material described by response functions similar to
(47). As we we noticed previously, it follows from this definition that the material exhibits a
memory-like behavior in the sense that the response to a field excreted at a particular location
appears to depend on the field values at other locations. We will show below that this phe-
nomenon is very general and does not just refer to a particular physical process occurring in
the crystal.

First, notice that we arrived to the definition (47) through a Fourier transform approach to the
electromagnetic fields. Moreover, we were able to derive a relation connecting the traditional
multipole approach and the Fourier approach. We found that nonlocality or spatial dispersion
arises very naturally to account for nonmagnetic media. However, it is in the nature of the
Fourier approach itself to introduce the spatial spectral variable k into the description of the
material medium, and hence one can view nonlocality as a characteristics of the formalism
itself, rather than a particular label given to an exotic physical process, for example exciotons-
polaritons in crystal optics.
Let us start by providing a global qualitative look at the response of material media in classical
and quantum optics. This view will serve as standard theoretical background upon which we
measure our understanding of how to design artificial media.
Imagine that the material is composed of a system of uncoupled (hence, independent) oscilla-
tors. Each oscillator can interact with the applied electromagnetic fields by producing a dipole
moment p. From the basic picture of Lorentz models, we can express the functional depen-
dence of this induced dipole moment on the temporal frequency ω in the broad Lorentzian
form ζ

/(
ω2 − ω2

0
)
, where ω0 is a constant called the eigenfrequency or the resonance fre-

quency, and ζ the oscillator strength. In general, each independent oscillator will resonate
with the applied field according to its own eigenfrequency and strength, and the medium
overall response will be taken as the sum of all individual resonances. In this view, it is useful
to think of each oscillator as representing an ‘atom’, even when its actual physical dimensions
are much larger than real atoms. The essential idea in the art of artificial material design is
taking this conceptual framework into its extreme by assuming that one can manipulate each
atom individually in order to control and tailor the resulted material responses. The assump-
tion that the atoms are uncoupled will be translated to the fact that the resulted eigenfrequency
ω0 and oscillator strength ζ don’t depend on wavelength, or equivalently on k. For natural
materials observed and studied through macroscopic electromagnetics, the atomic separation,
for example in periodic structures like crystals, denoted here by a, is very small compared with
the operating wavelength, i.e., we have a/λ � 1. In this case, all atoms appear to be in perfect
phase synchronization and no significant coupling mechanism takes place.10

The situation is dramatically different in periodic structures, like photonic crystals and fre-
quency selective surfaces, where, in this case, the operating wavelength can become appre-
ciable compared with the characteristic spatial scale of the separation between the atoms (or
unit cells), and hence interesting electromagnetic behavior can arise, like stopbands, localiza-
tion, etc. It is still however possible to describe all these complex structures by employing
an effective dielectric function that is nonlocal. Such function can contain the full information
of the symmetry group of the periodic structure. Therefore, Maxwell’s equations, written in
terms of these equivalent responses functions, can be used to describe the electromagnetics of
the medium without writing explicitly the set of the boundary conditions.11 Aside from the
economic advantage of such formulation, allowing the effective dielectric function to become
nonlocal has the advantage of bringing the full power of the conceptual framework of effec-
tive medium theory right to the fore even though the artificial medium under consideration
may not satisfy the natural condition of infinitesimally small atomic constituents.

10 The fundamental pre-condition for this to be true is that the fields are averaged on a spatial scale much
larger than this natural characteristic spatial scale, i.e., the atomic separation a.

11 As an example for a concrete implementation of this general idea, see (6).



Nonlocal	Electromagnetic	Media:	A	Paradigm	for	Material	Engineering 91
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appears to depend on the field values at other locations. We will show below that this phe-
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the operating wavelength, i.e., we have a/λ � 1. In this case, all atoms appear to be in perfect
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of the symmetry group of the periodic structure. Therefore, Maxwell’s equations, written in
terms of these equivalent responses functions, can be used to describe the electromagnetics of
the medium without writing explicitly the set of the boundary conditions.11 Aside from the
economic advantage of such formulation, allowing the effective dielectric function to become
nonlocal has the advantage of bringing the full power of the conceptual framework of effec-
tive medium theory right to the fore even though the artificial medium under consideration
may not satisfy the natural condition of infinitesimally small atomic constituents.

10 The fundamental pre-condition for this to be true is that the fields are averaged on a spatial scale much
larger than this natural characteristic spatial scale, i.e., the atomic separation a.

11 As an example for a concrete implementation of this general idea, see (6).
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10.2.2 Negative Group Velocity Artificial Media

We now briefly demonstrate the above general theory by showing that a new genre of artificial
(meta-) materials can be envisioned by thinking in terms of the Fourier-space formalism of this
paper. Specifically, we consider an idealized isotropic and homogenous medium that exhibit
both temporal and spatial dispersion.
The dispersion relation for the transverse waves is k · k = (ω/c)2 n2 (ω,k) , where we have
defined the index of refraction as n (ω,k)2 ≡ ε (ω,k)µ. We will work with such general index
of refraction given by n = n(ω,k). The group velocity is defined as vg = ∇kω. It can be
shown that an equation connecting the spatial and temporal dispersion such that the resulted
medium supports negative group velocity propagation can be put in the following form

ω

c
∂n (ω,k)

∂k
− γ

c

(
1 + ω

∂

∂ω

)
n (ω,k) = 1. (103)

where γ = −
∣∣vg

∣∣. We call this partial differential equation the dispersion engineering equa-
tion for negative group velocity. An exact solution for this equation can be attempted for
interesting special cases.
Consider the boundary-value problem consisting of the partial differential equation (103) to-
gether with

∂γ

∂ω
= 0, n (ω,k = k1) = φ (ω) , (104)

where ω1 < ω < ω2,ω1 > 0,k1 > 0. Here, k1 < k2 and ω1 < ω2 are positive real numbers
and φ (ω) is a general function representing the boundary condition of the problem. In the
interesting scenario where the group velocity is constant and negative, an exact solution was
found to be (4)

n (ω,k) =
c (k − k1)

ω
+

1
ω
[ω + γ (k − k1)]φ (ω + γ (k − k1)) . (105)

Such solution is then theoretically feasible. It demonstrates that there is rich degrees of free-
dom in the material design waiting for us to discover and exploit for novel and interesting
applications. A more comprehensive theory for the negative group velocity metamaterial was
developed by the authors in (4).

A. Magnetic Moments in Terms of Electric Moments

A.1 The Magnetic Moment Term
Multiply the equation of continuity (7) by rl and integrate over all space to get

∫
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∂ρ (t, r)
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rl = −
∫

d3r rl∇ · J (t, r) . (106)

Consider first the LHS of (106). By employing the definition of the dipole moment (30), we
write immediately
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Now we consider the RHS of (106). Write the divergence as ∇ · J (t, r) =
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/
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)
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integrate by parts through the variable rs to obtain
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Using the assumption that the surface current Js (t, r) vanishes on the surface of the integration
volume, we obtain

∫
d3r rl∇ · J (t, r) = −

∫
d3r Jl (t, r) ≡ −µl (t, r) . (109)

From (106), (107), and (109), we finally arrive to

µl (t, r) =
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∂t
pl (t, r) . (110)

A.2 The Magnetic Quadrable Term
Multiply the equation of continuity (7) by rlrm and integrate over all space to get
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Consider first the LHS of (111). By employing the definition of the electric quadrable moment
(31), we write immediately
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Now let us take the RHS of (111). We first decompose the magnetic moment into the sum of
symmetric and anti-symmetric parts as follows

xn Jm =
1
2
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1
2
(xn Jm − xm Jn) . (113)

Now, write again the divergence as ∇ · J (t, r) =
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(114)
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Using again the assumption that the surface current Js (t, r) vanishes on the surface of the
integration volume, we obtain

∫
d3r rnrm∇ · J (t, r) = −

∫
d3r [rn Js (t, r) + rm Js (t, r)]. (115)

From (111), (112), and (115), we reach
∫

d3r [rn Js (t, r) + rm Js (t, r)] =
∂

∂t
qns (t) . (116)

The antisymmetrical part in (113) can be written readily in the form 1/2εlmnµmn (t), where
magnetic quadrable moment µmn is defined as

µnm (t) =
∫

d3r rm Jn (t, r) . (117)

Therefore, one can express the axial vector as

m (t) =
1
2

∫
d3r r × J (t, r) . (118)

It follows then
εlsnmn (t) = 1

2
∫

d3rεlsn (r × J (t, r))n
= 1

2
∫

d3rεlsn εns′n′ rs′ Jn′ (t, r)
= 1

2
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d3r (δss′δnn′ − δsn′δns′ ) rs′ Jn′ (t, r)
= 1

2
∫

d3r [rs Jn (t, r)− rn Js (t, r)]

(119)

where the the definition of the cross product (18) was used in the second equality, and the
identity (22) was employed for the third equality. Thus, from (112), (113), (116), and (119) we
finally arrive to

µln (t) =
1
2

∂

∂t
qln (t) + εlnsms (t) . (120)
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1. Introduction

Microwave waveguides are usually composed of metals and dielectrics. The high contrast of
their electromagnetic parameters benefits that the electromagnetic energy is strongly confined
near the waveguiding structures and propagates along them. However, metal waveguides
in millimeter and sub-millimeter wave regions are often suffered from large attenuations be-
cause the conductor loss of metal rapidly increases with the operating frequency. This is a
reason why optical fiber, which is a waveguide for much higher frequency ranges, is com-
posed of dielectrics only and avoids the use of metals. Then, the dielectric waveguides are
widely investigated in millimeter and sub-millimeter wave regions to get rid of the conductor
loss. They are typically composed of the core and the surrounding cladding. The refractive
index of the core is some larger than that of the cladding. The fields propagating along a
dielectric waveguide are not totally confined as with a metallic waveguide, and they are com-
posed of the guided modes and the radiation modes. These modes are coupled to each other
when the waveguide structure is not uniform along the wave propagation. Then the bending
loss tends to be large in the dielectric waveguides. This is an obstacle to realize integrated
circuits. The photonic crystal waveguide attracts attention as a waveguiding structure that
resolves this problem.
The photonic crystals are periodic dielectric structures that are designed to reject the propaga-
tion of electromagnetic waves at certain wavelength range. Local collapses of the periodicity
supply significant advantages for field confinement, wave guiding, and directing radiation.
Especially, defects introduced into the photonic crystals compose electromagnetic wave de-
vices such as cavities, waveguides, splitter, coupler, etc. and they constitute photonic crystal
circuits. The photonic crystals are composed of dielectrics only and the conductor loss is neg-
ligible in many cases. Also, the electromagnetic fields are strongly confined around the defects
because any energy cannot escape through the surrounding photonic crystal. These features
provide a significant progress towards reducing the size of electromagnetic wave circuits. The
electromagnetic wave propagation along the photonic crystal circuits has been simulated us-
ing various numerical methods such as the beam propagation method(Koshiba et al., 2000),
the finite difference time domain (FDTD) method(Taflove, 1995), and the plane wave expan-
sion method(Benisty, 1996). These methods require adequate treatments of terminating con-
ditions for the waves at the output ends of the circuits. However, the structure of photonic

5



Passive	Microwave	Components	and	Antennas96

crystal waveguide is nonuniform along the wave propagation, and the Floquet-mode analy-
sis is necessary to decompose the fields in input/output waveguides into the forward and the
backward propagating components. The Floquet-modes are the eigenmodes propagating in a
structure periodic along the wave propagation.
The guided Floquet-modes propagating in straight photonic crystal waveguides are some-
times analyzed by FDTD method with the help of the super-cell method(Sakoda et al., 1997)
or Prony’s method(Naka & Ikuno, 2002). However, since the computation errors are com-
paratively easy to accumulate in periodic structures, FDTD method seems to require special
techniques in accurate calculations. The structure is fully periodic in the propagation direc-
tion, and several papers(Jia & Yasumoto, 2006; Tanaka et al., 1994; Yasumoto et al., 2004) intro-
duce therefore the generalized Fourier series to expand the electromagnetic fields. Maxwell’s
equations and the constitutive relations yield a coupled ordinary differential-equation set in
terms of the generalized Fourier coefficients. Then, the dispersion equation is derived based
on the scattering-matrix (S-matrix) propagation algorithm for multilayer structures(Li, 1996a).
The derived dispersion equation is written by a complex function with a complex argument
and the zeros correspond to the propagation constants of the eigenmodes. These approaches
make us possible to obtain the guided Floquet-modes in very high accuracy, but they are not
applicable to obtain the evanescent ones.
Consideration of the evanescent modes is possible by the Fourier series expansion method
(FSEM), which was originally developed to analyze the discontinuities in dielectric wave-
guides(Hosono et al., 1982; Yamakita et al., 1993; Yasumoto et al., 1999). This method intro-
duces an artificial periodicity in the transverse direction and expresses the electromagnetic
fields in the Fourier series expansion. The waveguiding structure is sliced into segments uni-
form in the propagation direction, and Maxwell’s equations and the constitutive relations in
each segment yield a coupled ordinary differential-equation set for the Fourier coefficients
of field components. Since the coefficients of the coupled differential-equation set are con-
stant, the general solution for each segment can be obtained by an eigenvalue/eigenvector
calculation. The field coefficients are matched at the boundary between the segments, and we
can obtain the propagation characteristics for composite structure. Miyamoto et al.(Miyamoto
et al., 2003) calculated the Floquet-modes propagating in grating waveguides using FSEM.
The Floquet-modes are obtained by the eigenvalue analysis of the transfer matrix for one
periodicity cell in the propagation direction. Their formulation was applied to the Floquet-
mode analyses of photonic crystal waveguides(Li & Ho, 2003; Watanabe & Yasumoto, 2009;
Yasumoto & Toyama, 2001; Yasumoto & Watanabe, 2008a).
To show the basic idea of FSEM based on Floquet-mode concept, this chapter considers the
two-dimensional electromagnetic fields propagating in electromagnetic wave circuits formed
by defects in a photonic crystal, which consists of periodic array of rectangular cylinders. All
dielectrics under consideration are linear, isotropic, lossless media, and the permeability of
free space is assumed. The structure and fields are uniform in the y-direction, and two funda-
mental polarization are expressed by the transverse electric (TE) and the transverse magnetic
(TM) polarizations, in which the electric and the magnetic fields are respectively perpendicu-
lar to the y-axis. We consider only time-harmonic fields assuming a time-dependence in e−i ω t,
and the fields are represented by complex vectors depending only on the space variables x and
z.

2. Floquet-Mode Analysis of Straight Photonic Crystal Waveguides

In this section, we consider the fields propagating in a straight photonic crystal waveguides
schematically shown in Fig. 1(a). The photonic crystal consists of rectangular cylinders located
parallel in rectangular lattice characterized by the periods dx and dz in the x- and z-directions,
respectively. Each cylinder has common dimensions ax and az along the x- and z-directions,
and infinitely long in the y-direction. The permittivity of rectangular cylinders is denoted by εc
and that of the surrounding media is denoted by εs. Choosing the appropriate parameters, the
cylinder array forms the photonic crystal, which rejects the wave propagation. The waveguide
is formed by straight line defects in the photonic crystal, and we assume that the fields are well
confined in the x-direction.
Let ε(x,z) be the permittivity distribution. Then Maxwell’s curl equations and the constitutive
relations yield the following relations:

∂

∂z
Hx(x,z)− ∂

∂x
Hz(x,z) = −i ω ε(x,z)Ey(x,z) (1)

∂

∂z
Ey(x,z) = −i ω µ0 Hx(x,z) (2)

∂

∂x
Ey(x,z) = i ω µ0 Hz(x,z) (3)

∂

∂z
Ex(x,z)− ∂

∂x
Ez(x,z) = i ω µ0 Hy(x,z) (4)

∂

∂z
Hy(x,z) = i ω ε(x,z)Ex(x,z) (5)

(a) (b) (c)
Fig. 1. Two-dimensional photonic crystal waveguide formed by rectangular cylinders, (a)
original structure, (b) introduction of artificial boundaries with periodicity condition, and (c)
periodicity cell for analysis.
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original structure, (b) introduction of artificial boundaries with periodicity condition, and (c)
periodicity cell for analysis.
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∂

∂x
Hy(x,z) = −i ω ε(x,z)Ez(x,z). (6)

Equations (1)–(3) correspond to the TE-polarization and Eqs. (4)–(6) correspond to the TM-
polarization.
We introduce artificial boundaries at x = 0 and x = w, which are supposed to be sufficiently far
from the line defect and not to make an unnecessary space near the boundaries (see Fig. 1(b)).
The original electromagnetic fields in 0 < x < w are then approximated by periodic func-
tions with the period w and expressed in the Fourier series expansions. For example, the
y-component of electric field is approximately expressed as

Ey(x,z) =
N

∑
n=−N

Ey,n(z) ei n kw x (7)

where N denotes the truncation order and kw = 2π/w. The Fourier coefficients
{Ey,n(z)}N

n=−N are functions of z, and the field profile can be derived by calculating the z-
dependence of the coefficients. To treat the coefficients systematically, we introduce (2N +
1) × 1 column matrices; for example, the coefficients of Ey(x,z) are expressed by a column
matrix eeey(z) that is defined by

eeey(z) =
(
Ey,−N(z) · · · Ey,N(z)

)t (8)

where the superscript t denotes the transpose matrix. Then, replacing all the field compo-
nents by the Fourier series expansions and using the orthogonal property of the Fourier basis,
Eqs. (1)–(6) yield the following relations:

d
dz

hhhx(z)− i XXX hhhz(z) = −i ω [[ε]] eeey(z) (9)

d
dz

eeey(z) = −i ω µ0 hhhx(z) (10)

XXX eeey(z) = ω µ0 hhhz(z) (11)

d
dz

eeex(z)− i XXX eeez(z) = i ω µ0 hhhy(z) (12)

d
dz

hhhy(z) = i ω

[[
1
ε

]]−1
eeex(z) (13)

XXX hhhy(z) = −ω [[ε]] eeez(z) (14)

where XXX denotes a diagonal matrix whose diagonal elements are {n kw}N
n=−N , and [[ε]] and

[[1/ε]] are square Toeplitz matrices whose (n,m)-entries are given by the (n − m)th-order
Fourier coefficients of ε(x,z) and 1/ε(x,z), respectively. The expressions on the right-hand
sides in Eqs. (9), (13), and (14) are obtained by taking into account Li’s Fourier factorization
rules(Li, 1996b).
The entries of [[ε]] and [[1/ε]] are functions of z. Here, we slice the analysis region into segments
uniform in the z-direction, and denote the regions l dz + (dz − az)/2 < z < l dz + (dz + az)/2
and l dz − (dz − az)/2 < z < l dz + (dz − az)/2 for any integer l as segments g and s, respec-
tively. The permittivity distribution in the segment g is also denoted by εg(x) though that in
the segment s is a constant value εs. The Toeplitz matrices [[ε]] and [[1/ε]] are constant matri-
ces [[εg]] and [[1/εg]] in the segment g, and constant diagonal matrices εs III and (1/εs) III in the
segment s, where III denotes the identity matrix.

Then the general solutions to the coupled differential-equation set (9)–(14) in the segments
r = g, s are obtained by the eigenvalue/eigenvector calculations in the following forms:

(
eeey(z)
hhhx(z)

)
= QQQ(e)

r

(
aaa(e,+)

r (z)
aaa(e,−)

r (z)

)
(15)

(
hhhy(z)
eeex(z)

)
= QQQ(h)

r

(
aaa(h,+)

r (z)
aaa(h,−)

r (z)

)
(16)

with

QQQ(e)
g =

(
PPP(e)

g PPP(e)
g

− 1
ω µ0

PPP(e)
g ZZZ(e)

g
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ω µ0
PPP(e)

g ZZZ(e)
g

)
(17)

QQQ(h)
g =


 PPP(h)

g PPP(h)
g
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ω

[[
1
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]]
PPP(h)

g ZZZ(h)
g − 1

ω

[[
1
εg

]]
PPP(h)

g ZZZ(h)
g


 (18)

QQQ(e)
s =

(
III III

− 1
ω µ0

ZZZ(e)
s

1
ω µ0

ZZZ(e)
s

)
(19)

QQQ(h)
s =

(
III III

1
ω εs

ZZZ(h)
s − 1

ω εs
ZZZ(h)

s

)
(20)

PPP(p)
g =

(
ppp(p)

g,1 · · · ppp(p)
g,2N+1

)
(21)

(
ZZZ(p)

r

)
n,m

= δn,m γ
(p)
r,n (22)

for p = e, h, where γ
(p)
g,n

2
and ppp(p)

g,n denote respectively the nth-eigenvalues and the associ-

ated eigenvectors of the matrices CCC(e)
g = ω2 µ0 [[εg]] − XXX2 for the TE-polarization and CCC(h)

g =

[[1/εg]]−1 (ω2 µ0 III − XXX [[εg]]−1 XXX
)

for the TM-polarization, and γ
(p)
s,n =

√
ω2 εs µ0 − (XXX)n,n

2. The

column matrices aaa(p,+)
r (z) and aaa(p,−)

r (z) give the amplitudes of the local normal modes of
the segment r = g, s propagating in the +z- and −z-directions, respectively, and the relation
between the modal amplitudes at z = z′ and z = z′′ is given as

(
aaa(p,+)

r (z′)
aaa(p,−)

r (z′)

)
= UUU(p)

r (z′ − z′′)

(
aaa(p,+)

r (z′′)
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)
(23)

with

UUU(p)
r (z) =

(
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r (z) 000

000 VVV(p)
r (−z)

)
(24)

(
VVV(p)

r (z)
)

n,m
= δn,m ei γ

(p)
r,n z. (25)

The structure under consideration is periodic in the z-direction, and the Floquet theorem as-
serts that analysis region can be reduced in one periodicity cell to characterize the propagation
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∂

∂x
Hy(x,z) = −i ω ε(x,z)Ez(x,z). (6)

Equations (1)–(3) correspond to the TE-polarization and Eqs. (4)–(6) correspond to the TM-
polarization.
We introduce artificial boundaries at x = 0 and x = w, which are supposed to be sufficiently far
from the line defect and not to make an unnecessary space near the boundaries (see Fig. 1(b)).
The original electromagnetic fields in 0 < x < w are then approximated by periodic func-
tions with the period w and expressed in the Fourier series expansions. For example, the
y-component of electric field is approximately expressed as

Ey(x,z) =
N

∑
n=−N

Ey,n(z) ei n kw x (7)

where N denotes the truncation order and kw = 2π/w. The Fourier coefficients
{Ey,n(z)}N

n=−N are functions of z, and the field profile can be derived by calculating the z-
dependence of the coefficients. To treat the coefficients systematically, we introduce (2N +
1) × 1 column matrices; for example, the coefficients of Ey(x,z) are expressed by a column
matrix eeey(z) that is defined by

eeey(z) =
(
Ey,−N(z) · · · Ey,N(z)

)t (8)

where the superscript t denotes the transpose matrix. Then, replacing all the field compo-
nents by the Fourier series expansions and using the orthogonal property of the Fourier basis,
Eqs. (1)–(6) yield the following relations:

d
dz

hhhx(z)− i XXX hhhz(z) = −i ω [[ε]] eeey(z) (9)
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dz
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XXX eeey(z) = ω µ0 hhhz(z) (11)

d
dz

eeex(z)− i XXX eeez(z) = i ω µ0 hhhy(z) (12)

d
dz

hhhy(z) = i ω
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where XXX denotes a diagonal matrix whose diagonal elements are {n kw}N
n=−N , and [[ε]] and

[[1/ε]] are square Toeplitz matrices whose (n,m)-entries are given by the (n − m)th-order
Fourier coefficients of ε(x,z) and 1/ε(x,z), respectively. The expressions on the right-hand
sides in Eqs. (9), (13), and (14) are obtained by taking into account Li’s Fourier factorization
rules(Li, 1996b).
The entries of [[ε]] and [[1/ε]] are functions of z. Here, we slice the analysis region into segments
uniform in the z-direction, and denote the regions l dz + (dz − az)/2 < z < l dz + (dz + az)/2
and l dz − (dz − az)/2 < z < l dz + (dz − az)/2 for any integer l as segments g and s, respec-
tively. The permittivity distribution in the segment g is also denoted by εg(x) though that in
the segment s is a constant value εs. The Toeplitz matrices [[ε]] and [[1/ε]] are constant matri-
ces [[εg]] and [[1/εg]] in the segment g, and constant diagonal matrices εs III and (1/εs) III in the
segment s, where III denotes the identity matrix.

Then the general solutions to the coupled differential-equation set (9)–(14) in the segments
r = g, s are obtained by the eigenvalue/eigenvector calculations in the following forms:

(
eeey(z)
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)
= QQQ(e)

r

(
aaa(e,+)

r (z)
aaa(e,−)

r (z)

)
(15)

(
hhhy(z)
eeex(z)

)
= QQQ(h)

r

(
aaa(h,+)

r (z)
aaa(h,−)

r (z)

)
(16)

with

QQQ(e)
g =

(
PPP(e)

g PPP(e)
g

− 1
ω µ0

PPP(e)
g ZZZ(e)

g
1

ω µ0
PPP(e)

g ZZZ(e)
g

)
(17)

QQQ(h)
g =


 PPP(h)

g PPP(h)
g

1
ω

[[
1
εg

]]
PPP(h)

g ZZZ(h)
g − 1

ω

[[
1
εg

]]
PPP(h)

g ZZZ(h)
g


 (18)

QQQ(e)
s =

(
III III

− 1
ω µ0

ZZZ(e)
s

1
ω µ0

ZZZ(e)
s

)
(19)

QQQ(h)
s =

(
III III

1
ω εs

ZZZ(h)
s − 1

ω εs
ZZZ(h)

s

)
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g =

(
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)
(21)

(
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)
n,m

= δn,m γ
(p)
r,n (22)

for p = e, h, where γ
(p)
g,n

2
and ppp(p)

g,n denote respectively the nth-eigenvalues and the associ-

ated eigenvectors of the matrices CCC(e)
g = ω2 µ0 [[εg]] − XXX2 for the TE-polarization and CCC(h)

g =

[[1/εg]]−1 (ω2 µ0 III − XXX [[εg]]−1 XXX
)

for the TM-polarization, and γ
(p)
s,n =

√
ω2 εs µ0 − (XXX)n,n

2. The

column matrices aaa(p,+)
r (z) and aaa(p,−)

r (z) give the amplitudes of the local normal modes of
the segment r = g, s propagating in the +z- and −z-directions, respectively, and the relation
between the modal amplitudes at z = z′ and z = z′′ is given as

(
aaa(p,+)

r (z′)
aaa(p,−)

r (z′)

)
= UUU(p)

r (z′ − z′′)

(
aaa(p,+)

r (z′′)
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r (z′′)

)
(23)

with

UUU(p)
r (z) =

(
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r (z) 000
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)
(24)

(
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)

n,m
= δn,m ei γ
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r,n z. (25)

The structure under consideration is periodic in the z-direction, and the Floquet theorem as-
serts that analysis region can be reduced in one periodicity cell to characterize the propagation
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property. Here, the periodicity cell is taken to be the region 0 < z < dz (see Fig. 1(c)). The fields
in segments g and s should be matched at the boundaries z = (dz ± az)/2 by the boundary
conditions, which are given by continuing the coefficient column matrices for the tangential
field components. Using Eqs. (15), (16), and (23), the relation between the modal amplitudes

aaa(p,±)
s (0) and aaa(p,±)

s (dz) are derived as
(

aaa(p,+)
s (dz)

aaa(p,−)
s (dz)

)
= FFF(p)

(
aaa(p,+)

s (0)

aaa(p,−)
s (0)

)
(26)

where the transfer matrix for the periodicity cell FFF(p) is given by

FFF(p) = UUU(p)
s

(
dz − az

2

)
QQQ(p)

s
−1

QQQ(p)
g UUU(p)

g (az)QQQ(p)
g

−1
QQQ(p)

s UUU(p)
s

(
dz − az

2

)
. (27)

The Floquet-modes propagating in the photonic crystal waveguides are obtained by the eigen-

value analysis of the transfer matrix FFF(p). Let β
(p)
n and rrr(p)

n be the nth-eigenvalues and the
associated eigenvectors of FFF(p), respectively. We define a column matrix bbb(p)(z) by

bbb(p)(z) = RRR(p)−1
(

aaa(p,+)
s (z)

aaa(p,−)
s (z)

)
(28)

with

RRR(p) =
(

rrr(p)
1 · · · rrr(p)

4N+2

)
(29)

and denote the nth-component of bbb(p)(z) by b(p)
n (z). Then, from Eqs. (26) and (28), we obtain

a relation:

b(p)
n (dz) = β

(p)
n b(p)

n (0). (30)

This implies that {bn(0)}4N+2
n=1 gives the amplitudes of the Floquet-modes propagating in the

photonic crystal waveguide at z = 0, and the propagation constants are calculated by

η
(p)
n = −i

Ln(β
(p)
n )

dz
(31)

where Ln denotes the principal natural logarithm function. Also, considering Eqs. (15), (16),
and (28), the Fourier coefficients of the modal profile functions corresponding to the nth-order
Floquet-modes at z = 0 are given by

(
eeey(0)
hhhx(0)

)
= QQQ(e)

s rrr(e)n (32)
(

hhhy(0)
eeex(0)

)
= QQQ(h)

s rrr(h)n (33)

where Eq. (32) is for the TE-polarization and Eq. (33) is for the TM-polarization.
The propagation direction of each Floquet-mode can be judged as follows:

• if |β(p)
n | < 1, the corresponding mode is the evanescent one propagating in the +z-

direction.

• if |β(p)
n | > 1, the corresponding mode is the evanescent one propagating in the −z-

direction.

• if |β(p)
n |= 1, the corresponding mode is the guided one. When the modal power carried

in the z-direction is positive (negative), the corresponding mode propagates in the +z
(−z)-direction.

The z-component of the Poynting vector is given by

sz(x,z) = Ex(x,z)Hy(x,z)∗ − Ey(x,z)Hx(x,z)∗

=
N

∑
n=−N

N

∑
m=−N

(
Ex,n(z)Hy,m(z)∗ − Ey,n(z)Hx,m(z)∗

)
ei(n−m)kg x (34)

and, integrating sz(x,z) over 0 ≤ x ≤ w, we may obtain the following expression:
∫ w

0
sz(x,z)dx = w

(
eeex(z) · hhhy(z)∗ − eeey(z) · hhhx(z)∗

)
. (35)

Therefore, the time-averaging modal power carried in the z-direction is calculated by
−w�(eeey(0) · hhhx(0)∗)/2 for the TE-polarization and w�(eeex(0) · hhhy(0)∗)/2 for the TM-
polarization, where eeey(0), hhhx(0), hhhy(0), and eeex(0) are obtained by Eqs. (32) and (33). The

order of FFF(p) (p = e, h) is 4N + 2, and the eigenvalues {β
(p)
n }4N+2

n=1 , the propagation coefficients

{η
(p)
n }4N+2

n=1 , and the eigenvectors {rrr(p)
n }4N+2

n=1 are here supposed to be arranged in such a way

that {β
(p)
n }2N+1

n=1 , {η
(p)
n }2N+1

n=1 , and {rrr(p)
n }2N+1

n=1 correspond to the Floquet-modes propagating

in the +z-direction and that {β
(p)
n }4N+2

n=2N+2, {η
(p)
n }4N+2

n=2N+2, and {rrr(p)
n }4N+2

n=2N+2 correspond to
ones propagating in the −z-direction.
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Fig. 2. Distribution of the eigenvalues {β
(e)
n } in the complex-plane, (a) whole view and (b)

close view near the origin. (Reproduced from K. Watanabe and K. Yasumoto, Progress In
Electromagnetics Research, PIER 92, 209–222, 2009, with courtesy of EMW Publishing.)
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property. Here, the periodicity cell is taken to be the region 0 < z < dz (see Fig. 1(c)). The fields
in segments g and s should be matched at the boundaries z = (dz ± az)/2 by the boundary
conditions, which are given by continuing the coefficient column matrices for the tangential
field components. Using Eqs. (15), (16), and (23), the relation between the modal amplitudes

aaa(p,±)
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s (dz) are derived as
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s (dz)
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= FFF(p)
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)
(26)

where the transfer matrix for the periodicity cell FFF(p) is given by

FFF(p) = UUU(p)
s

(
dz − az

2

)
QQQ(p)

s
−1

QQQ(p)
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. (27)

The Floquet-modes propagating in the photonic crystal waveguides are obtained by the eigen-

value analysis of the transfer matrix FFF(p). Let β
(p)
n and rrr(p)

n be the nth-eigenvalues and the
associated eigenvectors of FFF(p), respectively. We define a column matrix bbb(p)(z) by

bbb(p)(z) = RRR(p)−1
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)
(28)

with

RRR(p) =
(
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1 · · · rrr(p)
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)
(29)

and denote the nth-component of bbb(p)(z) by b(p)
n (z). Then, from Eqs. (26) and (28), we obtain

a relation:

b(p)
n (dz) = β

(p)
n b(p)

n (0). (30)

This implies that {bn(0)}4N+2
n=1 gives the amplitudes of the Floquet-modes propagating in the

photonic crystal waveguide at z = 0, and the propagation constants are calculated by

η
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dz
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where Ln denotes the principal natural logarithm function. Also, considering Eqs. (15), (16),
and (28), the Fourier coefficients of the modal profile functions corresponding to the nth-order
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where Eq. (32) is for the TE-polarization and Eq. (33) is for the TM-polarization.
The propagation direction of each Floquet-mode can be judged as follows:

• if |β(p)
n | < 1, the corresponding mode is the evanescent one propagating in the +z-

direction.

• if |β(p)
n | > 1, the corresponding mode is the evanescent one propagating in the −z-

direction.

• if |β(p)
n |= 1, the corresponding mode is the guided one. When the modal power carried

in the z-direction is positive (negative), the corresponding mode propagates in the +z
(−z)-direction.

The z-component of the Poynting vector is given by

sz(x,z) = Ex(x,z)Hy(x,z)∗ − Ey(x,z)Hx(x,z)∗

=
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(
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)
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Therefore, the time-averaging modal power carried in the z-direction is calculated by
−w�(eeey(0) · hhhx(0)∗)/2 for the TE-polarization and w�(eeex(0) · hhhy(0)∗)/2 for the TM-
polarization, where eeey(0), hhhx(0), hhhy(0), and eeex(0) are obtained by Eqs. (32) and (33). The

order of FFF(p) (p = e, h) is 4N + 2, and the eigenvalues {β
(p)
n }4N+2

n=1 , the propagation coefficients

{η
(p)
n }4N+2

n=1 , and the eigenvectors {rrr(p)
n }4N+2

n=1 are here supposed to be arranged in such a way

that {β
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n }2N+1

n=1 , {η
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n=1 , and {rrr(p)
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n=1 correspond to the Floquet-modes propagating

in the +z-direction and that {β
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Fig. 2. Distribution of the eigenvalues {β
(e)
n } in the complex-plane, (a) whole view and (b)

close view near the origin. (Reproduced from K. Watanabe and K. Yasumoto, Progress In
Electromagnetics Research, PIER 92, 209–222, 2009, with courtesy of EMW Publishing.)
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The eigenvalues {β
(e)
n } calculated with N = 60 for the TE-polarization are plotted on the

complex-plane in Fig. 2. The parameters of the photonic crystal are chosen as εs = ε0,
εc = 12.25 ε0, dx = dz = 0.67λ0, and ax = az =

√
0.41dx. The rectangular cylinders are situ-

ated with the center at x = (m − 1/2)dx for positive integer m though one layer of cylinder
array is removed at x = 5.5dx to form the waveguide structure, and w = 11dx is used for the
periodic boundary condition. The photonic crystal waveguide with these parameters sup-
ports two guided modes. The dots and the crosses denote the eigenvalues correspond to the
Floquet-mode propagating in the +z- and the −z-directions, respectively. Fig. 2(b) is a close
view near the origin and the dashed curve denotes a circle with a unit radius. The values on
the dashed curve correspond to the guided modes, and those corresponding to the forward
and the backward propagating modes are respectively distributed inside and outside the cir-
cle. A whole view is given in Fig. 2(a) and shows that the spectral radius of the transfer matrix

FFF(e) (maximum absolute value of β
(e)
n ) is about 2.2 × 1014. This implies that the double preci-

sion computation leads to roundoff errors in the order of 10−2 and the obtained eigenvalues

with |β(e)n |� 10−2 may not be accurate. As a result, the calculation of the Floquet-modes prop-
agating in the −z-direction are more accurate than ones propagating in the +z-direction, and
the situation should be same for the TM-polarization.

Figure 3(a) shows the normalized propagation constants {η
(e)
n /kd} calculated from the eigen-

values plotted in Fig. 2, where kd = 2π/dz denotes the inverse lattice constant in the z-
direction. Jia and Yasumoto(Jia & Yasumoto, 2006) have calculated the normalized propa-
gation constants of the guided Floquet-modes as 0.415946 for the even-mode and 0.219867 for
the odd-mode. The normalized propagation constants of the guided Floquet-modes are plot-
ted on the real axis in Fig. 3(a), and their values are ±0.417 and ±0.211. They are thought to
be in a sufficiently good agreement with the reference values. If η is a propagation constant of
Floquet-mode, −η is also the propagation constant because of the structural symmetry. The
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Fig. 3. Distribution of the normalized propagation constants {η
(e)
n /kd} with kd = 2π/dz in

the complex-plane, (a) direct results and (b) results with the use of the symmetric property.
(Reproduced from K. Watanabe and K. Yasumoto, Progress In Electromagnetics Research, PIER
92, 209–222, 2009, with courtesy of EMW Publishing.)

distribution of {η
(e)
n } should be therefore point symmetric to the origin. However, it is clearly

observed in Fig. 3(a) that the symmetry for the obtained evanescent modes is broken due to

the roundoff error, which is unnegligible for the propagation constants with large �(η(e)
n ).

Using the symmetric property, the accuracy of the Floquet-modes propagating in the +z-

direction can be improved. Let RRR(p)
1 and RRR(p)

2 be (2N + 1)× (2N + 1) square matrices defined
by

(
RRR(p)

1
RRR(p)

2

)
=

(
rrr(p)

2N+2 · · · rrr(p)
4N+2

)
. (36)

Then, when the error is negligible for the guided modes, more accurate results are obtained

by replacing {η
(p)
n }2N+1

n=1 and {rrr(p)
n }2N+1

n=1 in the following ways:

η
(p)
n = −η

(p)
n+2N+1 (37)

(
rrr(p)

1 · · · rrr(p)
2N+1

)
=

(
RRR(p)

2
RRR(p)

1

)
, (38)

where n in Eq. (37) is any integer 1 ≤ n ≤ 2N + 1 and Eq. (38) is presented in Ref. (Miyamoto
et al., 2003). Then, if we calculate accurately the Floquet-modes corresponding to the values
located in the lower half-plane, the other Floquet-modes are obtained by the symmetry prop-
erty. The normalized propagation constants of the TE polarized Floquet-modes for the same
photonic crystal waveguide as in Fig. 3(a), in which the constants corresponding to the modes
propagating in the +z-direction are obtained by Eq. (37), are shown in Fig. 3(b). This gives the
typical distribution of the constants of the Floquet-modes propagating in the photonic crystal
waveguides.
The present approach provides sufficiently accurate results in many applications but it has a
limitation for highly accurate computation. The spectral radius of the transfer matrix FFF(p) be-
comes larger with the increase of the truncation order N, and the computation with very large
N may lead to significant errors for not only the evanescent modes propagating in the +z-
direction but also the guided modes. In such case, using the symmetric property is no longer
effective to improve the accuracy. For example, when the double precision computation is
applied to the same waveguide as in Figs. 2 and 3, the guided modes cannot be distinguished
from the evanescent ones for N > 68. This limitation is some relieved if the eigenvalues are
computed as the Rayleigh quotients, but the validity is still limited(Watanabe & Yasumoto,
2009).

3. Floquet-Modal Expansion

Since the propagation constants {η
(p)
n }4N+2

n=1 and the eigenvectors {rrr(p)
n }4N+2

n=1 are arranged in

such a way that {η
(p)
n }2N+1

n=1 and {rrr(p)
n }2N+1

n=1 correspond to the Floquet-modes propagating in

the +z-direction and that {η
(p)
n }4N+2

n=2N+2 and {rrr(p)
n }4N+2

n=2N+2 correspond to ones propagating

in the −z-direction, the amplitudes of the Floquet-modes {b(p)
n (z)}2N+1

n=1 and {b(p)
n (z)}4N+2

n=2N+2
correspond to the modes propagating in the +z- and −z-directions, respectively. To express
clearly, we use the following notations:

b(p,+)
m (z) = b(p)

m (z) (39)
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The eigenvalues {β
(e)
n } calculated with N = 60 for the TE-polarization are plotted on the

complex-plane in Fig. 2. The parameters of the photonic crystal are chosen as εs = ε0,
εc = 12.25 ε0, dx = dz = 0.67λ0, and ax = az =

√
0.41dx. The rectangular cylinders are situ-

ated with the center at x = (m − 1/2)dx for positive integer m though one layer of cylinder
array is removed at x = 5.5dx to form the waveguide structure, and w = 11dx is used for the
periodic boundary condition. The photonic crystal waveguide with these parameters sup-
ports two guided modes. The dots and the crosses denote the eigenvalues correspond to the
Floquet-mode propagating in the +z- and the −z-directions, respectively. Fig. 2(b) is a close
view near the origin and the dashed curve denotes a circle with a unit radius. The values on
the dashed curve correspond to the guided modes, and those corresponding to the forward
and the backward propagating modes are respectively distributed inside and outside the cir-
cle. A whole view is given in Fig. 2(a) and shows that the spectral radius of the transfer matrix

FFF(e) (maximum absolute value of β
(e)
n ) is about 2.2 × 1014. This implies that the double preci-

sion computation leads to roundoff errors in the order of 10−2 and the obtained eigenvalues

with |β(e)n |� 10−2 may not be accurate. As a result, the calculation of the Floquet-modes prop-
agating in the −z-direction are more accurate than ones propagating in the +z-direction, and
the situation should be same for the TM-polarization.

Figure 3(a) shows the normalized propagation constants {η
(e)
n /kd} calculated from the eigen-

values plotted in Fig. 2, where kd = 2π/dz denotes the inverse lattice constant in the z-
direction. Jia and Yasumoto(Jia & Yasumoto, 2006) have calculated the normalized propa-
gation constants of the guided Floquet-modes as 0.415946 for the even-mode and 0.219867 for
the odd-mode. The normalized propagation constants of the guided Floquet-modes are plot-
ted on the real axis in Fig. 3(a), and their values are ±0.417 and ±0.211. They are thought to
be in a sufficiently good agreement with the reference values. If η is a propagation constant of
Floquet-mode, −η is also the propagation constant because of the structural symmetry. The
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Fig. 3. Distribution of the normalized propagation constants {η
(e)
n /kd} with kd = 2π/dz in

the complex-plane, (a) direct results and (b) results with the use of the symmetric property.
(Reproduced from K. Watanabe and K. Yasumoto, Progress In Electromagnetics Research, PIER
92, 209–222, 2009, with courtesy of EMW Publishing.)

distribution of {η
(e)
n } should be therefore point symmetric to the origin. However, it is clearly

observed in Fig. 3(a) that the symmetry for the obtained evanescent modes is broken due to

the roundoff error, which is unnegligible for the propagation constants with large �(η(e)
n ).

Using the symmetric property, the accuracy of the Floquet-modes propagating in the +z-

direction can be improved. Let RRR(p)
1 and RRR(p)

2 be (2N + 1)× (2N + 1) square matrices defined
by

(
RRR(p)

1
RRR(p)

2

)
=

(
rrr(p)

2N+2 · · · rrr(p)
4N+2

)
. (36)

Then, when the error is negligible for the guided modes, more accurate results are obtained

by replacing {η
(p)
n }2N+1

n=1 and {rrr(p)
n }2N+1

n=1 in the following ways:

η
(p)
n = −η

(p)
n+2N+1 (37)

(
rrr(p)

1 · · · rrr(p)
2N+1

)
=

(
RRR(p)

2
RRR(p)

1

)
, (38)

where n in Eq. (37) is any integer 1 ≤ n ≤ 2N + 1 and Eq. (38) is presented in Ref. (Miyamoto
et al., 2003). Then, if we calculate accurately the Floquet-modes corresponding to the values
located in the lower half-plane, the other Floquet-modes are obtained by the symmetry prop-
erty. The normalized propagation constants of the TE polarized Floquet-modes for the same
photonic crystal waveguide as in Fig. 3(a), in which the constants corresponding to the modes
propagating in the +z-direction are obtained by Eq. (37), are shown in Fig. 3(b). This gives the
typical distribution of the constants of the Floquet-modes propagating in the photonic crystal
waveguides.
The present approach provides sufficiently accurate results in many applications but it has a
limitation for highly accurate computation. The spectral radius of the transfer matrix FFF(p) be-
comes larger with the increase of the truncation order N, and the computation with very large
N may lead to significant errors for not only the evanescent modes propagating in the +z-
direction but also the guided modes. In such case, using the symmetric property is no longer
effective to improve the accuracy. For example, when the double precision computation is
applied to the same waveguide as in Figs. 2 and 3, the guided modes cannot be distinguished
from the evanescent ones for N > 68. This limitation is some relieved if the eigenvalues are
computed as the Rayleigh quotients, but the validity is still limited(Watanabe & Yasumoto,
2009).

3. Floquet-Modal Expansion

Since the propagation constants {η
(p)
n }4N+2

n=1 and the eigenvectors {rrr(p)
n }4N+2

n=1 are arranged in

such a way that {η
(p)
n }2N+1

n=1 and {rrr(p)
n }2N+1

n=1 correspond to the Floquet-modes propagating in

the +z-direction and that {η
(p)
n }4N+2

n=2N+2 and {rrr(p)
n }4N+2

n=2N+2 correspond to ones propagating

in the −z-direction, the amplitudes of the Floquet-modes {b(p)
n (z)}2N+1

n=1 and {b(p)
n (z)}4N+2

n=2N+2
correspond to the modes propagating in the +z- and −z-directions, respectively. To express
clearly, we use the following notations:

b(p,+)
m (z) = b(p)

m (z) (39)
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b(p,−)
m (z) = b(p)

m+2N+1(z) (40)

for m = 1, . . . ,2N + 1. Then b(p,±)
m (z) gives the amplitude of the mth-order Floquet-mode prop-

agating in the ±z-direction. We rewrite the Fourier coefficients of the modal profile functions
corresponding to the mth-order Floquet-modes propagating in the +z-direction as follows:

(
eeey,m
hhhx,m

)
= QQQ(e)

s rrr(e)m (41)
(

hhhy,m
eeex,m

)
= QQQ(h)

s rrr(h)m (42)

for m = 1, . . . ,2N + 1. Considering Eqs. (19), (20), and (38), the coefficients of the modal profile
functions corresponding to the mth-order Floquet-modes propagating in the −z-direction are
given by

(
eeey,m
−hhhx,m

)
= QQQ(e)

s rrr(e)m+2N+1 (43)
(

hhhy,m
−eeex,m

)
= QQQ(h)

s rrr(h)m+2N+1. (44)

The coefficients at z = l dz for any integer l are expressed as follows:

(
eeey(l dz)
hhhx(l dz)

)
=

2N+1

∑
m=1

b(e,+)
m (l dz)

(
eeey,m
hhhx,m

)
+

2N+1

∑
m=1

b(e,−)
m (l dz)

(
eeey,m
−hhhx,m

)
(45)

(
hhhy(l dz)
eeex(l dz)

)
=

2N+1

∑
m=1

b(h,+)
m (l dz)

(
hhhy,m
eeex,m

)
+

2N+1

∑
m=1

b(h,−)
m (l dz)

(
hhhy,m
−eeex,m

)
(46)

from Eqs. (15), (16), and (28). This gives the Floquet-mode expansion representation for
the fields at z = l dz in the Fourier space. From Eqs. (30), (31), and (37), the amplitudes

{b(p,±)
m (z)}2N+1

m=1 have the following dependence:

b(p,±)
m (l′ dz) = b(p,±)

m (l dz) e±i(l′−l)η(p)
m dz (47)

for any integers l and l′.
Here, two field distributions (EEE1, HHH1) and (EEE2, HHH2) are known to satisfy Lorentz’s reciprocal
theorem:

∇ · (EEE1(x,z)× HHH2(x,z)− EEE2(x,z)× HHH1(x,z)) = 0. (48)

Integrating over the layer between z = l dz and z = l′ dz for any integers l, l′ and using the
Gauss theorem, we may obtain the following relation:

∫ w

0
(EEE1(x, l dz)× HHH2(x, l dz)− EEE2(x, l dz)× HHH1(x, l dz)) · ẑzz dx

−
∫ w

0

(
EEE1(x, l′ dz)× HHH2(x, l′ dz)− EEE2(x, l′ dz)× HHH1(x, l′ dz)

)
· ẑzz dx = 0 (49)

where the fields are assumed to satisfy the periodic boundary condition with period w and ẑzz
denotes the unit vector along the positive z-axis. The Cartesian components of the fields are
expressed in the Fourier series expansions. Then, Eq. (49) yields

〈eee1,y(l dz)|hhh2,x(l dz)〉 − 〈eee2,y(l dz)|hhh1,x(l dz)〉
− 〈eee1,y(l′ dz)|hhh2,x(l′ dz)〉+ 〈eee2,y(l′ dz)|hhh1,x(l′ dz)〉 = 0 (50)

for the TE-polarization, and

〈eee1,x(l dz)|hhh2,y(l dz)〉 − 〈eee2,x(l dz)|hhh1,y(l dz)〉
− 〈eee1,x(l′ dz)|hhh2,y(l′ dz)〉+ 〈eee2,x(l′ dz)|hhh1,y(l′ dz)〉 = 0 (51)

for the TM-polarization. For example, eee1,y(z) denotes the column matrix of the Fourier coeffi-
cients corresponding to the y-component of EEE1(x,z). Also, the angle brackets denote an inner
product defined by

〈aaa|bbb〉 ≡
2N+1

∑
n=1

(aaa)n (bbb)−n+2N+2 (52)

where aaa and bbb are vectors of length 2N + 1. Equations (50) and (51) represent Lorentz’s recip-
rocal theorem in the Fourier space.
We choose the mth-order Floquet-mode propagating in the +z-direction as the first fields
(EEE1, HHH1) and the m′th-order Floquet-mode propagating in the ±z-direction as the second

fields (EEE2, HHH2). The propagation constants η
(h)
m and η

(h)
m′ are assumed to be equal only when

m = m′. Then, for the TE-polarization, we use the following column matrices:
(

eee1,y(l dz)
hhh1,x(l dz)

)
= b(e,+)

m (l dz)

(
eeey,m
hhhx,m

)
(53)

(
eee2,y(l dz)
hhh2,x(l dz)

)
= b(e,±)

m′ (l dz)

(
eeey,m′

±hhhx,m′

)
(54)

for any integer l. Substituting into Eq. (50) and using Eq. (47), we obtain
[

1 − ei(l′−l)
(

η
(e)
m ±η

(e)
m′

)
dz

](
〈eeey,m|hhhx,m′ 〉 ∓ 〈eeey,m′ |hhhx,m〉

)
= 0. (55)

This relation should hold for any integers l and l′. Since η
(h)
m + η

(h)
m′ �= n kd for any integer n,

we have

〈eeey,m|hhhx,m′ 〉 = 〈eeey,m′ |hhhx,m〉. (56)

Also, since η
(h)
m − η

(h)
m′ = n kd for any integer n only when m = m′, we derive the following

relation:

〈eeey,m|hhhx,m′ 〉 = δm,m′ 〈eeey,m|hhhx,m〉. (57)

Following the similar process, the relation for the TM-polarization is derived as

〈eeex,m|hhhy,m′ 〉 = δm,m′ 〈eeex,m|hhhy,m〉. (58)
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b(p,−)
m (z) = b(p)

m+2N+1(z) (40)

for m = 1, . . . ,2N + 1. Then b(p,±)
m (z) gives the amplitude of the mth-order Floquet-mode prop-

agating in the ±z-direction. We rewrite the Fourier coefficients of the modal profile functions
corresponding to the mth-order Floquet-modes propagating in the +z-direction as follows:

(
eeey,m
hhhx,m

)
= QQQ(e)

s rrr(e)m (41)
(

hhhy,m
eeex,m

)
= QQQ(h)

s rrr(h)m (42)

for m = 1, . . . ,2N + 1. Considering Eqs. (19), (20), and (38), the coefficients of the modal profile
functions corresponding to the mth-order Floquet-modes propagating in the −z-direction are
given by

(
eeey,m
−hhhx,m

)
= QQQ(e)

s rrr(e)m+2N+1 (43)
(

hhhy,m
−eeex,m

)
= QQQ(h)

s rrr(h)m+2N+1. (44)

The coefficients at z = l dz for any integer l are expressed as follows:

(
eeey(l dz)
hhhx(l dz)

)
=

2N+1

∑
m=1

b(e,+)
m (l dz)

(
eeey,m
hhhx,m

)
+

2N+1

∑
m=1

b(e,−)
m (l dz)

(
eeey,m
−hhhx,m

)
(45)

(
hhhy(l dz)
eeex(l dz)

)
=

2N+1

∑
m=1

b(h,+)
m (l dz)

(
hhhy,m
eeex,m

)
+

2N+1

∑
m=1

b(h,−)
m (l dz)

(
hhhy,m
−eeex,m

)
(46)

from Eqs. (15), (16), and (28). This gives the Floquet-mode expansion representation for
the fields at z = l dz in the Fourier space. From Eqs. (30), (31), and (37), the amplitudes

{b(p,±)
m (z)}2N+1

m=1 have the following dependence:

b(p,±)
m (l′ dz) = b(p,±)

m (l dz) e±i(l′−l)η(p)
m dz (47)

for any integers l and l′.
Here, two field distributions (EEE1, HHH1) and (EEE2, HHH2) are known to satisfy Lorentz’s reciprocal
theorem:

∇ · (EEE1(x,z)× HHH2(x,z)− EEE2(x,z)× HHH1(x,z)) = 0. (48)

Integrating over the layer between z = l dz and z = l′ dz for any integers l, l′ and using the
Gauss theorem, we may obtain the following relation:

∫ w

0
(EEE1(x, l dz)× HHH2(x, l dz)− EEE2(x, l dz)× HHH1(x, l dz)) · ẑzz dx

−
∫ w

0

(
EEE1(x, l′ dz)× HHH2(x, l′ dz)− EEE2(x, l′ dz)× HHH1(x, l′ dz)

)
· ẑzz dx = 0 (49)

where the fields are assumed to satisfy the periodic boundary condition with period w and ẑzz
denotes the unit vector along the positive z-axis. The Cartesian components of the fields are
expressed in the Fourier series expansions. Then, Eq. (49) yields

〈eee1,y(l dz)|hhh2,x(l dz)〉 − 〈eee2,y(l dz)|hhh1,x(l dz)〉
− 〈eee1,y(l′ dz)|hhh2,x(l′ dz)〉+ 〈eee2,y(l′ dz)|hhh1,x(l′ dz)〉 = 0 (50)

for the TE-polarization, and

〈eee1,x(l dz)|hhh2,y(l dz)〉 − 〈eee2,x(l dz)|hhh1,y(l dz)〉
− 〈eee1,x(l′ dz)|hhh2,y(l′ dz)〉+ 〈eee2,x(l′ dz)|hhh1,y(l′ dz)〉 = 0 (51)

for the TM-polarization. For example, eee1,y(z) denotes the column matrix of the Fourier coeffi-
cients corresponding to the y-component of EEE1(x,z). Also, the angle brackets denote an inner
product defined by

〈aaa|bbb〉 ≡
2N+1

∑
n=1

(aaa)n (bbb)−n+2N+2 (52)

where aaa and bbb are vectors of length 2N + 1. Equations (50) and (51) represent Lorentz’s recip-
rocal theorem in the Fourier space.
We choose the mth-order Floquet-mode propagating in the +z-direction as the first fields
(EEE1, HHH1) and the m′th-order Floquet-mode propagating in the ±z-direction as the second

fields (EEE2, HHH2). The propagation constants η
(h)
m and η

(h)
m′ are assumed to be equal only when

m = m′. Then, for the TE-polarization, we use the following column matrices:
(

eee1,y(l dz)
hhh1,x(l dz)

)
= b(e,+)

m (l dz)

(
eeey,m
hhhx,m

)
(53)

(
eee2,y(l dz)
hhh2,x(l dz)

)
= b(e,±)

m′ (l dz)

(
eeey,m′

±hhhx,m′

)
(54)

for any integer l. Substituting into Eq. (50) and using Eq. (47), we obtain
[

1 − ei(l′−l)
(

η
(e)
m ±η

(e)
m′

)
dz

](
〈eeey,m|hhhx,m′ 〉 ∓ 〈eeey,m′ |hhhx,m〉

)
= 0. (55)

This relation should hold for any integers l and l′. Since η
(h)
m + η

(h)
m′ �= n kd for any integer n,

we have

〈eeey,m|hhhx,m′ 〉 = 〈eeey,m′ |hhhx,m〉. (56)

Also, since η
(h)
m − η

(h)
m′ = n kd for any integer n only when m = m′, we derive the following

relation:

〈eeey,m|hhhx,m′ 〉 = δm,m′ 〈eeey,m|hhhx,m〉. (57)

Following the similar process, the relation for the TM-polarization is derived as

〈eeex,m|hhhy,m′ 〉 = δm,m′ 〈eeex,m|hhhy,m〉. (58)
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Equations (57) and (58) represent the orthogonal relations of the Floquet-modes.
As mentioned before, the coefficient matrices of the fields at z = l dz for any integer
l are expressed by Eqs. (45) and (46). Calculating 〈eeey(l dz)|hhhx,m′ 〉 ± 〈eeey,m′ |hhhx(l dz)〉 and
〈eeex(l dz)|hhhy,m′ 〉 ± 〈eeex,m′ |hhhy(l dz)〉 for the TE- and the TM-polarizations, respectively, the or-
thogonal relations (57) and (58) yield the amplitudes of the Floquet-modes as

b(e,±)
m (l dz) =

〈eeey(l dz)|hhhx,m〉 ± 〈eeey,m|hhhx(l dz)〉
2 〈eeey,m|hhhx,m〉

(59)

for the TE-polarization, and

b(h,±)
m (l dz) =

±〈eeex(l dz)|hhhy,m〉+ 〈eeex,m|hhhy(l dz)〉
2 〈eeex,m|hhhy,m〉

(60)

for the TM-polarization.

4. Discontinuities in Photonic Crystal Waveguides

Next, we consider nonuniform structures formed by defects in a photonic crystal as shown in
Fig. 4. The fields are assumed to be well confined in 0 < x < w and approximated by periodic
functions of x with the period w as same with in the previous sections. The structure is decom-
posed into three sections. The regions z < 0 and z > h (h = L dz) are input/output waveguide
sections consisting of the straight line defects, while the region 0 < z < h is a transition section
where the periodicity breaks. The structure is considered as a series of step-transitions of the
photonic crystal waveguides and we apply the S-matrix propagation algorithm(Li, 1996a).
For p = e, h, the matrices RRR(p) given by Eq. (29) and the Floquet-modal amplitudes

{b(p,±)
m (z)}2N+1

m=1 given by Eqs. (39), (40) for the regions (l − 1)dz < z < l dz (l = 0, . . . , L + 1)

are denoted by RRR(p,l) and {b(p,l,±)
m (z)}2N+1

m=1 , respectively. Also, we use the column matrix

bbb(p,l,±)(z) whose mth-component is b(p,l,±)
m (z). Considering bbb(p,l,±)(z) gives the amplitudes

Fig. 4. Nonuniform structure formed by defects in photonic crystal.

of the Floquet-modes propagating in the ±z-direction, the S-matrix of the region 0 < z < l dz
are defined by

(
bbb(p,0,−)(0)

bbb(p,l+1,+)(l dz)

)
=


SSS(p)

l,11 SSS(p)
l,12

SSS(p)
l,21 SSS(p)

l,22




(
bbb(p,0,+)(0)

bbb(p,l+1,−)(l dz)

)
(61)

where SSS(p)
l,11, SSS(p)

l,12, SSS(p)
l,21, and SSS(p)

l,22 are (2N + 1)× (2N + 1) square submatrices. The boundary
condition at z = l dz (l = 0, . . . , L) is matched by equating the Fourier coefficients of tangential
field components in both sides of the step-transition, and yields

(
bbb(p,l+1,+)(l dz)

bbb(p,l+1,−)(l dz)

)
=

(
GGG(p,l)

11 GGG(p,l)
12

GGG(p,l)
21 GGG(p,l)

22

)(
bbb(p,l,+)(l dz)

bbb(p,l,−)(l dz)

)
(62)

with
(

GGG(p,l)
11 GGG(p,l)

12
GGG(p,l)

21 GGG(p,l)
22

)
= RRR(p,l+1)−1

RRR(p,l). (63)

From Eq. (62) for l = 0, the initial S-matrices are derived as follows:

SSS(p)
0,12 = GGG(p,0)

22

−1
(64)

SSS(p)
0,11 = −SSS(p)

0,12 GGG(p,0)
21 (65)

SSS(p)
0,21 = GGG(p,0)

11 + GGG(p,0)
12 SSS(p)

0,11 (66)

SSS(p)
0,22 = GGG(p,0)

12 SSS(p)
0,12. (67)

Also, Eq. (47) gives the following relations:

bbb(p,l,+)(l dz) = DDD(p,l) bbb(p,l,+)((l − 1)dz) (68)

bbb(p,l,−)((l − 1)dz) = DDD(p,l) bbb(p,l,−)(l dz) (69)
(

DDD(p,l)
)

n,m
= δn,m ei η

(p,l)
m dz (70)

for 1, . . . , L, where {η
(p,l)
m }2N+1

m=1 are the propagation constants of the Floquet-modes in each

region (l − 1)dz < z < l dz. When the S-matrices SSS(p)
l−1,11, SSS(p)

l−1,12, SSS(p)
l−1,21, and SSS(p)

l−1,22 are given,

the S-matrices SSS(p)
l,11, SSS(p)

l,12, SSS(p)
l,21, and SSS(p)

l,22 are derived from Eqs. (61), (62), (68), and (69) as
follows:

SSS(p)
l,12 = SSS(p)

l−1,12 DDD(p,l) WWW(p)
l,1

−1
(71)

SSS(p)
l,11 = SSS(p)

l−1,11 − SSS(p)
l,12 GGG(p,l)

21 DDD(p,l) SSS(p)
l−1,21 (72)

SSS(p)
l,22 = WWW(p)

l,2 WWW(p)
l,1

−1
(73)

SSS(p)
l,21 =

(
GGG(p,l)

11 − SSS(p)
l,22 GGG(p,l)

21

)
DDD(p,l) SSS(p)

l−1,21 (74)
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Equations (57) and (58) represent the orthogonal relations of the Floquet-modes.
As mentioned before, the coefficient matrices of the fields at z = l dz for any integer
l are expressed by Eqs. (45) and (46). Calculating 〈eeey(l dz)|hhhx,m′ 〉 ± 〈eeey,m′ |hhhx(l dz)〉 and
〈eeex(l dz)|hhhy,m′ 〉 ± 〈eeex,m′ |hhhy(l dz)〉 for the TE- and the TM-polarizations, respectively, the or-
thogonal relations (57) and (58) yield the amplitudes of the Floquet-modes as
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m (l dz) =
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2 〈eeey,m|hhhx,m〉

(59)

for the TE-polarization, and

b(h,±)
m (l dz) =

±〈eeex(l dz)|hhhy,m〉+ 〈eeex,m|hhhy(l dz)〉
2 〈eeex,m|hhhy,m〉

(60)

for the TM-polarization.

4. Discontinuities in Photonic Crystal Waveguides

Next, we consider nonuniform structures formed by defects in a photonic crystal as shown in
Fig. 4. The fields are assumed to be well confined in 0 < x < w and approximated by periodic
functions of x with the period w as same with in the previous sections. The structure is decom-
posed into three sections. The regions z < 0 and z > h (h = L dz) are input/output waveguide
sections consisting of the straight line defects, while the region 0 < z < h is a transition section
where the periodicity breaks. The structure is considered as a series of step-transitions of the
photonic crystal waveguides and we apply the S-matrix propagation algorithm(Li, 1996a).
For p = e, h, the matrices RRR(p) given by Eq. (29) and the Floquet-modal amplitudes

{b(p,±)
m (z)}2N+1

m=1 given by Eqs. (39), (40) for the regions (l − 1)dz < z < l dz (l = 0, . . . , L + 1)

are denoted by RRR(p,l) and {b(p,l,±)
m (z)}2N+1

m=1 , respectively. Also, we use the column matrix

bbb(p,l,±)(z) whose mth-component is b(p,l,±)
m (z). Considering bbb(p,l,±)(z) gives the amplitudes

Fig. 4. Nonuniform structure formed by defects in photonic crystal.

of the Floquet-modes propagating in the ±z-direction, the S-matrix of the region 0 < z < l dz
are defined by

(
bbb(p,0,−)(0)

bbb(p,l+1,+)(l dz)

)
=


SSS(p)

l,11 SSS(p)
l,12

SSS(p)
l,21 SSS(p)

l,22




(
bbb(p,0,+)(0)

bbb(p,l+1,−)(l dz)

)
(61)

where SSS(p)
l,11, SSS(p)

l,12, SSS(p)
l,21, and SSS(p)

l,22 are (2N + 1)× (2N + 1) square submatrices. The boundary
condition at z = l dz (l = 0, . . . , L) is matched by equating the Fourier coefficients of tangential
field components in both sides of the step-transition, and yields

(
bbb(p,l+1,+)(l dz)

bbb(p,l+1,−)(l dz)

)
=

(
GGG(p,l)

11 GGG(p,l)
12

GGG(p,l)
21 GGG(p,l)

22

)(
bbb(p,l,+)(l dz)

bbb(p,l,−)(l dz)

)
(62)

with
(

GGG(p,l)
11 GGG(p,l)

12
GGG(p,l)

21 GGG(p,l)
22

)
= RRR(p,l+1)−1

RRR(p,l). (63)

From Eq. (62) for l = 0, the initial S-matrices are derived as follows:

SSS(p)
0,12 = GGG(p,0)

22

−1
(64)

SSS(p)
0,11 = −SSS(p)

0,12 GGG(p,0)
21 (65)

SSS(p)
0,21 = GGG(p,0)

11 + GGG(p,0)
12 SSS(p)

0,11 (66)

SSS(p)
0,22 = GGG(p,0)

12 SSS(p)
0,12. (67)

Also, Eq. (47) gives the following relations:

bbb(p,l,+)(l dz) = DDD(p,l) bbb(p,l,+)((l − 1)dz) (68)

bbb(p,l,−)((l − 1)dz) = DDD(p,l) bbb(p,l,−)(l dz) (69)
(

DDD(p,l)
)

n,m
= δn,m ei η

(p,l)
m dz (70)

for 1, . . . , L, where {η
(p,l)
m }2N+1

m=1 are the propagation constants of the Floquet-modes in each

region (l − 1)dz < z < l dz. When the S-matrices SSS(p)
l−1,11, SSS(p)

l−1,12, SSS(p)
l−1,21, and SSS(p)

l−1,22 are given,

the S-matrices SSS(p)
l,11, SSS(p)

l,12, SSS(p)
l,21, and SSS(p)

l,22 are derived from Eqs. (61), (62), (68), and (69) as
follows:

SSS(p)
l,12 = SSS(p)

l−1,12 DDD(p,l) WWW(p)
l,1

−1
(71)

SSS(p)
l,11 = SSS(p)

l−1,11 − SSS(p)
l,12 GGG(p,l)

21 DDD(p,l) SSS(p)
l−1,21 (72)

SSS(p)
l,22 = WWW(p)

l,2 WWW(p)
l,1

−1
(73)

SSS(p)
l,21 =

(
GGG(p,l)

11 − SSS(p)
l,22 GGG(p,l)

21

)
DDD(p,l) SSS(p)

l−1,21 (74)
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with

WWW(p)
l,1 = GGG(p,l)

22 + GGG(p,l)
21 DDD(p,l) SSS(p)

l−1,22 DDD(p,l) (75)

WWW(p)
l,2 = GGG(p,l)

12 + GGG(p,l)
11 DDD(p,l) SSS(p)

l−1,22 DDD(p,l). (76)

Consequently, the S-matrices SSS(p)
L,11, SSS(p)

L,12, SSS(p)
L,21, and SSS(p)

L,22 for the entire transition section are
obtained by the initial matrices (64)–(67) and the recursive relations (71)–(76).
The proposed method has been used to analyze several fundamental photonic crystal circuit
components(Yasumoto & Watanabe, 2008a;b). The photonic crystal consists of identical rect-
angular cylinders situated parallel in rectangular lattice. The permittivities of the surround-
ing medium and the cylinders are εs = ε0 and εc = 12.25 ε0. The dimensions of the cylinders
are ax = az = 0.2

√
π dx and the lattice constants are dx = dz = 340µm. We consider the TE-

polarized fields, and the photonic crystal waveguides formed by a straight line defect in the
photonic crystal support only one guided Floquet-mode.
First, we consider a directional coupler with the coupling length with h = 10dz as shown in
Fig. 5(a). The wavelength in free space and the artificial periodicity for FSEM are chosen as
λ0 = 1mm and w = 20dx. The incident wave is the guided Floquet-mode of the uniform
waveguide in z < 0. If the guided mode is arranged to be the first-order mode, this incident
condition is given as

b(e,0,+)
m (0) = δm,1 (77)

b(e,L+1,−)
m (h) = 0 (78)

for m = 1, . . . ,2N + 1. Let eee(l)y,m and hhh(l)x,m denote the Fourier coefficient matrices of the modal
profile functions corresponding to the mth-order Floquet modes in each region (l − 1)dz <
z < l dz. Then, the transmitted and the reflected powers are respectively calculated by
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Fig. 5. Photonic crystal direction couplers: (a) structure under consideration and (b) conver-
gence of the normalized reflection and transmitted powers as functions of the truncation order
N.

(s(e,L+1)
1 /s(e,0)

1 ) |b(e,L+1,+)
1 (h)|2 and |b(e,0,−)

1 (0)|2 with s(e,l)
m = −w�(eee(l)y,m · hhh(l)x,m

∗
)/2, and they

are shown in Fig. 5(b) as functions of the truncation order N of the Fourier series expansions.
We can see that a good convergence is obtained for N � 4w/dx.
Figures 6 and 7 are the results of the photonic crystal waveguide filters. The filters are formed
with resonant cavities on the defect layers as shown in Figs. 6(a) and 7(a), and the power
transmission and reflection spectra through the resonant cavities are plotted in Figs. 6(b) and
7(b) as functions of the wavelength λ0. It is seen that the transmission spectra have resonance
peaks at around λ0 = 0.91mm. Since the resonant cavity in Fig. 7 is weakly coupled with the
feed waveguides, its resonance peak is much sharper than that shown in Fig. 6.
The present formulation is also applied to photonic crystal waveguide cranks shown in
Figs. 8(a) and 9(a), in which wave propagates perpendicular partially to the z-direction and
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Fig. 6. Photonic crystal waveguide filter with a resonant cavity strongly coupled to the feed
waveguides: (a) structure under consideration and (b) power transmission spectra.
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Fig. 7. Photonic crystal waveguide filter with a resonant cavity weakly coupled to the feed
waveguides: (a) structure under consideration and (b) power transmission spectra. (Repro-
duced from K. Yasumoto and K. Watanabe, International Journal of Microwave and Optical Tech-
nology, 3, 397–403, 2008, with courtesy of ISRAMT/IJMOT.)
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with

WWW(p)
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22 + GGG(p,l)
21 DDD(p,l) SSS(p)

l−1,22 DDD(p,l) (75)
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l−1,22 DDD(p,l). (76)

Consequently, the S-matrices SSS(p)
L,11, SSS(p)

L,12, SSS(p)
L,21, and SSS(p)

L,22 for the entire transition section are
obtained by the initial matrices (64)–(67) and the recursive relations (71)–(76).
The proposed method has been used to analyze several fundamental photonic crystal circuit
components(Yasumoto & Watanabe, 2008a;b). The photonic crystal consists of identical rect-
angular cylinders situated parallel in rectangular lattice. The permittivities of the surround-
ing medium and the cylinders are εs = ε0 and εc = 12.25 ε0. The dimensions of the cylinders
are ax = az = 0.2

√
π dx and the lattice constants are dx = dz = 340µm. We consider the TE-

polarized fields, and the photonic crystal waveguides formed by a straight line defect in the
photonic crystal support only one guided Floquet-mode.
First, we consider a directional coupler with the coupling length with h = 10dz as shown in
Fig. 5(a). The wavelength in free space and the artificial periodicity for FSEM are chosen as
λ0 = 1mm and w = 20dx. The incident wave is the guided Floquet-mode of the uniform
waveguide in z < 0. If the guided mode is arranged to be the first-order mode, this incident
condition is given as

b(e,0,+)
m (0) = δm,1 (77)

b(e,L+1,−)
m (h) = 0 (78)

for m = 1, . . . ,2N + 1. Let eee(l)y,m and hhh(l)x,m denote the Fourier coefficient matrices of the modal
profile functions corresponding to the mth-order Floquet modes in each region (l − 1)dz <
z < l dz. Then, the transmitted and the reflected powers are respectively calculated by
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gence of the normalized reflection and transmitted powers as functions of the truncation order
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)/2, and they

are shown in Fig. 5(b) as functions of the truncation order N of the Fourier series expansions.
We can see that a good convergence is obtained for N � 4w/dx.
Figures 6 and 7 are the results of the photonic crystal waveguide filters. The filters are formed
with resonant cavities on the defect layers as shown in Figs. 6(a) and 7(a), and the power
transmission and reflection spectra through the resonant cavities are plotted in Figs. 6(b) and
7(b) as functions of the wavelength λ0. It is seen that the transmission spectra have resonance
peaks at around λ0 = 0.91mm. Since the resonant cavity in Fig. 7 is weakly coupled with the
feed waveguides, its resonance peak is much sharper than that shown in Fig. 6.
The present formulation is also applied to photonic crystal waveguide cranks shown in
Figs. 8(a) and 9(a), in which wave propagates perpendicular partially to the z-direction and
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Fig. 6. Photonic crystal waveguide filter with a resonant cavity strongly coupled to the feed
waveguides: (a) structure under consideration and (b) power transmission spectra.
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Fig. 7. Photonic crystal waveguide filter with a resonant cavity weakly coupled to the feed
waveguides: (a) structure under consideration and (b) power transmission spectra. (Repro-
duced from K. Yasumoto and K. Watanabe, International Journal of Microwave and Optical Tech-
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Fig. 8. Conventional crank of the photonic crystal waveguide: (a) structure under consider-
ation and (b) power transmission spectra. (Reproduced from K. Yasumoto and K. Watanabe,
Proc. of CJMW2008, 3–8, 2008, with courtesy of IEICE.)
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Fig. 9. Photonic crystal waveguide crank with two resonant cavities: (a) structure under con-
sideration and (b) power transmission spectra. (Reproduced from K. Yasumoto and K. Watan-
abe, Proc. of CJMW2008, 3–8, 2008, with courtesy of IEICE.)

the artificial periodicity is chosen as w = 17dx. The conventional crank has no resonance in
the transmission and the reflection spectra as shown in Fig. 8(b). However, when two resonant
cavities are introduced in the crank, there appear three resonant peaks in the transmission
and the reflection spectra as shown in Fig. 9(b). The center peak corresponds to the resonance
wavelength of each isolated cavity (see Fig. 6), whereas other two peaks seem to represent the
resonant coupling between two cavities.
Next, we consider the photonic crystal waveguide branches shown in Figs. 10(a), 11(a), and
12(a). The incident wave is the guided Floquet-mode of the uniform waveguide in z < 0
and, then, this incident condition is also given by Eqs. (77) and (78). In these structures, the
section z > h consists of two parallel waveguides, and we are interested in the transmitted
power for each waveguide. Here we denote the upper waveguide by “1” and the lower one
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Fig. 10. Symmetric branch of the photonic crystal waveguide: (a) structure under considera-
tion and (b) power transmission spectra.

(a)

0

0.2

0.4

0.6

0.8

1

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

T
ra

n
sm

it
te

d
/R

ef
le

ct
ed

 P
ow

er

Wavelength λ0 [mm]

Reflected Power

Transmitted Power 2

Transmitted Power 1

(b)
Fig. 11. Asymmetric branch of the photonic crystal waveguide: (a) structure under consider-
ation and (b) power transmission spectra.
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Fig. 12. Asymmetric branch of the photonic crystal waveguide with a resonant cavity: (a)
structure under consideration and (b) power transmission spectra. (Reproduced from K. Ya-
sumoto and K. Watanabe, Proc. of CJMW2008, 3–8, 2008, with courtesy of IEICE.)
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the artificial periodicity is chosen as w = 17dx. The conventional crank has no resonance in
the transmission and the reflection spectra as shown in Fig. 8(b). However, when two resonant
cavities are introduced in the crank, there appear three resonant peaks in the transmission
and the reflection spectra as shown in Fig. 9(b). The center peak corresponds to the resonance
wavelength of each isolated cavity (see Fig. 6), whereas other two peaks seem to represent the
resonant coupling between two cavities.
Next, we consider the photonic crystal waveguide branches shown in Figs. 10(a), 11(a), and
12(a). The incident wave is the guided Floquet-mode of the uniform waveguide in z < 0
and, then, this incident condition is also given by Eqs. (77) and (78). In these structures, the
section z > h consists of two parallel waveguides, and we are interested in the transmitted
power for each waveguide. Here we denote the upper waveguide by “1” and the lower one
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structure under consideration and (b) power transmission spectra. (Reproduced from K. Ya-
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by “2.” Let eeey,ν,m and ±hhhx,ν,m be the Floquet coefficient matrices of the modal profile func-
tions corresponding to the mth-order Floquet-modes of the isolated waveguides ν (ν = 1,2)

propagating in the ±z-direction, and b(e,l,±)
ν,m (z) be the associated modal amplitudes for the

regions (l − 1)dz < z < l dz (l = 0, . . . , L + 1). From Eqs. (45) and (59), the relation between the
amplitudes of the isolated waveguide modes and the compound modes are derived as

b(e,l,±)
ν,m (l′ dz) =

2N+1

∑
m′=1

b(e,l,±)
m′ (l′ dz)

〈eee(l)y,m′ |hhhx,ν,m〉+ 〈eeey,ν,m|hhh(l)x,m′ 〉

2 〈eeey,ν,m|hhhx,ν,m〉
(79)

where the counter directional couplings are ignored. If the guided mode is arranged to be
the first-order mode, the transmitted powers for the waveguides ν are therefore calculated

by (s(e)ν,1/s(e,0)
1 ) |b(e,L+1,+)

ν,1 (h)|2 with s(e)ν,1 = −w�(eeey,ν,1 · hhh∗x,ν,1)/2. The transmitted and the re-
flected powers for the conventional branches are shown in Figs. 10(b), 11(b) as functions of
the wavelength. It is seen that the spectra have no sharp resonant peak. On the other hand,
Fig. 12(b) shows the spectra for a branch with a resonant cavity. The input power is dropped
from the waveguide 1 to the waveguide 2 through the resonance, and almost equally divided
into two transmission ports at the resonant wavelength with a small reflection.
The last examples are photonic crystal waveguide couplers with resonant cavities as shown
in Figs. 13(a) and 14(a). The incident wave is the guided Floquet-mode of the waveguide 1 in
isolation and comes from z < 0. If the guided mode is arranged to the first-order mode, the
incident condition is given as

b(e,0,+)
m (0) =

〈eeey,1,1|hhh
(0)
x,m〉+ 〈eee(0)y,m|hhhx,1,1〉

2 〈eee(0)y,m|hhh
(0)
x,m〉

(80)

b(e,L+1,−)
m (h) = 0. (81)

Then the transmitted and the reflected powers for the isolated waveguides ν are calculated

by (s(e)ν,1/s(e)1,1) |b
(e,L+1,+)
ν,1 (h)|2 and (s(e)ν,1/s(e)1,1) |b

(e,0,−)
ν,1 (0)|2, respectively. The transmitted and

(a)

0

0.2

0.4

0.6

0.8

1

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

T
ra

n
sm

it
te

d
/R

ef
le

ct
ed

 P
ow

er

Wavelength λ0 [mm]

Transmitted Power 2
Reflected Power 1
Reflected Power 2

Transmitted Power 1

(b)
Fig. 13. Photonic crystal waveguide coupler with a resonant cavity: (a) structure under consid-
eration and (b) power transmission spectra. (Reproduced from K. Yasumoto and K. Watanabe,
Proc. of CJMW2008, 3–8, 2008, with courtesy of IEICE.)
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Fig. 14. Photonic crystal waveguide coupler with two resonant cavities: (a) structure under
consideration and (b) power transmission spectra.

the reflected powers for the photonic crystal waveguide coupler with one resonant cavity are
shown in Fig. 13(b) as functions of the wavelength. For this configuration, three lines except
for the solid lines overlap though it is indiscernible. The input power is equally divided into
four output ports at the resonant to the cavity. Figure 14(b) shows the spectra of the coupler
with two resonant cavities. Two reflection spectra still overlap but the transmission spectrum
of the isolated waveguide 2 separates from them. In this case, about 80 percent of the input
power is dropped from the waveguide 1 to the waveguide 2 through the resonance.

5. Conclusion

This chapter has presented the Fourier series expansion method for analyzing the photonic
crystal circuit components. The method derives the Floquet-modes by the eigenvalue anal-
ysis of the transfer matrix for one periodicity cell in the propagation direction, and the in-
put/output relations are expressed by the S-matrix for the Floquet-modes. The numerical
examples for photonic crystal filters, cranks, branches, and couplers have been presented to
demonstrate the effectiveness of the present method. We have dealt with the photonic crystals
consisting of rectangular cylinders only. However, the method is also applied to the photonic
crystals consisting of circular cylinders by introducing the staircase approximation or using
a numerical integration to derive the transfer matrix for one periodicity cell. Also, when the
number of rows of cylinders on each side of the waveguide is not enough, the radiation loss
can be taken into account by introducing the perfectly matched layer near the artificial bound-
aries(Li & Ho, 2004; Yasumoto et al., 2002; Zhang & Jia, 2007).
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by “2.” Let eeey,ν,m and ±hhhx,ν,m be the Floquet coefficient matrices of the modal profile func-
tions corresponding to the mth-order Floquet-modes of the isolated waveguides ν (ν = 1,2)

propagating in the ±z-direction, and b(e,l,±)
ν,m (z) be the associated modal amplitudes for the

regions (l − 1)dz < z < l dz (l = 0, . . . , L + 1). From Eqs. (45) and (59), the relation between the
amplitudes of the isolated waveguide modes and the compound modes are derived as

b(e,l,±)
ν,m (l′ dz) =
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∑
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m′ (l′ dz)

〈eee(l)y,m′ |hhhx,ν,m〉+ 〈eeey,ν,m|hhh(l)x,m′ 〉

2 〈eeey,ν,m|hhhx,ν,m〉
(79)

where the counter directional couplings are ignored. If the guided mode is arranged to be
the first-order mode, the transmitted powers for the waveguides ν are therefore calculated

by (s(e)ν,1/s(e,0)
1 ) |b(e,L+1,+)

ν,1 (h)|2 with s(e)ν,1 = −w�(eeey,ν,1 · hhh∗x,ν,1)/2. The transmitted and the re-
flected powers for the conventional branches are shown in Figs. 10(b), 11(b) as functions of
the wavelength. It is seen that the spectra have no sharp resonant peak. On the other hand,
Fig. 12(b) shows the spectra for a branch with a resonant cavity. The input power is dropped
from the waveguide 1 to the waveguide 2 through the resonance, and almost equally divided
into two transmission ports at the resonant wavelength with a small reflection.
The last examples are photonic crystal waveguide couplers with resonant cavities as shown
in Figs. 13(a) and 14(a). The incident wave is the guided Floquet-mode of the waveguide 1 in
isolation and comes from z < 0. If the guided mode is arranged to the first-order mode, the
incident condition is given as

b(e,0,+)
m (0) =

〈eeey,1,1|hhh
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Then the transmitted and the reflected powers for the isolated waveguides ν are calculated
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eration and (b) power transmission spectra. (Reproduced from K. Yasumoto and K. Watanabe,
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Fig. 14. Photonic crystal waveguide coupler with two resonant cavities: (a) structure under
consideration and (b) power transmission spectra.

the reflected powers for the photonic crystal waveguide coupler with one resonant cavity are
shown in Fig. 13(b) as functions of the wavelength. For this configuration, three lines except
for the solid lines overlap though it is indiscernible. The input power is equally divided into
four output ports at the resonant to the cavity. Figure 14(b) shows the spectra of the coupler
with two resonant cavities. Two reflection spectra still overlap but the transmission spectrum
of the isolated waveguide 2 separates from them. In this case, about 80 percent of the input
power is dropped from the waveguide 1 to the waveguide 2 through the resonance.

5. Conclusion

This chapter has presented the Fourier series expansion method for analyzing the photonic
crystal circuit components. The method derives the Floquet-modes by the eigenvalue anal-
ysis of the transfer matrix for one periodicity cell in the propagation direction, and the in-
put/output relations are expressed by the S-matrix for the Floquet-modes. The numerical
examples for photonic crystal filters, cranks, branches, and couplers have been presented to
demonstrate the effectiveness of the present method. We have dealt with the photonic crystals
consisting of rectangular cylinders only. However, the method is also applied to the photonic
crystals consisting of circular cylinders by introducing the staircase approximation or using
a numerical integration to derive the transfer matrix for one periodicity cell. Also, when the
number of rows of cylinders on each side of the waveguide is not enough, the radiation loss
can be taken into account by introducing the perfectly matched layer near the artificial bound-
aries(Li & Ho, 2004; Yasumoto et al., 2002; Zhang & Jia, 2007).

Acknowledgments

This work was supported in part by the 2008 grant from the Japan-Indo Collaboration Project
on “Infrastructural Communication Technologies Supporting Fully Ubiquitous Information
Society.”



Passive	Microwave	Components	and	Antennas114

6. References

Benisty, H. (1996). Modal analysis of optical guides with two-dimensional photonic band-gap
boundaries, J. Appl. Phys. Vol. 79(No. 10): 7483–7492.

Hosono, T., Hinata, T. & Inoue, A. (1982). Numerical analysis of the discontinuities in slab
dielectric waveguides, Radio Sci. Vol. 17(No. 1): 75–83.

Jia, H. & Yasumoto, K. (2006). Modal analysis of two-dimensional photonic-crystal wave-
guides formed by rectangular cylinders using an improved fourier series method,
IEEE Trans. Microwave Theory and Techniques Vol. 54(No. 2): 564–571.

Koshiba, M., Tsuji, Y. & Hikari, M. (2000). Time-domain beam propagation method and its
application to photonic crystal circuits, J. Lightwave Technol. Vol. 18(No. 1): 102–110.

Li, L. (1996a). Formulation and comparison of two recursive matrix algorithms for modeling
layered diffraction gratings, J. Opt. Soc. Am. A Vol. 13(No. 5): 1024–1035.

Li, L. (1996b). Use of fourier series in the analysis of discontinuous periodic structures, J. Opt.
Soc. Am. A Vol. 13(No. 9): 1870–1876.

Li, Z. Y. & Ho, K. M. (2003). Light propagation in semi-infinite photonic crystal and related
waveguide structures, Physical Review B Vol. 68: 155101.

Li, Z. Y. & Ho, K. M. (2004). Anomalous propagation loss in photonic crystal waveguides,
Physical Review Lett. Vol. 92(No. 6): 063904.

Miyamoto, T., Momoda, M. & Yasumoto, K. (2003). Numerical analysis for 3-dimensional
optical waveguides with periodic structures using fourier series expansion method,
IEICE Trans. Electron. Vol. J86-C(No. 6): 591–600. (in Japanese).

Naka, Y. & Ikuno, H. (2002). Analysis of characteristics of optical waveguide devices con-
structed by two-dimensional air-hole type photonic crystal, Proc. Asia-Pacific Eng. Res.
Forum on Microwave and Electromagnetic Theory, pp. 209–218.

Sakoda, K., Ueta, T. & Ohtaka, K. (1997). Numerical analysis of eigenmodes localized at line
defects in photonic lattices, Phys. Rev. B Vol. 56(No. 23): 14905–14908.

Taflove, A. (1995). Computational Electrodynamics: The Finite-Difference Time-Domain Method,
Artech House, Boston.

Tanaka, H., Yamasaki, T. & Hosono, T. (1994). Propagation characteristics of dielectric wave-
guides with slanted grating structure, IEICE Trans. Electron. Vol. E77-C(No. 11): 1820–
1827.

Watanabe, K. & Yasumoto, K. (2009). Accuracy improvement of the fourier series expansion
method for floquet-mode analysis of photonic crystal waveguides, Progress In Elec-
tromagnetics Res. Vol. PIER 92: 209–222.

Yamakita, J., Matsumoto, K. & Rokushima, K. (1993). Analysis of discontinuities in anisotropic
dielectric waveguides, IEICE Technical Report. EMT-93-87 (in Japanese).

Yasumoto, K., Jia, H. & Kai, S. (2004). Rigorous analysis of two-dimensional photonic crystal
waveguides, Proc. URSI Int. Symp. on Electromagnetic Theory, pp. 739–741.

Yasumoto, K., Miyamoto, T. & Momoda, M. (1999). Full-wave analysis of optical waveguides
using periodic boundary conditions, Proc. SPIE Vol. 3666: 170–176.

Yasumoto, K. & Toyama, H. (2001). Formulation for electromagnetic scattering and guidance
by two-dimensional photonic crystals, IEICE Technical Report. OPE2001-93.

Yasumoto, K. & Watanabe, K. (2008a). Analysis of discontinuities in two-dimensional photonic
crystal waveguides using floquet modes concept, Int. J. Microwave and Opt. Technol.
Vol. 3(No. 3): 397–403.

Yasumoto, K. & Watanabe, K. (2008b). Numerical modeling of two-dimensional photonic
crystal circuits using fourier modal method based on floquet modes, Proc. China-
Japan Joint Microwave Conf., pp. 3–8.

Yasumoto, K., Watanabe, K. & Ishihara, J. (2002). Numerical analysis of optical waveguides
with the use of fourier-series expansion method combined with perfectly matched
layer, Microwave Opt. Technol. Lett. Vol. 34(No. 6): 422–426.

Zhang, D. & Jia, H. (2007). Numerical analysis of leaky modes in two-dimensional photonic
crystal waveguides using fourier series expansion method with perfectly matched
layer, IEICE Trans. Electron. Vol. E90-C(No. 3): 613–622.



Numerical	Modeling	of	Photonic	Crystal	Circuits	Using		
Fourier	Series	Expansion	Method	Based	on	Floquet-Modes 115

6. References

Benisty, H. (1996). Modal analysis of optical guides with two-dimensional photonic band-gap
boundaries, J. Appl. Phys. Vol. 79(No. 10): 7483–7492.

Hosono, T., Hinata, T. & Inoue, A. (1982). Numerical analysis of the discontinuities in slab
dielectric waveguides, Radio Sci. Vol. 17(No. 1): 75–83.

Jia, H. & Yasumoto, K. (2006). Modal analysis of two-dimensional photonic-crystal wave-
guides formed by rectangular cylinders using an improved fourier series method,
IEEE Trans. Microwave Theory and Techniques Vol. 54(No. 2): 564–571.

Koshiba, M., Tsuji, Y. & Hikari, M. (2000). Time-domain beam propagation method and its
application to photonic crystal circuits, J. Lightwave Technol. Vol. 18(No. 1): 102–110.

Li, L. (1996a). Formulation and comparison of two recursive matrix algorithms for modeling
layered diffraction gratings, J. Opt. Soc. Am. A Vol. 13(No. 5): 1024–1035.

Li, L. (1996b). Use of fourier series in the analysis of discontinuous periodic structures, J. Opt.
Soc. Am. A Vol. 13(No. 9): 1870–1876.

Li, Z. Y. & Ho, K. M. (2003). Light propagation in semi-infinite photonic crystal and related
waveguide structures, Physical Review B Vol. 68: 155101.

Li, Z. Y. & Ho, K. M. (2004). Anomalous propagation loss in photonic crystal waveguides,
Physical Review Lett. Vol. 92(No. 6): 063904.

Miyamoto, T., Momoda, M. & Yasumoto, K. (2003). Numerical analysis for 3-dimensional
optical waveguides with periodic structures using fourier series expansion method,
IEICE Trans. Electron. Vol. J86-C(No. 6): 591–600. (in Japanese).

Naka, Y. & Ikuno, H. (2002). Analysis of characteristics of optical waveguide devices con-
structed by two-dimensional air-hole type photonic crystal, Proc. Asia-Pacific Eng. Res.
Forum on Microwave and Electromagnetic Theory, pp. 209–218.

Sakoda, K., Ueta, T. & Ohtaka, K. (1997). Numerical analysis of eigenmodes localized at line
defects in photonic lattices, Phys. Rev. B Vol. 56(No. 23): 14905–14908.

Taflove, A. (1995). Computational Electrodynamics: The Finite-Difference Time-Domain Method,
Artech House, Boston.

Tanaka, H., Yamasaki, T. & Hosono, T. (1994). Propagation characteristics of dielectric wave-
guides with slanted grating structure, IEICE Trans. Electron. Vol. E77-C(No. 11): 1820–
1827.

Watanabe, K. & Yasumoto, K. (2009). Accuracy improvement of the fourier series expansion
method for floquet-mode analysis of photonic crystal waveguides, Progress In Elec-
tromagnetics Res. Vol. PIER 92: 209–222.

Yamakita, J., Matsumoto, K. & Rokushima, K. (1993). Analysis of discontinuities in anisotropic
dielectric waveguides, IEICE Technical Report. EMT-93-87 (in Japanese).

Yasumoto, K., Jia, H. & Kai, S. (2004). Rigorous analysis of two-dimensional photonic crystal
waveguides, Proc. URSI Int. Symp. on Electromagnetic Theory, pp. 739–741.

Yasumoto, K., Miyamoto, T. & Momoda, M. (1999). Full-wave analysis of optical waveguides
using periodic boundary conditions, Proc. SPIE Vol. 3666: 170–176.

Yasumoto, K. & Toyama, H. (2001). Formulation for electromagnetic scattering and guidance
by two-dimensional photonic crystals, IEICE Technical Report. OPE2001-93.

Yasumoto, K. & Watanabe, K. (2008a). Analysis of discontinuities in two-dimensional photonic
crystal waveguides using floquet modes concept, Int. J. Microwave and Opt. Technol.
Vol. 3(No. 3): 397–403.

Yasumoto, K. & Watanabe, K. (2008b). Numerical modeling of two-dimensional photonic
crystal circuits using fourier modal method based on floquet modes, Proc. China-
Japan Joint Microwave Conf., pp. 3–8.

Yasumoto, K., Watanabe, K. & Ishihara, J. (2002). Numerical analysis of optical waveguides
with the use of fourier-series expansion method combined with perfectly matched
layer, Microwave Opt. Technol. Lett. Vol. 34(No. 6): 422–426.

Zhang, D. & Jia, H. (2007). Numerical analysis of leaky modes in two-dimensional photonic
crystal waveguides using fourier series expansion method with perfectly matched
layer, IEICE Trans. Electron. Vol. E90-C(No. 3): 613–622.



Passive	Microwave	Components	and	Antennas116



Computer	Aided	Design	of	Waveguide	Devices	by	Mode-Matching	Methods 117

Computer	 Aided	 Design	 of	 Waveguide	 Devices	 by	 Mode-Matching	
Methods

Jorge	A.	Ruiz-Cruz,	Jose	R.	Montejo-Garai	and	Jesus	M.	Rebollar

0

Computer Aided Design of Waveguide
Devices by Mode-Matching Methods

Jorge A. Ruiz-Cruz
Escuela Politecnica Superior, Universidad Autonoma de Madrid

C/ Francisco Tomas y Valiente 11, 28049 Madrid
Spain

Jose R. Montejo-Garai and Jesus M. Rebollar
Dpto. de Electromagnetismo y Teora de Circuitos, Universidad Politecnica de Madrid

Ciudad Universitaria s/n, 28040 Madrid
Spain

1. Introduction

1.1 Waveguide devices and CAD tools
Technology is one of the key issues in the hardware design at the microwave and millimetre
wave band. Its selection depends on many factors such as bandwidth, physical size, losses,
power handling capability and cost. This has led to many different transmission media for
implementing circuits and systems; the planar and the waveguide technologies are two rep-
resentative examples.
The main advantages of planar structures are their small size and simple manufacturing. In
addition, they can be easily integrated with Microwave Integrated Circuits (MIC) and Mono-
lithic Microwave Integrated Circuits (MMIC). The microstrip transmission line is a common
example of this technology, where circuits are made by printing a metallic strip on a dielectric
substrate supported by a ground plane. On the other hand, waveguide devices (the type of
components which will be discussed in this chapter) are constructed on metallic pipes that
may have many forms. The electromagnetic waves are confined to the interior of the waveg-
uiding structure. In contrast to planar devices, they are more cumbersome and bulkier. Their
main advantage is their high power handling capabilities and high quality factor (Q), which
leads to electric responses with lower insertion losses than planar technology components. In
satellite applications, their robustness also becomes an advantage.
One aspect that has significantly modified the design of advanced waveguide components
during the last decades has been the evolution of software modeling and Computer Aided
Design (CAD) tools. Traditionally, the analysis of waveguide devices (such as couplers, filters
or multiplexers) was based on approximate equivalent circuits made up of transmission lines
to represent waveguiding regions and lumped elements (inductors, capacitors, transformers,
resistors, etc.) to model dissipative effects and discontinuities between different transmission
media. Most of the equivalent circuits for waveguide problems were developed at the MIT
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a) c)

d) e)
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f)

Fig. 1. Examples of waveguide devices which can be efficiently modeled by Mode-Matching:
a) bandpass filter; b) square to circular waveguide transformer; c) diplexer with low-pass and
high-pass filters; d) dual-Mode filter with elliptical waveguides; e) ortho-mode transducer
(OMT); f) 5-channel manifold multiplexer.

Radiation Laboratory. These models, together with the advance in synthesis circuit theory,
have brought about the design of many devices.
Nevertheless, the equivalent circuit approach has a number of limitations. The most signifi-
cant is that equivalent circuits are only focused on modeling the fundamental mode response
of the elements in the structure and the localized effect of the higher order modes. How-
ever, the interactions between the higher-order modes of the different elements and other
electromagnetic effects are not taken into account. Thus, this approach leads to discrepancies
between the theoretical predicted response of the device and its actual measurement. The
designed prototypes following this approach hence need a relevant experimental effort and
manual tuning. In a more demanding industrial sector, it seems reasonable to complement
these results with other more precise methods and to evolve towards CAD tools.
New techniques to model microwave devices appear as a consequence of two facts: i) a solid
comprehension of the microwave theory along with numerical methods, and ii) the develop-
ment of computers. The latter allows the implementation of codes that few years ago seemed
unfeasible because of their required computer resources.
There is a great variety of methods to deal with the so-called full-wave analysis of modern mi-
crowave devices (Uher et al., 1993). Among the different alternatives, two basic aspects should
be addressed: i) the efficiency using the computer resources (RAM memory, disk storage and
processor capabilities), and ii) the types of geometries and materials that they can handle. The
methods vary from general numeric techniques (such as the Finite Element Method, Finite
Differences, etc.) to quasi-analytical techniques (such as the Mode-Matching method). There
also hybrid techniques combining different approaches.
Among these different CAD options, those based on Mode-Matching (MM) methods
(Clarricoats & Slinn, 1966), (Drabuwitch, 1966), (Wexler, 1967) are good examples of accu-
rate and efficient tools. The range of problems that they can tackle is more constrained in
comparison with general numeric techniques. Nevertheless, when the characterization of the

device under investigation can be carried out by MM (as for instance those shown in Fig. 1),
the resulting codes are very efficient and facilitate the design of components with sophisti-
cated responses. In fact, this is the objective of this chapter: to present the main concepts of
the MM techniques and to show its application to several designs for common applications.

1.2 Overview of the Mode-Matching (MM) method
The starting point for MM is to segment the problem under analysis in different waveguide
regions (for instance the different rectangular waveguides in Fig. 1.a), where the total electro-
magnetic field is represented by the superposition of modes

�E = ∑n ς+n�E
+
n + ∑n ς−n�E

−
n , �H = ∑n ς+n �H

+
n + ∑n ς−n �H

−
n . (1)

These expansions (different for each waveguide) are constructed in order to represent any
possible field inside each region. The scalar complex amplitudes ς±n are (initially) undeter-
mined. On the other hand, the electromagnetic field of each mode (�E±

n ,�H±
n ) must be known

in advance either analytically (as for the waveguides shown at App. A.5) or numerically (by
means of a suitable numerical method).
The modal expansion (1) provides a formal solution to the Maxwell´s equations for each
waveguide. However, for the complete resolution of the problem, the boundary conditions at
the interface between the different segmented regions must be also fulfilled. A field-matching
procedure is used to impose those boundary conditions, providing a relation between the am-
plitudes ς±n of the modes involved in all the regions. This relation is usually not simple, and
requires some previous computations: the inner cross products between the modal fields.
In order to make a formal representation of the problem under investigation, the modal am-
plitudes in each region are usually collected in vectors. The relation of those vectors is usually
expressed in terms of the Generalized Scattering Matrix (GSM). Other formulations use the
Generalized Admittance or Impedance Matrix (GAM or GIM, respectively) (Conciauro et al.,
1999), which are the natural option when (1) is expressed with equivalent voltages and cur-
rents instead of modal amplitudes. The term Generalized refers to the types of modes used in
(1): propagating and evanescent modes are both required in the series to represent the field.
Their amplitudes at the different regions will be related by the GSM.
As many other numerical methods, some convergence issues will appear in MM. They are
related to the series in (1), which must be truncated to a finite number of modes for compu-
tational purposes. Therefore, the boundary conditions and the amplitudes obtained by MM
will be an approximation whose accuracy will depend on the number of modes retained in
the modal expansions. Moreover, the solution will depend not only on the number of modes
used in the different regions, but also on the relation between them. This problem is known
as the relative convergence problem (Mittra & Lee, 1971), (Vassallo, 1985).
These general ideas are found in the MM of very different problems. In order to see them in a
more detailed form, a specific problem will be treated now: the cascade connection of different
transmission systems. This is the basic structure that can be used to solve more complex
problems with cubic junctions or volume-type structures with more general enclosures. The
theory for the discontinuities will be developed in a unified manner, aiming to highlight the
important aspects of the method not always covered in other text books. The implementation
details will be given as references (as for instance the computation of the inner cross products).
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Fig. 1. Examples of waveguide devices which can be efficiently modeled by Mode-Matching:
a) bandpass filter; b) square to circular waveguide transformer; c) diplexer with low-pass and
high-pass filters; d) dual-Mode filter with elliptical waveguides; e) ortho-mode transducer
(OMT); f) 5-channel manifold multiplexer.

Radiation Laboratory. These models, together with the advance in synthesis circuit theory,
have brought about the design of many devices.
Nevertheless, the equivalent circuit approach has a number of limitations. The most signifi-
cant is that equivalent circuits are only focused on modeling the fundamental mode response
of the elements in the structure and the localized effect of the higher order modes. How-
ever, the interactions between the higher-order modes of the different elements and other
electromagnetic effects are not taken into account. Thus, this approach leads to discrepancies
between the theoretical predicted response of the device and its actual measurement. The
designed prototypes following this approach hence need a relevant experimental effort and
manual tuning. In a more demanding industrial sector, it seems reasonable to complement
these results with other more precise methods and to evolve towards CAD tools.
New techniques to model microwave devices appear as a consequence of two facts: i) a solid
comprehension of the microwave theory along with numerical methods, and ii) the develop-
ment of computers. The latter allows the implementation of codes that few years ago seemed
unfeasible because of their required computer resources.
There is a great variety of methods to deal with the so-called full-wave analysis of modern mi-
crowave devices (Uher et al., 1993). Among the different alternatives, two basic aspects should
be addressed: i) the efficiency using the computer resources (RAM memory, disk storage and
processor capabilities), and ii) the types of geometries and materials that they can handle. The
methods vary from general numeric techniques (such as the Finite Element Method, Finite
Differences, etc.) to quasi-analytical techniques (such as the Mode-Matching method). There
also hybrid techniques combining different approaches.
Among these different CAD options, those based on Mode-Matching (MM) methods
(Clarricoats & Slinn, 1966), (Drabuwitch, 1966), (Wexler, 1967) are good examples of accu-
rate and efficient tools. The range of problems that they can tackle is more constrained in
comparison with general numeric techniques. Nevertheless, when the characterization of the

device under investigation can be carried out by MM (as for instance those shown in Fig. 1),
the resulting codes are very efficient and facilitate the design of components with sophisti-
cated responses. In fact, this is the objective of this chapter: to present the main concepts of
the MM techniques and to show its application to several designs for common applications.

1.2 Overview of the Mode-Matching (MM) method
The starting point for MM is to segment the problem under analysis in different waveguide
regions (for instance the different rectangular waveguides in Fig. 1.a), where the total electro-
magnetic field is represented by the superposition of modes
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These expansions (different for each waveguide) are constructed in order to represent any
possible field inside each region. The scalar complex amplitudes ς±n are (initially) undeter-
mined. On the other hand, the electromagnetic field of each mode (�E±

n ,�H±
n ) must be known

in advance either analytically (as for the waveguides shown at App. A.5) or numerically (by
means of a suitable numerical method).
The modal expansion (1) provides a formal solution to the Maxwell´s equations for each
waveguide. However, for the complete resolution of the problem, the boundary conditions at
the interface between the different segmented regions must be also fulfilled. A field-matching
procedure is used to impose those boundary conditions, providing a relation between the am-
plitudes ς±n of the modes involved in all the regions. This relation is usually not simple, and
requires some previous computations: the inner cross products between the modal fields.
In order to make a formal representation of the problem under investigation, the modal am-
plitudes in each region are usually collected in vectors. The relation of those vectors is usually
expressed in terms of the Generalized Scattering Matrix (GSM). Other formulations use the
Generalized Admittance or Impedance Matrix (GAM or GIM, respectively) (Conciauro et al.,
1999), which are the natural option when (1) is expressed with equivalent voltages and cur-
rents instead of modal amplitudes. The term Generalized refers to the types of modes used in
(1): propagating and evanescent modes are both required in the series to represent the field.
Their amplitudes at the different regions will be related by the GSM.
As many other numerical methods, some convergence issues will appear in MM. They are
related to the series in (1), which must be truncated to a finite number of modes for compu-
tational purposes. Therefore, the boundary conditions and the amplitudes obtained by MM
will be an approximation whose accuracy will depend on the number of modes retained in
the modal expansions. Moreover, the solution will depend not only on the number of modes
used in the different regions, but also on the relation between them. This problem is known
as the relative convergence problem (Mittra & Lee, 1971), (Vassallo, 1985).
These general ideas are found in the MM of very different problems. In order to see them in a
more detailed form, a specific problem will be treated now: the cascade connection of different
transmission systems. This is the basic structure that can be used to solve more complex
problems with cubic junctions or volume-type structures with more general enclosures. The
theory for the discontinuities will be developed in a unified manner, aiming to highlight the
important aspects of the method not always covered in other text books. The implementation
details will be given as references (as for instance the computation of the inner cross products).
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Fig. 2. Basic waveguide step with the modal amplitudes incident and scattered by the discon-
tinuity. The Mode-Matching (MM) method provides its Generalized Scattering Matrix (GSM)
as a building-block to use in more complex structures.

2. Mode-Matching method for waveguide steps

2.1 Waveguide step or discontinuity
The waveguide step or discontinuity problem arises when different transmission systems are
connected in a plane transversal to the propagation direction. The type of transmission sys-
tems considered now are homogeneous cylindrical waveguides connected in the direction of
their longitudinal axis z (described in App. A). The problem is detailed in Fig. 2 and it could
represent, for instance, the discontinuity between two rectangular waveguides in Fig. 1.a or
the discontinuity between a rectangular and a elliptical waveguide in Fig. 1.d. The goal is to
have a representation of this step as a building block characterized by its GSM, which could
be latter used in more complex problems.

2.2 Field-matching procedure
The electromagnetic field at both sides of the discontinuity in Fig. 2 are derived from (1).
For this problem, the boundary conditions involve the fields transversal to z, evaluated at the
discontinuity plane located at z = 0.
The transversal fields are expressed with the amplitudes of the modes incident (a) and scat-
tered (b) by the step:

�E(w)
t

⌋
Aw ,z=0−

=
Nw

∑
n=1

(a(w)
n + b(w)

n )�e(w)
n , �H(w)

t

⌋
Aw ,z=0−

=
Nw

∑
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(a(w)
n − b(w)

n )�h(w)
n (2a)

�E(s)
t

⌋
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=
Ns

∑
m=1

(b(s)m + a(s)m )�e(s)m , �H(s)
t

⌋
As ,z=0+

=
Ns

∑
m=1

(b(s)m − a(s)m )�h(s)
m . (2b)

Each term in the series1 (already truncated to a finite number of modes Nw and Ns in each
waveguide) belongs to a TEM, TE or TM mode, not necessarily propagating at the analysis
frequency. The modes are orthogonal with arbitrary normalization:

∫∫

Ag

�e(g)
n ×�h(g)

m · ẑdS = Q(g)
n δnm, g ≡ w, s, δnm = 1(m = n),0(m �= n). (3)

1 The reversed sign for the amplitudes in the magnetic field of waveguide (s) is because the a,b modal
amplitudes travel in the opoposite direction than their a,b counterpart in waveguide (w). See (30) in
App. A for a more detailed description of the fields and App. A.4 for their normalization.

In this initial formulation it is considered that the cross section of waveguide (s) is completely
included in the one of (w): As ⊆ Aw (the general aperture case is studied later). The Electric
and Magnetic Field Boundary Conditions (EFBC and MFBC, respectively) must be satisfied at
the interface between the two waveguides:




EFBC in Aw: ẑ ×�E(w) =




0, in Ac,z = 0

ẑ ×�E(s) in As,z = 0

MFBC in As: ẑ × �H(w) = ẑ × �H(s), in As,z = 0.

(4)

In order to impose these boundary conditions, a Galerkin method is used. The first step is to

test the EFBC with a generic modal magnetic field �h(w)
j of waveguide (w). The left hand side,

using (2a), leads to

∫∫
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(ẑ ×�E(w)) ·�h(w)
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j ẑdS).

Since the modes are orthogonal, according to (3), the previous equation becomes
∫∫

Aw

(ẑ ×�E(w)) ·�h(w)
j ẑdS = (a(w)

j + b(w)
j )Q(w)

j . (5)

Moreover, the integration in Aw can be divided in two terms, since Aw = As ∪ Ac:
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Taking into account that ẑ ×�E(w) = 0, in Ac,z = 0 and (2b), it is obtained
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(ẑ ×�E(s)) ·�h(w)
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The integral with the modal fields is a complex number called the inner cross product Xmj.
The process for obtaining equations (5) and (6) can be done for any j = 1, . . . , Nw. The result
can be expressed as

Q(w)
j (a(w)

j + b(w)
j ) =

Ns

∑
m=1

Xmj(a(s)m + b(s)m ), j = 1, . . . , Nw. (7)

The second step is to test the MFBC with the modal electric fields�e(w)
i of waveguide (s). The

left hand side provides an equation with the same previous type of inner cross product:

∫∫
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For the right hand side, the orthogonality of the modes in waveguide (s) is applied
∫∫
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(ẑ × �H(w)) ·�e(s)i ẑdS =
∫∫
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(ẑ × �H(s)) ·�e(s)i ẑdS = Q(s)
i (b(s)i − a(s)i ). (9)
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Fig. 2. Basic waveguide step with the modal amplitudes incident and scattered by the discon-
tinuity. The Mode-Matching (MM) method provides its Generalized Scattering Matrix (GSM)
as a building-block to use in more complex structures.

2. Mode-Matching method for waveguide steps

2.1 Waveguide step or discontinuity
The waveguide step or discontinuity problem arises when different transmission systems are
connected in a plane transversal to the propagation direction. The type of transmission sys-
tems considered now are homogeneous cylindrical waveguides connected in the direction of
their longitudinal axis z (described in App. A). The problem is detailed in Fig. 2 and it could
represent, for instance, the discontinuity between two rectangular waveguides in Fig. 1.a or
the discontinuity between a rectangular and a elliptical waveguide in Fig. 1.d. The goal is to
have a representation of this step as a building block characterized by its GSM, which could
be latter used in more complex problems.

2.2 Field-matching procedure
The electromagnetic field at both sides of the discontinuity in Fig. 2 are derived from (1).
For this problem, the boundary conditions involve the fields transversal to z, evaluated at the
discontinuity plane located at z = 0.
The transversal fields are expressed with the amplitudes of the modes incident (a) and scat-
tered (b) by the step:
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Each term in the series1 (already truncated to a finite number of modes Nw and Ns in each
waveguide) belongs to a TEM, TE or TM mode, not necessarily propagating at the analysis
frequency. The modes are orthogonal with arbitrary normalization:
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m · ẑdS = Q(g)
n δnm, g ≡ w, s, δnm = 1(m = n),0(m �= n). (3)

1 The reversed sign for the amplitudes in the magnetic field of waveguide (s) is because the a,b modal
amplitudes travel in the opoposite direction than their a,b counterpart in waveguide (w). See (30) in
App. A for a more detailed description of the fields and App. A.4 for their normalization.

In this initial formulation it is considered that the cross section of waveguide (s) is completely
included in the one of (w): As ⊆ Aw (the general aperture case is studied later). The Electric
and Magnetic Field Boundary Conditions (EFBC and MFBC, respectively) must be satisfied at
the interface between the two waveguides:
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j ẑdS).

Since the modes are orthogonal, according to (3), the previous equation becomes
∫∫

Aw
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j ẑdS = (a(w)

j + b(w)
j )Q(w)

j . (5)

Moreover, the integration in Aw can be divided in two terms, since Aw = As ∪ Ac:
∫∫

Aw
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Equations (8) and (9) can be reproduced for any i = 1, . . . , Ns, providing:

Nw

∑
n=1

Xin(a(w)
n − b(w)

n ) = Q(s)
i (b(s)i − a(s)i ), i = 1, . . . , Ns. (10)

The resulting equations (7) and (10) are better expressed if the amplitudes are arranged in
columns vectors

ag =
[
· · · a(g)

n · · ·
]t

n=1,...,Ng
, bg =

[
· · ·b(g)

n · · ·
]t

n=1,...,Ng
, g ≡ w, s.

The normalization constants are collected in the diagonal matrices

Qg = diag
[

Q(g)
n

]
n=1,...,Ng

, g ≡ w, s, [Ng × Ng]. (11)

and the inner cross product in a full rectangular matrix

[Xmn] =
∫∫

As

�e(s)m ×�h(w)
n · ẑdS, [Ns × Nw]. (12)

With these definitions, the linear system obtained from the boundary conditions is expressed
as 


EFBC: Qw(aw + bw) = Xt(as + bs) (Nw eqs.)

MFBC: X(aw − bw) = Qs(bs − as) (Ns eqs.)
. (13)

2.3 Generalized Scattering Matrix of the waveguide step
The above system (13) can be used to find the value of bw,bs in terms of aw,as. This relation is
the Generalized Scattering Matrix (GSM) representation of the waveguide step and it can be
expressed as: 

 bw

bs


 =


 Sww Sws

Ssw Sss




 aw

as


 , b = Sa.

The terms of the GSM, once (13) is used, are:

S =


 Q−1

w XtFX−Iw Q−1
w XtFQs

FX FQs−Is


 , F =2(Qs + XQ−1

w Xt)−1, (14)

where Ig is the identity matrix of size Ng. Therefore, in conclusion, for obtaining the GSM is
only required to select a set of modes in each waveguide, to fill the normalization and inner
cross product matrices (discussed below) and to perform the previous matrix operations.
The question to address now is the effect of varying the number of selected modes on the
solution of the problem. In addition, since different modal series are involved, the solution
also depends on the relative truncation criterion for Nw/Ns. This problem occurs in any MM
approach and is called the relative convergence problem (Leroy, 1983), (Itoh (editor), 1989, Ch.
9 and 11).
The issue to highlight is that the convergence depends not only on the number of modes, but
also in the relation between the numbers used in the different expansions. If the relation is not

appropriate, the results may not converge even increasing the number of modes. It has been
shown that the optimum mode selection for a bifurcation in parallel-plate waveguide (Mittra
& Lee, 1971) is a number of modes proportional to the aspect ratio of each waveguide cross
section. The key idea is that the different expansions must reach the same maximum spatial
resolution.
In practice, this result is generalized for other discontinuities and a usual criterion is to select
the mode ratio the same as the aspect ratio. However, this is a starting point and does not
guarantee the convergence. Other similar criterion is to take into account all the modes in the
waveguides whose cutoff wavenumbers are lower than a certain kc,max. Then, the convergence
is checked looking at the results when kc,max is increased.

Fig. 3. Examples of cross-sections in discontinuities involving canonical waveguides (rectan-
gular, circular, elliptical, coaxial).

2.4 Inner cross products between the modal fields
The computation of the inner cross products is better addressed if they are factor-
ized as follows. They can be divided into a geometry factor (the normalized inner
cross products) and the frequency and waveguide medium information (the modal wave
impedances/admittances and, maybe, the normalization Q). According to the expressions
for the modal fields in App. A (equations (33),(36),(39)), the inner products can be factorized
as follows

Xmn =
∫∫

As
�e(s)m ×�h(w)

n · ẑdS = {(Q(s)
m )

1
2 (Z(s)

m )
1
2 } X̄mn {(Y(w)

n )
1
2 (Q(w)

n )
1
2 }. (15)

The terms X̄mn (the normalized inner cross products) are real numbers independent of fre-
quency and the waveguide media and exclusively dependent on the geometry of the discon-
tinuity, since they only involve the real functions defined in App. A:

X̄mn =
∫∫

As

�Φ
(s)
Em × �Φ

(w)
Hn · ẑdS =

∫∫

As

�Φ
(s)
Em · �Φ(w)

En dS =
∫∫

As

�Φ
(s)
Hm · �Φ(w)

Hn dS. (16)

Thus, in a frequency sweep, they can be computed once and be multiplied by diagonal matri-
ces to update the GSM expression (14) at any frequency point:

X = {Q
1
2
s Z

1
2
s } X̄{Y

1
2
w Q

1
2
w}. (17)

To simplify the notation, X̄sw is used now (instead of X̄mn) for an inner product between a
mode of the smaller waveguide obtained from Φs and one of the larger derived from Φw.
There are two equivalent approaches (shown in Table 1) to calculate X̄sw: the surface integral
formulation obtained from the definition and the contour integral formulation derived later
in (Figlia & Gentili, 2002), (Bozzi et al., 2002). In addition, it can be shown that there are some
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where Ig is the identity matrix of size Ng. Therefore, in conclusion, for obtaining the GSM is
only required to select a set of modes in each waveguide, to fill the normalization and inner
cross product matrices (discussed below) and to perform the previous matrix operations.
The question to address now is the effect of varying the number of selected modes on the
solution of the problem. In addition, since different modal series are involved, the solution
also depends on the relative truncation criterion for Nw/Ns. This problem occurs in any MM
approach and is called the relative convergence problem (Leroy, 1983), (Itoh (editor), 1989, Ch.
9 and 11).
The issue to highlight is that the convergence depends not only on the number of modes, but
also in the relation between the numbers used in the different expansions. If the relation is not

appropriate, the results may not converge even increasing the number of modes. It has been
shown that the optimum mode selection for a bifurcation in parallel-plate waveguide (Mittra
& Lee, 1971) is a number of modes proportional to the aspect ratio of each waveguide cross
section. The key idea is that the different expansions must reach the same maximum spatial
resolution.
In practice, this result is generalized for other discontinuities and a usual criterion is to select
the mode ratio the same as the aspect ratio. However, this is a starting point and does not
guarantee the convergence. Other similar criterion is to take into account all the modes in the
waveguides whose cutoff wavenumbers are lower than a certain kc,max. Then, the convergence
is checked looking at the results when kc,max is increased.
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2.4 Inner cross products between the modal fields
The computation of the inner cross products is better addressed if they are factor-
ized as follows. They can be divided into a geometry factor (the normalized inner
cross products) and the frequency and waveguide medium information (the modal wave
impedances/admittances and, maybe, the normalization Q). According to the expressions
for the modal fields in App. A (equations (33),(36),(39)), the inner products can be factorized
as follows
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The terms X̄mn (the normalized inner cross products) are real numbers independent of fre-
quency and the waveguide media and exclusively dependent on the geometry of the discon-
tinuity, since they only involve the real functions defined in App. A:
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To simplify the notation, X̄sw is used now (instead of X̄mn) for an inner product between a
mode of the smaller waveguide obtained from Φs and one of the larger derived from Φw.
There are two equivalent approaches (shown in Table 1) to calculate X̄sw: the surface integral
formulation obtained from the definition and the contour integral formulation derived later
in (Figlia & Gentili, 2002), (Bozzi et al., 2002). In addition, it can be shown that there are some
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X̄sw TEMw TEw TMw

TEMs
∫∫
As

∇tΦw · ∇tΦsdS 0
∫∫
As

∇tΦw · ∇tΦsdS

TEs
∫∫
As

∇tΦw ×∇tΦs · ẑdS
∫∫
As

∇tΦw · ∇tΦsdS
∫∫
As

∇tΦw ×∇tΦs · ẑdS

TMs 0 0
∫∫
As

∇tΦw · ∇tΦsdS

X̄sw =
∫∫

As
�ΦEs × �ΦHw · ẑ dS

(s)-(w) X̄sw

TEM-TEM
∮
Cs

Φw∇tΦs · n̂sdl =
∮
Cs

Φs∇tΦw · n̂sdl

TEM-TM
∮
Cs

Φw∇tΦs · n̂sdl

TE-TEM
∮
Cs

Φw∇tΦs · (ẑ × n̂s)dl = −
∮
Cs

Φs∇tΦw · (ẑ × n̂s)dl

TE-TM
∮
Cs

Φw∇tΦs · (ẑ × n̂s)dl = −
∮
Cs

Φs∇tΦw · (ẑ × n̂s)dl

TE-TE

k2
cs

k2
cs−k2

cw

∮
Cs

Φs∇tΦw · n̂sdl kcs �= kcw

−1
2
∮
Cs

Φs∇t(ρar
∂Φw
∂ρar

) · n̂sdl = −kcw
2

∮
Cs

Φs
∂(∇tΦw ·n̂s)

∂kcw
dl kcs = kcw

TM-TM

k2
cw

k2
cw−k2

cs

∮
Cs

Φw∇tΦs · n̂sdl kcs �= kcw

1
2
∮
Cs

ρar
∂Φw
∂ρar

∇tΦs · n̂sdl = kcw
2
∮
Cs

∂Φw
∂kcw

∇tΦs · n̂sdl kcs = kcw

Table 1. Normalized inner cross products: surface and contour integral formulations (Figlia &
Gentili, 2002), (Bozzi et al., 2002). (Cs = δAs is the contour of As.)

type of inner cross products that are always zero (Gentili, 1991). These cases are included in
the same Table 1.
The computation of the integrals in X̄sw for a discontinuity between two rectangular waveg-
uides can be done analytically leading to very compact expressions (in fact, this problem was
one of the basis for the developing of MM (Patzelt & Arndt, 1982)). However, this is not always
the case, since the modal functions can be obtained by means of other numerical methods. If
a numerical evaluation of the integrals is required, the contour integral formulation provides
the most efficient approach, although it is more sensitive to numerical errors than the surface
integral version.
Moreover, even when the TEM, TE and TM solutions Φs,Φw are available with closed expres-
sions (see App. A.5) the integrals may not be direct and must involve a careful study. Some
discontinuity cross-sections are shown in Fig. 3 and a fast computation of X̄sw may involve
transformations among plane, circular and elliptical waves. Some examples are found in (Or-
fanidis et al., 2000), (Zhongxiang & MacPhie, 1995), (MacPhie & Wu, 1995), (Mongiardo &
Tomassoni, 2000), (Chan & Judah, 1997).

2.5 Properties of the GSM obtained by MM
The formal properties that must satisfy the GSM (including evanescent modes) of a waveguide
junction (not only for a waveguide step) can be shown by applying the classic electromagnetic
theorems of Lorentz, Poynting and Self-Reaction (Haskal, 1964).
The properties are investigated now in the context of the MM formulations
(Omar et al., 1994). The matter to discern is when these properties give any informa-
tion about how the electromagnetic problem is being solved.
The properties will be related to the normalization of the modes. For instance, the GSM in (14)
is Q-symmetric (QS = StQ) and self-inverting (S = S−1 or SS = I). This is shown exclusively
by means of algebraic operations, beginning with (14) and using XQ−1

w Xt = 2F−1 −Qs. There-
fore, these properties hold regardless of the number of modes retained in the field expansions
and the value (whether calculated correctly or not) of the inner products.
An alternative derivation of these properties is based on showing that equations (13) impose
the same type of relations that the Lorentz and Self-Reaction theorems. This approach is now
followed for the Poynting theorem. The proof requires to use the diagonal matrices containing
the complex power carried by each mode in each waveguide (g) of the discontinuity

Pg = diag
[

P(g)
n

]
n=1,...,Ng

, P(g)
n =

∫∫

Ag

�e(g)
n ×�h(g)∗

n · ẑdS.

In addition, the modal amplitudes and the matrices are arranged in matrix form, as for in-
stance to express the relation (43) shown in the App. A.4 between P and Q

P = Z
1
2 (Y

1
2 )†Q

1
2 (Q

1
2 )†, (18)

where † is the transpose and conjugate matrix operation. A further block division, exclusive
for lossless ports, classifies the modes in propagating (p) and evanescent (v), regardless of its
physical port:

S =


 Spp Spv

Svp Svv


 , P =


 Pp 0

0 Pv


 , Q =


 Qp 0

0 Qv


 .

The Spp matrix is what is usually understood by the S-parameters of the device, and it is
extracted from the GSM just taking the parameters relating propagating modes. These are the
parameters (in dB) that are plotted later in Sec. 4.
The Poynting theorem is related to the complex power flowing into +ẑ at port w:

ΩAw = 1
2

∫∫

Aw

�E(w) × �H(w)∗ · ẑdS = 1
2 (aw − bw)

†Pw(aw + bw). (19)

A similar expression would hold for port s. Now, ΩAw is transformed by (13) along with the
following relation

PwQ−1
w Xt= (P†

s Q−1
s X)†. (20)

This last expression comes from the P and Q relation (18) and the X factorization (17). As a
result, it can be shown that ΩAw = ΩAs , i.e., the complex power flow is conserved when using
(13).
This is the relation that the Poynting theorem states for this particular junction. Hence, the
results from (Haskal, 1964) could be applied here. Particularly, if the ports are lossless, Spp
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Table 1. Normalized inner cross products: surface and contour integral formulations (Figlia &
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type of inner cross products that are always zero (Gentili, 1991). These cases are included in
the same Table 1.
The computation of the integrals in X̄sw for a discontinuity between two rectangular waveg-
uides can be done analytically leading to very compact expressions (in fact, this problem was
one of the basis for the developing of MM (Patzelt & Arndt, 1982)). However, this is not always
the case, since the modal functions can be obtained by means of other numerical methods. If
a numerical evaluation of the integrals is required, the contour integral formulation provides
the most efficient approach, although it is more sensitive to numerical errors than the surface
integral version.
Moreover, even when the TEM, TE and TM solutions Φs,Φw are available with closed expres-
sions (see App. A.5) the integrals may not be direct and must involve a careful study. Some
discontinuity cross-sections are shown in Fig. 3 and a fast computation of X̄sw may involve
transformations among plane, circular and elliptical waves. Some examples are found in (Or-
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Tomassoni, 2000), (Chan & Judah, 1997).

2.5 Properties of the GSM obtained by MM
The formal properties that must satisfy the GSM (including evanescent modes) of a waveguide
junction (not only for a waveguide step) can be shown by applying the classic electromagnetic
theorems of Lorentz, Poynting and Self-Reaction (Haskal, 1964).
The properties are investigated now in the context of the MM formulations
(Omar et al., 1994). The matter to discern is when these properties give any informa-
tion about how the electromagnetic problem is being solved.
The properties will be related to the normalization of the modes. For instance, the GSM in (14)
is Q-symmetric (QS = StQ) and self-inverting (S = S−1 or SS = I). This is shown exclusively
by means of algebraic operations, beginning with (14) and using XQ−1

w Xt = 2F−1 −Qs. There-
fore, these properties hold regardless of the number of modes retained in the field expansions
and the value (whether calculated correctly or not) of the inner products.
An alternative derivation of these properties is based on showing that equations (13) impose
the same type of relations that the Lorentz and Self-Reaction theorems. This approach is now
followed for the Poynting theorem. The proof requires to use the diagonal matrices containing
the complex power carried by each mode in each waveguide (g) of the discontinuity
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where † is the transpose and conjugate matrix operation. A further block division, exclusive
for lossless ports, classifies the modes in propagating (p) and evanescent (v), regardless of its
physical port:

S =
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Svp Svv


 , P =
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The Spp matrix is what is usually understood by the S-parameters of the device, and it is
extracted from the GSM just taking the parameters relating propagating modes. These are the
parameters (in dB) that are plotted later in Sec. 4.
The Poynting theorem is related to the complex power flowing into +ẑ at port w:
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result, it can be shown that ΩAw = ΩAs , i.e., the complex power flow is conserved when using
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This is the relation that the Poynting theorem states for this particular junction. Hence, the
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Fig. 4. Waveguide step with one main waveguide (w) and P smaller waveguides. This the
multiport case (or P-furcation) whose GSM is also obtained by MM.

is Pp-unitary (PpS−1
pp = S†

ppPp). This yields the familiar unitary property S−1
pp = S†

pp under a
normalization with Pp = |Qp| = I.
This last result relies exclusively on the form of the linear system (13) and (20). If the real ma-
trix X̄ is wrong and X is generated by (17), the Pp-unitary property continues being satisfied.
In conclusion, the GSM in (14) is self-inverting (S = S−1). Upon the common modal normal-
ization Q = I, the GSM is symmetric (S = St) and, for lossless ports, Spp is unitary (S−1

pp = S†
pp).

These properties are satisfied exclusively by the form of the equations to be solved, without
any relation to the boundary condition fulfillment. They are guaranteed by how the GSM is
constructed, and they do not give any information about how the electromagnetic problem is
being solved.

3. Extension to other type of steps and cascading

3.1 Extension to the multiport case: P-furcation
The formulation can be easily extended to the multiport case in Fig. 4, provided that the inner
product matrix is constructed in blocks corresponding to the subregions:

X =
[
· · · X(p)t · · ·

]t

p=1,...,P
, [

P
∑

p=1
Ns,p × Nw]. (21)

The block matrices X(p) are defined like (12) and contain the inner products between the elec-
tric modal fields in waveguide (s, p) and the magnetic modal fields in waveguide (w), inte-
grating in the surface of the smaller waveguide As,p. In this problem, the multiport (s) collects
the Ns,p amplitudes of all the different modal series in each waveguide (s, p).

3.2 Extension to consider the losses at the discontinuity wall
An extension of the above formulation is proposed in (Shen & MacPhie, 1990) to evaluate
the effect of the losses produced by real conductors in the steps of Figs. 2 and 4. The field-
matching procedure relies on assuming a surface impedance boundary condition (Leontovich
condition (Senior, 1960)) at the wall Ac:

Fig. 5. Waveguide discontinuity with general aperture step (compare with Fig. 2).




EFBC in Aw: ẑ ×�E(w) =




Zc(�H(w) × ẑ), in Ac,z = 0

ẑ ×�E(s) in As,z = 0

MFBC in As: ẑ × �H(w) = ẑ × �H(s), in As, z = 0

with surface impedance, assuming good conductor, given by:

Zc = Y−1
c =

(1 + j)
σδ

= (1 + j)

√
π f µ

σ
. (22)

The boundary conditions are imposed by means of a Galerkin method, providing:



EFBC: Qw(aw + bw) = Xt(as + bs) + Lc(aw − bw) (Nw eqs.)

MFBC: X(aw − bw) = Qs(bs − as) (Ns eqs.).
(23)

The resolution of this linear system yields the GSM of the step in the following form:

S =


 I − FQw FXt

Q−1
s XFQw I − Q−1

s XFXt


 , F = 2(Qw + XtQ−1

s X + Lc)
−1. (24)

The inner products in X remains as (12) and, in the multiport case, are constructed in blocks
as (21). The new inner products are expressed as

[Lc,mn] = Zc

∫∫

Ac

�h(w)
m ·�h(w)

n dS, [Nw × Nw], (25)

and are calculated by integrating the modes of the larger waveguide on the conductor wall.
Coherently, when the conductivity is infinite, Lc is null and (24) becomes (14).

3.3 Extension for the general aperture case
This section presents another type of step shown in Fig. 5, whose main feature is that the
aperture at the discontinuity does not coincide with any of the input/output waveguide cross
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Fig. 4. Waveguide step with one main waveguide (w) and P smaller waveguides. This the
multiport case (or P-furcation) whose GSM is also obtained by MM.

is Pp-unitary (PpS−1
pp = S†

ppPp). This yields the familiar unitary property S−1
pp = S†

pp under a
normalization with Pp = |Qp| = I.
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pp = S†
pp).
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· · · X(p)t · · ·
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p=1,...,P
, [

P
∑

p=1
Ns,p × Nw]. (21)
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Fig. 5. Waveguide discontinuity with general aperture step (compare with Fig. 2).
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ẑ ×�E(s) in As,z = 0
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and are calculated by integrating the modes of the larger waveguide on the conductor wall.
Coherently, when the conductivity is infinite, Lc is null and (24) becomes (14).

3.3 Extension for the general aperture case
This section presents another type of step shown in Fig. 5, whose main feature is that the
aperture at the discontinuity does not coincide with any of the input/output waveguide cross
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sections. In this case, a new electric field expansion is made at the aperture surface As ⊆
Aw1 , Aw2 , expressing the boundary conditions as:

�E(s)
⌋

As ,z=0
=

Ns

∑
k=1

c(s)k �e(s)k ,




EFBC in Ag:

(g ≡ w1,w2)
ẑ ×�E(g) =




0, in Ac,z = 0

ẑ ×�E(s) in As,z = 0

MFBC in As: ẑ × �H(w1) = ẑ × �H(w2), in As,z = 0.

The two EFBC’s (in Aw1 , Aw2 ) are tested by the magnetic modal fields in (w1) and (w2), respec-

tively, providing Nw1 + Nw2 equations. The MFBC is tested by�e(s)k (the modal electric fields
of the expansion at As), resulting in Ns equations. This leads to the following linear system
with new inner products X:




EFBC: Qw1 (aw1 + bw1 ) = Xt
w1

cs, Qw2 (aw2 + bw2 ) = Xt
w2

cs

MFBC: Xw1 (aw1 − bw1 ) = Xw2 (bw2 − aw2 )
, (26)

[Xg,mn] =
∫∫

As

�e(s)m ×�h(g)
n · ẑdS, g ≡ w1,w2, [Ns × Ng].

This system is solved for the GSM of the general aperture step:

S =


 Q−1

w1
Xt

w1
FXw1 − Iw1 Q−1

w1
Xt

w1
FXw2

Q−1
w2

Xt
w2

FXw1 Q−1
w2

Xt
w2

FXw2 − Iw2


 (27)

with F = 2(Xw1 Q−1
w1

Xt
w1

+ Xw2 Q−1
w2

Xt
w2
)−1.

wg

Fig. 6. a) Several waveguides with different cross section cascaded in the longitudinal direc-
tion, with its segmentation scheme in ẑ; b) Cascading of GSMs. Each one could represent a
waveguide step (or any other building-block in other structures).

3.4 Cascading of waveguide discontinuities
The overall characterization of a structure made up of a number of discontinuities as in Fig. 6.a
is obtained by cascading the individual GSMs, using simple matrix operations. The building-
blocks for the structure in Fig. 6.a belong to the waveguide steps shown in previous sections,
providing the block scheme shown in Fig. 6.b.

Consider two consecutive blocks (A) and (B) in Fig. 6.b (they could be for instance the dis-
continuities m and m − 1). Each block is characterized by its own GSM: b(A) = S(A)a(A) and
b(B) = S(B)a(B). Both blocks are connected by a waveguide (which could have multiple re-
gions) of length l, where NAB modes are considered. Since the modal amplitudes vary with
with e−γnl (see (30)), the vectors with the modal amplitudes at that region are related by:

a(B)
1 = Υ b(A)

2 , a(A)
2 = Υ b(B)

1 , Υ = diag[e−γnl ]n=1,...NAB . (28)

It is implicitly considered that S(A) and S(B) have computed with NAB = N(A)
2 = N(B)

1 . After
the required algebra, the new GSM b(C) = S(C)a(C) representing the whole composite block is
given by:

S(C) =


 S(A)

11 + S(A)
12 ΥHS(B)

11 ΥS(A)
21 S(A)

12 ΥHS(B)
12

S(B)
21 Υ(IAB + S(A)

22 ΥHS(B)
11 Υ)S(A)

21 S(B)
22 + S(B)

21 ΥS(A)
22 ΥHS(B)

12


 , (29)

H=(IAB−S(B)
11 ΥS(A)

22 Υ)−1, [NAB, NAB].

This process can be repeated iteratively till the overall GSM representing the total structure
(T) in Fig. 6.b is obtained. This procedure is not only found in the context of the Mode-
Matching method. It can be applied to many other problems, where the structure is segmented
in blocks. The GSM of those blocks is obtained by any suitable method and the whole response
is obtained by cascading.

4. Analysis and design of waveguide devices

4.1 Design approach
The previous sections have been focused on the analysis part of the CAD for waveguide de-
vices. This part has to be complemented with a design approach, which is outlined now.
Fig. 7 illustrates the typical flow chart used in many microwave devices. From the given
specifications, a circuit model (if available) is obtained to lead the synthesis of the waveguide
structure. Next, an initial set of physical dimensions are determined based on simple circuits
and/or simplified models. Once the complete physical model is generated, a MM simulation
is performed to obtain the S-parameters of the structure.
This preliminary response of the device using the initial dimensions will usually be relatively
poor, since the original design did not take into account the higher-order mode interactions
among the different parts of the structure. Then, the simulated response is compared with
the circuit model response, and an error or cost function is computed. Using an optimization
routine, the dimensions of the device are adjusted to minimize the cost function (see Fig.
7). This process is repeated until the desired response is achieved. This approach has been
followed for the structures introduced in the next subsections.

4.2 H-plane bandpass filter in rectangular waveguide
An H-plane filter (see Fig. 8.a) is used to illustrate the different MM formula-
tions shown above. The filter is analyzed considering that the conductor walls
are not perfect in order to evaluate the insertion loss produced by real conductors
(Ruiz-Cruz et al., 2002). This subject is an important engineering task, especially for passive
components in satellite communication systems.
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sections. In this case, a new electric field expansion is made at the aperture surface As ⊆
Aw1 , Aw2 , expressing the boundary conditions as:
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As ,z=0
=

Ns

∑
k=1

c(s)k �e(s)k ,




EFBC in Ag:

(g ≡ w1,w2)
ẑ ×�E(g) =




0, in Ac,z = 0

ẑ ×�E(s) in As,z = 0

MFBC in As: ẑ × �H(w1) = ẑ × �H(w2), in As,z = 0.

The two EFBC’s (in Aw1 , Aw2 ) are tested by the magnetic modal fields in (w1) and (w2), respec-

tively, providing Nw1 + Nw2 equations. The MFBC is tested by�e(s)k (the modal electric fields
of the expansion at As), resulting in Ns equations. This leads to the following linear system
with new inner products X:




EFBC: Qw1 (aw1 + bw1 ) = Xt
w1

cs, Qw2 (aw2 + bw2 ) = Xt
w2

cs

MFBC: Xw1 (aw1 − bw1 ) = Xw2 (bw2 − aw2 )
, (26)

[Xg,mn] =
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As

�e(s)m ×�h(g)
n · ẑdS, g ≡ w1,w2, [Ns × Ng].

This system is solved for the GSM of the general aperture step:

S =
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Fig. 6. a) Several waveguides with different cross section cascaded in the longitudinal direc-
tion, with its segmentation scheme in ẑ; b) Cascading of GSMs. Each one could represent a
waveguide step (or any other building-block in other structures).

3.4 Cascading of waveguide discontinuities
The overall characterization of a structure made up of a number of discontinuities as in Fig. 6.a
is obtained by cascading the individual GSMs, using simple matrix operations. The building-
blocks for the structure in Fig. 6.a belong to the waveguide steps shown in previous sections,
providing the block scheme shown in Fig. 6.b.

Consider two consecutive blocks (A) and (B) in Fig. 6.b (they could be for instance the dis-
continuities m and m − 1). Each block is characterized by its own GSM: b(A) = S(A)a(A) and
b(B) = S(B)a(B). Both blocks are connected by a waveguide (which could have multiple re-
gions) of length l, where NAB modes are considered. Since the modal amplitudes vary with
with e−γnl (see (30)), the vectors with the modal amplitudes at that region are related by:

a(B)
1 = Υ b(A)

2 , a(A)
2 = Υ b(B)

1 , Υ = diag[e−γnl ]n=1,...NAB . (28)

It is implicitly considered that S(A) and S(B) have computed with NAB = N(A)
2 = N(B)

1 . After
the required algebra, the new GSM b(C) = S(C)a(C) representing the whole composite block is
given by:

S(C) =


 S(A)

11 + S(A)
12 ΥHS(B)

11 ΥS(A)
21 S(A)

12 ΥHS(B)
12

S(B)
21 Υ(IAB + S(A)

22 ΥHS(B)
11 Υ)S(A)

21 S(B)
22 + S(B)

21 ΥS(A)
22 ΥHS(B)

12


 , (29)

H=(IAB−S(B)
11 ΥS(A)

22 Υ)−1, [NAB, NAB].

This process can be repeated iteratively till the overall GSM representing the total structure
(T) in Fig. 6.b is obtained. This procedure is not only found in the context of the Mode-
Matching method. It can be applied to many other problems, where the structure is segmented
in blocks. The GSM of those blocks is obtained by any suitable method and the whole response
is obtained by cascading.

4. Analysis and design of waveguide devices

4.1 Design approach
The previous sections have been focused on the analysis part of the CAD for waveguide de-
vices. This part has to be complemented with a design approach, which is outlined now.
Fig. 7 illustrates the typical flow chart used in many microwave devices. From the given
specifications, a circuit model (if available) is obtained to lead the synthesis of the waveguide
structure. Next, an initial set of physical dimensions are determined based on simple circuits
and/or simplified models. Once the complete physical model is generated, a MM simulation
is performed to obtain the S-parameters of the structure.
This preliminary response of the device using the initial dimensions will usually be relatively
poor, since the original design did not take into account the higher-order mode interactions
among the different parts of the structure. Then, the simulated response is compared with
the circuit model response, and an error or cost function is computed. Using an optimization
routine, the dimensions of the device are adjusted to minimize the cost function (see Fig.
7). This process is repeated until the desired response is achieved. This approach has been
followed for the structures introduced in the next subsections.

4.2 H-plane bandpass filter in rectangular waveguide
An H-plane filter (see Fig. 8.a) is used to illustrate the different MM formula-
tions shown above. The filter is analyzed considering that the conductor walls
are not perfect in order to evaluate the insertion loss produced by real conductors
(Ruiz-Cruz et al., 2002). This subject is an important engineering task, especially for passive
components in satellite communication systems.
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Fig. 7. Optimization cycle for designing a waveguide component.

Starting with the ideal case (σ = ∞), the different discontinuities are computed by formulation
in Subsec. 2.2 and cascaded together to get the filter response. However, for the case σ �= ∞,
two models are used: i) the formulation in Subsec. 3.2, using the Leontovich condition at
walls Ac (Fig. 8.b) and ii) the use of a trifurcation with lossy waveguides (Fig. 8.c). This last
model simulates the solid conductors by imaginary waveguides filled with a lossy dielectric.
The resultant trifurcation problem is solved as in Subsec. 3.1.
Both models take into account the losses at the lateral waveguide walls by means of modifying
the propagation constant of the propagating modes (Collin, 1991), adding an attenuation con-
stant αc owing to the finite metal conductivity: γ|σ �=∞ ≈ αc + γ|σ=∞. This is a common ap-
proximation for good conductors.
The results of a pass-band Chebychev filter, with 2.4% relative bandwidth in Ku frequency
band, are shown in Fig. 8.d. The designed sixth order filter is implemented by means of
symmetric inductive irises in WR75 waveguide. The responses that are being compared in
Fig. 8.d correspond to the measurements and the simulations in the ideal and lossy cases.
As expected, the three return loss responses are similar for good conductors (the simulations
used σ = 4.8 · 107S/m).
Fig. 8.e shows the detail for the insertion loss for the Leontovich, trifurcation, FEM (HFSS,
available at www.ansoft.com), circuit models and the measured results. The circuit model
consists on the classic impedance inverters connected by λg/2 transmission lines, using the
approximation for the propagation constant γ|σ �=∞. It is seen that the trifurcation approach
yields values slightly under the predicted by the Leontovich model. However, the agreement
among the different procedures for the insertion loss and the experimental results is satisfac-
tory.

4.3 Coaxial probe and stripline bifurcation
Other interesting problem that can been analyzed by MM is a coaxial probe inside a rectan-
gular waveguide, shown in the inset of Fig. 9.a. From a CAD point of view, this structure can
be represented as the cascade of uniform waveguides with different cross sections and, then,
suitable for being solved by MM.

12.9 13 13.1 13.2 13.3 
-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 

(1)  

(2)  

(3)  

(4)  

(5)  

a) b) c)
zx

y
zx

y

|S
21

| (
dB

)

d) e)

12.85 12.9 12.95 13 13.05 13.1 13.15 13.2 13.25 13.3 13.35
-40

-35

-30

-25

-20

-15

-10

-5

0

Measurements
MM (Losses)
MM (Ideal)

t

dn wnacae

Frequency (GHz)

|S
11

|,|
S

21
| (

dB
)

Frequency (GHz)

|S
11

|,|
S

21
| (

dB
)

(half plane zx)

Frequency (GHz)

A

σε ε
ω

= −

ε

εε

ε z
x

Fig. 8. a) Rectangular waveguide H-plane filter; b) Leontovich model: the cavity-iris disconti-
nuity takes into account non perfect conductor boundary conditions at the wall Ac; c) Trifur-
cation model: the non perfect conductor is replaced by a virtual rectangular waveguide with
lossy dielectric. d) Return and insertion loss. e) Detail of the insertion loss: 1-trifurcation
model, 2-Leontovich formulation, 3-circuit model, 4-HFSS, 5-measurements. Dimensions
(mm): ae = 19.05, be = 9.525, ac = 21.9, t = 3.75, d1−3 = 10.51, 11.95, 12.13, w1−4 = 9.73, 6.68,
6.11, 6.03.

In this scope, the modes of the waveguide in the probe region can be calculated in different
ways. The model followed here (Ruiz-Cruz et al., 2004) consists of a generalized stripline
whose inner conductor has a stepped profile in order to approximate the desired cross section
of the probe. Depending on the application, the probe can have a different size than the inner
conductor of the coaxial line, but it is usually very thin. Therefore, two or three steps, even
one (i.e. square) in some cases, give accurate results. This is shown not just in one isolated
discontinuity but in the response of the cascading of several waveguide steps.
The basic discontinuity to be modeled is made up of a coaxial waveguide and the general-
ized stripline. Other discontinuities involved in the problem are between ridge waveguides
and rectangular waveguides. The modes of these waveguides have been computed using the
Generalized Transverse Resonance (GTR) (Itoh (editor), 1989), but other techniques are also
possible.
The coaxial-to-rectangular waveguide transition designed and measured in
(Gerini & Guglielmi, 2001) is calculated in Fig. 9.a. In the structure, the inner conduc-
tor of the SMA connector is extended to contact a ridge waveguide section. The MM response
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Fig. 7. Optimization cycle for designing a waveguide component.

Starting with the ideal case (σ = ∞), the different discontinuities are computed by formulation
in Subsec. 2.2 and cascaded together to get the filter response. However, for the case σ �= ∞,
two models are used: i) the formulation in Subsec. 3.2, using the Leontovich condition at
walls Ac (Fig. 8.b) and ii) the use of a trifurcation with lossy waveguides (Fig. 8.c). This last
model simulates the solid conductors by imaginary waveguides filled with a lossy dielectric.
The resultant trifurcation problem is solved as in Subsec. 3.1.
Both models take into account the losses at the lateral waveguide walls by means of modifying
the propagation constant of the propagating modes (Collin, 1991), adding an attenuation con-
stant αc owing to the finite metal conductivity: γ|σ �=∞ ≈ αc + γ|σ=∞. This is a common ap-
proximation for good conductors.
The results of a pass-band Chebychev filter, with 2.4% relative bandwidth in Ku frequency
band, are shown in Fig. 8.d. The designed sixth order filter is implemented by means of
symmetric inductive irises in WR75 waveguide. The responses that are being compared in
Fig. 8.d correspond to the measurements and the simulations in the ideal and lossy cases.
As expected, the three return loss responses are similar for good conductors (the simulations
used σ = 4.8 · 107S/m).
Fig. 8.e shows the detail for the insertion loss for the Leontovich, trifurcation, FEM (HFSS,
available at www.ansoft.com), circuit models and the measured results. The circuit model
consists on the classic impedance inverters connected by λg/2 transmission lines, using the
approximation for the propagation constant γ|σ �=∞. It is seen that the trifurcation approach
yields values slightly under the predicted by the Leontovich model. However, the agreement
among the different procedures for the insertion loss and the experimental results is satisfac-
tory.

4.3 Coaxial probe and stripline bifurcation
Other interesting problem that can been analyzed by MM is a coaxial probe inside a rectan-
gular waveguide, shown in the inset of Fig. 9.a. From a CAD point of view, this structure can
be represented as the cascade of uniform waveguides with different cross sections and, then,
suitable for being solved by MM.
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Fig. 8. a) Rectangular waveguide H-plane filter; b) Leontovich model: the cavity-iris disconti-
nuity takes into account non perfect conductor boundary conditions at the wall Ac; c) Trifur-
cation model: the non perfect conductor is replaced by a virtual rectangular waveguide with
lossy dielectric. d) Return and insertion loss. e) Detail of the insertion loss: 1-trifurcation
model, 2-Leontovich formulation, 3-circuit model, 4-HFSS, 5-measurements. Dimensions
(mm): ae = 19.05, be = 9.525, ac = 21.9, t = 3.75, d1−3 = 10.51, 11.95, 12.13, w1−4 = 9.73, 6.68,
6.11, 6.03.

In this scope, the modes of the waveguide in the probe region can be calculated in different
ways. The model followed here (Ruiz-Cruz et al., 2004) consists of a generalized stripline
whose inner conductor has a stepped profile in order to approximate the desired cross section
of the probe. Depending on the application, the probe can have a different size than the inner
conductor of the coaxial line, but it is usually very thin. Therefore, two or three steps, even
one (i.e. square) in some cases, give accurate results. This is shown not just in one isolated
discontinuity but in the response of the cascading of several waveguide steps.
The basic discontinuity to be modeled is made up of a coaxial waveguide and the general-
ized stripline. Other discontinuities involved in the problem are between ridge waveguides
and rectangular waveguides. The modes of these waveguides have been computed using the
Generalized Transverse Resonance (GTR) (Itoh (editor), 1989), but other techniques are also
possible.
The coaxial-to-rectangular waveguide transition designed and measured in
(Gerini & Guglielmi, 2001) is calculated in Fig. 9.a. In the structure, the inner conduc-
tor of the SMA connector is extended to contact a ridge waveguide section. The MM response
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Fig. 9. a) Coaxial (50Ω SMA) to rectangular waveguide transition of (Gerini & Guglielmi,
2001). b) Back-to-back coaxial (50Ω SMA) to ridge waveguide junction. SMA dimensions
(mm): rin = 0.645, rex = 2.045, εr = 1.97.

is compared with the HFSS, showing good agreement but with much less computation time
(as in the other examples).
To see the effect of the number of sections in the generalized stripline, the presented results are
computed with a square inner conductor whose area is the same as that of the circular probe,
obtaining results very close to the HFSS simulation. Since the results are very similar to those
with 5 steps, the analysis can be carried out very efficiently with the simple square probe. The
results for a back to back coaxial to ridge resonator junction are shown in Fig. 9.b.
Finally, another structure which can be modeled by MM is a bifurcation in stripline (or rect-
angular coaxial), shown in Fig. 10.a. The structure has an inner conductor and an enclosure
that vary in order to divide the power into two isolated stripline ports. The response is shown
in Fig. 10.b. The structure is also computed exclusively with TEM modes to illustrate the
influence of the higher order modes in the response.

5. Conclusions

This chapter has introduced the main concepts of the Mode-Matching (MM) methods for the
CAD of waveguide devices. The key idea is to segment the problem under analysis in dif-
ferent waveguide regions where the electromagnetic field is represented by the superposition
of modes. At the interface between regions, those modal series have to be matched to ful-
fill the boundary conditions. This process leads to the Generalized Scattering Matrix (GSM)
representation of the problem.
This idea has been applied to the cascading of several transmission systems with different
cross-sections. This type of problem could represent many waveguide devices such as filters,
transformers, N-furcations, diplexers, polarizers, etc.
Different types of basic discontinuities have been shown, with their corresponding formula-
tions and intrinsic properties for the obtained GSM. Some examples have been introduced in
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Fig. 10. Configuration of the stripline (rectangular coaxial) bifurcation (εr = 5.9). a) Actual
aspect ratio and dimensions (inch). b) Return loss at port one.

order to validate the theory with measured experimental data and with the results obtained
with other numerical methods.
One important idea to emphasize is the building-block concept, since it provides a simple
algorithm to solve more complex problems: the discontinuities are individually characterized
and then are cascaded. This idea can be extended to other problems, as long as it is known
how to compute the GSM of the building blocks in the structure.
The MM technique has been used for many years and, nowadays, can be considered as an
industry standard for some types of problems like the cascading of rectangular or circular
waveguides in filters, couplers or horns. Since the formulation of the technique is well known,
the latest developments have been oriented towards broadening the range of problems where
the method can be applied. The theory shown in this chapter is the basis for more evolved
formulations.

A. Appendix. Cylindrical waveguides

The total electromagnetic field in a cylindrical waveguide (see Fig. 11.a) of arbitrary cross
section S, with perfect conductivity walls σ = ∞, filled with isotropic and homogeneous di-
electric, can be represented by a modal series as (1) (Collin, 1991).
The homogeneous medium of electric permeability ε = εrε0 and magnetic permeability µ =
µrµ0 may have losses εr = ε′r − jε′′r ,µr = µ′

r − jµ′′
r , resulting in a complex wavenumber k =

ω
√

µε and complex intrinsic impedance of the medium η =
√

µ/ε. For a lossless waveguide
ε′′r = µ′′

r = 0.
The pairs (�E±

n ,�H±
n ), travelling along ±z, respectively, are the electromagnetic fields of a TEM,

TE or TM mode2: solutions to Maxwell’s equations which satisfy the corresponding boundary
conditions at the contour C. The modes are not restricted to be propagating; they have at

2 The TEM, TE, TM modes are also called O, H, E, respectively. When it is needed to identify them, the
scripts (o), (h), (e) will be used.
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Fig. 9. a) Coaxial (50Ω SMA) to rectangular waveguide transition of (Gerini & Guglielmi,
2001). b) Back-to-back coaxial (50Ω SMA) to ridge waveguide junction. SMA dimensions
(mm): rin = 0.645, rex = 2.045, εr = 1.97.

is compared with the HFSS, showing good agreement but with much less computation time
(as in the other examples).
To see the effect of the number of sections in the generalized stripline, the presented results are
computed with a square inner conductor whose area is the same as that of the circular probe,
obtaining results very close to the HFSS simulation. Since the results are very similar to those
with 5 steps, the analysis can be carried out very efficiently with the simple square probe. The
results for a back to back coaxial to ridge resonator junction are shown in Fig. 9.b.
Finally, another structure which can be modeled by MM is a bifurcation in stripline (or rect-
angular coaxial), shown in Fig. 10.a. The structure has an inner conductor and an enclosure
that vary in order to divide the power into two isolated stripline ports. The response is shown
in Fig. 10.b. The structure is also computed exclusively with TEM modes to illustrate the
influence of the higher order modes in the response.

5. Conclusions

This chapter has introduced the main concepts of the Mode-Matching (MM) methods for the
CAD of waveguide devices. The key idea is to segment the problem under analysis in dif-
ferent waveguide regions where the electromagnetic field is represented by the superposition
of modes. At the interface between regions, those modal series have to be matched to ful-
fill the boundary conditions. This process leads to the Generalized Scattering Matrix (GSM)
representation of the problem.
This idea has been applied to the cascading of several transmission systems with different
cross-sections. This type of problem could represent many waveguide devices such as filters,
transformers, N-furcations, diplexers, polarizers, etc.
Different types of basic discontinuities have been shown, with their corresponding formula-
tions and intrinsic properties for the obtained GSM. Some examples have been introduced in
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Fig. 10. Configuration of the stripline (rectangular coaxial) bifurcation (εr = 5.9). a) Actual
aspect ratio and dimensions (inch). b) Return loss at port one.

order to validate the theory with measured experimental data and with the results obtained
with other numerical methods.
One important idea to emphasize is the building-block concept, since it provides a simple
algorithm to solve more complex problems: the discontinuities are individually characterized
and then are cascaded. This idea can be extended to other problems, as long as it is known
how to compute the GSM of the building blocks in the structure.
The MM technique has been used for many years and, nowadays, can be considered as an
industry standard for some types of problems like the cascading of rectangular or circular
waveguides in filters, couplers or horns. Since the formulation of the technique is well known,
the latest developments have been oriented towards broadening the range of problems where
the method can be applied. The theory shown in this chapter is the basis for more evolved
formulations.

A. Appendix. Cylindrical waveguides

The total electromagnetic field in a cylindrical waveguide (see Fig. 11.a) of arbitrary cross
section S, with perfect conductivity walls σ = ∞, filled with isotropic and homogeneous di-
electric, can be represented by a modal series as (1) (Collin, 1991).
The homogeneous medium of electric permeability ε = εrε0 and magnetic permeability µ =
µrµ0 may have losses εr = ε′r − jε′′r ,µr = µ′

r − jµ′′
r , resulting in a complex wavenumber k =

ω
√

µε and complex intrinsic impedance of the medium η =
√

µ/ε. For a lossless waveguide
ε′′r = µ′′

r = 0.
The pairs (�E±

n ,�H±
n ), travelling along ±z, respectively, are the electromagnetic fields of a TEM,

TE or TM mode2: solutions to Maxwell’s equations which satisfy the corresponding boundary
conditions at the contour C. The modes are not restricted to be propagating; they have at

2 The TEM, TE, TM modes are also called O, H, E, respectively. When it is needed to identify them, the
scripts (o), (h), (e) will be used.
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Fig. 11. Multi-conductor cylindrical waveguide closed by perfect conducting walls with ho-
mogeneous and isotropic dielectric: a) geometry, b) equivalent transmission line with ±ẑ
modal amplitudes. c) Cross section of some common canonical waveguides: rectangular,
circular, circular coaxial, elliptical, confocal elliptical coaxial.

the operating frequency f = ω/2π a complex propagation constant that can be: pure real
(evanescent mode), imaginary (propagating mode) or complex with non vanishing real and
imaginary part (ε′′r �= 0 and/or µ′′

r �= 0). They are written as:

�E+
n = (�e+tn + e+zn ẑ)e−γnz �E−

n = (�e−tn + e−zn ẑ)e+γnz

�H+
n = (�h+

tn + h+zn ẑ)e−γnz �H−
n = (�h−

tn + h−zn ẑ)e+γnz.

Since the forward and backward modal solutions are related by simple sign changes, the no-
tation can be simplified:

�en ≡�e+tn =�e−tn, ezn ≡ e+zn = −e−zn, �hn ≡�h+
tn = −�h−

tn, hzn ≡ h+zn = h−zn

Therefore, (1) is conveniently expressed as:

�E = ∑
n

{
ς+n (�en + ezn ẑ)e−γnz + ς−n (+�en − ezn ẑ)e+γnz} (30a)

�H = ∑
n

{
ς+n (�hn + hzn ẑ)e−γnz + ς−n (−�hn + hzn ẑ)e+γnz

}
. (30b)

The terms ς±n e∓γnz are called the modal amplitudes at an arbitrary plane z. Thus, ς±n are the
modal amplitudes at z = 0 (see Fig. 11.b). The vector functions�en,�hn, and the scalars functions
ezn, hzn exclusively depend on the transversal coordinates and �en,�hn are perpendicular to ẑ.
They are related by the modal wave impedance/admittance:

�en = Zn�hn × ẑ, �hn = Yn ẑ ×�en, Zn = Y−1
n . (31)

The formal expressions for the modal fields of any waveguide as in Fig. 11.a are given now.
Later, the mode normalization used in the chapter and the specific solutions for the canonical
waveguides in Fig. 11.c are introduced.

A.1 TEM modes (o-modes)
In a structure with P + 1 conductors (each one with contour Cp), P linearly independent TEM
(Transversal ElectroMagnetic) modes must be included in the modal series (P ≥ 0). They are
solution to the Laplace equation with non-homogeneous Dirichlet boundary conditions:

�tΦn = 0, Φn

⌋
Cp = vnp, p = 0, . . . , P, n = 1, . . . , P. (32)

The electromagnetic field3 is given by:

�en = Q
1
2
n Z

1
2
n �ΦEn = Q

1
2
n Z

1
2
n ∇tΦn, ezn = 0

�hn = Q
1
2
n Y

1
2

n �ΦHn = Q
1
2
n Y

1
2

n ẑ ×∇tΦn, hzn = 0.
(33)

where Qn is an arbitrary normalization constant and �ΦEn,�ΦHn are obtained from Φn by sim-
ple gradient operations. The propagation constant and wave impedance for all the TEM
modes are:

γn = jω
√

µε = jk, Zn = Y−1
n =

√
µ
ε = η. (34)

A.2 TE modes (h-modes)
The electromagnetic field of a TE (Transversal Electric) mode is obtained by solving the
Helmholtz equation with homogeneous Neumann boundary conditions:

�tΦn + k2
cnΦn = 0, (∇tΦn · n̂)�C = 0,

∫∫
S|∇tΦn|2dS = k2

cn
∫∫

SΦ2
ndS = 1. (35)

The field, with arbitrary normalization constant Qn, is expressed as:

�en = Q
1
2
n Z

1
2
n �ΦEn = Q

1
2
n Z

1
2
n ∇tΦn × ẑ, ezn = 0

�hn = Q
1
2
n Y

1
2

n �ΦHn = Q
1
2
n Y

1
2

n ∇tΦn, hzn = −Q
1
2
n Y

1
2

�n
k2

cn
γn

Φn,
(36)

where the propagation constant and wave impedance are given by:

γn =
√

k2
cn − ω2µε =

√
k2

cn − k2, Zn = Y−1
n =

jωµ

γn
=

jkη

γn
. (37)

A.3 TM modes (e-modes)
The electromagnetic field of a TM (Transversal Magnetic) mode is obtained by solving the
Helmholtz equation with homogeneous Dirichlet boundary conditions

�tΦn + k2
cnΦn = 0, Φn �C = 0,

∫∫
S|∇tΦn|2dS = k2

cn
∫∫

SΦ2
ndS = 1. (38)

3 For maintaining a formal similarity with a TM mode with kcn = 0, the electric field is calculated as ∇tΦn
and not as −∇tΦn. Therefore, vnp is the opposite of the electrostatic voltage.
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Fig. 11. Multi-conductor cylindrical waveguide closed by perfect conducting walls with ho-
mogeneous and isotropic dielectric: a) geometry, b) equivalent transmission line with ±ẑ
modal amplitudes. c) Cross section of some common canonical waveguides: rectangular,
circular, circular coaxial, elliptical, confocal elliptical coaxial.

the operating frequency f = ω/2π a complex propagation constant that can be: pure real
(evanescent mode), imaginary (propagating mode) or complex with non vanishing real and
imaginary part (ε′′r �= 0 and/or µ′′

r �= 0). They are written as:

�E+
n = (�e+tn + e+zn ẑ)e−γnz �E−

n = (�e−tn + e−zn ẑ)e+γnz

�H+
n = (�h+

tn + h+zn ẑ)e−γnz �H−
n = (�h−

tn + h−zn ẑ)e+γnz.

Since the forward and backward modal solutions are related by simple sign changes, the no-
tation can be simplified:

�en ≡�e+tn =�e−tn, ezn ≡ e+zn = −e−zn, �hn ≡�h+
tn = −�h−

tn, hzn ≡ h+zn = h−zn

Therefore, (1) is conveniently expressed as:

�E = ∑
n

{
ς+n (�en + ezn ẑ)e−γnz + ς−n (+�en − ezn ẑ)e+γnz} (30a)

�H = ∑
n

{
ς+n (�hn + hzn ẑ)e−γnz + ς−n (−�hn + hzn ẑ)e+γnz

}
. (30b)

The terms ς±n e∓γnz are called the modal amplitudes at an arbitrary plane z. Thus, ς±n are the
modal amplitudes at z = 0 (see Fig. 11.b). The vector functions�en,�hn, and the scalars functions
ezn, hzn exclusively depend on the transversal coordinates and �en,�hn are perpendicular to ẑ.
They are related by the modal wave impedance/admittance:

�en = Zn�hn × ẑ, �hn = Yn ẑ ×�en, Zn = Y−1
n . (31)

The formal expressions for the modal fields of any waveguide as in Fig. 11.a are given now.
Later, the mode normalization used in the chapter and the specific solutions for the canonical
waveguides in Fig. 11.c are introduced.

A.1 TEM modes (o-modes)
In a structure with P + 1 conductors (each one with contour Cp), P linearly independent TEM
(Transversal ElectroMagnetic) modes must be included in the modal series (P ≥ 0). They are
solution to the Laplace equation with non-homogeneous Dirichlet boundary conditions:

�tΦn = 0, Φn

⌋
Cp = vnp, p = 0, . . . , P, n = 1, . . . , P. (32)

The electromagnetic field3 is given by:

�en = Q
1
2
n Z

1
2
n �ΦEn = Q

1
2
n Z

1
2
n ∇tΦn, ezn = 0

�hn = Q
1
2
n Y

1
2

n �ΦHn = Q
1
2
n Y

1
2

n ẑ ×∇tΦn, hzn = 0.
(33)

where Qn is an arbitrary normalization constant and �ΦEn,�ΦHn are obtained from Φn by sim-
ple gradient operations. The propagation constant and wave impedance for all the TEM
modes are:

γn = jω
√

µε = jk, Zn = Y−1
n =

√
µ
ε = η. (34)

A.2 TE modes (h-modes)
The electromagnetic field of a TE (Transversal Electric) mode is obtained by solving the
Helmholtz equation with homogeneous Neumann boundary conditions:

�tΦn + k2
cnΦn = 0, (∇tΦn · n̂)�C = 0,

∫∫
S|∇tΦn|2dS = k2

cn
∫∫

SΦ2
ndS = 1. (35)

The field, with arbitrary normalization constant Qn, is expressed as:

�en = Q
1
2
n Z

1
2
n �ΦEn = Q

1
2
n Z

1
2
n ∇tΦn × ẑ, ezn = 0

�hn = Q
1
2
n Y
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2
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n ∇tΦn, hzn = −Q
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2
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�n
k2

cn
γn

Φn,
(36)

where the propagation constant and wave impedance are given by:

γn =
√

k2
cn − ω2µε =

√
k2

cn − k2, Zn = Y−1
n =

jωµ

γn
=

jkη

γn
. (37)

A.3 TM modes (e-modes)
The electromagnetic field of a TM (Transversal Magnetic) mode is obtained by solving the
Helmholtz equation with homogeneous Dirichlet boundary conditions

�tΦn + k2
cnΦn = 0, Φn �C = 0,

∫∫
S|∇tΦn|2dS = k2

cn
∫∫

SΦ2
ndS = 1. (38)

3 For maintaining a formal similarity with a TM mode with kcn = 0, the electric field is calculated as ∇tΦn
and not as −∇tΦn. Therefore, vnp is the opposite of the electrostatic voltage.
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The field, with arbitrary normalization constant Qn, is expressed as:

�en = Q
1
2
n Z

1
2
n �ΦEn = Q

1
2
n Z

1
2
n ∇tΦn, ezn = −Q

1
2
n Z

1
2
n

k2
cn

γn
Φn

�hn = Q
1
2
n Y

1
2

n �ΦHn = Q
1
2
n Y

1
2

n ẑ ×∇tΦn, hzn = 0
(39)

where the propagation constant and wave impedance are given by4:

γn =
√

k2
cn − ω2µε =

√
k2

cn − k2, Zn = Y−1
n =

γn

jωε
=

γnη

jk
. (40)

A.4 Mode orthogonality and normalization
A very useful property of the modes is the orthogonality:

∫∫

S
�em ×�hn · ẑdS = Yn

∫∫

S
�em ·�endS = Zm

∫∫

S
�hm ·�hndS = Qnδmn, (41)

In (Collin, 1991), this relation is shown for modes with different cutoff wave number (non
degenerate). In any other case, an orthogonalization process may be carried out. Thus, in this
chapter is used a set of modes (33),(36),(39) where (41) always holds.
It is stressed that the Φ solutions (32),(35),(38) and their related vectors �ΦE,�ΦH do not depend
on the waveguide dielectric and can be written as frequency independent functions that take
real values. Qn is a complex normalization factor that may vary with frequency and can be
arbitrarily chosen (for instance it is common to set Qn = 1).
Another important orthogonality relation is

∫∫

S
�em ×�h∗

n · ẑdS = Y∗
n

∫∫

S
�em ·�e∗ndS = Zm

∫∫

S
�hm ·�h∗

ndS = Pnδmn, (42)

which is related to (41) by:

Pn =

√
Zn

(
√

Zn)∗
|Qn|

ε′′r =µ′′
r =0

=




|Qn| n prop. (k ≥ kcn)

+j|Qn| n evan. TE (k < kcn)

−j|Qn| n evan. TM (k < kcn)

. (43)

Once Qn is fixed, Pn cannot be independently defined. Moreover, for a lossless waveguide, at
frequencies where k ≥ kcn (propagating mode, operating frequency above the cutoff frequency
f ≥ fcn = kcn/(2π

√
µε)), γn is pure imaginary and Zn is real. For k < kcn (evanescent mode,

f < fcn), γn is real and Zn is pure imaginary. In terms of complex power flow, as (43) shows,
Pn is real for propagating modes and imaginary for evanescent modes.

A.5 Canonical waveguides
There are several waveguide cross sections that allow analytical TEM, TE and TM solutions,
as circular or coaxial sectors (elliptical sectors as well), contours described in parabolic coordi-
nates or 30, 45 and 60 degrees triangles. The more common are the following, using standard
rectangular, circular and elliptical coordinates.

4 The TEM eqs. (33),(34) can be formally considered as a particular case of (39),(40) with kcn = 0.

A.5.1 Rectangular waveguide
Regarding Fig. 11.c1, where the reference system is placed at the rectangular cross section
center, the TE and TM solutions to (35),(38) are ((m,n) �= (0,0)):

(Hmn) Φ(h)
mn = (N(h)

mn )
1
2 cos

(mπ
a (x + a

2 )
)

cos
(

nπ
b (y + b

2 )
)

, m,n = 0,1, . . .

(Emn) Φ(e)
mn = (N(e)

mn)
1
2 sin

(mπ
a (x + a

2 )
)

sin
(

nπ
b (y + b

2 )
)

, m,n = 1,2, . . .
(44)

with cutoff wavenumber and normalization constants (εmk = 2(m = k),1(m �= k)):

k(
h
e)

c,mn =
√
(mπ

a )2 + ( nπ
b )2, N(h

e)
mn =

∣∣∣
(
(mπ

a )2 + ( nπ
b )2

)
ab
4 εm0εn0

∣∣∣−1
.

A.5.2 Circular waveguide
Regarding Fig. 11.c2, the TE and TM solutions to (35),(38) are:

(Hcpr)

(Hspr)

Φ(hc)
pr

Φ(hs)
pr

= (N(h)
pr )

1
2 Jp(

ξ ′pr
a ρ)

cos
sin

(pϕ), p =
0,1, . . .
1,2, . . .

r = 1,2, . . . (45)

(Ecpr)

(Espr)

Φ(ec)
pr

Φ(es)
pr

= (N(e)
pr )

1
2 Jp(

ξpr
a ρ)

cos
sin

(pϕ), p =
0,1, . . .
1,2, . . .

r = 1,2, . . .

with roots (Abramowitz & Stegun, 1956) and normalization constants:

k(h)c,pr =
ξ ′pr
a , J′p(ξ ′pr) = 0, N(h)

pr = |εp0
π
2 (ξ

′2
pr − p2) J2

p(ξ
′
pr)|−1

k(e)c,pr =
ξpr
a , Jp(ξpr) = 0, N(e)

pr = |εp0
π
2 ξ2

pr J
′2
p (ξpr)|−1.

(46)

A.5.3 Circular coaxial waveguide
The TEM mode corresponding to (33) in a circular coaxial waveguide (Fig. 11.c3) of inner
radius c and outer radius a is

Φ(o) = (N(o))
1
2 ln ρ

a , N(o) =
∣∣2π ln a

c
∣∣−1 , Zc =

η
2π ln a

c . (47)

The TE and TM solutions to (35),(38) are:
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where the radial functions with their roots (Abramowitz & Stegun, 1956) are:

R(h)
p (u) = Y′

p(ξ
′
pr) Jp(u)− J′p(ξ ′pr)Yp(u), R′(h)

p (ξ ′pr
c
a ) = 0, k(h)c,pr =
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p (u) = Yp(ξpr) Jp(u)− Jp(ξpr)Yp(u), R(e)

p (ξpr
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(49)

The normalization constants are
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2
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a )
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(50)
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The field, with arbitrary normalization constant Qn, is expressed as:
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(39)

where the propagation constant and wave impedance are given by4:

γn =
√

k2
cn − ω2µε =

√
k2

cn − k2, Zn = Y−1
n =

γn

jωε
=

γnη

jk
. (40)

A.4 Mode orthogonality and normalization
A very useful property of the modes is the orthogonality:

∫∫

S
�em ×�hn · ẑdS = Yn

∫∫

S
�em ·�endS = Zm

∫∫

S
�hm ·�hndS = Qnδmn, (41)

In (Collin, 1991), this relation is shown for modes with different cutoff wave number (non
degenerate). In any other case, an orthogonalization process may be carried out. Thus, in this
chapter is used a set of modes (33),(36),(39) where (41) always holds.
It is stressed that the Φ solutions (32),(35),(38) and their related vectors �ΦE,�ΦH do not depend
on the waveguide dielectric and can be written as frequency independent functions that take
real values. Qn is a complex normalization factor that may vary with frequency and can be
arbitrarily chosen (for instance it is common to set Qn = 1).
Another important orthogonality relation is

∫∫

S
�em ×�h∗

n · ẑdS = Y∗
n

∫∫

S
�em ·�e∗ndS = Zm

∫∫

S
�hm ·�h∗

ndS = Pnδmn, (42)

which is related to (41) by:

Pn =

√
Zn

(
√

Zn)∗
|Qn|

ε′′r =µ′′
r =0

=




|Qn| n prop. (k ≥ kcn)

+j|Qn| n evan. TE (k < kcn)

−j|Qn| n evan. TM (k < kcn)

. (43)

Once Qn is fixed, Pn cannot be independently defined. Moreover, for a lossless waveguide, at
frequencies where k ≥ kcn (propagating mode, operating frequency above the cutoff frequency
f ≥ fcn = kcn/(2π

√
µε)), γn is pure imaginary and Zn is real. For k < kcn (evanescent mode,

f < fcn), γn is real and Zn is pure imaginary. In terms of complex power flow, as (43) shows,
Pn is real for propagating modes and imaginary for evanescent modes.

A.5 Canonical waveguides
There are several waveguide cross sections that allow analytical TEM, TE and TM solutions,
as circular or coaxial sectors (elliptical sectors as well), contours described in parabolic coordi-
nates or 30, 45 and 60 degrees triangles. The more common are the following, using standard
rectangular, circular and elliptical coordinates.

4 The TEM eqs. (33),(34) can be formally considered as a particular case of (39),(40) with kcn = 0.

A.5.1 Rectangular waveguide
Regarding Fig. 11.c1, where the reference system is placed at the rectangular cross section
center, the TE and TM solutions to (35),(38) are ((m,n) �= (0,0)):

(Hmn) Φ(h)
mn = (N(h)

mn )
1
2 cos

(mπ
a (x + a

2 )
)

cos
(

nπ
b (y + b

2 )
)

, m,n = 0,1, . . .

(Emn) Φ(e)
mn = (N(e)

mn)
1
2 sin

(mπ
a (x + a

2 )
)

sin
(

nπ
b (y + b

2 )
)

, m,n = 1,2, . . .
(44)

with cutoff wavenumber and normalization constants (εmk = 2(m = k),1(m �= k)):

k(
h
e)

c,mn =
√
(mπ

a )2 + ( nπ
b )2, N(h

e)
mn =

∣∣∣
(
(mπ

a )2 + ( nπ
b )2

)
ab
4 εm0εn0

∣∣∣−1
.

A.5.2 Circular waveguide
Regarding Fig. 11.c2, the TE and TM solutions to (35),(38) are:

(Hcpr)

(Hspr)

Φ(hc)
pr

Φ(hs)
pr

= (N(h)
pr )

1
2 Jp(

ξ ′pr
a ρ)

cos
sin

(pϕ), p =
0,1, . . .
1,2, . . .

r = 1,2, . . . (45)

(Ecpr)

(Espr)

Φ(ec)
pr

Φ(es)
pr

= (N(e)
pr )

1
2 Jp(

ξpr
a ρ)

cos
sin

(pϕ), p =
0,1, . . .
1,2, . . .

r = 1,2, . . .

with roots (Abramowitz & Stegun, 1956) and normalization constants:

k(h)c,pr =
ξ ′pr
a , J′p(ξ ′pr) = 0, N(h)

pr = |εp0
π
2 (ξ

′2
pr − p2) J2

p(ξ
′
pr)|−1

k(e)c,pr =
ξpr
a , Jp(ξpr) = 0, N(e)

pr = |εp0
π
2 ξ2

pr J
′2
p (ξpr)|−1.

(46)

A.5.3 Circular coaxial waveguide
The TEM mode corresponding to (33) in a circular coaxial waveguide (Fig. 11.c3) of inner
radius c and outer radius a is

Φ(o) = (N(o))
1
2 ln ρ

a , N(o) =
∣∣2π ln a

c
∣∣−1 , Zc =

η
2π ln a

c . (47)

The TE and TM solutions to (35),(38) are:

(Hcpr)

(Hspr)
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pr
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pr

= (N(h)
pr )

1
2 R(h)

p (
ξ ′pr
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r = 1,2, . . . (48)
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(Espr)
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pr
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pr )

1
2 R(e)

p (
ξpr
a ρ)

cos
sin

(pϕ), p =
0,1, . . .
1,2, . . .

r = 1,2, . . . ,

where the radial functions with their roots (Abramowitz & Stegun, 1956) are:

R(h)
p (u) = Y′

p(ξ
′
pr) Jp(u)− J′p(ξ ′pr)Yp(u), R′(h)
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(49)

The normalization constants are

N(h)
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(50)
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A.5.4 Elliptical and confocal elliptical coaxial waveguides
An elliptic contour (Fig. 11.c4) of axes 2a,2b is described in elliptic coordinates

x = d f cosh�cosϑ, y = d f sinh�sinϑ, � ≥ 0,−π ≤ ϑ < π,

as � = �a = acosh a/d f , where d f
2 = a2 − b2 is half the focal distance. A second confocal ellipse

with major axis 2c (Fig. 11.c5) is described by � = �c = acosh c/d f .
The solutions to the Helmholtz equation in elliptic coordinates is written as Φ = R(�)a(ϑ),
a and R being solutions to the Mathieu and modified Mathieu equation, respectively, with
parameter q0 (Mclachlan, 1964). With them, the TE and TM modes (35),(38) of the elliptical
waveguide are classified as follows:

(Hcpr) Φ(hc)
pr = (N(hc)

pr )
1
2 R(hc)

p (�,q′cpr)cep(ϑ,q′cpr), p = 0,1, . . . ;r = 1,2, . . .
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pr )
1
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1
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pr )
1
2 R(es)

p (�,qspr)sep(ϑ,qspr), p = 1,2, . . . ;r = 1,2, . . .

(51)

Referring to both waveguides (although their radial functions are different), the roots and
cutoff wavenumbers are (Alhargan & Judah, 1994), (Alhargan & Judah, 1996):
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p (�a,q′cpr) = 0,

R′(hs)
p (�a,q′spr) = 0,
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p (�a,qcpr) = 0

R(es)
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2
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√
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2
a
√

q0 cosh�a,

The normalization constants are:

N( h
e ) = |2πq0
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R2(�)(cosh2� − I(
h
e ))d�|−1, I(

h
e ) = 1

π

∫ π

−π
a2(ϑ)cos2ϑdϑ, (52)

with �0 = 0 for the elliptical waveguide and �0 = �c for the coaxial waveguide. The angular
integral can be done analytically. Then, the radial integral is computed numerically. The TEM
solution (33) for the confocal elliptical coaxial waveguide is:

φ(o) = (N(o))
1
2 (� − �a), N(o) = |2π(�a − �c)|−1 , Zc =

η
2π ln

a+
√

a2−d2
f

c+
√

c2−d2
f

. (53)
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A.5.4 Elliptical and confocal elliptical coaxial waveguides
An elliptic contour (Fig. 11.c4) of axes 2a,2b is described in elliptic coordinates

x = d f cosh�cosϑ, y = d f sinh�sinϑ, � ≥ 0,−π ≤ ϑ < π,

as � = �a = acosh a/d f , where d f
2 = a2 − b2 is half the focal distance. A second confocal ellipse

with major axis 2c (Fig. 11.c5) is described by � = �c = acosh c/d f .
The solutions to the Helmholtz equation in elliptic coordinates is written as Φ = R(�)a(ϑ),
a and R being solutions to the Mathieu and modified Mathieu equation, respectively, with
parameter q0 (Mclachlan, 1964). With them, the TE and TM modes (35),(38) of the elliptical
waveguide are classified as follows:
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(51)

Referring to both waveguides (although their radial functions are different), the roots and
cutoff wavenumbers are (Alhargan & Judah, 1994), (Alhargan & Judah, 1996):
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The normalization constants are:
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with �0 = 0 for the elliptical waveguide and �0 = �c for the coaxial waveguide. The angular
integral can be done analytically. Then, the radial integral is computed numerically. The TEM
solution (33) for the confocal elliptical coaxial waveguide is:
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1
2 (� − �a), N(o) = |2π(�a − �c)|−1 , Zc =
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2π ln
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1. Introduction 
 

The objective of this chapter is first to describe the generalized circuital analysis as a method 
to solve complex electromagnetic problems and second to apply this specific technique to 
the determination of the resonant frequency and Q-factor of a cylindrical cavity loaded with 
a dielectric material when the material is introduced inside the cavity through a hole in the 
upper wall.  
The generalized circuital analysis as a method for solving electromagnetic problems 
consisting of the segmentation of the whole geometry of the microwave circuit into simpler 
structures which resolution can be solved in a easier way. Once the simpler structures have 
been solved separately, they can be joined or combined in order to give the complete 
solution of the complex structure. 
The resolution of the resonant frequency and Quality factor of a coaxially loaded circular 
cavity with a dielectric material is very interesting, for instance, for the determination of the 
dielectric properties (complex permittivity) of materials on this type of cavities. This type of 
analysis on these cavities can be found in the technical literature but in all cases, the effect of 
the hole to introduce the dielectric material inside the cavity is neglected and in some cases, 
such as it will be shown in the second part of the chapter, the effect of the hole can introduce 
considerable errors in the determination of the resonant frequency and quality factor whose 
can interfere the precision of the permittivity calculations. 
In next sections, the effect of the hole for the introduction of dielectric materials inside 
circular cavities is evaluated by solving the structure by the generalized circuital analysis. 
Several measurements of circular cavities with dielectric materials will confirm the effect of 
the hole in the precision of permittivity calculations. 

 
 

7
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2. Circuital Analysis 
 

In this section the ability of solving complex electromagnetic problems by segmenting the 
whole structure in several much simpler sub-structures that can be analyzed separately is 
described. The Generalized Scattering Matrix is also introduced as the method to interconnect 
(combine) networks with different ports and therefore re-combine the segmented networks 
to characterize the original structure. 

 
2.1 The Generalized Admittance Matrix 
The circuital analysis is based on the wave impedance concept. This parameter establishes 
the relationship between electric and magnetic fields in each point of the space and reflects 
the interaction between fields and the medium. The concept of impedance (or admittance), 
associated to each point in a coordinates system, can be extended to the characterization of a 
given volume by the introduction of the Generalized Admittance Matrix (GAM)1 or the 
Generalized Impedance Matrix (GIM).  
As introduced by Schelkunoff in the 30ths and as indicated in (Harrington, 1961), in 
electromagnetic theories, the relation between the electric field components E


 and magnetic 

field components H


 is called as wave impedances. These values are punctual because they 
are associated to each space point. Then, if the wave impedance characterizes a unique 
relation between E


 and H


, the GAM characterizes all the volume free of sources by means 

of the relationship established by E


 and H


 on the surrounding surface. 
The generalized admittance is unique as probed by the Uniqueness theorem (Harrington, 
1961). This theorem establishes that the field inside a closed and lossy region can be 
completely determined by knowing the sources into the region and the electric and 
magnetic tangential field components in a fictitious surface that surrounds the region of 
interest.  
Figure 1 shows the schematic of this situation. Region 2 is the region of interest free of 
sources and region 1 is the region that contains the sources. The Uniqueness theorem 
guaranties that it is not necessary to know the real sources of region 1 to determine in a 
unique way the fields E


 and H


 in any point within region 2 but it is enough to know the 

tangential electric field tE


 in the surface S, or the tangential magnetic field tH


 in the 

surface S or  the tangential electric field tE


 in part of the surface S and the tangential 
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 in the rest of the surface S. 
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Therefore, it is clear that there exists a relationship between both tangential electric and 
magnetic field components, since the knowledge of one of them ensures the knowledge of 
all the rest electromagnetic field components. Moreover this relationship is unique due to 
the Uniqueness Theorem. 
The relation between electric and magnetic fields can be expressed as a linear combination 
of base function according to the following expressions: 
 

 
n

nnt
n

nnt he HHEE


;  (1) 

 
where  nE
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 are the base functions for the electric and magnetic fields, respectively, 

and the terms ne  and nh   are, respectively,  the amplitudes of weight of each base function.  
According to these expressions, the relation between both field components is established 
by a matrix. This matrix relates the weights of the magnetic field series nh  with the weights 

of the electric field series ne . This matrix is known as the Generalized Admittance Matrix Y . 
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The relation between both matrices Y  y Z  is clearly: 
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N refers to the number of terms considered in the series development of the electric and 
magnetic fields of equation (1). 
The definition of this matrix is very important for solving complex electromagnetic 
problems because it permits to segment the whole structure into simpler structures by 
making use of circuital theories. The segmentation concept can be first attributed to 
Harrington en (Harrington, 1961) where diverse waveguide apertures were analyzed by 
dividing the structure in two parts by placing at the aperture some equivalent currents. This 
technique was known as Generalized Circuital Formulation. From this first attempts, there has 
been many references that made use of it. For instance, (Collin, 1966), (Collin, 1991) and 
(Pozar, 1990) applied this technique for solving cavities excited by slots. Another interesting 
example is the work of (Gentili & Melloni, 1996). Some other examples can be found in 
(Alessandri et al, 1994), (Gimeno & Guglielmi, 1997) y (Rebollar et al., 1994) for closed 
structures and in (Valero-Nogueira 1997), (Penaranda-Foix, 2001), (Penaranda-Foix & Ferrando-
Bataller, 2003), (Penaranda-Foix et al., 2007a) y (Penaranda-Foix et al., 2009) for open problems. 
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2. Circuital Analysis 
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Therefore, it is clear that there exists a relationship between both tangential electric and 
magnetic field components, since the knowledge of one of them ensures the knowledge of 
all the rest electromagnetic field components. Moreover this relationship is unique due to 
the Uniqueness Theorem. 
The relation between electric and magnetic fields can be expressed as a linear combination 
of base function according to the following expressions: 
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The relation between both matrices Y  y Z  is clearly: 
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N refers to the number of terms considered in the series development of the electric and 
magnetic fields of equation (1). 
The definition of this matrix is very important for solving complex electromagnetic 
problems because it permits to segment the whole structure into simpler structures by 
making use of circuital theories. The segmentation concept can be first attributed to 
Harrington en (Harrington, 1961) where diverse waveguide apertures were analyzed by 
dividing the structure in two parts by placing at the aperture some equivalent currents. This 
technique was known as Generalized Circuital Formulation. From this first attempts, there has 
been many references that made use of it. For instance, (Collin, 1966), (Collin, 1991) and 
(Pozar, 1990) applied this technique for solving cavities excited by slots. Another interesting 
example is the work of (Gentili & Melloni, 1996). Some other examples can be found in 
(Alessandri et al, 1994), (Gimeno & Guglielmi, 1997) y (Rebollar et al., 1994) for closed 
structures and in (Valero-Nogueira 1997), (Penaranda-Foix, 2001), (Penaranda-Foix & Ferrando-
Bataller, 2003), (Penaranda-Foix et al., 2007a) y (Penaranda-Foix et al., 2009) for open problems. 
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Figure 2a shows a generic example for illustrating how the circuital theory can be applied to 
solve complex structures. Figure 2a distinguishes two zones: region a free of sources and 
region b with sources. 
 

 
 

Fig. 2a. Segmentation problem: Two regions 
connected by the aperture

 
Fig. 2b. Segmentation problem: Two 
regions separated by the aperture 

 
Figure 2b shows the same structure but segmented in two equivalent problems by means of 
the equivalent principle. This separation of regions is carried out by placing an electric wall in 
the aperture between regions a and b. 
The fields generated in region b are the result of the sources iJ  y iM  and the fields created 

by the equivalent magnetic current nEM ˆx


  on the aperture surface. Since the aperture is 
covered by an electric wall, it is not necessary the use of equivalent electric currents. On the 
other hand, in region a, the field is uniquely created by the magnetic current M


  at the 

aperture since there are no sources in this region (a). 
To raise this problem, continuity of tangential magnetic fields in the aperture is imposed. 
The total magnetic field on the aperture zone in region b is the summation of the field due to 
the impressed currents i

tH


 and the field due to the equivalent sources M


 called as  MH


b
t  

from now on, then: 
 MHHH


b
t

i
t

b
t   (4) 

 

It is important to remark that both i
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 and  MH


b
t  are fields calculated by assuming the 

aperture as an electric wall.  
In a similar manner, the tangential magnetic field in the aperture of region b is due to the 
equivalent sources M


  called  MH
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t  from now on, leading to: 
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Where once again  MH
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t  is calculated assuming the source M


  in the aperture where 

the electric wall is located. 
Making both tangential components equal, we have: 
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Equation (6) is the basic equation for the calculation of M


 by assuming it is known the 

operator that relates magnetic fields with the sources in each region. 
To solve this equation two numerical methods, very similar between them, are available: 
The Method of Moments (MoM), see (Harrington, 1967) y (Harrington, 1993), and Modal 
Analysis or Mode Matching, see (Wexler, 1967). 
Assuming that the unknown source M


 can be written as a series of base functions, in a 

similar manner to equation (1), 
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where coefficients nv  need to be determined. Substituting this series development in 
equation (6) and making use of the operator linearity, we can write: 
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With the definition of the internal product: 
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If previous equations are re-written in a matricial form, a new set of matrices 
a

Y  and 
b

Y  are 
defined as the matrices that characterizes the regions a and b, respectively. 
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Figure 2a shows a generic example for illustrating how the circuital theory can be applied to 
solve complex structures. Figure 2a distinguishes two zones: region a free of sources and 
region b with sources. 
 

 
 

Fig. 2a. Segmentation problem: Two regions 
connected by the aperture

 
Fig. 2b. Segmentation problem: Two 
regions separated by the aperture 
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On the other hand, equation (10) is now: 
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 is –see equations (6) and (8)-: 
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It is important to emphasize that equation (15) presents a clear circuital interpretation which 
is showed in next figure 3. 
 

 
Fig. 3. Circuital interpretation of equation (15)  
 

Figure 3 represents two networks, each one characterized by an admittance matrix (
a

Y  and 
b

Y , respectively) and a current source iI


, which solution is given by equation (15). The 
importance of this result falls in the possibility to analyze and solve each region separately 
and irrespective of the other regions. Moreover, this result can be extended to networks with 
more port numbers, as described in (Penaranda-Foix, 2001) 

 
2.2 The Generalized Scattering Matrix 
In previous section, GAM and GIM matrices were introduced. Next section adds to these 
matrices the Generalized Scattering Matrix (GSM). 
It is well known that by considering a canonic plane as the access port to the network under 
analysis, the electric and magnetic fields in such surface can be decomposed in forward and 
reflected waves in the network, respectively. This is especially evident when the wave 
equation is solved (Balanis, 1989), (Harrington, 1961)-. 
Therefore, electric and magnetic fields in a port of the network, can be written as: 
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By making use the known concept of characteristic admittances 
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At the same time, according to equation (1), electric and magnetic fields can be written as a 
series development. Therefore, the Generalized Scattering Matrix (GSM) can be defined as the 
relation of the forward electric wave fields  iE


 and the reflected wave fields  rE


: 
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The relationship between the S  matrix and the admittance Y  and impedance Z  matrices is 
calculated by the following equations 
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In a similar manner, the admittance matrix is given by: 
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2.3 Connecting networks 
To conclude with this section, the procedure to interconnect networks of several ports and 

set the new S , Y  o Z  matrices is described. 

Assuming two generic networks characterized by their respective admittance matrices 
 1

Y  

and 
 2

Y  where, for example, the first network presents 5 ports and the second 6 ports, 
respectively. (See figure 4a for more details of the networks and port numbers). 
 

Fig. 4a. Networks before connecting  
Fig. 4b. Networks joined but not connected 

 
The first step consists of setting a global network with a number of ports equal to the sum of 
the number of ports of both networks and with a new numeration of ports. (It is a good 
practice to keep the order of the ports with the new numeration) Thus, the new GAM is 
witten as: 
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importance of this result falls in the possibility to analyze and solve each region separately 
and irrespective of the other regions. Moreover, this result can be extended to networks with 
more port numbers, as described in (Penaranda-Foix, 2001) 
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In a similar manner, the admittance matrix is given by: 
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2.3 Connecting networks 
To conclude with this section, the procedure to interconnect networks of several ports and 

set the new S , Y  o Z  matrices is described. 

Assuming two generic networks characterized by their respective admittance matrices 
 1

Y  

and 
 2

Y  where, for example, the first network presents 5 ports and the second 6 ports, 
respectively. (See figure 4a for more details of the networks and port numbers). 
 

Fig. 4a. Networks before connecting  
Fig. 4b. Networks joined but not connected 

 
The first step consists of setting a global network with a number of ports equal to the sum of 
the number of ports of both networks and with a new numeration of ports. (It is a good 
practice to keep the order of the ports with the new numeration) Thus, the new GAM is 
witten as: 
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Figure 4b shows this new network with a commoun numeration of ports. This particular 
example of figure 4 can be extended to a any network with N ports, as the network showed 
in figure 5a. 
The second step consist of connecting two (or more) ports from the new network of figure 
5b. By connecting these two ports, for instance ports l and k, the resulting network reduces 
the number of ports to N-2. 
 

 
Fig. 5a. Generic network before connecting 
ports l and k. 

 
Fig. 5b. Generic network after connecting 

ports l and k.
 
The new GAM matrix with N-2 ports is calculated by imposing continuity of electric and 
magnetic tangential component fields between ports l and k.  
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And operating on previous equation, the new GAM matrix with N-2 ports, called 
 T

Y , is 
reached: 
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Operating in a similar manner, the impedance matrix GIM, is also found as: 
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Also by imposing the same continuity of tangential fields, the new GSM matrix is obtained: 
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where: 
11

;
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Equations (22), (23) and (24) are a powerful set of equations that allow to apply the circuital 
method to electromagnetic problems by the segmentation procedure. 
Once each simple problem or circuit has been analysed and its GAM, GIM or GSM is 
known, just using the previous equations the whole GAM, GIM or GSM or the orginal 
problem is calculated. 
In the next point this general procedure will be applied to a specific problem: a cylindrical 
cavity with insertion hole. 

 
3. Cylindrical cavity analysis 
 

As an example of the circuital theory described in previous section we will analyze the 
circular resonant cavities used for the electromagnetic characterization of materials. 
To determine accurately the dielectric and magnetic properties of materials is essential 
nowadays in applications such antennas, radomes, planar circuits, etc. Special attention 
must be dedicated to the new materials developed for special applications. But not only in 
those cases: in applications such as microwave heating, where losses associated to the 
materials determine its capability to be heated, where the measured electric variations will 
allow to determine how the monitorized material is changing its properties in real time. 
Finally, a large number of applications can be thought in the world of medicine, to get 
images, or even from the security view point, in order to know the electromagnetic 
properties of potentially dangerous materials. 
One of the most widely method to determine the dielectric properties is the coaxially filled 
circular resonant cavity with an insertion hole in the top or in top and in the bottom, to 
introduce the material. These cavities are based on the use of the resonant mode TM010, with 
no angular changes –see (Balanis, 1989), (Chen et al., 2004) and (Metaxas & Meredith, 1988)- 
and in the property that the insertion hole is considered as a cylindrical waveguide under 
cut-off so there is no propagation along it. Then the cavity, even open, can be considered as 
a closed cavity. 
The problem geometry is shown in figure 6a, being figure 6b a section, where we can see a 
cavity of radius b and height h with a generic material of permittivity r2 and permeability 
r2 (both will be in general air: r2r2=1). In the center there is an insertion hole, or tube, 
whose radius is a and its height is larger than the cavity height. It contains the material to be 
measured with permittivity r1 and permeability r1. Finally, above the measured material 
there is another one with permittivity r and permeability r (in general air again: rr=1). 
But it is important to remember that the tube is under cut-off and then there is no leakage 
through it and it is negligible. 
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Figure 4b shows this new network with a commoun numeration of ports. This particular 
example of figure 4 can be extended to a any network with N ports, as the network showed 
in figure 5a. 
The second step consist of connecting two (or more) ports from the new network of figure 
5b. By connecting these two ports, for instance ports l and k, the resulting network reduces 
the number of ports to N-2. 
 

 
Fig. 5a. Generic network before connecting 
ports l and k. 

 
Fig. 5b. Generic network after connecting 

ports l and k.
 
The new GAM matrix with N-2 ports is calculated by imposing continuity of electric and 
magnetic tangential component fields between ports l and k.  
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And operating on previous equation, the new GAM matrix with N-2 ports, called 
 T

Y , is 
reached: 
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Operating in a similar manner, the impedance matrix GIM, is also found as: 
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Also by imposing the same continuity of tangential fields, the new GSM matrix is obtained: 
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where: 
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Equations (22), (23) and (24) are a powerful set of equations that allow to apply the circuital 
method to electromagnetic problems by the segmentation procedure. 
Once each simple problem or circuit has been analysed and its GAM, GIM or GSM is 
known, just using the previous equations the whole GAM, GIM or GSM or the orginal 
problem is calculated. 
In the next point this general procedure will be applied to a specific problem: a cylindrical 
cavity with insertion hole. 

 
3. Cylindrical cavity analysis 
 

As an example of the circuital theory described in previous section we will analyze the 
circular resonant cavities used for the electromagnetic characterization of materials. 
To determine accurately the dielectric and magnetic properties of materials is essential 
nowadays in applications such antennas, radomes, planar circuits, etc. Special attention 
must be dedicated to the new materials developed for special applications. But not only in 
those cases: in applications such as microwave heating, where losses associated to the 
materials determine its capability to be heated, where the measured electric variations will 
allow to determine how the monitorized material is changing its properties in real time. 
Finally, a large number of applications can be thought in the world of medicine, to get 
images, or even from the security view point, in order to know the electromagnetic 
properties of potentially dangerous materials. 
One of the most widely method to determine the dielectric properties is the coaxially filled 
circular resonant cavity with an insertion hole in the top or in top and in the bottom, to 
introduce the material. These cavities are based on the use of the resonant mode TM010, with 
no angular changes –see (Balanis, 1989), (Chen et al., 2004) and (Metaxas & Meredith, 1988)- 
and in the property that the insertion hole is considered as a cylindrical waveguide under 
cut-off so there is no propagation along it. Then the cavity, even open, can be considered as 
a closed cavity. 
The problem geometry is shown in figure 6a, being figure 6b a section, where we can see a 
cavity of radius b and height h with a generic material of permittivity r2 and permeability 
r2 (both will be in general air: r2r2=1). In the center there is an insertion hole, or tube, 
whose radius is a and its height is larger than the cavity height. It contains the material to be 
measured with permittivity r1 and permeability r1. Finally, above the measured material 
there is another one with permittivity r and permeability r (in general air again: rr=1). 
But it is important to remember that the tube is under cut-off and then there is no leakage 
through it and it is negligible. 
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Fig. 6a. Circular cavity and the hole. 

 
 

Fig. 6b. Circular cavity and the hole: 
section view.

 
As previously said, to completely analyze this structure we must divide it in simpler 
networks by a segmentation process. Figure 7a shows how this structure can be segmented. 
The segmentation consists of a division of the whole network into smaller ones, with 
canonical shapes in general, and then the analysis will be easier. So, the segmentation 
proposed in figure 7a divides the geometry into 3 different networks: one is a one-port 
network, in a circular ring shape with external radius a and external radius b and height h 
where the one-port in put in the inner part (r=a). This structure is shown in figure 7b. 
Another network is a two-port network that consists of a circular waveguide of radius a and 
height d whose ports are located in the top and in the bottom, as shown in figure 7c.  
 

 
Fig. 7a. Circular cavity and the hole. 

 
Fig. 7b. 1-port network: Ring. 

 
Fig. 7c. 2-port: 

Waveguide

 
Fig. 7d. 1-port: 

Waveguide 

 
 

Fig. 7e. 3-port network: Core 

 

This network can be converted in a one-port network, located in the bottom, as shown in 
figure 7d, just considering that there is no reflection in port 2. Finally a three-port network 
appears that consists of a circular tube of radius a and height h with ports in the top and in 
the bottom, as before, but adding a port in the circular face, in r=a. This geometry is shown 
in figure 7e. 
Then the original problem is reduced to 3 simpler problems: the circular ring, a circular 
waveguide and the 3-port guide. 

 
3.4 Analysis of a 1 port network 
Let’s start calculating the Generalized Admittance Matrix (GAM) of the 1-port network 
shown in figure 7d. It is the simplest one and it will allow seeing the whole procedure. 
Figure 8 shows the axis to be considered for this structure. 
 

 
Fig. 8. One port network 
 
The internal field in the circular waveguide is: 
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All the fields correspond to circular TM0n modes (Balanis, 1989). As previously mentioned, 
only TM0n modes are considered and, even there are a larger set of modes excited ,like TEmn 
or TMmn in general, these modes are not coupled with the other ones. The resonant modes 
associated to these TM0n modes are the TM0np modes. Anyway, the proposed circuital 
method ca be used with any set of modes, so there is no loss of generality. 
The propagation constant n  is calculated from the cut-off wavenumbers kcn as (Balanis, 
1989): 
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All the fields correspond to circular TM0n modes (Balanis, 1989). As previously mentioned, 
only TM0n modes are considered and, even there are a larger set of modes excited ,like TEmn 
or TMmn in general, these modes are not coupled with the other ones. The resonant modes 
associated to these TM0n modes are the TM0np modes. Anyway, the proposed circuital 
method ca be used with any set of modes, so there is no loss of generality. 
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where p0n are the zeros of the First Kind Bessel Functions of order 0 (   0J 00 np ) and its 
value is obtained by focing the boundary conditions in the lateral faces (Balanis, 1989). The 
cut-off wavenumber is always a real number (Ramo, 1994) and teh criteria to select the sign 
of the propagation constant is (Baker-Jarvis et al., 1994): 
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Where the square root must be in the fist or in the forth quadrants. 
Amplitudes 

nA  y 
nA  are, respectively, the forward and backward waves in the z-axis 

direction, which is the propagation direction. In our particular case, because the waveguide 
is under cut-off, the backward waves are zero, so 0

nA . 
To get the GAM we must incide with an electric field in port 1. This electric field, as 
previously said, is written as a series expansions of base functions as: 
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where the sleected base function for port 1 is: 
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Term  1

mN  is a normalization term introduced in the modal analysis and we are going to use 
the proposed by Gentilli (Gentili, 1991). It must accomplish: 
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Then the normalization term is: 
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The incident field in port 1, equation (29), must equal to the electric field calculated from the 
inside of the structure, following equation(26). Then the forward amplitude is: 
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To get the GAM, we must obtain a relation between the electric and the magnetic fields in 
port 1. The magnetic field in port 1 is, in the same way than the electric one: 
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where the base fucntion   1

qh  is the same than that used for electric field:    11
qq eh   

And the GAM is defined as: 
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where  1e


 is a column vector with the electric field amplitudes at port 1 and  1h


 is the 

column vector with the magnetic field amplitudes at port 1: 
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Then identifying the inner magnetic field in port 1 with the magnetic field from equation  
(34) we have: 

       

 mqjc

r
a
p

JNchcArkkzH

m
mq

q

q
qq

q
qq

n
ncn

cn
















 






















1

0'
0

1

1

1

1

'
0J0

 (37) 

 
Then the Generalized Admittance Matrix GAM is: 
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3.5 Analysis of a 1-port ring structure 
This example will show how to calculate the GAM of the network shown in figure 7b. It is a 
1-port network, as before, but the port is located in the lateral. 
Figure 9 shows the axis to be considered. 
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The incident field in port 1, equation (29), must equal to the electric field calculated from the 
inside of the structure, following equation(26). Then the forward amplitude is: 
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To get the GAM, we must obtain a relation between the electric and the magnetic fields in 
port 1. The magnetic field in port 1 is, in the same way than the electric one: 
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Then the Generalized Admittance Matrix GAM is: 
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3.5 Analysis of a 1-port ring structure 
This example will show how to calculate the GAM of the network shown in figure 7b. It is a 
1-port network, as before, but the port is located in the lateral. 
Figure 9 shows the axis to be considered. 
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Fig. 9. One port network: ring 
 
The fields inside are, as before: 
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where functions  rf n0  and  rf '
0  are: 
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Again only TM0n  modes are considred. 
The cut-off wavenumber kcn is calculated, in this case, as a fucntion of the propagation 
constant n  as: 
 

2
22

2
0

2
2020

2222
nrrnrrncn kk    (41) 

 
And the propagation constant is calculated from equations (39) by applying the boundary 
conditions in r=b, that is already accomplished, and in z=0 and z=h. Forcing these last two 
boundary conditions we have: 
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Then the fields inside the ring are: 
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But the electric field in port 1 must be a series expasions on a basis functions. In this case we 
will use: 
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where the basis functions are the trigonometric functions. 
This incident electric field in port 1, equation (44), must be equal to the same electric field 
comuted from the field inside the structure, following equation (43). Then the amplitudes 
inside are: 
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where n , 
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 2c
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Fig. 9. One port network: ring 
 
The fields inside are, as before: 
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Then the fields inside the ring are: 
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where the basis functions are the trigonometric functions. 
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To get the GAM we must, again, obtain the relation between the electric and magnetic fields 
in port 1. The magnetic field in port 1 is: 
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And the GAM is defined as: 
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where  1e


 and  1h


 are the column vectors with the electric and magnetic amplitudes in 
port 1: 
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Then, identifying the inner magnetic field in port 1, equation (43), and the magnetic field 
outside, from equation (47), and substituing 

nA  following (45): 
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On the other way, the GAM is: 
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where each submatrix 
 ab

11Y  is: 
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3.6 Analysis of a 3-port network 
Now let us calculate the GAM of the 3-port network depicted in figure 7e. This network has 
the two before cases, because it has ports in the top, in the bottom and in the lateral side. 
Figure 10 shows the axis to be used in this 3-port network. 
 

 
Fig. 10. Three port network: core 
 
Note that now the GAM is 3x3 dimension matrix: 
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To analyse this multiport structure we must go by columns, in such a way that all the ports 

are short-circuited except port j, where j=(1,2,3). So,   0
 ji

ie , and then the GAM 

elements are computed as (the j column in this case): 
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3.6.1 Parameters 1iY  
To compute this column we must short-circuit ports 2 and 3. Then in z=-h/2 and in r=a we 
have electric walls. 
In general, the fields inside the structure will be, considering only TM0n modes: 
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To get the GAM we must, again, obtain the relation between the electric and magnetic fields 
in port 1. The magnetic field in port 1 is: 
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Then, identifying the inner magnetic field in port 1, equation (43), and the magnetic field 
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On the other way, the GAM is: 
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3.6 Analysis of a 3-port network 
Now let us calculate the GAM of the 3-port network depicted in figure 7e. This network has 
the two before cases, because it has ports in the top, in the bottom and in the lateral side. 
Figure 10 shows the axis to be used in this 3-port network. 
 

 
Fig. 10. Three port network: core 
 
Note that now the GAM is 3x3 dimension matrix: 
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To analyse this multiport structure we must go by columns, in such a way that all the ports 

are short-circuited except port j, where j=(1,2,3). So,   0
 ji

ie , and then the GAM 

elements are computed as (the j column in this case): 
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3.6.1 Parameters 1iY  
To compute this column we must short-circuit ports 2 and 3. Then in z=-h/2 and in r=a we 
have electric walls. 
In general, the fields inside the structure will be, considering only TM0n modes: 
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where the Second Kind Bessel Functions  rkY cn 0  disappear because they are singular in 
the origin, and where the cut-off wavenumber kcn and the propagation constant n  are 
related as: 
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The boundary condition are then: 
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And the electromagnetic fields inside are: 
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(58) 

Identifying now the tangential incident field in port 1 with the ineternal field in the plane, as 
made in equation (33), and using the same series expansion for the incident electric field 
than before, as in equation (29), we have: 
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Following this, parameter 11Y  must accomplish:    1
11

1 eYh 
 . The magnetic field will 

be, in the same way than in point 3.4 and showed in equation (34): 
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Then the GAM is: 
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In the same way, parameter 31Y  is that who accomplishes:    1
31

3 eYh 
 . The magnetic 

field is, as shown in point 3.4 and in equation (34), and equating as before: 
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And parameter 21Y , who accomplishes    1
21

2 eYh 
 , is calculated in a similar way, 

remebering that the tangential magnetic field in port 2 is expanded in a series as shown in 

(47). Identifying the magnetic fields, we have, after replacing 
nA  with the value obtained in 

equation (59): 
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where n  and sinc(x) have been defined before and  cs
qmI

,  are3 (more general than (46)): 
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3 Function sinhc of  cs

qmI
,  is:    

x
xx sinhsinhc   (note the difference with sinc) 
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where the Second Kind Bessel Functions  rkY cn 0  disappear because they are singular in 
the origin, and where the cut-off wavenumber kcn and the propagation constant n  are 
related as: 
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And the electromagnetic fields inside are: 
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Identifying now the tangential incident field in port 1 with the ineternal field in the plane, as 
made in equation (33), and using the same series expansion for the incident electric field 
than before, as in equation (29), we have: 
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Following this, parameter 11Y  must accomplish:    1
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 . The magnetic field will 

be, in the same way than in point 3.4 and showed in equation (34): 
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And parameter 21Y , who accomplishes    1
21

2 eYh 
 , is calculated in a similar way, 

remebering that the tangential magnetic field in port 2 is expanded in a series as shown in 

(47). Identifying the magnetic fields, we have, after replacing 
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where n  and sinc(x) have been defined before and  cs
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Then parameter 21Y , defined as    
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3.6.2 Parameters 2iY  
For this column number 2, we must put short-circuits in ports 1 and 3. Then in z=-h/2 and in  
z=+h/2 we have electric walls. 
In general, the inner electromagnetic fields are, as before for TM0n modes: 
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where the cut-off wavenumber kcn and the propagation constant n  are related as: 
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Imposing the boundary conditions we have: 
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And the inner fields: 
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Identifying the incident tangential electric field in port 2 with the inner electric field, from 
equation (45), and using the same series expansion in the incident field than in equation (44): 
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(70) 

Then, parameters 12Y , 22Y  and 32Y  are calculated easily using the same procedure than 
before. 

 
3.6.3 Parameters 3iY  
Finally, parameters of the 3rd column are calulated exactly in the same way than parameters 

1iY . 

 
4. Simulations and measurements 
 

Once all the GAM in figure 7a are obtained, it is quite easy and fast to analyse the 
geometries proposed in figures 6a and 6b. To do this is enough to apply the theory and 
equations proposed in point 
2.3. 
Those expressions allow interconnecting different networks just knowing the corresponding 
multimodal matrices GAM, GIM or GSM. 
At this point is important to note that each multimodal matrix can use only one mode. Then 
they are called monomode expressions. These monomode expressions are less accurate but 
they are a really good seed for a more accurate result. 
The monomode expressions were used and presented by the authors in (Penaranda-Foix et 
al., 2007b). If we look at the cavity shown in figure 7a, to get the resonant frequency is 
reduced to the simplest resonant condition, shown as an example in (Penaranda-Foix et al., 



Circuital	analysis	of	cylindrical	structures	applied		
to	the	electromagnetic	resolution	of	resonant	cavities 161

 

    
 

  













 















 



2

2

2

2

2

2cosh22cos

2
2sinhc

2cosh22cos

h

h m

m

m
m

h

h m
c
qm

dzhz
h
hzq

qjh
qjhh

dzhz
h
hzqI








 
(64b) 

 

Then parameter 21Y , defined as    
 

  α
Y
YeY

d
c

h 

























 c

s

21

211
21

2 , is: 

where each submatrix 
 cs ,
21Y  is: 

 
     

 

 
 s
qm

m

m

m
m

q

qm

s
I

h
Np

h














sinh
J

12 1

0
'
021Y  (65a) 

 
 

 

 
 c
qm

m

m

m
m

q

qm

c
I

h
Np

h











sinh
J

1

0
'
021Y  (65b) 

 
3.6.2 Parameters 2iY  
For this column number 2, we must put short-circuits in ports 1 and 3. Then in z=-h/2 and in  
z=+h/2 we have electric walls. 
In general, the inner electromagnetic fields are, as before for TM0n modes: 
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where the cut-off wavenumber kcn and the propagation constant n  are related as: 
 

2
11

2
0

2
1010

2222
nrrnrrncn kk    (67) 

 

Imposing the boundary conditions we have: 
 

 
 








 

h
njjhzE

eAeAAhzE

nnz

h
n

h
nnz

nn





02

02 22

 (68) 

 

And the inner fields: 
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Identifying the incident tangential electric field in port 2 with the inner electric field, from 
equation (45), and using the same series expansion in the incident field than in equation (44): 
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Then, parameters 12Y , 22Y  and 32Y  are calculated easily using the same procedure than 
before. 

 
3.6.3 Parameters 3iY  
Finally, parameters of the 3rd column are calulated exactly in the same way than parameters 

1iY . 

 
4. Simulations and measurements 
 

Once all the GAM in figure 7a are obtained, it is quite easy and fast to analyse the 
geometries proposed in figures 6a and 6b. To do this is enough to apply the theory and 
equations proposed in point 
2.3. 
Those expressions allow interconnecting different networks just knowing the corresponding 
multimodal matrices GAM, GIM or GSM. 
At this point is important to note that each multimodal matrix can use only one mode. Then 
they are called monomode expressions. These monomode expressions are less accurate but 
they are a really good seed for a more accurate result. 
The monomode expressions were used and presented by the authors in (Penaranda-Foix et 
al., 2007b). If we look at the cavity shown in figure 7a, to get the resonant frequency is 
reduced to the simplest resonant condition, shown as an example in (Penaranda-Foix et al., 
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2009). When only one mode is considered, the monomode analysis takes us to the 
expression (10) of (Penaranda-Foix et al., 2007b): 
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where all the permitivities and permeabilities but those of the central material to be 
measured, are air, and where: 
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To obtain equation (71) the insertion hole is only in the top, having a short-circuito in the 
bottom. That menas that in port 3 a short-circuited has been placed. Using the same 
procedure, a similar expression can be achieved with an insertion hole in the top and in the 
bottom. When no insertion hole is placed, the analytical analitycal procedure can be used 
(see Balanis, 1989)). Using the monomode equations previously determined, we arrive to the 
equation (8) of (Penaranda-Foix et al., 2007b): 
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Of course, this equation is the same that that obtained by Balanis. The result is normal, 
because the Balanis procedure consists of a monomode analysis. 
The resonant frequencies obtained with and without insertion hole are different. This 
frequency deviation can be really important when measuring large permittivities or large 
aspect ratio cavities. It was 1960 when Estin (Estin & Bussey, 1960) published a first 
aproximate expression to estimate this error. It was a linear equation and it did not take into 
account the saturation effect described by the monomode procedure. It appears at large 
permittivities and at large aspect rates. Then in 2007 Penaranda-Foix (Penaranda-Foix et al., 
2007c) proposed an alternative exponential equation obtained from the exact value and (71): 
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where fr is the resonant frequency with insertion hole and f0 is the resonant frequency in the 
ideal case, without insertion hole. And the parameters are: 
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Finally, it is important to note that both equations, Estin and Penaranda-Foix, are also valid 
when the insertion hole goes through the cavity and it is in the top and in the bottom. In this 
case the relative error must be doubled. So it is enough to multiply by two equation (74). 

 
4.1 Measurements 
To probe the validity of the previous expressions, as well as the Generalised Circuital 
Analysis described along this chapter, some measurements were carried out. These 
measurements implied two diferent cavities with an insertion hole in the top and in the 
bottom. 
Cavity number 1 has a radius b=60 mm and a height h=20 mm. The insertion hole radius is 
a=6.35 mm, and long enough to consider that is under cut-off. Cavity number 2 is exactly the 
same than number 1 but the external radius is b=20 mm. 
Cavity number 1 is shown in figure 11a, where it is open. In figure 11b is shown the same 
cavity but closed and some samples used to be measured. 
 

 
Fig. 11a. Cavity N. 1 open Fig. 11b. Cavity N. 1 closed and samples 
 
The expected resonant frequency deviations is this cavities was simulated and shown in 
figure 12a. Cavity number 1 has a acpect ratio a/b=0.1058 and cavity number 2 aspect ratio is 
a/b=0.3175. Two more aspect ratios have been simulated: a/b=0.5 (b=12.7 mm), that is even 
smaller than Cavity number 2, and a/b=0.04 (b=158.75 mm), larger than Cavity number 1. 
Figure 12a shows the predicted frequency deviation by Estin and that predicted by (74), 
compared with the exact one calculated by circuital analysis following the procedure 
described along the chapter. And figure 12b shows the actual resonant frequency with are 
without insertion hole. 
Table 1 shows the measurements performed with Cavity number 1 (fu is the measured 
resonant frequency in GHz and Qu is the measured quality factor) and the calculated 
permittivities depending the case (note that in all the cases the quality factor used Qd has 
been calculated with the expression emptymeasd QQQ 111   to avoid the wall losses 
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2009). When only one mode is considered, the monomode analysis takes us to the 
expression (10) of (Penaranda-Foix et al., 2007b): 
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where all the permitivities and permeabilities but those of the central material to be 
measured, are air, and where: 
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Of course, this equation is the same that that obtained by Balanis. The result is normal, 
because the Balanis procedure consists of a monomode analysis. 
The resonant frequencies obtained with and without insertion hole are different. This 
frequency deviation can be really important when measuring large permittivities or large 
aspect ratio cavities. It was 1960 when Estin (Estin & Bussey, 1960) published a first 
aproximate expression to estimate this error. It was a linear equation and it did not take into 
account the saturation effect described by the monomode procedure. It appears at large 
permittivities and at large aspect rates. Then in 2007 Penaranda-Foix (Penaranda-Foix et al., 
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where fr is the resonant frequency with insertion hole and f0 is the resonant frequency in the 
ideal case, without insertion hole. And the parameters are: 
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Figure 12a shows the predicted frequency deviation by Estin and that predicted by (74), 
compared with the exact one calculated by circuital analysis following the procedure 
described along the chapter. And figure 12b shows the actual resonant frequency with are 
without insertion hole. 
Table 1 shows the measurements performed with Cavity number 1 (fu is the measured 
resonant frequency in GHz and Qu is the measured quality factor) and the calculated 
permittivities depending the case (note that in all the cases the quality factor used Qd has 
been calculated with the expression emptymeasd QQQ 111   to avoid the wall losses 
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effect, in such a way that Qmeas is the mesured quality factor with material and Qempty is the 
mesured quality factor without material) for materials M1 (Nylon 66 FG) and M2 (ACETAL): 
CASE 1: This is the permittivity calculated using the circuital and multimode method, 
considering the up and down insertion holes. This is going to be considered as the exact and 
reference case. 
 

 
Fig. 12a. Frequency deviation for different permittivities and different aspect ratios 
 

 
Fig. 12b. Frequency deviation for different permittivities and different aspect ratios. 
 
CASE 2: This is the permittivity computed neglecting the effect of the insertion hole. That is 
using equation (73) directly. 
CASE 3: This is the computed permittivity using the correction proposed by Estin (Estin & 
Bussey, 1960). 
CASE 4: This is the permittivity using the correction proposed in (74). 

 

In all the cases the imaginary part of the permittivity has been multiplied by 102 and the 
corrections to the resonant frequency (equations from Estin and (73)) have been applied to 
the complex resonant frequency, and not only to the resonant frequency- The complex 
resonant frequency is defined as   Qjfrr  21 . In Harrington (Harrington, 1961), 
the reader can find the origin of this concept for resonant problems. 
 

   CASE 1 CASE 2 CASE 3 CASE 4 
 fu Qu ’ ’’ ’ ’’ ’ ’’ ’ ’’ 

Air 1.9157 4496 60.02744 -------- -------- -------- -------- -------- -------- -------- 
M1 1.8517 564.8 2.8457 4.0922 2.5237 3.5545 2.8291 4.0184 2.8155 3.9760 
M2 1.8471 198.8 2.9778 12.6630 2.6385 10.996 2.9588 12.4362 2.9438 12.2980 

Table 1. Measurements with cavity 1. 
 
It is important to note that the error in CASE 2 in Cavity number 2 is about 12% respect to 
the exact, because the insertion hole correction has not been applied. Once the correction is 
used, even in CASE 3 or CASE 4, errors are reduced to less than 2%. 
Table 2 shows exactly the same than before, but measured in a smaller cavity: Cavity 
number 2. 

   CASE 1 CASE 2 CASE 3 CASE 4 
 fu Qu ’ ’’ ’ ’’ ’ ’’ ’ ’’ 

Air 5.8350 617.7 20.01195 -------- -------- -------- -------- -------- -------- -------- 
M1 4.6045 106.5 2.8779 3.6882 2.5410 3.1167 3.0760 4.3551 2.8903 3.7284 
M2 4.5979 49.00 2.8903 8.8461 2.552 7.6725 3.0906 10.5658 2.9032 9.0356 

Table 2. Measurements with cavity 2. 
 
In this case, and due to a highest aspect ratio in Cavity number 2, the Estin formulae fails. So 
the error, supposing that CASE 1 is the exact one, errors are about 7% and 12% using Estin 
formulae or no-insertion hole approach. But it reduces again to less than 2% when using 
(74). 
Finally, it is worth mentioning that all the above results are calculated with an uncertainty of 
1.6%). This uncertainty has been calculated following the procedure described in (Baker-
Jarvis et al., 1994) or (Bell, 2001). Basically it is based on the calculation of the derivative of 
the permittivity depending on the variable that affects the accuracy: 
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where xi are the different dimensions that are involved in the accuracy of the measurement. 
And to compute the derivatives 

ir x 1  the three terms Lagrange polynomial interpolation 
formula was used: 

                                                 
4 This value is not the air permittivity but the real cavity radius calculated from the air 
resonant frequency. 
5 Once again, this value is not the air permittivity but the real cavity radius calculated from 
the air resonant frequency. 
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where xi are the different dimensions that are involved in the accuracy of the measurement. 
And to compute the derivatives 

ir x 1  the three terms Lagrange polynomial interpolation 
formula was used: 
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Then three different permittivities are calculated for each source of error in order to 
compute the interpolation and then the derivative in (76) to calculate the final uncertainty. 

 
5. Conclusion 
 

Conclusions are, firstly, that an introduction and a revision of the Generalized Circuital 
Analysis to solve in a simplest way large electromagnetic problems have been presented. 
This method has been successfully applied to a Cylindrical Cavity with insertion hole, 
creating four different small networks and solving each one to get the Generalized 
Admittance Matrix (GAM), and joining all together forcing the resonant condition to obtain 
the complex resonant frequency. 
The origin of the problem comes from the deviation of the resonant frequency observed 
when the insertion hole exists. This deviation can be important if neglected, so a monomode 
approximation formula has been obtained as well as an optimized equation to estimate the 
relative error from the measured and actual resonant frequency with and without insertion 
hole. 
The proposed expression improves the only one existing since 1960 by Estin. 
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1. Introduction     
 

The aim of inverse scattering problems is to extract the unknown parameters of a medium 
from measured back scattered fields of an incident wave illuminating the target. The 
unknowns to be extracted could be any parameter affecting the propagation of waves in the 
medium. 
Inverse scattering has found vast applications in different branches of science such as 
medical tomography, non-destructive testing, object detection, geophysics, and optics 
(Semnani & Kamyab, 2008; Cakoni & Colton, 2004). 
From a mathematical point of view, inverse problems are intrinsically ill-posed and 
nonlinear (Colton & Paivarinta, 1992; Isakov, 1993). Generally speaking, the ill-posedness is 
due to the limited amount of information that can be collected. In fact, the amount of 
independent data achievable from the measurements of the scattered fields in some 
observation points is essentially limited. Hence, only a finite number of parameters can be 
accurately retrieved. Other reasons such as noisy data, unreachable observation data, and 
inexact measurement methods increase the ill-posedness of such problems. To stabilize the 
inverse problems against ill-posedness, usually various kinds of regularizations are used 
which are based on a priori information about desired parameters. (Tikhonov & Arsenin, 
1977; Caorsi, et al., 1995). On the other hand, due to the multiple scattering phenomena, the 
inverse-scattering problem is nonlinear in nature. Therefore, when multiple scattering 
effects are not negligible, the use of nonlinear methodologies is mandatory. 
Recently, inverse scattering problems are usually considered in global optimization-based 
procedures (Semnani & Kamyab, 2009; Rekanos, 2008). The unknown parameters of each 
cell of the medium grid would be directly considered as the optimization parameters and 
several types of regularizations are used to overcome the ill-posedness. All of these 
regularization terms commonly use a priori information to confine the range of 
mathematically possible solutions to a physically acceptable one. We will refer to this 
strategy as the direct method in this chapter. 
Unfortunately, the conventional optimization-based methods suffer from two main 
drawbacks. The first is the huge number of the unknowns especially in 2-D and 3-D cases 
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which increases not only the amount of computations, but also the degree of ill-posedness. 
Another disadvantage is the determination of regularization factor which is not 
straightforward at all. Therefore, proposing an algorithm which reduces the amount of 
computations along with the sensitivity of the problems to the regularization term and 
initial guess of the optimization routine would be quite desirable. 

 
2. Truncated cosine Fourier series expansion method 
 

Instead of direct optimization of the unknowns, it is possible to expand them in terms of a 
complete set of orthogonal basis functions and optimize the coefficients of this expansion in 
a global optimization routine. In a general 3-D structure, for example the relative 
permittivity could be expressed as 
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where nf  is the nth term of the complete orthogonal basis functions. 
It is clear that in order to expand any profile into this set, the basis functions must be 
complete. On the other hand, orthogonality is favourable because with this condition, a 
finite series will always represent the object with the best possible accuracy and coefficients 
will remain unchanged while increasing the number of expansion terms. 
Because of the straightforward relation to the measured data and its simple boundary 
conditions, using harmonic functions over other orthogonal sets of basis functions is 
preferable. On the other hand, cosine basis functions have simpler mean value relation in 
comparison with sine basis functions which is an important condition in our algorithm. 
We consider the permittivity and conductivity profiles reconstruction of lossy and 
inhomogeneous 1-D and 2-D media as shown in Fig. 1. 
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Fig. 1. General form of the problem, (a) 1-D case, (b) 2-D case 
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where a  is the dimension of the problem in the x direction and the coefficients, nd , are to 
be optimized. In this case, the number of optimization parameters is N in comparison with 
conventional methods in which this number is equal to the number of discretized grid 
points. This results in a considerable reduction in the amount of computations. As another 
very important advantages of the expansion method, no additional regularization term is 
needed, because the smoothness of the cosine functions and the limited number of 
expansion terms are considered adequate to suppress the ill-posedness 
In a similar manner for 2-D cases, the expansion of the relative permittivity profile in 
transverse x-y plane which is homogeneous along z can be written as 
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where a  and b  are the dimensions of the problem in the x and y directions, respectively. 
Similar expansions could be considered for conductivity profiles in lossy cases. 
The proposed expansion algorithm is shown in Fig. 2. According to this figure, based on an 
initial guess for a set of expansion coefficients, the permittivity and conductivity are 
calculated according to the expansion relations like (2) or (3). Then, an EM solver computes 
a trial electric and magnetic simulation fields. Afterwards, cost function which indicates the 
difference between the trial simulated and reference measured fields is calculated. In the 
next step, global optimizer is used to minimize this cost function by changing the 
permittivity and conductivity of each cell until the procedure leads to an acceptable 
predefined error. 
 

 
Fig. 2. Proposed algorithm for reconstruction by expansion method 

Guess of initial 
expansion 

coefficients ,r 

EM solver computes 
trial simulated fields

Comparison of 
measured fields with 
trial simulated fields 

Measured fields 
as input data

Global optimizer intelligently 
modifies the expansion 

coefficients 

Exit if 
error is 

acceptable

Exit if 
algorithm 
diverged

Calculation of

Decision

Else



Solving	Inverse	Scattering	Problems	Using	Truncated	Cosine	Fourier	Series	Expansion	Method 171

 

which increases not only the amount of computations, but also the degree of ill-posedness. 
Another disadvantage is the determination of regularization factor which is not 
straightforward at all. Therefore, proposing an algorithm which reduces the amount of 
computations along with the sensitivity of the problems to the regularization term and 
initial guess of the optimization routine would be quite desirable. 

 
2. Truncated cosine Fourier series expansion method 
 

Instead of direct optimization of the unknowns, it is possible to expand them in terms of a 
complete set of orthogonal basis functions and optimize the coefficients of this expansion in 
a global optimization routine. In a general 3-D structure, for example the relative 
permittivity could be expressed as 
 

   
1

0
, , , ,

N

r n n
n

x y z d f x y z




   (1) 

 
where nf  is the nth term of the complete orthogonal basis functions. 
It is clear that in order to expand any profile into this set, the basis functions must be 
complete. On the other hand, orthogonality is favourable because with this condition, a 
finite series will always represent the object with the best possible accuracy and coefficients 
will remain unchanged while increasing the number of expansion terms. 
Because of the straightforward relation to the measured data and its simple boundary 
conditions, using harmonic functions over other orthogonal sets of basis functions is 
preferable. On the other hand, cosine basis functions have simpler mean value relation in 
comparison with sine basis functions which is an important condition in our algorithm. 
We consider the permittivity and conductivity profiles reconstruction of lossy and 
inhomogeneous 1-D and 2-D media as shown in Fig. 1. 
 

                
(a)                                                                                        (b) 

Fig. 1. General form of the problem, (a) 1-D case, (b) 2-D case 
 
If cosine basis functions are used in one-dimensional cases, the truncated expansion of the 
permittivity profile along x which is homogeneous along the transverse plane could be 
expressed as 

0x ax 

   /r x and or x 

0 , 0  0 , 0  

x
0x ax 

 

 

,
/
,

r x y
and or
x y





0 , 0  

0 , 0  

x

0y 

y b

y

0 , 0   0 , 0  

 

 
1

0
cos

N

r n
n

nx d x
a






   
 

  (2) 

 
where a  is the dimension of the problem in the x direction and the coefficients, nd , are to 
be optimized. In this case, the number of optimization parameters is N in comparison with 
conventional methods in which this number is equal to the number of discretized grid 
points. This results in a considerable reduction in the amount of computations. As another 
very important advantages of the expansion method, no additional regularization term is 
needed, because the smoothness of the cosine functions and the limited number of 
expansion terms are considered adequate to suppress the ill-posedness 
In a similar manner for 2-D cases, the expansion of the relative permittivity profile in 
transverse x-y plane which is homogeneous along z can be written as 
 

 
1 1

0 0
, cos cos

N M

r nm
n m

n mx y d x y
a b
 

 

 

       
   

  (3) 

 
where a  and b  are the dimensions of the problem in the x and y directions, respectively. 
Similar expansions could be considered for conductivity profiles in lossy cases. 
The proposed expansion algorithm is shown in Fig. 2. According to this figure, based on an 
initial guess for a set of expansion coefficients, the permittivity and conductivity are 
calculated according to the expansion relations like (2) or (3). Then, an EM solver computes 
a trial electric and magnetic simulation fields. Afterwards, cost function which indicates the 
difference between the trial simulated and reference measured fields is calculated. In the 
next step, global optimizer is used to minimize this cost function by changing the 
permittivity and conductivity of each cell until the procedure leads to an acceptable 
predefined error. 
 

 
Fig. 2. Proposed algorithm for reconstruction by expansion method 

Guess of initial 
expansion 

coefficients ,r 

EM solver computes 
trial simulated fields

Comparison of 
measured fields with 
trial simulated fields 

Measured fields 
as input data

Global optimizer intelligently 
modifies the expansion 

coefficients 

Exit if 
error is 

acceptable

Exit if 
algorithm 
diverged

Calculation of

Decision

Else



Passive	Microwave	Components	and	Antennas172

 

3. Mathematical Considerations 
 

As mentioned before, inverse problems are intrinsically ill-posed. Therefore, a priori 
information must be applied for stabilizing the algorithm as much as possible which is quite 
straightforward in direct optimization method. In this case, all the information can be 
applied directly to the medium parameters which are as the same as the optimization 
parameters. In the expansion algorithm, however, the optimization parameters are the 
Fourier series expansion coefficients and a priori information could not be considered 
directly. Hence, a useful indirect routine is vital to overcome this difficulty.  
There are two main assumptions about the parameters of an unknown medium. For 
example, we may assume first that the relative permittivity and conductivity have limited 
ranges of variation, i.e. 
 

,max1 r r    (4) 
 
and 
 

0 max     (5) 
 
The second assumption is that the permittivity and conductivity profiles may not have 
severe fluctuations or oscillations. These two important conditions must be transformed in 
such a way to be applicable on the expansion coefficients in the initial guess and during the 
optimization process. 
It is known that average of a function with known limited range is located within that limit, 
that is if 
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Thus, for 1-D permittivity profile expansion we have 
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and for x a , we have 
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Using Parseval theorem, another relation between expansion coefficients and upper bound 
of permittivity may be written. For a periodic function ( )g x  with period T, we have 
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Based on (2), (11) may be simplified to 
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It is possible to achieve the similar relations for 2-D cases. 
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By using the above supplementary equations in the initial guess of the expansion 
coefficients and as a boundary condition (Robinson & Rahmat-Samii, 2004) during the 
optimization, the routine converges in a considerable faster rate. Similar conditions can be 
used for conductivity profiles in lossy cases. 

 
4. Numerical Results 
 

Proposed method stated above is utilized for reconstruction of some different 1-D and 2-D 
media. In each case, reconstruction by the proposed expansion method is compared with 
different number of expansion functions in terms of the amount of computations and 
reconstruction precision. 
The objective of the proposed reconstruction procedure is the estimate of the unknowns by 
minimizing the cost function 
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where simE


 is the simulated field in each optimization iteration. measE


is measured field, I 

and J are the number of transmitters and receivers, respectively and T is the total time of 
measurement. 
To quantify the reconstruction accuracy, the reconstruction errors for example for relative 
permittivity in 1-D case is defined as 
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where Mx is the number of subdivisions along x axis and “ o “ denotes the original scatterer 
properties. 
In all reconstructions in this chapter, FDTD (Taflove & Hagness, 2005) and DE (Storn & 
Price, 1997) are used as forward EM solver and global optimizer, respectively. 

 
4.1 One-dimensional case 
Reconstruction of two 1-D cases is considered in this section. The first one is inhomogeneous 
and lossless and the second one is considered to be lossy. In the simulations of both cases, 
one transmitter and two receivers are used around the medium as shown in Fig. 3. 
 

 
Fig. 3. Geometrical configuration of the 1-D problem  
 
Test case #1: In the first sample case, we consider an inhomogeneous and lossless medium 
consisting 50 cells. Therefore, only the permittivity profile reconstruction is considered. In 
the expansion method, the number of expansion terms is set to 4, 5, 6 and 7 which results in 
a lot of reduction in the number of the unknowns in comparison with the direct method. 
The population in DE algorithm is chosen equal to 100 and the maximum iteration of 
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optimization is considered to be 300. It must be noted that the initial populations in all 
reconstruction problems in this chapter are chosen completely random in the solution space. 
The exact profile and reconstructed ones by the expansion method with different number of 
expansion terms are shown in Fig. 4a. The variations of cost function (17) and reconstruction 
error (18) versus the iteration number are plotted in Figs. 4b and 4c, respectively. 
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Fig. 4. Reconstruction of 1-D test case #1, (a) original and reconstructed profiles, (b) the cost 
function and (c) the reconstruction error 
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Test case #2: In this case, a lossy and inhomogeneous medium again with 50 cell length is 
considered. So, the number of unknowns in direct optimization method is equal to 100. In 
the expansion method for both permittivity and conductivity profiles expansion, N is 
chosen equal to 4, 5, 6 and 7. The optimization parameters are considered equal to the first 
sample case. The original and reconstructed profiles in addition of the variations of cost 
function and reconstruction error are presented in Fig. 5. 
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Fig. 5. Reconstruction of 1-D test case #2, (a) original and reconstructed permittivity profiles, 
(b) original and reconstructed conductivity profiles, (c) the cost function, (d) the permittivity 
reconstruction error and (e) the conductivity reconstruction error 
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Fig. 6. Geometrical configuration of the 2-D problem  
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Test case #2: In this case, a lossy and inhomogeneous medium again with 50 cell length is 
considered. So, the number of unknowns in direct optimization method is equal to 100. In 
the expansion method for both permittivity and conductivity profiles expansion, N is 
chosen equal to 4, 5, 6 and 7. The optimization parameters are considered equal to the first 
sample case. The original and reconstructed profiles in addition of the variations of cost 
function and reconstruction error are presented in Fig. 5. 
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Fig. 5. Reconstruction of 1-D test case #2, (a) original and reconstructed permittivity profiles, 
(b) original and reconstructed conductivity profiles, (c) the cost function, (d) the permittivity 
reconstruction error and (e) the conductivity reconstruction error 

 
4.2 Two-dimensional case 
The proposed expansion method is also utilized for two 2-D cases. In the simulations of both 
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Case study #1: In the first sample case, we consider an inhomogeneous and lossless 2-D 
medium consisting 20*20 cells. Therefore, only the permittivity profile reconstruction is 
considered. In the expansion method, the number of expansion terms in both x and y 
directions are set to 4, 5, 6 and 7. 
The original profile and reconstructed ones with the use of expansion method are shown in 
Fig. 7. 
 

 
(a)                                                                                (b) 

 
 

(c)                                                                                (d) 

 
(e) 

Fig. 7. Reconstruction of 2-D test case #1, (a) original profile, reconstructed profile with (b) 
N=M=4, (c) N=M=5, (d) N=M=6 and (e) N=M=7 
 
The variations of cost function and reconstruction error versus the iteration number are 
graphed in Fig. 8. 
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Fig. 8. Reconstruction of 2-D test case #1, (a) the cost function, (b) the reconstruction error 
 
 Case study #2: In this case, a lossy and inhomogeneous medium again with 20*20 cells is 
considered. Therefore, we have two expansions for relative permittivity and conductivity 
profiles and in both expansions, N and M are chosen equal to 4, 5, 6 and 7. It is interesting to 
note that the number of direct optimization unknowns in this case is equal to 800 which is 
really a large optimization problem. The reconstructed profiles of permittivity and 
conductivity are shown in Figs. 9 and 10, respectively. 
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Case study #1: In the first sample case, we consider an inhomogeneous and lossless 2-D 
medium consisting 20*20 cells. Therefore, only the permittivity profile reconstruction is 
considered. In the expansion method, the number of expansion terms in both x and y 
directions are set to 4, 5, 6 and 7. 
The original profile and reconstructed ones with the use of expansion method are shown in 
Fig. 7. 
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Fig. 7. Reconstruction of 2-D test case #1, (a) original profile, reconstructed profile with (b) 
N=M=4, (c) N=M=5, (d) N=M=6 and (e) N=M=7 
 
The variations of cost function and reconstruction error versus the iteration number are 
graphed in Fig. 8. 
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Fig. 8. Reconstruction of 2-D test case #1, (a) the cost function, (b) the reconstruction error 
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profiles and in both expansions, N and M are chosen equal to 4, 5, 6 and 7. It is interesting to 
note that the number of direct optimization unknowns in this case is equal to 800 which is 
really a large optimization problem. The reconstructed profiles of permittivity and 
conductivity are shown in Figs. 9 and 10, respectively. 
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(c)                                                                           (d) 

 
(e) 

Fig. 9. Reconstruction of 2-D test case #2, (a) original permittivity profile, reconstructed 
permittivity profile with (b) N=M=4, (c) N=M=5, (d) N=M=6 and (e) N=M=7 
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(e) 

Fig. 10. Reconstruction of 2-D test case #2, (a) original conductivity profile, reconstructed 
conductivity profile with (b) N=M=4, (c) N=M=5, (d) N=M=6 and (e) N=M=7 
 
The variations of cost function and reconstruction error are shown in Fig. 11. 
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Fig. 9. Reconstruction of 2-D test case #2, (a) original permittivity profile, reconstructed 
permittivity profile with (b) N=M=4, (c) N=M=5, (d) N=M=6 and (e) N=M=7 
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(e) 

Fig. 10. Reconstruction of 2-D test case #2, (a) original conductivity profile, reconstructed 
conductivity profile with (b) N=M=4, (c) N=M=5, (d) N=M=6 and (e) N=M=7 
 
The variations of cost function and reconstruction error are shown in Fig. 11. 
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(c) 

Fig. 11. Reconstruction of 2-D test case #2, (a) the cost function, (b) the permittivity 
reconstruction error and (c) the conductivity reconstruction error 
 
The results of all 1-D and 2-D cases which are generally inhomogeneous and lossy or 
lossless media show that the proposed expansion method can tolerably reconstruct the 
unknown media with a considerable reduction in the amount of computations as compared 
to the conventional direct optimization of the unknowns. 

 
5. Sensitivity Considerations 
 

It is obvious that the performance of the expansion method directly depends on the number 
of expansion terms. Larger number of terms results in a more precise reconstruction at the 
expense of higher degree of ill-posedness. On the other hand, lower ones leads to a less 
accurate solution with higher probability of convergence of the inverse algorithm. Therefore, 
suitable selection of N has a notable impact on the convergence speed of the algorithm. 
The reconstructed profiles of two 1-D cases with larger values of N are shown in Figs. 12 
and 13 for test case #1 and #2, respectively. 
 

 
Fig. 12. Reconstruction of 1-D test case #1, the original profiles and reconstructed ones with 
N=7, 10 and 20 
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(a) 

 
(b) 

Fig. 13. Reconstruction of 1-D test case #2, the original profiles and reconstructed ones with 
N=7, 15 and 25, (a) permittivity profile and (b) conductivity profile 
 
It is seen that increasing the number of expansion terms results oscillatory reconstruction 
because of the more ill-posedness of the problem. 
We can come to similar conclusion for 2-D cases by comparing different parts of Figs. 7, 9 
and 10. 
Our experiences in studying various permittivity and conductivity profiles reconstruction 
show that choosing the number of expansion terms between 5 and 10 may be suitable for 
most of the reconstruction problems. 

 
6. Conclusion 
 

A computationally efficient method which is based on combination of the cosine Fourier 
series expansion, an EM solver and a global optimizer has been proposed for solving 1-D 
and 2-D inverse scattering problems. The mathematical formulations of the method have 
been derived completely and the algorithm has been examined for reconstruction of several 
inhomogeneous lossless and lossy cases. With a considerable reduction in the number of the 
unknowns and consequently the required number of populations and optimization 
iterations, along with no need to the regularization term, the relative permittivity and 
conductivity profiles have been reconstructed successfully. It has been shown by sensitivity 
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(c) 

Fig. 11. Reconstruction of 2-D test case #2, (a) the cost function, (b) the permittivity 
reconstruction error and (c) the conductivity reconstruction error 
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Fig. 13. Reconstruction of 1-D test case #2, the original profiles and reconstructed ones with 
N=7, 15 and 25, (a) permittivity profile and (b) conductivity profile 
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analysis that for obtaining well-posedness as well as accurate reconstruction simultaneously, 
the number of expansion terms must be chosen intelligently.  
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1. Introduction 
 

In this chapter we will discuss about slot optical waveguides analysis using finite difference 
time domain (FDTD) algorithm. SOI slot optical waveguides invented in 2004, by Lipson at 
Cornell nanophotonics center [1], and experimentally demonstrated by them in forming 
complex nano-structures [2]. Nanophotonics group at Cornell surprised photonics 
researchers by discovering structure geometry; where light can be confined inside low index 
slot region due to electric field discontinuity. 
The name slot waveguide comes from its physical shape i.e. a low index slot surrounded by 
two high index slabs. Slot waveguide structure has gained significant interests and 
importance due to its potential applications in nanophotonics especially light on chip 
circuits. In most basic single slot waveguide structure a high-refractive-index material is 
used to guide light through a low-refractive-index material. The waveguide structures are 
capable of guiding and confining light in such a way that very high optical intensity is 
obtained in a small cross-sectional area or gap filled with any material of sufficiently low 
refractive index, relative to the remainder of the structure. (Figure 1 is a top view of a slot 
waveguide structure) 

 
Fig. 1. Basic single slot waveguide structure. 

9
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Referring figure 1, the slot waveguide structure comprises of slabs (No.2 & 4) having high 
index of refraction and a slot (No.3) formed in between, which have a relatively low index of 
refraction. The cladding region (No.1 &5) comprises of low refractive index material or same 
material as used for the slot region. The analytical solution for the transverse E-field profile 
Ex of the fundamental TM Eigen mode of the slab-based slot waveguide is [1]: 
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H is the transverse wave number in high refractive index slabs.  is the field decay 
coefficient in the cladding.  is the field decay coefficient in the low refractive index slot 
waveguide. The constant A can be narrated mathematically as follows [1, 2]: 
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A0 is an arbitrary constant.  is the vacuum wave number. Figure 2 below displays 
e-field distribution in a basic single slot structure.   

 
Fig. 2. High confinement of light in low index slot region. 
 
The structure provides strong confinement in low refractive index materials, which rely on 
the discontinuity of the electric field perpendicular to the interface between materials with 
low and high refractive index. In such a case, the strongest electric field amplitude lies in the 
material with low refractive index.  Due to the large index contrast at interfaces, the normal 
electric field undergoes a large discontinuity, which results in a field enhancement in the 

low-index region. If refractive index of slot is denoted by nl sandwiched between two slabs 
(refractive index denoted by nH), e-field enhancement in low-index region is of the order 

of 2 2
H ln n . In order to measure the optical field confinement, the optical confinement factor 

can be defined as the fraction of power confined and guided in the interested regions [3]: 
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Where E and H are the electric and magnetic field vectors. The integrals are calculated inside 
the interested regions and the entire cross section regions. Optical field confinement in this 
chapter has been calculated based on the theory [1, 3]. Simulation of slot waveguide 
geometry leads to high confinement of light in low index slot region (figure 2 shows high 
confinement of light in low index slot).  
Experimental demonstration of guiding and confining light in low index waveguides by 
Lipson [2], led other researchers to demonstrate slot waveguide based complex structures [4, 
5]. High power confinement can also be achieved in asymmetric slot waveguides [6]. Power 
confined inside slot structure can be optimized by adjusting the geometry of slot and slabs 
[7, 8]. N. N. Feng demonstrated slot waveguide coupling capability with conventional 
waveguides [9]. Barrios, and Passaro proposed slot waveguides for sensing [10, 11]. Beyond 
single slot structure people are interested in multiple slot structure confining optical field in 
nanometer-thin low-index media with very high optical confinement factor [3]. Slot 
waveguides capable of confining high intensity electric field hence became an interesting 
topic of researchers to simulate and demonstrate nonlinear slot structures [12, 13]. Other 
than dielectrics, slot waveguides had been demonstrated by Lipson and Atwater in metals 
as well [14, 15]. While exploring characteristics of single and multiple slot structures, 
comparable light confinement in low refractive index contrast slot structures have been 
demonstrated [16]; a novel photonics displacement sensor based upon multiple slot 
waveguide structure has been proposed [17]. 

 
2. Slot Structure Analysis 
 

As mentioned earlier, in a slot structure electric field discontinuity at the boundary between 
the high and low index regions results in high E-field confinement inside low index slot. Slot 
waveguide structure had been simulated using OptiFDTD simulation software from 
Optiwave Company. Finite difference time domain method (FDTD) uses a brute force 
discretization of Maxwell’s equations. The structure is discretized using a uniform grid and 
the derivatives in Maxwell’s equations are replaced by finite differences. The grid size used 
is very important, a small grid size is required to get accurate results. However using more 
grid points results in longer calculation times. The grid size also imposes an upper limit on 
the time step that can be used, because of stability requirements. FDTD can handle almost 
any 2-D or 3-D structure (in theory), but computation time and memory requirements limit 
the size of the problem that can be handled. It has been explored by us that 3dB waist of 
input plane and mesh size has a profound effect on the output. Hence it was decided that 
for the nanosize slot optical waveguide analysis using OptiFDTD, a grid size of 10 nm is to 
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Where E and H are the electric and magnetic field vectors. The integrals are calculated inside 
the interested regions and the entire cross section regions. Optical field confinement in this 
chapter has been calculated based on the theory [1, 3]. Simulation of slot waveguide 
geometry leads to high confinement of light in low index slot region (figure 2 shows high 
confinement of light in low index slot).  
Experimental demonstration of guiding and confining light in low index waveguides by 
Lipson [2], led other researchers to demonstrate slot waveguide based complex structures [4, 
5]. High power confinement can also be achieved in asymmetric slot waveguides [6]. Power 
confined inside slot structure can be optimized by adjusting the geometry of slot and slabs 
[7, 8]. N. N. Feng demonstrated slot waveguide coupling capability with conventional 
waveguides [9]. Barrios, and Passaro proposed slot waveguides for sensing [10, 11]. Beyond 
single slot structure people are interested in multiple slot structure confining optical field in 
nanometer-thin low-index media with very high optical confinement factor [3]. Slot 
waveguides capable of confining high intensity electric field hence became an interesting 
topic of researchers to simulate and demonstrate nonlinear slot structures [12, 13]. Other 
than dielectrics, slot waveguides had been demonstrated by Lipson and Atwater in metals 
as well [14, 15]. While exploring characteristics of single and multiple slot structures, 
comparable light confinement in low refractive index contrast slot structures have been 
demonstrated [16]; a novel photonics displacement sensor based upon multiple slot 
waveguide structure has been proposed [17]. 
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As mentioned earlier, in a slot structure electric field discontinuity at the boundary between 
the high and low index regions results in high E-field confinement inside low index slot. Slot 
waveguide structure had been simulated using OptiFDTD simulation software from 
Optiwave Company. Finite difference time domain method (FDTD) uses a brute force 
discretization of Maxwell’s equations. The structure is discretized using a uniform grid and 
the derivatives in Maxwell’s equations are replaced by finite differences. The grid size used 
is very important, a small grid size is required to get accurate results. However using more 
grid points results in longer calculation times. The grid size also imposes an upper limit on 
the time step that can be used, because of stability requirements. FDTD can handle almost 
any 2-D or 3-D structure (in theory), but computation time and memory requirements limit 
the size of the problem that can be handled. It has been explored by us that 3dB waist of 
input plane and mesh size has a profound effect on the output. Hence it was decided that 
for the nanosize slot optical waveguide analysis using OptiFDTD, a grid size of 10 nm is to 
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be used along x- and y-axis. However grid size in z-direction can be changed to get quicker 
results, it does not have profound impact on results. Sources are placed inside the 
waveguide to excite the waveguide mode and detectors are placed above to detect the 
output signal and power. Appropriate boundary conditions (e.g. PML) are used to avoid 
reflections at the boundaries of the computational domain and model open structures.      
In a basic slot waveguide structure cladding, substrate and slot are of fused silica, whereas 
slabs comprising of silicon. Slot structures are ignited by placing a continuous wave (C.W.) 
input plane of m wavelength, direction of flow is in z-axis. Three observation planes 
had been placed at a distance of 0.5 m, 1 m and 1.5 m. The observation planes were 
centered with the slot structure center in x-axis and y-axis. E-field distributions in spatial 
domain are shown in figure 3. 
E-field distribution at respective propagation distances had also been checked, a combined 
plot at different propagation lengths is shown in figure 4 below. It was found that E-field in 
slabs and cladding for a propagation distance of 1 m and 1.5 m is at a monotonous 
decrease then at 0.5 m distance and seems more stable. Hence in order to get stable results, 
it was decided to propagate signal for longer distance. 

  

 
Fig. 3. E-field distribution in slot structure at different propagation distances. 

 

However OptiFDTD ver. – 5.0 has less memory and longer simulations made the memory 
buffers overflow, hence most of those simulations crashed unanimously. 

 
Fig. 4. Modes for single slot structure at various propagation distances. 
 
Power confinement factor in the slot structure has been checked and found in accordance 
with the previous work [1].  
In an extended check of power confinement factor in slot waveguide structure, the refractive 
index in slot region varied from 1.44 till 1.50 with a step size of 0.005. High index slabs 
refractive index was kept constant at 3.48, cladding and substrate refractive index kept 
constant at 1.44. It was found that power confinement factor varied (increased / decreased) 

as per the ratio, 2 2
H ln n . 

 
Fig. 5. Slot region power confinement dependence on refractive index. 
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In order to simulate complex structures, double slot structure was simulated, which was a 
step towards complex structures designing and simulation. A double slot structure has been 
simulated, where both slots of 50 nm width each are separated by a central high index slab 
of 100 nm width and surrounded by two 180 nm wide high index slabs. Initially it was 
thought that double slot structure designing is not a big issue, as it is just adding one more 
slot of suitable width in the waveguide structure (see figure 6). However, later it was learnt 
through various simulations that adding another slot of any width could not solve the 
problem. It requires proper width and placement of slot, as center slab width is dependent 
upon the placement of extra slot. Center slab width determines the amount of coupling 
occurring in between both the slots. The coupling effect between both slots does have an 
effect on power confinement factor in the low index slot region. This coupling effect 
determines the amount of power confined inside low index slot regions; moreover it has 
also been found that the center slab width can be related with the power confinement factor 
inside low index slot regions.  

 
Fig. 6. Double slot structure (refractive index based view). 

 
Fig. 7. E-field distribution for double slot structure at 0.5 m & 1 m propagation distance 
(low index slots R.I. = 1.44, high index slabs R.I. = 3.48, cladding & substrate R.I. = 1.44). 
 

Further exploration of double slot structure had been done by using different refractive 
index materials in both low index slots. The results proved that power confinement and E-
field confinement is dependent upon the contrast ratio. The more the contrast ratio between 
low index slot and high index slabs; the more the power confined inside low index slot 
region. In the current work, refractive index for left slot was 1.5, right slot was 1.44; high 
index slabs refractive index is 3.48. E-field distribution at a propagation distance of 0.5 m, 
0.75 m, 1 m, and 1.5 m are displayed in figure 8. Referring figure 5, for a single slot 
structure power confined inside low index slot region follows the refractive index contrast 
ratio between high index slabs and low index slots. It has been found that in case of double 
slot structure, power confined inside low index slot regions is affected by the coupling effect 
as well. Coupling between low index slot regions is mainly dependent upon central high 
index slab width. This effect has been studied in detail, and is of use in attaining fruitful 
results. 

 
Fig. 8. E-field distribution for double slot structure with different R.I. at 500 nm, 750 nm, 
1000 nm & 1500 nm propagation distance (high index slab R.I. = 3.48, cladding & substrate 
R.I. = 1.44). 
 
E-field inside both slots for both distances had been analyzed for phase shift. Phase shifts 
had been calculated at various parametric values, minute difference in phase shift indicates 
its non-existence. 
In another example, the double slot structure (ref. figure 6 & related details) has been 
repeated with cladding comprising of air. Power confined inside low index slot regions 
increased with a subsequent decrease of power confinement in external slabs. E-field 
distribution at 500 nm and 1000 nm propagation distances are shown in figure 9 below.  
It was found that E-field confinement in the slot with comparatively high index of refraction 
is less than the other slot. This behavior of light confinement inside low index slot region is 
directly related to the slot and slab refractive index contrast ratio; and has already been 
discussed. 
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Fig. 9. Modes for double slot structure with different R.I. (cladding is air). 

 
3. SOI Multiple Slot Structures Explored for Sensor Applications 
 

In case of double slot structure, power confined inside low index slot regions (combined and 
individually) is dependent upon the center slab width. Several values have been taken at 
slot width 50 nm each; external slabs width 180 nm each slots and slabs height 300 nm each. 
Power confinement factor inside low index slot regions was found dependent upon center 
slab width.  

 
Fig. 10. Dependence of power confinement factor in double slot structure upon center slab 
width. 
 
In an extended check it was found that power confined inside low index slot regions of 
width 50 nm each is maximum for a center slab width ranging from 150-200 nm. Center slab 
has a profound impact in a double slot structure on power confinement factor in low index 

slot region. E-field amplitude also varies for slots with different refractive index. Power 
confinement factor ratio between slots, normalized values of power confined in center slab 
and E-field amplitude ratio in slots is shown in figure 11 [17]. In order to check the variation 
in power confinement factor due to shift in refractive index of slots; power confinement 
ratio in slots is plotted for a shift in refractive index values by 0.005. Refractive index value 
in left slot was changed from 1.44 till 1.5 with a step of 0.005, whereas refractive index value 
in right slot kept constant at 1.44. Ratio in power confinement factor between both slots was 
calculated and it was found that the peak is shifting gradually with shift in refractive index. 
The results have proven the effect of shift in refractive index on power confined in low 
index slot regions. Numerically calculated power confinement factor ratio for shift in 
refractive index shows a promising behavior for probable usage in sensor systems. However 
the use of single slot structure in sensor systems does require a mechanism to sense the shift 
in modal effective index, which had been studied by others. Double slot structure showed a 
way to use the slot structure in sensing mechanisms; most probably by calculating and 
observing the shift in power confinement factor / power confinement factor ratio. The shift 
in power confinement factor of low index slot regions under the action of cantilever [10] 
type movement by central high index slab has been exploited by us in proposing double slot 
structures usage in forming sensor systems. This effect is discussed in detail in further half 
of this chapter. 

 
Fig. 11. Power confinement ratio in diff. refractive index slots dependence upon shift in 
refractive index of one slot. 
 
Variation of refractive index only in left low index slot region only showed a profound 
impact upon power confinement factor ratio between both low index slot regions. Extensive 
research work done in this direction, so as to utilize the shift in refractive index of low index 
slot region (one or all in a multiple slot structure); a center slab width of 165 nm was chosen 
for extended extensive analysis. The reason of choosing 165 nm center slab width was that; 
at this center slab width coupling between low index slot regions was comparatively less. 
The results could help us in ascertaining the postulate that shift in refractive index of any of 
the low index slot region do have a profound impact on the power confinement inside low 
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index slot regions. Refractive index in left low index slot region shifted from 1.5 till 1.48 with 
a step size (n) of 0.005. Minute shift in refractive index; which is possible due to 
temperature, pressure, chemical, and mechanical, or may be due to several other reasons not 
mentioned here; had a profound impact on power confinement factor and its ratio between 
both low index slot regions. Prominent shift in low index slot regions power confinement 
factor formed a basis of thinking to propose double slot optical waveguide structure for use 
in sensor applications. Power confinement ratio between both low index slots as a function 
of center slab width and refractive index is plotted in figure 12: 

 
Fig. 12. Shift in power confinement ratio in low index regions due to change in refractive 
index. 
 
In one of the research work related to proposing double slot structure in sensor mechanisms, 
numerical calculations were performed for a center slab width varying from 10 nm till 400 
nm. Followed by power confinement factor ratio dependence upon shift in refractive index 
of low index slot region. Refractive index of right slot is kept constant at 1.44, whereas 
refractive index of left slot was varied from 1.44 till 1.5 with a step size of 0.005. Power 
confinement factor ratio was calculated by dividing the power confined in right slot with 
power confined in left slot for a propagation length of 1 m. Power confinement ratio 
between both low index slot regions is maximum at a center slab width of 20 nm. Hence the 
point with center slab of 20nm width was chosen for power ratio check. For a 20 nm width 
of center slab, coupling between both low index slot regions is better than at center slab 
width of 165nm. This time power confinement factor ratio at a center slab width of 20 nm 
was checked, where power confinement factor inside low index slot regions is more due to 
increased coupling. Shift in refractive index of either of the low index slot region showed a 
profound impact on power confinement factor ratio. The prominent change in power 
confinement factor (can also be termed as confinement loss) is a contributing factor leads to 
proposing double slot structure for use in sensing mechanisms. Change in power 
confinement factor ratio indicates that a slight shift in either of the low index slot regions 
refractive index shows a promising change in power confinement factor ratio.  

 
Fig. 13. Shift in power confinement ratio dependence on left low index slot R.I. (center slab 
width 20 nm). 
 
Before considering power confinement / loss mechanism in double slot structure for use in 
sensor mechanisms, it was necessary to investigate if change in power confinement factor is 
dependent upon some other parametric values. Several checks have been done, in one case 
where refractive index in both slot regions is 1.44, detailed analysis of boundary conditions 
effect upon power confinement factor ratio has been done for a center slab width of 162 nm. 
Perfectly matched boundary conditions are used with number of layers ten and twenty. 
Power confinement factor ratio (right slot/left slot) at various propagation distances are 
plotted in figure 14 below.  

 
Fig. 14. Power confinement factor ratio between slots dependence on Perfectly Matched 
Layers boundary condition. 
 
Later part of this subsection indicates that number of PML layers does not have profound 
impact on power confinement factor, hence we have kept the number of PML layers in all of 
our simulations to be 10. It is apparent from both the results that power confinement factor 
ratios are around the value of one. As the propagation conditions (boundary conditions & 
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index slot regions. Refractive index in left low index slot region shifted from 1.5 till 1.48 with 
a step size (n) of 0.005. Minute shift in refractive index; which is possible due to 
temperature, pressure, chemical, and mechanical, or may be due to several other reasons not 
mentioned here; had a profound impact on power confinement factor and its ratio between 
both low index slot regions. Prominent shift in low index slot regions power confinement 
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in sensor applications. Power confinement ratio between both low index slots as a function 
of center slab width and refractive index is plotted in figure 12: 

 
Fig. 12. Shift in power confinement ratio in low index regions due to change in refractive 
index. 
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input conditions) in both slot regions is same, hence ideally the ratio should be one or in 
close proximity of one. 
Comparison between the results of both conditions, like PML=10 and PML=20 had been 
carried out. Power confinement factor error ratio has been plotted in figure 15. The error 
ratio has been taken for difference in power confinement ratio at PML-10 and PML-20 
divided by actual ratio at PML-10. The error ratio is at monotonous increase hence it seems 
following the general conditions of error analysis. 

 
Fig. 15. Power Confinement factor ratio comparison (PML = 10 & PML = 20). 
 
Hence it was found that power confinement factor is mainly dependent upon shift in 
refractive index, and shift in center slab width (double slot structure). 

 
4. Low contrast Double Slot Structure based Optomechanical Sensor [18] 
 

The structure is based on basic double slot structure. A head start introduction of proposed 
optomechanical sensor is that two low index slots of hard material dipped in a cladding of 
high index compressible material (suitable to term as fluid), where slots have fins on top and 
can move inside high index cladding under the action of an external force. Three slabs 
comprising of high refractive index fluid, two slots (50nm wide) of low refractive index solid 
material, in present work it is SiO2 (R.I.=1.44). The cladding and substrate also comprised of 
SiO2. Slabs comprising of commercially available high refractive index fluid; Gallium Halide 
(R.I. = 2.31) [19]. Melting point of fused silica (to be used in forming low index slots) is 
~1371oC. Trihalides where Gallium is in the +3 oxidation state are Gallium Fluoride (GaF3), 
Gallium Chloride (GaCl3), Gallium Bromide (GaBr3), and Gallium Iodide (GaI3). Other than 
GaF3 having melting point above 1000oC, all other three halides (GaCl3, GaBr3, and GaI3) 
melting point is 78oC, 122oC, and 212oC respectively. Hence it seems technically reasonable 
to use fused silica based slots inside a Halide based slab. 
Block diagram of proposed optomechanical sensor is shown in figure 16.  
Essential assumptions in double slot structure are: 

(a) Slabs comprising of high refractive index fluid. 
(b) Slots body is dipped inside the slabs, there are fins on top of slots body; which 

are visible out of the slabs and are exposed to atmospheric conditions. 

(c) Cladding is of air. 
(d) Slots width remains same, the distance in between slots is varied subject to 

change in atmospheric conditions like temperature and pressure on the fins. 
As the slabs comprise of fluid, hence slots can move easily inside the slabs. 
Increase or decrease in central slab width (in between slots) is added into 
outer slabs equally 

 
Fig. 16. Top view (z-cut) of compressible material based slot structure. 
  
Power confinement factor in basic single slot structure (where slab refractive index is 2.31 
and slot refractive index is 1.44) is investigated at various structure heights ranging from 300 
nm till 500 nm with a step size of 10 nm. It has been found that for a propagation distance of 
1000 nm, power confinement factor in slot waveguide shows a monotonous increase till 
structure height of 380nm, later on it shows a monotonous decrease till 500nm. Further 
analysis proved that a structure height of 410 nm is an optimized height. Hence for the 
current work in this section, structure height was kept at 410 nm. 
 

  
(a)     (b) 

Fig.17. E-field intensity dependence upon central slab width; (a) 250 nm; (b) 300 nm. 
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Power confinement factor in basic single slot structure (where slab refractive index is 2.31 
and slot refractive index is 1.44) is investigated at various structure heights ranging from 300 
nm till 500 nm with a step size of 10 nm. It has been found that for a propagation distance of 
1000 nm, power confinement factor in slot waveguide shows a monotonous increase till 
structure height of 380nm, later on it shows a monotonous decrease till 500nm. Further 
analysis proved that a structure height of 410 nm is an optimized height. Hence for the 
current work in this section, structure height was kept at 410 nm. 
 

  
(a)     (b) 

Fig.17. E-field intensity dependence upon central slab width; (a) 250 nm; (b) 300 nm. 
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As an example we can see that; for a case where central slab width between both slots is 300 
nm and 250 nm. E-field intensity (see figure 17), E-field lines (see figure 18) and power 
confinement factor in low index slot region changes considerably.  
The contrast ratio in present structure is considerably low, however we can see acceptable 
power confinement factor inside low index slot regions. E-field lines in both the cases 
(central slab width of 250 nm, and 300 nm) were checked. It was found that power 
confinement inside low index slot regions occurred due to electric lines discontinuity, 
plotted in figure below: 

        
(a)    (b) 

Fig. 18. E-field lines at a central slab width of; (a) 250 nm; (b) 300 nm. 
 
Power confinement factor in a low index slot has been calculated and plotted in figure 19 
below. A monotonously decreasing curve was found for various widths of central slab 
(comprising of high index compressible material) between the slots (comprising of low 
index hard material). In this case power confinement factor is depending upon center slab 
width. 

  
(a)      (b) 

Fig. 19. Power confinement factor dependence upon central slab width; (a) low index slot; (b) 
central high index slab. 
 
In a careful review of the power confinement characteristics of the fluid based photonics 
waveguide sensor reveals that; power confinement in low index slot regions is at a 
monotonous decrease for a central slab width ranging from 300nm till 650nm and is as 
follows: 

 
Fig.20. Normalized power confined in low index slot region. 
 
The sensitivity of the sensor can be calculated by finding the slope of un-normalized 
deflection curve ((y2-y1)/(x2-x1)), however the material sensitivity towards deflection is also 
required. The material sensitivity depends upon the nature of sensor requirement and its 
constituents. Shift in power confinement factor in this embodiment came out to be 0.435/nm. 

 
5. Glass based Multiple Slot Structure Sensor Systems 
 

Further to our work in last section, it was thought of that a simple and easy to realize double 
slot structure should be explored for sensing applications. Inspired from the work by 
Barrios [10], glass based double slot structure has been realized. The structure composition 
is that glass slabs are placed on glass substrate. Both low index slot regions and cladding is 
of air, for simplicity and to be practical we may say that low index slot regions and cladding 
is of compressible low index material. Before starting work on the proposed structure of 
glass and air based double slot structure, power confinement factor in glass and air based 
single slot structure has been investigated. Deviating from the contrast ratio of SOI slot 
optical waveguide, where contrast ratio is 2.42, we were thinking of realizing a structure 
with contrast ratio of 1.65. In a basic structure, 500 nm high, 50 nm wide single slot 
comprising of air, surrounded by glass slabs (R.I. = 1.65). The structure is resting on glass 
substrate, cladding is of air. E-field in y-cut and E-field distribution shown in figure 21 are in 
agreement with the basic slot structure theory [1]. High E-field confinement was found in 
the low index slot region. 
Power confinement factor percentage inside low index slot region found out to be 9.1%. In 
order to enhance the power glass based double slot structure was realized. Two 500 nm high, 
50 nm wide air based slots separated using a 50 nm wide glass slab, surrounded by 360 nm 
glass slabs. Whole structure resting on glass substrate, cladding comprising of air. 
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As an example we can see that; for a case where central slab width between both slots is 300 
nm and 250 nm. E-field intensity (see figure 17), E-field lines (see figure 18) and power 
confinement factor in low index slot region changes considerably.  
The contrast ratio in present structure is considerably low, however we can see acceptable 
power confinement factor inside low index slot regions. E-field lines in both the cases 
(central slab width of 250 nm, and 300 nm) were checked. It was found that power 
confinement inside low index slot regions occurred due to electric lines discontinuity, 
plotted in figure below: 
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Fig. 18. E-field lines at a central slab width of; (a) 250 nm; (b) 300 nm. 
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width. 

  
(a)      (b) 

Fig. 19. Power confinement factor dependence upon central slab width; (a) low index slot; (b) 
central high index slab. 
 
In a careful review of the power confinement characteristics of the fluid based photonics 
waveguide sensor reveals that; power confinement in low index slot regions is at a 
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is of compressible low index material. Before starting work on the proposed structure of 
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single slot structure has been investigated. Deviating from the contrast ratio of SOI slot 
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comprising of air, surrounded by glass slabs (R.I. = 1.65). The structure is resting on glass 
substrate, cladding is of air. E-field in y-cut and E-field distribution shown in figure 21 are in 
agreement with the basic slot structure theory [1]. High E-field confinement was found in 
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Power confinement factor percentage inside low index slot region found out to be 9.1%. In 
order to enhance the power glass based double slot structure was realized. Two 500 nm high, 
50 nm wide air based slots separated using a 50 nm wide glass slab, surrounded by 360 nm 
glass slabs. Whole structure resting on glass substrate, cladding comprising of air. 
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(a)     (b) 

Fig. 21. (a) E-field distribution; (b) E-field intensity; glass based single slot structure. 
 
E-field distribution in y-cut and E-field intensity is shown in figure 22 (a) and (b) 
respectively. E-field distribution and power confinement for glass based structure had also 
been checked for the case where slabs comprising of glass (R.I. = 1.65); cladding, substrate & 
slot comprising of air. In other words for a single slot structure there are two glass slabs 
inserted inside an air based wafer at the requisite 

 
(a)     (b) 

Fig. 22. (a) E-field distribution; (b) E-field intensity; glass based double slot structure. 
 
place. The placing of slabs ensures slot width, substrate depth and cladding height. Such 
sort of triple slot structure has been checked for power confined inside low index slot region. 
Power confinement factor inside low index slot region is 30.75%. The simulations supported 
our earlier work for the case of glass based slabs with slots comprising of air.  
Moving back to the case where glass based multiple slot structure is resting on glass 
substrate; cladding comprising of air. Two fifty nanometer wide slots separated using a 
central high index glass based slab of 50nm width; surrounded by 360nm wide slabs. Whole 

structure resting on glass substrate, cladding is of air. Normalized E-field distribution and 
transverse E-field amplitude for a slot height of 1800nm is shown in figure 23 below.  

  
(a)      (b) 

Fig. 23. Normalized; (a) E-field intensity; (b) transverse E-field amplitude; glass based 
double slot structure.  
 
Power confinement factor for glass based double slot structure has been investigated. For 
this check of power confinement factor inside low index slot regions, width of low index slot 
regions and central high index slab region was kept at 50 nm. Structure height was 
increased gradually from 300 nm till 1800 nm. Power confinement factor increases 
monotonously along with an increase in structure height (see figure 24 below).  
 

 
Fig. 24. Power confined in glass based double slot structure versus structure height. 
 
Contrast ratio for SOI based slot structure is 2.42; power confined inside low index slot 
region for SOI based slot structure is approximately 60%. For a glass based slot structure 
contrast ratio is 1.65, attaining 41% power confinement factor inside low index slot regions 
brings the structure comparable to SOI slot structure. Glass based double slot structure is 
explored further for use in sensing applications. 
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(a)      (b) 

Fig. 23. Normalized; (a) E-field intensity; (b) transverse E-field amplitude; glass based 
double slot structure.  
 
Power confinement factor for glass based double slot structure has been investigated. For 
this check of power confinement factor inside low index slot regions, width of low index slot 
regions and central high index slab region was kept at 50 nm. Structure height was 
increased gradually from 300 nm till 1800 nm. Power confinement factor increases 
monotonously along with an increase in structure height (see figure 24 below).  
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Contrast ratio for SOI based slot structure is 2.42; power confined inside low index slot 
region for SOI based slot structure is approximately 60%. For a glass based slot structure 
contrast ratio is 1.65, attaining 41% power confinement factor inside low index slot regions 
brings the structure comparable to SOI slot structure. Glass based double slot structure is 
explored further for use in sensing applications. 
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5.1 Glass based Double Slot Structure Sensor [20] 
In one of the example embodiment both 50nm wide slots are separated by a 50nm wide high 
index slab comprising of glass. Both slots separated by glass slab are surrounded by 360 nm 
wide glass slabs. The simulations scenario was created to calculate stress induced movement 
of center slab at one end of a long cantilever based sensor system [10]. Center slab is 
simulated to move (under the action of external pressure) by a step size of 5 nm each. Power 
confined in left slot is increasing; starting with a left slot width of 5 nm, center 50 nm glass 
slab is shifting right by a step of 5 nm. The left slot width is increasing by 5 nm whereas 
right slot width is reducing by 5 nm at each step size. Power confinement factor in both slots 
is same at equal width (50 nm).  
It was found that power confinement factor is showing considerable change for a step size 
of 10 nm but for a step size of 5 nm the change is not considerable. This supports our earlier 
work done regarding high refractive index fluid based photonics displacement sensor. 
Power confinement factor has been calculated for the case where; 50 nm slab is shifting right 
by a step size of 10 nm. In the start the left slot width is 5 nm, whereas right slot width is 95 
nm. Results are displayed in figure 25. Power confinement factor is showing a considerable 
change for a shift in center slab by 10 nm; hence it can be exploited for forming a novel 
photonic displacement sensor. 

 
Fig. 25. Power Confinement factor in left slot region (center slab shifting right by 10nm). 

 
5.2 Waveguide Structure 
 

A displacement sensor based on double slot waveguide structure is designed. The structure 
comprising of compressible low refractive index material and hard material of relatively 
high index of refraction. Two low refractive index narrow slots formed between three 
relatively high refractive index slabs. The width of both slots and central slab is same.  
The structural geometry can be changed as per requirements and designs. Figure 26 is a top 
view representation of double slot waveguide structure based photonics sensor. It is formed 
of slabs comprising of high refractive index hard material, having a width that can 
significantly be varied. Two low index slots comprising of low refractive index compressible 

material separates the high refractive index slabs by a width, which is of the nanometers 
range. Low refractive index slot regions may be filled with air, gas, fluid or other 
compressible fluids so as to allow free movement of center slab in it. High refractive index 
regions may be filled with relatively high refractive index glass, silicon, silicon dioxide or 
metal. The height of high index slab regions also defines the height of low index slot regions. 
The length of high index slab regions also defines the length of low index slot regions. 
Central high index slab has an embedded fin on it’s top, force on fin’s vertical surface due to 
physical quantities makes the center slab move like a cantilever; left or right. Cladding of the 
structure are of same low refractive index material as of low index slot regions; further 
embodiments can be comprising of air, gas, fluid or other oxides. 

 
Fig. 26. Glass based photonics displacement sensor (top view; z-cut). 
 
A channel waveguide structure is used for guiding light inside the double slot waveguide 
structure. Channel guide could be comprised of dielectric or any material of suitable 
refractive index, could be same as of high index slab regions or low index slot regions. 
Cladding of channel waveguide structure could be of same material as of double slot 
structure or could be of air, gas fluid or other metals / oxides. Another channel waveguide 
structure is used for directing light out of the double slot waveguide structure. The 
structural limitations are the same as for the earlier channel waveguide structure. 
Low index slot regions may be supported by same material as used for the slabs. Other 
materials providing a contrast in refractive indices may also be utilized without departing 
from the scope of the invention. Many different structures may be used that provide a class 
of waveguide structures capable of guiding and confining lights in such a way that high 
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structure are of same low refractive index material as of low index slot regions; further 
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Fig. 26. Glass based photonics displacement sensor (top view; z-cut). 
 
A channel waveguide structure is used for guiding light inside the double slot waveguide 
structure. Channel guide could be comprised of dielectric or any material of suitable 
refractive index, could be same as of high index slab regions or low index slot regions. 
Cladding of channel waveguide structure could be of same material as of double slot 
structure or could be of air, gas fluid or other metals / oxides. Another channel waveguide 
structure is used for directing light out of the double slot waveguide structure. The 
structural limitations are the same as for the earlier channel waveguide structure. 
Low index slot regions may be supported by same material as used for the slabs. Other 
materials providing a contrast in refractive indices may also be utilized without departing 
from the scope of the invention. Many different structures may be used that provide a class 
of waveguide structures capable of guiding and confining lights in such a way that high 
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optical intensity is obtained in both small cross sectional areas filled with any compressible 
material of sufficiently low refractive index, relative to the remainder core of the structure. 
While low index slot regions are shown as a rectangular cross section, other shapes, such as 
triangular or semicircular may also be used to provide suitable surfaces for defining the 
narrow slot regions. 

 
5.3  Working Principle 
Light is guided inside double slot structure using a conventional waveguide (channel 
waveguide). The height of channel waveguide structure is same as that of double slot 
structure. Input field was coupled with the channel waveguide and later channel waveguide 
forming an integral part of double slot structure is a source of guiding light in it. 
Referring figure 26, the central high refractive index slab is acting as a cantilever. Surface 
stress on fin on the top of central slab results in its’ static bending. Displacement of central 
slab (cantilever) under the action of stress reduces the width of one of the slot resulting in 
increased width of other slot. Power confined inside low index slot is directly related to the 
width and hence is changed accordingly. Light is directed outside the double slot 
waveguide structure using an embedded channel waveguide structure. 
In an example embodiment of glass based photonics sensor; using glass (high refractive 
index slab) and air (low refractive index slot). Referring figure 26, upper slot; hereafter 
named as right slot and lower slot; hereafter named as left slot, are of rectangular shape with 
50 nm width, 1800 nm height and 1000 nm length comprising of air (R.I.=1.00). Upper slab; 
hereafter named as left slab, central slab and lower slab; hereafter named as right slab 
surrounding both low index slot regions. Slabs comprised of commercially available high 
refractive index glass (R.I. = 1.65); center slab width is same as that of low index slot regions; 
where as outer slabs width is 360nm. Input plane is propagated along z-axis at 1.55 m CW 
(optical frequency). 

 
Fig. 27. (a): Normalized E-field intensity – both low index slot regions of same width. 
 
The shift in center slab with a step size of 10 nm is causing a constant increase in left slot 
width starting from 5 nm till 95 nm; vice versa constant decrease in right slot width. Power 

confinement factor is directly proportional to the slot width. Change in power confinement 
factor is being used as an indicator for shift in displacement of center slab. Normalized E-
field intensity in double slot waveguide structure is displayed in figure 27 (a), (b) & (c) at 
three different displacement locations of center slab. 
In this embodiment example (see Fig. 27(a)), E-field intensity has been calculated by keeping 
both slots at same width. As the slots width was same, hence power confined in both slots is 
same. Power confinement has been calculated using Eqn. 3 [3] and it was found same. 
Figure 27(a) above gives a very nice example of double slot waveguide structure, where 
quasi-TE mode is used. Light is totally confined inside the low index slot region. E-field was 
normalized with it’s peak value.  The E-field distribution at modal point depends upon the 
input conditions and geometrical shapes of slot waveguide structure. The input conditions 
and refractive index contrast were kept same; however geometrical conditions were 
changed in further embodiments. The change in geometrical conditions due to shift in 
central slab has a profound effect on the E-field distribution at the modal points. We will see 
in figures below that, for the embodiment where left low refractive index slot width is less; 
E-field confinement is high. 
In this embodiment example (see Fig. 27(b)), numerical calculations have been done by 
keeping left low refractive index slot width at 5 nm. Right low refractive index slot width 
was 95 nm (vice versa). E-field was normalized with the E-field obtained when both the 
slots width is same (see fig. 27(b) below). It is evident from the figure that power was mainly 
confined in right low refractive index slot. Power confinement factor in both low refractive 
index slots has been calculated using Eqn. 3 [3]. 

 
Fig. 27. (b): Normalized E-field intensity – left slot of width 5nm; right slot of width 95nm. 
 

In this embodiment example (see Figure 27(c)), numerical calculations have been done by 
keeping left low refractive index slot width at 95 nm. Right low refractive index slot width 
was 5 nm (vice versa). E-field was normalized with the E-field obtained when both the slots 
width is same (see figure 27(c) below). It is evident from figure; that power was confined in 
left low index slot. However sharp spike of light confinement in right low refractive index 
groove is due to it’s small cross sectional area. Power confinement factor in both low 
refractive index slots has been calculated [3]. The large cross sectional area of left slot 
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optical intensity is obtained in both small cross sectional areas filled with any compressible 
material of sufficiently low refractive index, relative to the remainder core of the structure. 
While low index slot regions are shown as a rectangular cross section, other shapes, such as 
triangular or semicircular may also be used to provide suitable surfaces for defining the 
narrow slot regions. 

 
5.3  Working Principle 
Light is guided inside double slot structure using a conventional waveguide (channel 
waveguide). The height of channel waveguide structure is same as that of double slot 
structure. Input field was coupled with the channel waveguide and later channel waveguide 
forming an integral part of double slot structure is a source of guiding light in it. 
Referring figure 26, the central high refractive index slab is acting as a cantilever. Surface 
stress on fin on the top of central slab results in its’ static bending. Displacement of central 
slab (cantilever) under the action of stress reduces the width of one of the slot resulting in 
increased width of other slot. Power confined inside low index slot is directly related to the 
width and hence is changed accordingly. Light is directed outside the double slot 
waveguide structure using an embedded channel waveguide structure. 
In an example embodiment of glass based photonics sensor; using glass (high refractive 
index slab) and air (low refractive index slot). Referring figure 26, upper slot; hereafter 
named as right slot and lower slot; hereafter named as left slot, are of rectangular shape with 
50 nm width, 1800 nm height and 1000 nm length comprising of air (R.I.=1.00). Upper slab; 
hereafter named as left slab, central slab and lower slab; hereafter named as right slab 
surrounding both low index slot regions. Slabs comprised of commercially available high 
refractive index glass (R.I. = 1.65); center slab width is same as that of low index slot regions; 
where as outer slabs width is 360nm. Input plane is propagated along z-axis at 1.55 m CW 
(optical frequency). 

 
Fig. 27. (a): Normalized E-field intensity – both low index slot regions of same width. 
 
The shift in center slab with a step size of 10 nm is causing a constant increase in left slot 
width starting from 5 nm till 95 nm; vice versa constant decrease in right slot width. Power 

confinement factor is directly proportional to the slot width. Change in power confinement 
factor is being used as an indicator for shift in displacement of center slab. Normalized E-
field intensity in double slot waveguide structure is displayed in figure 27 (a), (b) & (c) at 
three different displacement locations of center slab. 
In this embodiment example (see Fig. 27(a)), E-field intensity has been calculated by keeping 
both slots at same width. As the slots width was same, hence power confined in both slots is 
same. Power confinement has been calculated using Eqn. 3 [3] and it was found same. 
Figure 27(a) above gives a very nice example of double slot waveguide structure, where 
quasi-TE mode is used. Light is totally confined inside the low index slot region. E-field was 
normalized with it’s peak value.  The E-field distribution at modal point depends upon the 
input conditions and geometrical shapes of slot waveguide structure. The input conditions 
and refractive index contrast were kept same; however geometrical conditions were 
changed in further embodiments. The change in geometrical conditions due to shift in 
central slab has a profound effect on the E-field distribution at the modal points. We will see 
in figures below that, for the embodiment where left low refractive index slot width is less; 
E-field confinement is high. 
In this embodiment example (see Fig. 27(b)), numerical calculations have been done by 
keeping left low refractive index slot width at 5 nm. Right low refractive index slot width 
was 95 nm (vice versa). E-field was normalized with the E-field obtained when both the 
slots width is same (see fig. 27(b) below). It is evident from the figure that power was mainly 
confined in right low refractive index slot. Power confinement factor in both low refractive 
index slots has been calculated using Eqn. 3 [3]. 

 
Fig. 27. (b): Normalized E-field intensity – left slot of width 5nm; right slot of width 95nm. 
 

In this embodiment example (see Figure 27(c)), numerical calculations have been done by 
keeping left low refractive index slot width at 95 nm. Right low refractive index slot width 
was 5 nm (vice versa). E-field was normalized with the E-field obtained when both the slots 
width is same (see figure 27(c) below). It is evident from figure; that power was confined in 
left low index slot. However sharp spike of light confinement in right low refractive index 
groove is due to it’s small cross sectional area. Power confinement factor in both low 
refractive index slots has been calculated [3]. The large cross sectional area of left slot 
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attributed towards high power confinement; vice versa right low refractive index slot 
contains less power. 

 
Fig. 27. (c): Normalized E-field intensity – right slot of width 5nm; left slot of width 95nm. 

 
Fig. 28. Power confined (normalized) inside low refractive index slot region dependence 
upon slot width. 
 
Power confined in either low index slot region is increasing along with increase in slot 
width. The low index slot width is dependent upon shift in center slab. Power confinement 
factor in both low index slots have been checked and found similar response at same 
displacement of central high refractive index slab. Power confined (normalized) in a low 
index slot region has been drawn in graphical format in figure 28. The change in slot width 
is due to shift in center slab under the effect of stress at fin’s vertical surface. We have 
checked the power confinement factor at various example embodiments. Few power 

confinement values plotted in figure 28 are just for example. It was observed that in order to 
get a considerable change in power confinement factor a minimum shift of 10nm in center 
slab width is required. A shift in power confinement factor by 3.85 has been found for every 
10nm change in center slab displacement. Hence sensitivity of proposed photonics sensor 
mechanism is 0.385/nm. 

 
6. Slot Structure Coupling Structures  
 

In order to ensure usage of glass based low contrast slot structure in forming passive optical 
devices, it was necessary to provide an example. Slot waveguide based single slot to double 
slot coupling structure (see figure 29) is realized using glass & air based single and multi slot 
structure.  

 
Fig. 29. Slot waveguide based Y-coupler. 
 
In a numerical calculation using full vector finite difference mode-solver, the dimensions of 
double slot structure as follows: 
Referring figure 29, both slots are of rectangular shape with 50 nm width, 400 nm height and 
1 m length comprising of air (R.I.=1.00). Three rectangular slabs are surrounding both the 
slots comprising of commercially available high refractive index glass (R.I. = 1.65). Single 
frequency Gaussian modulated continuous wave was used as input plane, propagated in 
the direction of z-axis.  Numerous numerical calculations by using standard input plane 
were carried out at various displacement values. E-field amplitude shows that a part of 
optical power is also in the substrate. However due to electric field discontinuity at the 
boundaries of high index glass slabs and low index air slots, the e-field is confined strictly 
inside the low index regions. However contrast ratios do have an effect on the power 
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attributed towards high power confinement; vice versa right low refractive index slot 
contains less power. 

 
Fig. 27. (c): Normalized E-field intensity – right slot of width 5nm; left slot of width 95nm. 

 
Fig. 28. Power confined (normalized) inside low refractive index slot region dependence 
upon slot width. 
 
Power confined in either low index slot region is increasing along with increase in slot 
width. The low index slot width is dependent upon shift in center slab. Power confinement 
factor in both low index slots have been checked and found similar response at same 
displacement of central high refractive index slab. Power confined (normalized) in a low 
index slot region has been drawn in graphical format in figure 28. The change in slot width 
is due to shift in center slab under the effect of stress at fin’s vertical surface. We have 
checked the power confinement factor at various example embodiments. Few power 

confinement values plotted in figure 28 are just for example. It was observed that in order to 
get a considerable change in power confinement factor a minimum shift of 10nm in center 
slab width is required. A shift in power confinement factor by 3.85 has been found for every 
10nm change in center slab displacement. Hence sensitivity of proposed photonics sensor 
mechanism is 0.385/nm. 

 
6. Slot Structure Coupling Structures  
 

In order to ensure usage of glass based low contrast slot structure in forming passive optical 
devices, it was necessary to provide an example. Slot waveguide based single slot to double 
slot coupling structure (see figure 29) is realized using glass & air based single and multi slot 
structure.  

 
Fig. 29. Slot waveguide based Y-coupler. 
 
In a numerical calculation using full vector finite difference mode-solver, the dimensions of 
double slot structure as follows: 
Referring figure 29, both slots are of rectangular shape with 50 nm width, 400 nm height and 
1 m length comprising of air (R.I.=1.00). Three rectangular slabs are surrounding both the 
slots comprising of commercially available high refractive index glass (R.I. = 1.65). Single 
frequency Gaussian modulated continuous wave was used as input plane, propagated in 
the direction of z-axis.  Numerous numerical calculations by using standard input plane 
were carried out at various displacement values. E-field amplitude shows that a part of 
optical power is also in the substrate. However due to electric field discontinuity at the 
boundaries of high index glass slabs and low index air slots, the e-field is confined strictly 
inside the low index regions. However contrast ratios do have an effect on the power 
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confinement factor. This effect has been nullified by changing the structure geometry and 
changing the input plane conditions. 
Referring figure 29; initially basic SOI slot optical waveguide was simulated [1]. The light 
was confined inside low index regions (see figure 30) and is in agreement with the existing 
theory. 

 
(a)     (b) 

Fig. 30. (a) E-field distribution; (b) E-field intensity; SOI slot optical waveguide based Y-
branch coupler. 
 
Glass based double slot waveguide structure is implemented on the Y-branch coupler model. 
The slots comprising of air and slabs is of glass. E-field distribution is plotted in figure 
below: 

  
(a)     (b) 

Fig. 31. (a) E-field distribution; (b) E-field intensity; Double slot waveguide structure 
(comprising of air & glass) based Y-coupler. 
 

E-field intensity is found splitting into two parts, hence power introduced in the y-branch 
coupler is splitted equally in between two ports. This is very useful in forming passive 
optical devices. It can be further exploited in forming complex passive optical devices. 

 
7. Summary 
 

In this chapter simulation and analysis of single and multiple slot waveguide structures had 
been carried out using FDTD algorithm. It was found that multiple slot structures not only 
increase the power confinement factor in low index slot regions but can also be utilized in 
forming sensor mechanisms. Other than traditional SOI slot optical waveguides, low 
contrast (glass and air based) slot optical waveguides with comparable power confinement 
factor had been proposed. Later the low contrast double slot optical waveguide structure 
had been utilized in forming cantilever based sensing mechanisms. Light confinement 
inside low contrast double slot structure has been explored and found comparable to SOI 
based slot optical waveguide structure. Based on cantilever type movement of low index 
slots of proposed low contrast double slot structure a simple and easy to build 
optomechanical sensor has been proposed. Single frequency continuous wave Gaussian 
pulse source has been used in simulations which is readily available. It could be most 
probable candidate for use in temperature, pressure and surface smoothness sensing.   
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confinement factor. This effect has been nullified by changing the structure geometry and 
changing the input plane conditions. 
Referring figure 29; initially basic SOI slot optical waveguide was simulated [1]. The light 
was confined inside low index regions (see figure 30) and is in agreement with the existing 
theory. 
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Fig. 30. (a) E-field distribution; (b) E-field intensity; SOI slot optical waveguide based Y-
branch coupler. 
 
Glass based double slot waveguide structure is implemented on the Y-branch coupler model. 
The slots comprising of air and slabs is of glass. E-field distribution is plotted in figure 
below: 
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(comprising of air & glass) based Y-coupler. 
 

E-field intensity is found splitting into two parts, hence power introduced in the y-branch 
coupler is splitted equally in between two ports. This is very useful in forming passive 
optical devices. It can be further exploited in forming complex passive optical devices. 
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been carried out using FDTD algorithm. It was found that multiple slot structures not only 
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forming sensor mechanisms. Other than traditional SOI slot optical waveguides, low 
contrast (glass and air based) slot optical waveguides with comparable power confinement 
factor had been proposed. Later the low contrast double slot optical waveguide structure 
had been utilized in forming cantilever based sensing mechanisms. Light confinement 
inside low contrast double slot structure has been explored and found comparable to SOI 
based slot optical waveguide structure. Based on cantilever type movement of low index 
slots of proposed low contrast double slot structure a simple and easy to build 
optomechanical sensor has been proposed. Single frequency continuous wave Gaussian 
pulse source has been used in simulations which is readily available. It could be most 
probable candidate for use in temperature, pressure and surface smoothness sensing.   
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1. Introduction    
 

A waveguide whose sidewalls are replaced with densely arranged metallic posts has been 
proposed. This guide enables the easy realization of circuit patterns by the arrangement of 
metallic posts periodically in a parallel-plate waveguide or a grounded dielectric substrate. 
This type of waveguide is called the post-wall waveguide (PWW) (Hirokawa & Ando, 
1998;Ando et al., 1998) or the substrate integrated waveguide (SIW) (Wu, 2001; Deslandes & 
Wu , 2005). This SIW technology is applied to a feed waveguide for a slot array antenna, or a 
leakage wave antenna. In particular, recently, for the purpose of making use of merits such 
as low loss, low cost, and high-density integration of microwave and millimeter-wave 
components and subsystems, a SIW short-slot 90° hybrid coupler, and a six-port receiver 
consisting of the 90° couplers and/or power dividers have been developed. Since this 
technology is a relatively new concept, it is desired that more SIW circuit components and 
subsystems appear to open a new vista (Xu et al., 2005; Moldovan et al., 2006). 
With regard to the analytical method of the SIW structure, the derivation of the propagation 
constant for the straight section of the guide has been studied on the basis of the Galerkin's 
method of moment (Hirokawa & Ando, 1998). Then widths of the SIW structure that is 
equal to the cutoff frequency of the rectangular waveguide with perfectly metalized 
sidewalls have been obtained. Also, empirical equations for the equivalent widths have been 
proposed through experiments and simulations (Xu & Wu, 2005; Cassivi et al., 2002). In (Xu 
& Wu, 2005), the FDTD method and the multimode calibration method are used to analyze 
the dispersion characteristics of the complex propagation constants of the SIW structure. 
However, in the case of designing and analyzing the circuit components for practical use, a 
full-wave em-simulator (Ansoft HFSS) has been employed (Moldovan et al., 2006). Since the 
simulation requires a relatively long computing time, it is desirable to develop a faster 
solver for the optimization requiring recursive computations. 
In this study, an analysis of the SIW structure is attempted by applying the analytical 
technique of the H-plane waveguide discontinuities based on the planar circuit approach 
(Kishihara et al., 2006; Kishihara et al., 2004). This technique can reduce the computation 
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time considerably, because the two-dimensional structure of the SIW is well used to 
advantage in the analysis. 
The present two-dimensional approach is about 10 times faster than the full-wave simulator 
(HFSS). First, a planar-circuit model of the SIW for analysis is introduced. The analytical 
procedure consists of 1) the derivation of the mode impedance matrices for regular-shaped 
planar circuits and 2) short-circuiting of fictitious ports arranged on the peripheries of the 
metallic posts, in accordance with the treatment of the H-plane waveguide discontinuities 
containing metallic obstacles. In the SIW structure, a leakage field problem outside the guide 
occurs due to the gaps of the arrayed metallic posts. This phenomenon should be excluded 
in the practical design of the passive circuit components, except in cases where it is used 
positively, such as in leakage wave antennas. In this paper, the leakage field is considered 
by connecting fictitious TEM transmission lines on the periphery of the planar circuit model 
and terminating them with their characteristic impedances. 
Next, the S-parameters of the SIW straight section are calculated as a numerical example. In 
addition, a situation in which radiation is produced outwards from the guide is prepared 
intentionally by placing metallic posts at slightly broader intervals, and the validity of the 
above-mentioned treatment is examined. Then, the propagation constant of the SIW is 
calculated using the H-plane planar circuit approach along with the TRL calibration 
technique for a vector network analyzer (Pozar, 1998). In the analysis, the reduction of the 
computational time is achieved by utilizing the periodic structure of the SIW. 
In this work, the present method is applied to the design of two types of SIW corners, a 
right-angled circular corner and a right-angled corner with a cylindrical region of air (an air-
post). The corners are constructed of arrayed metallic posts similarly to an SIW straight-line 
section. For the corner with one air-post, a portion of the dielectric is replaced with air to 
obtain a matched state. The validity of the analysis and the design results are confirmed 
using an em-simulator (HFSS). 
Moreover, a cruciform SIW quadrature hybrid (Ohta et al., 2007) is designed based on the 
idea similar to an H-plane crossed-waveguide quadrature 3-dB hybrid (Toda et al., 2006). 
The SIW has a planar structure parallel to the plane of magnetic field, and the 
electromagnetic field in the circuit dose not change in the direction perpendicular to the 
magnetic plane (H-plane). This implies that the design concept and analytical method of the 
SIW circuits follow those of the H-plane planar circuit (Kishihara et al., 2006; Kishihara et al., 
2004). In the analysis, reduction of the computational time is successfully achieved by 
utilizing the periodic structure of the SIW. Finally, optimum design of crossed-SIW 
quadrature 3-dB hybrids is described. Good hybrid properties are obtained for some design 
frequencies. 

 
2. Planar circuit model and analytical procedure 
 

Figure 1 exhibits a portion of the SIW straight-line section. Dielectric material with relative 
permittivity r is filled between the top and bottom metallic plates, and metallic posts of 
radius r are placed at width af and spacing s. Generally, since the height of the SIW is much 
less than the wavelength used in its circuit system, the electromagnetic field is constant in 
the height direction. Therefore, the propagation and non-propagation modes excited in the 
SIW are TEn0-like modes, which are very similar to the TEn0 modes of the conventional 
waveguide, and hence the electric field consists of only a vertical component. In addition,  
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the leakage loss from the gaps between the side-wall posts is very low, because the surface 
current of TEn0-like modes flows parallel to the metallic posts of the side-wall. In particular, 
if the SIW is excited by the TE10 (or TEn0) mode of a rectangular waveguide with the same 
height and dielectric constant as the substrate, then the electromagnetic field in the circuit 
never changes in the vertical direction because the structure possesses no variation along the 
same direction. In other words, we can describe the circuit performance using only TEn0-like 
modes. From this fact, in this study, we apply the H-plane planar circuit approach to 
analyze the SIW circuit system. 
Figure 2 illustrates the planar circuit model of the SIW straight section corresponding to that 
in Fig.1. A rectangular area of width Ws (> 4r+Wp) and length L (=2s) extended outside the 
posts is considered in order to treat the leakage field distribution. The solid and the dotted 
lines represent the electric wall (shorted boundary) and the magnetic wall (open boundary), 
respectively. For the periphery of the planar circuit depicted by the broken line, any 
boundary condition of open, shorted, or terminated with characteristic impedances can be 
used. It is possible to carry out the analysis with an open or shorted boundary if the 
influence of radiation is negligible. However, in the case that radiation losses must be taken 
into account, the leakage waves from the gaps of the side-wall posts should be absorbed. In 
this paper, we attempt to absorb the waves by fictitiously connecting many TEM parallel-
plate lines of narrow width to the boundaries of the rectangular planar circuit and 
teminating the fictitious ports with their characteristic impedances. 
The input/output waveguide ports with a width of Wp are located at the left and right sides 
of the circuit (ports P1 and P2). On the peripheries of the metallic posts, moreover, the above 
fictitious TEM-line ports are arranged close together without any gaps (ports Q). Vi and Ii 
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time considerably, because the two-dimensional structure of the SIW is well used to 
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2004). In the analysis, reduction of the computational time is successfully achieved by 
utilizing the periodic structure of the SIW. Finally, optimum design of crossed-SIW 
quadrature 3-dB hybrids is described. Good hybrid properties are obtained for some design 
frequencies. 
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radius r are placed at width af and spacing s. Generally, since the height of the SIW is much 
less than the wavelength used in its circuit system, the electromagnetic field is constant in 
the height direction. Therefore, the propagation and non-propagation modes excited in the 
SIW are TEn0-like modes, which are very similar to the TEn0 modes of the conventional 
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same direction. In other words, we can describe the circuit performance using only TEn0-like 
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posts is considered in order to treat the leakage field distribution. The solid and the dotted 
lines represent the electric wall (shorted boundary) and the magnetic wall (open boundary), 
respectively. For the periphery of the planar circuit depicted by the broken line, any 
boundary condition of open, shorted, or terminated with characteristic impedances can be 
used. It is possible to carry out the analysis with an open or shorted boundary if the 
influence of radiation is negligible. However, in the case that radiation losses must be taken 
into account, the leakage waves from the gaps of the side-wall posts should be absorbed. In 
this paper, we attempt to absorb the waves by fictitiously connecting many TEM parallel-
plate lines of narrow width to the boundaries of the rectangular planar circuit and 
teminating the fictitious ports with their characteristic impedances. 
The input/output waveguide ports with a width of Wp are located at the left and right sides 
of the circuit (ports P1 and P2). On the peripheries of the metallic posts, moreover, the above 
fictitious TEM-line ports are arranged close together without any gaps (ports Q). Vi and Ii 

s

2r
afd

r

metallic post

Wp

s

2r
afd

r

metallic post

Wp  
Fig. 1. Structure of SIW straight-line section 



Passive	Microwave	Components	and	Antennas214

 

stand for the voltage and current vectors of the ith port (i=P1, P2, or Q). Deriving the mode 
impedance matrices between the input/output ports (P1, P2) and the fictitious ports (Q) by 
the planar circuit approach, and short-circuiting only the fictitious ports arranged on the 
peripheries of the metallic posts, one can obtain the 2-port mode impedance matrix 
containing the characteristics of the arrayed posts. Therefore, the scattering parameters can 
be calculated. 
On the basis of the planar circuit approach or the impedance Green’s function approach, the 
voltage at any point on the planar circuit can be written as 
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where J(x0,y0) denotes the source current normally injected into the circuit, and a Green’s 
function G() must satisfy the boundary conditions of the planar element. D denotes the two-
dimensional region of the planar circuit. By expanding the fields in the input and output 
ports in terms of eigenmodes of the rectangular waveguide, the mode impedance matrix can 
be given as 
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where Wi and Wj indicate the widths of the ith and jth coupling waveguide ports, 
respectively, and fi,p represents the eigenfunction of the waveguide with shorted or open 
boundaries and is given as 
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where the origin of argument si is assigned to one side of the coupling waveguide port. si 

varies from 0 to Wi, and the integration in Eq.(2) is over the width of the port. Therefore, the 
xy-coordinate values must be transformed to the local coordinate value si or sj of the 
coupling port. In Eq. (3), the sine function corresponds to the usual TEp0 modes of the 
rectangular waveguide with shorted boundaries. The cosine function is applied to the ports 
with open boundaries. p is 1 for p=0 and 2  for p  1. The cosine function is applied to the 
fictitious ports in this work, though only the fundamental TEM mode (p=0) is considered 
because of the sufficiently narrow port-width. The suffixes i and p denote the port and mode 
numbers, respectively. Wi is the width of the ith port. Green’s function can be expanded in 
terms of eigenfunctions of the corresponding rectangular planar circuit. 
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Equation (5) is applicable for the segments with open boundaries. m is 1 for m=0 and 2  for 
m 1. 
Now, we define the mode impedance matrix of the rectangular segment between two ports, 
P1 and P2, and fictitious ports Q as 
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where abbreviations VP={VP1t, VP2t}t and IP={IP1t, IP2t}t  are used. If the fictitious ports are 
assumed only for the metallic posts, ports Q are short-circuited by enforcing the boundary 
condition VQ=0 on the peripheries of the metallic posts. Substituting it into Eq.(6) gives the 
2-port mode impedance matrix involving the discontinuity effects of the posts. 
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Finally, by terminating the higher order modes in ports P1 and P2 with their characteristic 
impedances, the 2-port impedance matrix for the TE10 mode can be obtained. 
Furthermore, when the leakage field outside the posts must be considered, fictitious TEM 
lines are connected to the periphery of the planar circuit and terminated with impedances. 
The fictitious TEM lines are sufficiently narrow ports with open-boundary sidewalls. In this 
paper, we assume a dielectric substrate that extends infinitely outside the rectangular region. 
Then, the leakage field from the SIW structure is considered to be a TEM mode propagating 
in the parallel-plate waveguide. On the basis of circuit theory, no reflection occurs at the 
junction between a TEM line of 1 and N TEM lines of N. This means that the outgoing 
waves branch into the narrow TEM lines without reflection, if sufficiently narrow TEM lines 
are arranged on the periphery without gaps. Therefore, the fictitious TEM lines ought to be 
terminated with their characteristic impedances to suppress the reflections of the outgoing 
waves. Even if the transversely changing fields arrive at the periphery, their field 
distributions can be approximated by the sufficiently narrow TEM ports, because the field is 
considered constant in the narrow width. In the present treatment, only the leakage waves 
normal to the boundaries are absorbed, such as Mur’s first-order absorbing boundary 
condition in the FDTD method. The leakage waves can be decomposed into the field 
components propagating along the x- and y-directions. At the boundaries y=0 and Ws, the 
leakage waves propagating along the y-direction are absorbed. The remaining components 
propagating along the x-direction are absorbed at the boundaries x=0 and L. In the 
numerical calculation, the areas that do not affect the field distribution of the main 
propagation mode extending slightly outside the posts and that attenuate evanescent waves 
should be considered. Namely, a length of about g/4 or more should be considered outside 
the posts. Then it is expected that only the TEM wave reaches the periphery. 
Consequently, by deriving the mode impedance matrices among the input/output ports, the 
fictitious ports on the metallic posts, and the fictitious TEM lines on the periphery of the 
circuit, and short-circuiting and terminating the fictitious ports and TEM lines respectively, 
we can obtain the impedance matrix of the SIW structure containing the leakage field effects. 

 
3. Numerical results 
 

3.1 Straight section 

The S-parameters of the SIW structure shown in Fig.1 are computed to demonstrate the 
usefulness of the present analytical method. The dimensions of the guide are chosen as 
r=2.17, d=1.52 mm, and r=0.30 mm. The spacing s and the width af of the posts are varied in 
pairs as (s, af) = (1.00 mm, 4.92 mm), (1.50 mm, 4.85 mm), and (2.00 mm, 4.77 mm) after Ref. 
(Hirokawa, 1998). The SIW structure and the field distribution simulated using the HFSS at 
40 GHz are depicted in Fig.3(a), and the frequency characteristics of the S-parameters are 
shown in Fig.3(b). In the calculation, the width of the fictitious TEM lines at the 
circumference of the rectangular planar circuit was chosen to be 0.1 mm, and 10 fictitious 
TEM lines on the peripheries of each metallic post were considered. The fictitious ports were 
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stand for the voltage and current vectors of the ith port (i=P1, P2, or Q). Deriving the mode 
impedance matrices between the input/output ports (P1, P2) and the fictitious ports (Q) by 
the planar circuit approach, and short-circuiting only the fictitious ports arranged on the 
peripheries of the metallic posts, one can obtain the 2-port mode impedance matrix 
containing the characteristics of the arrayed posts. Therefore, the scattering parameters can 
be calculated. 
On the basis of the planar circuit approach or the impedance Green’s function approach, the 
voltage at any point on the planar circuit can be written as 
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where Wi and Wj indicate the widths of the ith and jth coupling waveguide ports, 
respectively, and fi,p represents the eigenfunction of the waveguide with shorted or open 
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where the origin of argument si is assigned to one side of the coupling waveguide port. si 

varies from 0 to Wi, and the integration in Eq.(2) is over the width of the port. Therefore, the 
xy-coordinate values must be transformed to the local coordinate value si or sj of the 
coupling port. In Eq. (3), the sine function corresponds to the usual TEp0 modes of the 
rectangular waveguide with shorted boundaries. The cosine function is applied to the ports 
with open boundaries. p is 1 for p=0 and 2  for p  1. The cosine function is applied to the 
fictitious ports in this work, though only the fundamental TEM mode (p=0) is considered 
because of the sufficiently narrow port-width. The suffixes i and p denote the port and mode 
numbers, respectively. Wi is the width of the ith port. Green’s function can be expanded in 
terms of eigenfunctions of the corresponding rectangular planar circuit. 
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Equation (5) is applicable for the segments with open boundaries. m is 1 for m=0 and 2  for 
m 1. 
Now, we define the mode impedance matrix of the rectangular segment between two ports, 
P1 and P2, and fictitious ports Q as 
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where abbreviations VP={VP1t, VP2t}t and IP={IP1t, IP2t}t  are used. If the fictitious ports are 
assumed only for the metallic posts, ports Q are short-circuited by enforcing the boundary 
condition VQ=0 on the peripheries of the metallic posts. Substituting it into Eq.(6) gives the 
2-port mode impedance matrix involving the discontinuity effects of the posts. 
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Finally, by terminating the higher order modes in ports P1 and P2 with their characteristic 
impedances, the 2-port impedance matrix for the TE10 mode can be obtained. 
Furthermore, when the leakage field outside the posts must be considered, fictitious TEM 
lines are connected to the periphery of the planar circuit and terminated with impedances. 
The fictitious TEM lines are sufficiently narrow ports with open-boundary sidewalls. In this 
paper, we assume a dielectric substrate that extends infinitely outside the rectangular region. 
Then, the leakage field from the SIW structure is considered to be a TEM mode propagating 
in the parallel-plate waveguide. On the basis of circuit theory, no reflection occurs at the 
junction between a TEM line of 1 and N TEM lines of N. This means that the outgoing 
waves branch into the narrow TEM lines without reflection, if sufficiently narrow TEM lines 
are arranged on the periphery without gaps. Therefore, the fictitious TEM lines ought to be 
terminated with their characteristic impedances to suppress the reflections of the outgoing 
waves. Even if the transversely changing fields arrive at the periphery, their field 
distributions can be approximated by the sufficiently narrow TEM ports, because the field is 
considered constant in the narrow width. In the present treatment, only the leakage waves 
normal to the boundaries are absorbed, such as Mur’s first-order absorbing boundary 
condition in the FDTD method. The leakage waves can be decomposed into the field 
components propagating along the x- and y-directions. At the boundaries y=0 and Ws, the 
leakage waves propagating along the y-direction are absorbed. The remaining components 
propagating along the x-direction are absorbed at the boundaries x=0 and L. In the 
numerical calculation, the areas that do not affect the field distribution of the main 
propagation mode extending slightly outside the posts and that attenuate evanescent waves 
should be considered. Namely, a length of about g/4 or more should be considered outside 
the posts. Then it is expected that only the TEM wave reaches the periphery. 
Consequently, by deriving the mode impedance matrices among the input/output ports, the 
fictitious ports on the metallic posts, and the fictitious TEM lines on the periphery of the 
circuit, and short-circuiting and terminating the fictitious ports and TEM lines respectively, 
we can obtain the impedance matrix of the SIW structure containing the leakage field effects. 

 
3. Numerical results 
 

3.1 Straight section 

The S-parameters of the SIW structure shown in Fig.1 are computed to demonstrate the 
usefulness of the present analytical method. The dimensions of the guide are chosen as 
r=2.17, d=1.52 mm, and r=0.30 mm. The spacing s and the width af of the posts are varied in 
pairs as (s, af) = (1.00 mm, 4.92 mm), (1.50 mm, 4.85 mm), and (2.00 mm, 4.77 mm) after Ref. 
(Hirokawa, 1998). The SIW structure and the field distribution simulated using the HFSS at 
40 GHz are depicted in Fig.3(a), and the frequency characteristics of the S-parameters are 
shown in Fig.3(b). In the calculation, the width of the fictitious TEM lines at the 
circumference of the rectangular planar circuit was chosen to be 0.1 mm, and 10 fictitious 
TEM lines on the peripheries of each metallic post were considered. The fictitious ports were 
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arranged without gaps. For the doubly infinite series of nm , 100  100 modes were 
considered. In each exciting waveguide, 8 modes (TEp0; p=1,2, ..., 8) were considered. The 
results simulated using the HFSS are also plotted for comparison. In the present analysis, 
the regions of 4.0 mm in length (  0.65 g at 40 GHz) are considered outside the arrayed 
posts. The periphery of the planar circuit is terminated with the characteristic impedances of 
the fictitious TEM lines. The computation time at one frequency point is 11 seconds for 
s=2.00 mm and af=4.77 mm, while the HFSS requires 147 seconds (frequency=37 GHz, 
adaptive pass=8, Delta S<0.001) on a Pentium4 3.2 GHz PC. The present method requires 
about 1/13 of the computation time compared with the HFSS. The two results are in good 
agreement and the validity of the analysis is confirmed. 
Next, the validity of the treatment of the leakage field is examined by widening the spacing 
s to 4.0 mm. Fig.4(a) shows the field distribution calculated using the HFSS (at 40 GHz). The 
TE10 mode is incident from the left side of the guide. It is clear that the field is leaking. When 
the periphery is assigned to electric walls, a resonant mode appears, as shown in Fig.4(b). 
The S-parameters obtained by the present method and the HFSS for these boundary 
conditions are shown in Fig.4(c). The solid and the broken lines represent the terminated 
and the short-circuited results for the present method, respectively. The markers are those 
for the HFSS.  
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Fig. 3. (a) Structure and field distribution for the SIW straight section and (b) the frequency 
characteristics of the S-parameters 
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                  (a)                                (b)                                                            (c) 
Fig. 4. Treatment of leakage field. (a) Structure and field distribution simulated using HFSS 
(boundary: radiation). (b) Structure and field distribution simulated using HFSS (boundary: 
electric wall). (c) Frequency characteristics of the S-parameters 

 

It is found that S21 in the solid line indicates approximately -3dB by radiation, while the 
results shown by the broken lines show completely different characteristics because of the 
short-circuited periphery. Both these results agree well with the results obtained with the 
HFSS. The present treatment of the leakage field is verified. 

 
3.2 Propagation constant of SIW line 
The propagation constant of the SIW line can be derived using the above technique. The 
straight-line has a periodical structure, except for the exciting parts at the two ends, as 
shown in Fig.5 (a), where a slightly modified planar circuit model is employed. The 
semicircular posts are eliminated and the one-period section in Fig.5 (b) is considered. In 
order to reduce the scale of the analysis, we first compute the mode impedance matrices of 
the exciting structure with the rectangular waveguide and one-period section, then use the 
segmentation method (Chadha & Gupta, 1981) one after the other, and finally derive the 
mode impedance matrix between the two exciting waveguides. Moreover, by terminating 
the higher-order TEp0 modes of the two rectangular waveguides with their characteristic 
impedances, we can obtain the two-port impedance matrix, and hence the scattering matrix 
for the TE10 mode. However, in the strict sense, the resultant matrix is not that of the SIW, 
because it contains some vagueness of the excitation region. 
For that reason, the TRL calibration technique (Pozar, 1998) used in the measurement with a 
vector network analyzer is applied, though the “Reflect connection” is unnecessary in this 
case. Now, if it is assumed that the two-port scattering matrices for the “Thru” and “Line” 
connections shown in Figs.6 (a) and 6 (b) are given as 
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arranged without gaps. For the doubly infinite series of nm , 100  100 modes were 
considered. In each exciting waveguide, 8 modes (TEp0; p=1,2, ..., 8) were considered. The 
results simulated using the HFSS are also plotted for comparison. In the present analysis, 
the regions of 4.0 mm in length (  0.65 g at 40 GHz) are considered outside the arrayed 
posts. The periphery of the planar circuit is terminated with the characteristic impedances of 
the fictitious TEM lines. The computation time at one frequency point is 11 seconds for 
s=2.00 mm and af=4.77 mm, while the HFSS requires 147 seconds (frequency=37 GHz, 
adaptive pass=8, Delta S<0.001) on a Pentium4 3.2 GHz PC. The present method requires 
about 1/13 of the computation time compared with the HFSS. The two results are in good 
agreement and the validity of the analysis is confirmed. 
Next, the validity of the treatment of the leakage field is examined by widening the spacing 
s to 4.0 mm. Fig.4(a) shows the field distribution calculated using the HFSS (at 40 GHz). The 
TE10 mode is incident from the left side of the guide. It is clear that the field is leaking. When 
the periphery is assigned to electric walls, a resonant mode appears, as shown in Fig.4(b). 
The S-parameters obtained by the present method and the HFSS for these boundary 
conditions are shown in Fig.4(c). The solid and the broken lines represent the terminated 
and the short-circuited results for the present method, respectively. The markers are those 
for the HFSS.  
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Fig. 3. (a) Structure and field distribution for the SIW straight section and (b) the frequency 
characteristics of the S-parameters 
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Fig. 4. Treatment of leakage field. (a) Structure and field distribution simulated using HFSS 
(boundary: radiation). (b) Structure and field distribution simulated using HFSS (boundary: 
electric wall). (c) Frequency characteristics of the S-parameters 

 

It is found that S21 in the solid line indicates approximately -3dB by radiation, while the 
results shown by the broken lines show completely different characteristics because of the 
short-circuited periphery. Both these results agree well with the results obtained with the 
HFSS. The present treatment of the leakage field is verified. 

 
3.2 Propagation constant of SIW line 
The propagation constant of the SIW line can be derived using the above technique. The 
straight-line has a periodical structure, except for the exciting parts at the two ends, as 
shown in Fig.5 (a), where a slightly modified planar circuit model is employed. The 
semicircular posts are eliminated and the one-period section in Fig.5 (b) is considered. In 
order to reduce the scale of the analysis, we first compute the mode impedance matrices of 
the exciting structure with the rectangular waveguide and one-period section, then use the 
segmentation method (Chadha & Gupta, 1981) one after the other, and finally derive the 
mode impedance matrix between the two exciting waveguides. Moreover, by terminating 
the higher-order TEp0 modes of the two rectangular waveguides with their characteristic 
impedances, we can obtain the two-port impedance matrix, and hence the scattering matrix 
for the TE10 mode. However, in the strict sense, the resultant matrix is not that of the SIW, 
because it contains some vagueness of the excitation region. 
For that reason, the TRL calibration technique (Pozar, 1998) used in the measurement with a 
vector network analyzer is applied, though the “Reflect connection” is unnecessary in this 
case. Now, if it is assumed that the two-port scattering matrices for the “Thru” and “Line” 
connections shown in Figs.6 (a) and 6 (b) are given as 
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respectively, then the propagation term of the SIW straight-line with length l can be derived 
as follows: 
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Thus, we can derive the propagation constant  of the SIW, excluding the error of the 
exciting parts, under the condition that the SIW sustains only its dominant mode (TE10-like 
mode). 
Figure 7 shows the equivalent SIW width af and the attenuation coefficient as a function of 
the post spacing s to obtain the equal phase constant ( = 1.206 k0, 1011 rad/m at 40 GHz) of 
the rectangular waveguide of width ae=4.43 mm (Hirokawa, 1998) (r = 0.30 mm, d = 1.52 mm, 
r = 2.17, Ws = af + 2r + 4.00 mm, t0 = r + 0.01 mm, Wp = ae). The results obtained by the 
present method are compared with those in Ref. (Hirokawa & Ando, 1998). It is noted that 
when s increases, af of the present method decreases rapidly. In order to verify the 
calculation results, the field distribution simulated using the HFSS is used. af can be 
estimated by measuring the guide wavelength. The markers in Fig.7 are those of the HFSS. 
The results of the present method agree well with those obtained with the HFSS. In Fig.7, 
the attenuation coefficient is also indicated. It is found that as the post spacing s becomes 
larger, the attenuation increases sharper than that in Ref. (Hirokawa & Ando, 1998). For a 
narrow post spacing up to about 1.8 mm, the results show fair agreement. 
Figures 8(a) and 8(b) show the computed frequency dependences of the phase and the 
attenuation constants for s = 1.00 mm, 1.20 mm, and 1.40 mm. The phase constants 
(dispersion characteristics) agree well with those of the TE10 mode of the conventional 
rectangular waveguide (equivalent width ae is 4.43 mm, which is calculated from the cutoff 
frequency of the SIW). The attenuation constants are less than 0.001 Np/m, 0.01 Np/m and 
0.07 Np/m for s = 1.00 mm, 1.20 mm, and 1.40 mm, respectively, at operation bands over 30 
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Fig. 7. Equivalent SIW width af and attenuation coefficient as a function of post spacing s.   
(r = 2.17, d = 1.52 mm, r = 0.30 mm) 

 

GHz. It is recognized that reasonable low-loss properties are obtained for the narrow post 
spacing. 
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Fig. 9. Dispersion characteristics with various gap t0 in the error boxes. (a) Phase constant. 
(b) Attenuation constant. (r = 2.17, d = 1.52 mm, r = 0.30 mm) 

 
In order to verify that the characteristics of the exciting ports are properly eliminated, the 
influence of gap t0 in the error boxes is examined. Figures 9(a) and 9(b) display the 
dispersion characteristics for af=4.77 mm and s=1.40 mm with gap t0 varied from r+0.01 mm 
to r+1.50 mm. All the phase constants in Fig.9(a) are consistent with each other. The 
attenuation constants in Fig.9(b) are in good agreement for t0   r+1.00 mm. It is noted that 
the TRL calibration technique works well, though gap t0 should be small to obtain accurate 
results. Particularly in the case of t0 = r + 1.50 mm, the attenuation constant varies widely, 
because the attenuation at the gap is larger than that of the SIW line. When gap t0 becomes 
large, excitation of the SIW results in failure. 
Figures 10(a) and 10(b) also show the computed frequency dependences of the phase and 
attenuation constants of the SIW TE10-like mode. In this calculation, the dimensions of the 
guide are selected to be r = 2.33, d = 0.508 mm, r = 0.40 mm, s = 2.00 mm, af = 7.20 mm, Ws = 
af + 2r + 4.00 mm, t0 = r + 0.01 mm, and Wp = 6.86 mm after Ref. (Xu & Wu, 2005). The cutoff 
frequency is estimated to be 14.3 GHz from Fig.10(a). At lower frequencies, the attenuation 
constant increases exponentially owing to radiation loss. The results of the present method 
are compared with those in Ref. (Xu & Wu, 2005) derived from the multimode calibration 
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respectively, then the propagation term of the SIW straight-line with length l can be derived 
as follows: 
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Thus, we can derive the propagation constant  of the SIW, excluding the error of the 
exciting parts, under the condition that the SIW sustains only its dominant mode (TE10-like 
mode). 
Figure 7 shows the equivalent SIW width af and the attenuation coefficient as a function of 
the post spacing s to obtain the equal phase constant ( = 1.206 k0, 1011 rad/m at 40 GHz) of 
the rectangular waveguide of width ae=4.43 mm (Hirokawa, 1998) (r = 0.30 mm, d = 1.52 mm, 
r = 2.17, Ws = af + 2r + 4.00 mm, t0 = r + 0.01 mm, Wp = ae). The results obtained by the 
present method are compared with those in Ref. (Hirokawa & Ando, 1998). It is noted that 
when s increases, af of the present method decreases rapidly. In order to verify the 
calculation results, the field distribution simulated using the HFSS is used. af can be 
estimated by measuring the guide wavelength. The markers in Fig.7 are those of the HFSS. 
The results of the present method agree well with those obtained with the HFSS. In Fig.7, 
the attenuation coefficient is also indicated. It is found that as the post spacing s becomes 
larger, the attenuation increases sharper than that in Ref. (Hirokawa & Ando, 1998). For a 
narrow post spacing up to about 1.8 mm, the results show fair agreement. 
Figures 8(a) and 8(b) show the computed frequency dependences of the phase and the 
attenuation constants for s = 1.00 mm, 1.20 mm, and 1.40 mm. The phase constants 
(dispersion characteristics) agree well with those of the TE10 mode of the conventional 
rectangular waveguide (equivalent width ae is 4.43 mm, which is calculated from the cutoff 
frequency of the SIW). The attenuation constants are less than 0.001 Np/m, 0.01 Np/m and 
0.07 Np/m for s = 1.00 mm, 1.20 mm, and 1.40 mm, respectively, at operation bands over 30 
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Fig. 7. Equivalent SIW width af and attenuation coefficient as a function of post spacing s.   
(r = 2.17, d = 1.52 mm, r = 0.30 mm) 

 

GHz. It is recognized that reasonable low-loss properties are obtained for the narrow post 
spacing. 

20 25 30 35 40 45
0

500

1000

1500
 a

f
=4.90mm, s=1.00mm

 a
f
=4.84mm, s=1.20mm

 a
f
=4.77mm, s=1.40mm

 Equivalent waveguide

P
ha

se
 C

on
st

an
t [

ra
d/

m
]

Frequency [GHz]        
20 25 30 35 40 45

0.00

0.05

0.10

0.15
 a

f
=4.90mm, s=1.00mm

 a
f
=4.84mm, s=1.20mm

 a
f
=4.77mm, s=1.40mm

A
tte

nu
at

io
n 

C
on

st
an

t [
N

p/
m

] 

Frequency [GHz]  
                                         (a)                                                                                 (b)  
Fig. 8. Dispersion characteristics of the SIW TE10-like mode. (a) Phase constant. (b) 
Attenuation constant. (r = 2.17, d = 1.52 mm, r = 0.30 mm) 

20 25 30 35 40 45
0

500

1000

1500

a
f
=4.77mm

 s=1.40mm

 t
0
=r+0.01mm

 t
0
=r+0.05mm

 t
0
=r+0.10mm

 t
0
=r+0.50mm

 t
0
=r+1.00mm

 t
0
=r+1.50mm

P
ha

se
 C

on
st

an
t [

ra
d/

m
]

Frequency [GHz]
20 25 30 35 40 45

0.00

0.05

0.10

0.15

0.20

a
f
=4.77mm

 s=1.40mm

 t
0
=r+0.01mm

 t
0
=r+0.05mm

 t
0
=r+0.10mm

 t
0
=r+0.50mm

 t
0
=r+1.00mm

 t
0
=r+1.50mm

A
tte

nu
at

io
n 

C
on

st
an

t [
N

p/
m

] 

Frequency [GHz]  
                                         (a)                                                                            (b)  
Fig. 9. Dispersion characteristics with various gap t0 in the error boxes. (a) Phase constant. 
(b) Attenuation constant. (r = 2.17, d = 1.52 mm, r = 0.30 mm) 

 
In order to verify that the characteristics of the exciting ports are properly eliminated, the 
influence of gap t0 in the error boxes is examined. Figures 9(a) and 9(b) display the 
dispersion characteristics for af=4.77 mm and s=1.40 mm with gap t0 varied from r+0.01 mm 
to r+1.50 mm. All the phase constants in Fig.9(a) are consistent with each other. The 
attenuation constants in Fig.9(b) are in good agreement for t0   r+1.00 mm. It is noted that 
the TRL calibration technique works well, though gap t0 should be small to obtain accurate 
results. Particularly in the case of t0 = r + 1.50 mm, the attenuation constant varies widely, 
because the attenuation at the gap is larger than that of the SIW line. When gap t0 becomes 
large, excitation of the SIW results in failure. 
Figures 10(a) and 10(b) also show the computed frequency dependences of the phase and 
attenuation constants of the SIW TE10-like mode. In this calculation, the dimensions of the 
guide are selected to be r = 2.33, d = 0.508 mm, r = 0.40 mm, s = 2.00 mm, af = 7.20 mm, Ws = 
af + 2r + 4.00 mm, t0 = r + 0.01 mm, and Wp = 6.86 mm after Ref. (Xu & Wu, 2005). The cutoff 
frequency is estimated to be 14.3 GHz from Fig.10(a). At lower frequencies, the attenuation 
constant increases exponentially owing to radiation loss. The results of the present method 
are compared with those in Ref. (Xu & Wu, 2005) derived from the multimode calibration 



Passive	Microwave	Components	and	Antennas220

 

method. The two results are in good agreement. Thus the validity of the numerical results is 
confirmed. 
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Fig. 10. Dispersion characteristics of SIW TE10-like mode. (a) Phase constant. (b) Attenuation 
constant. (r = 2.33, d = 0.508 mm, r = 0.40 mm) 
 
In the calculation, the width of the fictitious TEM lines at the circumference of the 
rectangular planar circuit was chosen to be 0.1 mm (R-port), and 10 fictitious TEM lines on 
the peripheries of each metallic post were considered. Moreover, we employed 16 modes 
(TEq0; q=0,1,2,...,15, TE00 mode: TEM mode) of the waveguide with magnetic sidewalls of 
width Ws, which were shown by ports D1 and D2 in Fig.5(b), as fictitious connecting ports 
for uniting each periodic segment. In each exciting waveguide, 8 modes (TEp0; p=1,2,...,8) 
were considered. 

 
4. Design of SIW components 
 

4.1 SIW corners 

The present method is applied to the design of SIW corners to demonstrate the usefulness 
and flexibility of the method. Figure 11(a) shows a right-angled circular corner constructed 
from the post-wall waveguide, where the metallic posts are arranged in a circular form at 
intervals of . Because there is no restriction in arranging the posts, any circuit 
configuration can be analyzed directly by the planar circuit approach. The dimensions of the 
guide are chosen to be r = 2.17, d = 1.52 mm, and r = 0.30 mm. Spacing s = 1.00 mm, width af 
= 4.90 mm, and angle  = 11.25° (af  = 0.96 mm) are used to ensure low loss. Figure 11(b) 
indicates the frequency characteristics of the S-parameters. It is found that small insertion 
losses of less than 0.01 dB as well as the relatively low reflection characteristic of less than -
25dB are achieved at the operation band. The calculated results agree well with the results 
obtained with the HFSS. 
Figure 12(a) shows the structure of a right-angled corner with one air post. The corner 
consists of the metallic posts arranged in a right-angle form. A portion of the dielectric 
material is replaced with an air region of radius R. If the dimensions and the position of the 
air region are optimized, a low reflection is expected. The analysis is performed by short-
circuiting fictitious ports for the arrayed posts, and by the desegmentation-segmentation 
process (Kishihara et al., 2006; Kishihara et al., 2004) for the air post region. Namely, the 

 

analytical procedure consists of the following three steps: 1) the derivation of the mode 
impedance matrix of the dielectric post (the same region as the air post), 2) the extraction of 
the dielectric post by desegmentation, and 3) the substitution of the air post by segmentation. 
Figure 14 shows the frequency characteristics of the S-parameters obtained by optimizing 
the radius R and the position cl of the air post. Low reflections of less than -30 dB are 
achieved around cl=4.12 mm and R=1.16 mm, though the bandwidth is relatively narrow. It 
is found that this right-angled circular corner exhibits low-reflection characteristics 
compared with the return losses of about -10dB to 0dB of a right-angled corner without the 
air post. Figure 12(b) also shows the results obtained with the HFSS. The two results are in 
good agreement. The validity of the design results is confirmed. 

 
4.2 SIW cruciform quadrature hybrids 
In this section, we design crossed-SIW quadrature hybrids shown in Fig.13. The design 
frequencies are chosen in quasi-millimeter-wave regions. The dimensions of the SIW are 
chosen as r = 2.17, d=0.508 mm, r = 0.40 mm, s = 1.80 mm, and af = 6.72 mm, because of the 
good propagation properties. The frequency dependences of propagation constant of the 
SIW TE10-like mode are displayed in Fig.14. The attenuation constants are less than 0.03 
Np/m in the operation band of the SIW, and reasonable low loss properties are obtained. In 
addition, phase constants (dispersion properties) well agree with those of the TE10 mode for 
the conventional rectangular waveguide whose width (ae=6.32 mm) is calculated from the 
same cutoff frequency as the SIW. In the design, we considered the square planar circuit of 
WW with open boundary, which can divide into four one-port with regard to the two 
symmetry planes (Toda et al., 2006). The even-odd mode analysis is applied for the analysis 
of the SIW cruciform hybrid. Namely, the reflection coefficients of the four one-port are 
derived based on the planar circuit approach, and then the scattering parameters of the 
entire hybrid circuit are computed. The optimization of the circuit dimensions such as the 
radii and positions of the metallic posts in the cross junction and at the input/output ports 

were performed using Powell’s method (Powell, 1964) as a mathematical technique. 
Figure 15 exhibits the scattering parameters of the hybrid designed at the center frequency 
of 24 GHz. The dots in the figure represent the simulation results using HFSS. Both the 
results exhibit good agreement with each other. It is shown that the H-plane planar circuit 
approach is a useful design tool for the SIW circuit components. The return loss and 
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Fig. 13. Structure of SIW cruciform hybrid. (a) Sketch. (b) Plane figure 
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method. The two results are in good agreement. Thus the validity of the numerical results is 
confirmed. 
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Fig. 10. Dispersion characteristics of SIW TE10-like mode. (a) Phase constant. (b) Attenuation 
constant. (r = 2.33, d = 0.508 mm, r = 0.40 mm) 
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width Ws, which were shown by ports D1 and D2 in Fig.5(b), as fictitious connecting ports 
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intervals of . Because there is no restriction in arranging the posts, any circuit 
configuration can be analyzed directly by the planar circuit approach. The dimensions of the 
guide are chosen to be r = 2.17, d = 1.52 mm, and r = 0.30 mm. Spacing s = 1.00 mm, width af 
= 4.90 mm, and angle  = 11.25° (af  = 0.96 mm) are used to ensure low loss. Figure 11(b) 
indicates the frequency characteristics of the S-parameters. It is found that small insertion 
losses of less than 0.01 dB as well as the relatively low reflection characteristic of less than -
25dB are achieved at the operation band. The calculated results agree well with the results 
obtained with the HFSS. 
Figure 12(a) shows the structure of a right-angled corner with one air post. The corner 
consists of the metallic posts arranged in a right-angle form. A portion of the dielectric 
material is replaced with an air region of radius R. If the dimensions and the position of the 
air region are optimized, a low reflection is expected. The analysis is performed by short-
circuiting fictitious ports for the arrayed posts, and by the desegmentation-segmentation 
process (Kishihara et al., 2006; Kishihara et al., 2004) for the air post region. Namely, the 

 

analytical procedure consists of the following three steps: 1) the derivation of the mode 
impedance matrix of the dielectric post (the same region as the air post), 2) the extraction of 
the dielectric post by desegmentation, and 3) the substitution of the air post by segmentation. 
Figure 14 shows the frequency characteristics of the S-parameters obtained by optimizing 
the radius R and the position cl of the air post. Low reflections of less than -30 dB are 
achieved around cl=4.12 mm and R=1.16 mm, though the bandwidth is relatively narrow. It 
is found that this right-angled circular corner exhibits low-reflection characteristics 
compared with the return losses of about -10dB to 0dB of a right-angled corner without the 
air post. Figure 12(b) also shows the results obtained with the HFSS. The two results are in 
good agreement. The validity of the design results is confirmed. 

 
4.2 SIW cruciform quadrature hybrids 
In this section, we design crossed-SIW quadrature hybrids shown in Fig.13. The design 
frequencies are chosen in quasi-millimeter-wave regions. The dimensions of the SIW are 
chosen as r = 2.17, d=0.508 mm, r = 0.40 mm, s = 1.80 mm, and af = 6.72 mm, because of the 
good propagation properties. The frequency dependences of propagation constant of the 
SIW TE10-like mode are displayed in Fig.14. The attenuation constants are less than 0.03 
Np/m in the operation band of the SIW, and reasonable low loss properties are obtained. In 
addition, phase constants (dispersion properties) well agree with those of the TE10 mode for 
the conventional rectangular waveguide whose width (ae=6.32 mm) is calculated from the 
same cutoff frequency as the SIW. In the design, we considered the square planar circuit of 
WW with open boundary, which can divide into four one-port with regard to the two 
symmetry planes (Toda et al., 2006). The even-odd mode analysis is applied for the analysis 
of the SIW cruciform hybrid. Namely, the reflection coefficients of the four one-port are 
derived based on the planar circuit approach, and then the scattering parameters of the 
entire hybrid circuit are computed. The optimization of the circuit dimensions such as the 
radii and positions of the metallic posts in the cross junction and at the input/output ports 

were performed using Powell’s method (Powell, 1964) as a mathematical technique. 
Figure 15 exhibits the scattering parameters of the hybrid designed at the center frequency 
of 24 GHz. The dots in the figure represent the simulation results using HFSS. Both the 
results exhibit good agreement with each other. It is shown that the H-plane planar circuit 
approach is a useful design tool for the SIW circuit components. The return loss and 
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Fig. 13. Structure of SIW cruciform hybrid. (a) Sketch. (b) Plane figure 
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isolation are better than 20 dB in the bandwidth from 23.4 to 24.9 GHz, and the imbalance of 
the power split stays within  0.2dB over the same bandwidth. Furthermore, we attempted 
to design at various center frequencies. Figure 16 (a) and (b) demonstrate the design results 
at 21 and 27 GHz, respectively. Although the bandwidth of the hybrid for the center 
frequency of 21 GHz is narrow, the hybrid designed at 27 GHz shows a relatively wide 
bandwidth of 26 to 32 GHz. The latter result suggests a possibility of realizing wider 
bandwidth by the use of widened cross-junction similarly to a crossed H-plane waveguide 

hybrid (Toda et al., 2006). 

 
5. Conclusion 
 

A method of analyzing the SIW structure was demonstrated, in which the analytical 
technique of the H-plane waveguide discontinuities was applied on the basis of the planar 
circuit approach. The leakage field was considered by connecting fictitious TEM lines and 
terminating them with their characteristic impedances. The propagation constants of the 
SIW were calculated with the use of the TRL calibration technique. Moreover, the present 
method was applied to the design of the SIW corners. The validity of the numerical results 
was verified through comparison with the results in the references and those obtained with 
the HFSS. In addition, a novel cruciform SIW hybrid has been proposed, and some hybrids 
with good hybrid properties have been designed using the H-plane planar circuit approach. 
The design results exhibit good agreement with the simulation results (HFSS), and the 
validity of the design concept is confirmed. It has been shown that the H-plane planar circuit 
approach is one of effective analysis techniques for the SIW circuit components, because the 
metallic posts can be arranged in arbitrary positions. 
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1. Introduction 
 

Microstrip lines (MSL) are widely used in microwave systems because of its low cost, light 
weight, and easy integration with other components. Substrate integrated waveguides (SIW), 
which inherit the advantages from traditional rectangular waveguides without their bulky 
configuration, aroused recently in low loss and high power planar applications. This chapter 
proposed the design and modeling of transitions between these two common structures. 
Research motives will be described firstly in the next subsection, followed by a literature 
survey on the proposed MSL to SIW transition structures. Outlines of the following sections 
in this chapter will also be given in the end of this section. 

 
1.1 Research Motives 
Planar transmission lines, such as MSL and coplanar waveguides (CPW), are favorable in 
the integration of microwave systems. For low loss and high power applications, 
rectangular waveguides are often used for signal transmission between system modules. A 
vast of transition structures between planar circuits and rectangular waveguides have also 
been proposed, e.g., [Das et al., 1986; Kaneda et al., 1999; Lin & Wu, 2001]. However, 
systems with rectangular waveguides are often large and heavy. Transitions between 
rectangular waveguides and planar circuits cannot be held without extra supporting 
structures. Recently, SIWs were proposed as a replacement for miniaturized and light 
weighted applications. Nonetheless, such transitions can shed some light on the design of 
MSL to SIW transitions. 
SIW, as its name, can be easily integrated into the substrates of planar circuits, such as 
printed circuit boards (PCB) and low temperature co-fired ceramics (LTCC), with their 
standard fabrication processes. Compared with conventional rectangular waveguides, SIW 
has the advantage of low-cost, compact, and easy-integration with planar circuits. Although 
their quality factors cannot compete with those of traditional rectangular waveguides, they 
are more suitable in system integration. 
For system using both MSL and SIW, LTCC is often preferred for its multilayer nature and 
three-dimensional interconnection capability. System on package (SOP) modules can be 
fabricated on LTCC with various passive elements embedded. Therefore the required circuit 
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area can be reduced significantly. This chapter aims at design and modeling of the 
transitions structures between MSL and SIW on LTCC substrate for better transition 
performance and wider bandwidth. 

 
Fig. 1. MSL to SIW transition with tapered microstrip feeding. (a) Transition structure. (b) 
Electric field distribution in SIW cross section. (c) Electric field distribution in MSL cross 
section [Deslandes & Wu, 2001a]. 

 
1.2 Literature Survey 
Transition structures between planar circuits and traditional rectangular waveguides have 
been widely studied and many high performance transitions are proposed. However, 
complicated structures are required to hold or support the transitions and precise 
fabrication processes are also needed at millimeter wave frequencies. Many of these 
structures can be adopted for the transitions between planar circuits and SIW directly or 
with little modification, but with lower cost and more reliable fabrication process. On the 
other hand, since planar circuits and SIW can be integrated on the same substrate, much 
simpler structures are able to accomplish the transition and many of them have been 
proposed and demonstrated with good performance. 
Tapered microstrip feeding [Deslandes & Wu, 2001a] is commonly used in the transition 
between MSL and SIW. As shown in Fig. 1a, a MSL is connected directly to the top wall of 
SIW through a tapered microstrip section. The vertical components of electric field in both 
MSL and SIW regions are well matched, as shown in Fig. 1b and Fig. 1c, therefore the 
transition can be easily achieved. However, in order to reduce the discontinuity effect, a 
long enough tapered microstrip section is needed, up to a half wavelength in some cases. 
Another disadvantage of this transition structure requires the MSL on the same layer where 
the metal wall of SIW is located. Also, the MSL is directly connected to SIW. DC current 
from MSL will be shorted into ground through SIW. Transition by direct connection can also 
be found between CPW and SIW [Deslandes & Wu, 2001b]. As other direct connected 
transition structures, additional DC blocking circuit is needed because the signal line is 
shorted to the ground. For thick substrates, extra insertion loss may be introduced due to 
slot radiation. 

 

Transition by probe feeding is often used between coaxial lines and traditional rectangular 
waveguides, e.g., [Collins, 1991; Liang et al., 1992; Rollins & Jarem, 1989]. MSL can also 
achieve probe feeding [Shih et al., 1998] by shorting its ground plane to one of the longer 
edge of the waveguide and stretch its signal line into the waveguide. By properly designing 
the stretching length, the feeding position, and the quarter wavelength transformer for 
impedance matching, about 40% fractional bandwidth can be achieved.  
In multilayer substrates, modified probe feeding can be used for the transition between MSL 
and SIW. A V-band MSL to SIW transition in LTCC is proposed [Huang et al., 2003]. MSL is 
shorted to the bottom wall of SIW with a through hole via, which act as an excitation probe. 
Sizes of via pads between different layers are adjusted to achieve better impedance 
matching. Three different designs have also been investigated and their performances are 
compared [Kai et al., 2005]. However, it deserves mentioning that the thickness of SIW is 
much smaller than that of the metallic waveguide. Hence, the impedance matching is in 
general worse and will result in larger reflection. With some special compensation design, 
the transitions with relative bandwidth of about 10% have been reported. 
A systematic design approach to enhance the bandwidth of the simple probe feeding 
structure has also been proposed by our group [Yau et al., 2007], as shown in Fig. 2. The 
feeding position is chosen to be a quarter of guided wavelength in SIW from its shorted end. 
Electromagnetic wave excited by via current propagates in –z direction will be in phase with 
that propagates in +z direction after reflection. Impedance matching can be achieved by 
adjusting the sizes of the via pad at MSL and the anti-pad at the top wall of SIW. Further 
discussions and design examples of this transition structure will be given in this chapter. 
The DC shorting problem can be avoided if the transition is accomplished by coupling. Our 
group has also suggested the MSL to SIW transition by an open stripline stub [Yang et al., 
2005]. MSL is connected to a stripline stub which stretch into the SIW for about a half 
wavelength. Impedance matching is done by adjusting the width of the MSL and stripline 
stub.  
On the other hand, by opening a slot at the current return path of MSL, energy can be 
coupled to traditional rectangular waveguide [Grabherr et al., 1994]. By properly choosing 
the slot length and position, transition bandwidth can be enhanced. Transition by slot 
coupling can also be utilized between MSL and SIW, as shown in Fig. 3. By opening a thin 
slot on the common metal plane of MSL and SIW, energy can be coupled between these two 
structures through the slot. Transition bandwidth and frequency can be controlled by 
properly adjusting the lengths of the slot and the microstrip open stub. Open-type 
transitions often suffer from low bandwidth. In order to improve the transition bandwidth, 
detailed discussions and several design examples will also be presented in this chapter. 
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be found between CPW and SIW [Deslandes & Wu, 2001b]. As other direct connected 
transition structures, additional DC blocking circuit is needed because the signal line is 
shorted to the ground. For thick substrates, extra insertion loss may be introduced due to 
slot radiation. 

 

Transition by probe feeding is often used between coaxial lines and traditional rectangular 
waveguides, e.g., [Collins, 1991; Liang et al., 1992; Rollins & Jarem, 1989]. MSL can also 
achieve probe feeding [Shih et al., 1998] by shorting its ground plane to one of the longer 
edge of the waveguide and stretch its signal line into the waveguide. By properly designing 
the stretching length, the feeding position, and the quarter wavelength transformer for 
impedance matching, about 40% fractional bandwidth can be achieved.  
In multilayer substrates, modified probe feeding can be used for the transition between MSL 
and SIW. A V-band MSL to SIW transition in LTCC is proposed [Huang et al., 2003]. MSL is 
shorted to the bottom wall of SIW with a through hole via, which act as an excitation probe. 
Sizes of via pads between different layers are adjusted to achieve better impedance 
matching. Three different designs have also been investigated and their performances are 
compared [Kai et al., 2005]. However, it deserves mentioning that the thickness of SIW is 
much smaller than that of the metallic waveguide. Hence, the impedance matching is in 
general worse and will result in larger reflection. With some special compensation design, 
the transitions with relative bandwidth of about 10% have been reported. 
A systematic design approach to enhance the bandwidth of the simple probe feeding 
structure has also been proposed by our group [Yau et al., 2007], as shown in Fig. 2. The 
feeding position is chosen to be a quarter of guided wavelength in SIW from its shorted end. 
Electromagnetic wave excited by via current propagates in –z direction will be in phase with 
that propagates in +z direction after reflection. Impedance matching can be achieved by 
adjusting the sizes of the via pad at MSL and the anti-pad at the top wall of SIW. Further 
discussions and design examples of this transition structure will be given in this chapter. 
The DC shorting problem can be avoided if the transition is accomplished by coupling. Our 
group has also suggested the MSL to SIW transition by an open stripline stub [Yang et al., 
2005]. MSL is connected to a stripline stub which stretch into the SIW for about a half 
wavelength. Impedance matching is done by adjusting the width of the MSL and stripline 
stub.  
On the other hand, by opening a slot at the current return path of MSL, energy can be 
coupled to traditional rectangular waveguide [Grabherr et al., 1994]. By properly choosing 
the slot length and position, transition bandwidth can be enhanced. Transition by slot 
coupling can also be utilized between MSL and SIW, as shown in Fig. 3. By opening a thin 
slot on the common metal plane of MSL and SIW, energy can be coupled between these two 
structures through the slot. Transition bandwidth and frequency can be controlled by 
properly adjusting the lengths of the slot and the microstrip open stub. Open-type 
transitions often suffer from low bandwidth. In order to improve the transition bandwidth, 
detailed discussions and several design examples will also be presented in this chapter. 
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Fig. 2. MSL to SIW transition by probe feeding with via pad and anti-pad compensation. (a) 
3D view. (b) Top view. (c) Side view. 

 
Fig. 3. MSL to SIW transition by slot coupling. (a) 3D view. (b) Top view. (c) Side view. 

 
1.3 Section Outlines 
Remaining sections of this chapter are arranged as follows. Theory of MSL to SIW 
transitions will be derived in section 2, including the modal analysis of SIW, calculation of 
input resistances for current excitation and slot coupling, and model construction with 

 

calculated input resistances. Two different kinds of transition structures, probe feeding and 
slot coupling, will then be presented in the following two sections. Each of these two 
sections begins with input resistance derivation and equivalent circuit construction by the 
theory proposed in section 2. Several design examples for both structures will also be 
presented with comparison between simulations and measurements. A brief summary and 
discussion will be given in the end of this chapter. 
 
2. Theory of MSL to SIW Transitions 
 

Rectangular waveguides are widely used in microwave systems for its high power handling 
ability, low radiation loss as well as low electromagnetic interference (EMI) to other circuit 
components. However they are also known with disadvantages such as bulky volume, 
heavy weight, high cost, and difficult integration with planar circuits. In addition, high 
precision process is required at millimeter wave frequencies. As a result, mass production is 
difficult for systems with rectangular waveguides. 
Laminated waveguides were first proposed in 1998 [Uchimura et al., 1998], where 
waveguides can be embedded in multilayer printed circuit boards with their side walls 
replaced by via fences. In 2001, concept of substrate integrated waveguides (SIW) was also 
proposed [Deslandes and Wu, 2001a; Deslandes and Wu, 2001b]. Waveguides embedded in 
single layer substrates are demonstrated with transitions to CPWs and MSLs. These kinds of 
waveguides can be easily integrated with other circuit components by a standard planar 
circuit fabrication process. Volume and weight are also significantly reduced. 
The structure and characteristic of SIWs will be introduced firstly in this section, followed 
by two kinds of excitation structures and calculation of their input resistances. Construction 
of the equivalent circuit models where the input resistances are associated will also be 
presented. 
 
2.1 Modal Analysis of SIW 
Figure 4a shows the structure of an SIW, which is composed of the top and bottom metal 
planes of a substrate and two parallel via fences in the substrate. In order to replace the 
vertical metal walls, via pitch must be small enough. The vias must be shorted to both metal 
planes to provide vertical current paths, as shown in Fig. 4b, otherwise the propagation 
characteristics of SIW will be significantly degraded.  

 
Fig. 4. (a) Structure of SIW and (b) surface current for TE10 mode. 
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Fig. 2. MSL to SIW transition by probe feeding with via pad and anti-pad compensation. (a) 
3D view. (b) Top view. (c) Side view. 

 
Fig. 3. MSL to SIW transition by slot coupling. (a) 3D view. (b) Top view. (c) Side view. 
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transitions will be derived in section 2, including the modal analysis of SIW, calculation of 
input resistances for current excitation and slot coupling, and model construction with 

 

calculated input resistances. Two different kinds of transition structures, probe feeding and 
slot coupling, will then be presented in the following two sections. Each of these two 
sections begins with input resistance derivation and equivalent circuit construction by the 
theory proposed in section 2. Several design examples for both structures will also be 
presented with comparison between simulations and measurements. A brief summary and 
discussion will be given in the end of this chapter. 
 
2. Theory of MSL to SIW Transitions 
 

Rectangular waveguides are widely used in microwave systems for its high power handling 
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heavy weight, high cost, and difficult integration with planar circuits. In addition, high 
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single layer substrates are demonstrated with transitions to CPWs and MSLs. These kinds of 
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2.1 Modal Analysis of SIW 
Figure 4a shows the structure of an SIW, which is composed of the top and bottom metal 
planes of a substrate and two parallel via fences in the substrate. In order to replace the 
vertical metal walls, via pitch must be small enough. The vias must be shorted to both metal 
planes to provide vertical current paths, as shown in Fig. 4b, otherwise the propagation 
characteristics of SIW will be significantly degraded.  

 
Fig. 4. (a) Structure of SIW and (b) surface current for TE10 mode. 
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Since the vertical metal walls are replaced by via fences for the SIW structures, propagating 
modes of SIW are very close to, but not exactly the same as, those of the rectangular 
waveguides. This can be verified by checking the modal surface current patterns. Only 
patterns with solely vertical current distributed on the side wall survive in SIWs. For 
example, Fig. 4b shows the TE10 mode surface current distribution of a rectangular 
waveguide. The current path will not be cut by the via fences, therefore TE10 mode can be 
supported in an SIW. This holds for all TEm0 modes since their current distributions on the 
side walls are similar. On the other hand, horizontal components of the surface current exist 
on the sidewalls for all TM modes and TEmn modes with nonzero n’s. These current paths 
will be cut in SIW structures, which results in radiation. Therefore we can conclude that 
only TEm0 modes exist in SIW structures. Properties of TEm0 modes are listed in Table 1 for 
later usage. 
 

Property TEm0 modes 
Generating function axmm  cos0   

Cutoff wavenumber amk mc 0,
 

Propagation constant  kkk mcm ,22
0,

2
0

 

Magnetic field 0 02
0 0 , 0 , 0 0,m mz z

t m t m z m c m mH e H k e     


 

Electric field 0 0ˆ ,t h z t hE Z a H Z j jk       
 

 

Power flow 42
0,0 mcm kkab   

Table 1. Properties of TEm0 modes. 

 
2.2 Input Resistance of Current Excitation 
For a waveguide excited by a current source along path C with current density J in the 
direction τ, as shown in Fig. 5, the magnitude and patterns of different modes excited can be 
calculated as follows. 

 
Fig. 5. Current excitation in a waveguide structure. 
 
By the orthogonal property of waveguide modes, field propagating in the waveguide can be 
denoted by the linear combination of modal fields 

nE


 and 
nH


, which denote the electric 
and magnetic field of the n-th propagating mode along ±z direction, respectively. The field 
propagating along +z direction excited by the current can be decomposed as 
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Therefore the coefficients of the excited modes by the current source can be determined if 
only the current can be well approximated. For an SIW with equivalent width a and 
substrate thickness b which operates at frequencies that only TE10 mode propagates, the 
power transmitted into the SIW can be calculated by 
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Here, the asterisk denotes complex conjugate operator. The resistive part of the equivalent 
input impedance, or simply the input resistance, seen from the impressed current excitation 
I can thus be given by  

 
2

2
I
PRin  . (6) 

It is worthy noting that the input resistance from (6) depends on the current distribution 
along the path C, but independent of the current magnitude. 

 
Fig. 6. (a) Waveguide excitation by slot coupling. (b) Notations on the slot aperture Sa. 
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Fig. 6. (a) Waveguide excitation by slot coupling. (b) Notations on the slot aperture Sa. 
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2.3 Input Conductance of Slot Coupling 
Waveguides can also be excited by slot coupling. Consider a small slot aperture Sa opened at 
the common metal wall of two waveguide structures, as shown in Fig. 6a. Incident fields iE


 

and iH


 from the upper waveguide structure can be coupled into the lower waveguide 
structure through the aperture, inducing the scattered fields sE


 and sH


. By equivalence 

principle [Harrington, 2001], the aperture can be replaced by a perfect electric conductor 
(PEC) with properly placed magnetic current and magnetic charge.  
Applying the boundary condition on the PEC, the magnetic current mJ


 and magnetic charge 

m  can be determined as 

 smsm HnEnJ


 ˆ,ˆ  . (7) 
However in SIWs, magnetic field usually contains only tangential component at boundary, 
i.e., no magnetic charge in this case. The scattered field excitation in the lower waveguide 
structure is contributed solely by the magnetic current. Therefore once the electric field 
distribution at the slot aperture is known, the equivalent magnetic current can be calculated 
by (7). With a similar process in 2.2, the coefficients of excited modes can be found as 

 2
a

n m n
S

a J H dS 
  . (8) 

The input power P can then be found by (5). If a voltage V is defined by integrating the 
electric field at input port, the input conductance can be determined by 

 
2

2
V
PGin  . (9) 

Again, the value is dependent on the voltage distribution along the slot, rather than the 
magnitude of the voltage. 

 
Fig. 7. (a) One port equivalent model with input resistance Rin. (b) Full model for the two 
port transition network. 

 
2.4 Model Construction with Input Resistances 
With the input resistance R is calculated in 2.2, only the reflection coefficient Sll at input port 
can be determined, as shown in Fig. 7a, where the series reactance jx is used to describe the 

 

reactive effect which vanishes at resonance. To construct a model that can be used to 
determine the full scattering matrix of the two port transition network, the input resistance 
is replaced by a transformer with a frequency dependent ratio n determined by the 
calculated input resistance and the characteristic impedance of SIW. For the input 
conductance Gin calculated in 2.3, the same concept can be applied. 
It should also be noted that the input port of the input resistance is defined right at the 
source. In practical cases additional structures are required to support the sources and 
usually the actual input ports are located at these structures. In general these structures are 
electrically small with negligible losses. Together with the series reactance jx, they can be 
modeled by a frequency independent reactive network X. Elements in X are determined 
according to the physical arrangement of the structures. Since X is frequency independent, 
the values of its elements can be obtained by full-wave simulation at a single frequency. 
Figure 7b shows the full model of the two-port transition network. As will be demonstrated 
in the following two sections, with the frequency dependent transformer and the frequency 
independent reactive network, this model is able to explain the response of the transition 
structure over a wide frequency band. 
 
3. MSL to SIW Transition with Shorting Via 
 

This section proposes a transition structure between MSL and SIW by probe feeding with a 
shorting via. The transition structure is shown in Fig. 2. Input resistance will be calculated 
first according to 2.2. Transition model will then be constructed with the method discussed 
in 2.4. A Ka band and an E band transitions will then be demonstrated as examples. 

 
Fig. 8. Simplified problem for probe feeding. (a) Three-dimensional view. (b) Side view. (c) 
Side view of the equivalent problem. 

 
3.1 Input Resistance 
For a z-directed SIW with equivalent width a and substrate thickness b fed by a via probe at 
z = d, x = a/2, if the thickness and the via diameter are small, the current on the via can be 
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3.1 Input Resistance 
For a z-directed SIW with equivalent width a and substrate thickness b fed by a via probe at 
z = d, x = a/2, if the thickness and the via diameter are small, the current on the via can be 
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assumed uniformly distributed. Figure 8a shows the three-dimensional view of the 
simplified problem. A rectangular waveguide with one end shorted at z = 0 and the other 
end stretches to infinity. A linear current I0 is used to excite the waveguide at z = d, as 
shown in Fig. 8b, the side view of the problem.  
In order to use the theory developed in 2.2 for the calculation of input resistance Rin, image 
theory is applied to construct an equivalent problem, as shown in Fig. 8c. A rectangular 
waveguide with both ends stretching to infinity is excited by two opposite directed current 
sources with magnitude I0 at z = ±d. Assume the only propagating mode is TE10, taking a 
generating function from table 1 as 
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which has been normalized to 
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for the convenience of power calculation. Also from table 1 the tangential field pattern of 
TE10 modes can be obtained as 

 
y

zj
t ae

a
x

abk
jkE ˆsin2

10

10
10,




 
  (12a) 

and 

 
x

zj
t ae

a
x

bk
a

a
H ˆsin2

10
2

10
1010,




  
 . (12b) 

From (4b), coefficient of the electric field propagating in +z direction which is excited by the 
current I0 at z = d can be calculated as 
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In the same manner, the contribution of the image current can also be determined. 
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Since the power flows through waveguide cross section is the combination of the power 
excited by the current and its image, it can be easily calculate by (5), i.e., 
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Therefore by (6) the input resistance can be obtained. 
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It is worthy mentioning that Rin reaches a maximum at β10d = π/2, i.e., the feeding is a 
quarter guided wavelength from the short end of the waveguide, where the –z traveling 

 

wave will be in phase with the +z traveling wave after reflection. As a result, maximum 
power can be transmitted into the waveguide. 

 
3.2 Transition Model 
After calculating the input resistance, transition model can be constructed by the procedures 
described in 2.4. As shown in Fig. 9a, Rin is the input resistance looking in to the shorting via 
in SIW while the actual input port is located at the MSL connecting to the via pad. It is 
obvious that the via pad can be viewed as a shunt capacitance C to the ground of the MSL. 
The inductance L in Fig. 9(b) includes the contribution from the input reactance jx,  the 
shorted via inductance, and the inductance due to the extra via section from via pad to SIW. 
After replacing Rin by a transformer with frequency dependent ratio n, the full transition 
model is constructed as Fig. 9b. 

 
Fig. 9. Model construction according to physical structure and Rin. (a) Physical structure. (b) 
Full transition model. 
 
In order to verify the transition model, a test transition structure was designed and 
simulated with Ansoft HFSS, a widely used commercial full-wave simulator. All transition 
structures were designed on a multilayer LTCC substrate with a relative dielectric constant 
7.8 and a thickness 50.8μm for each layer. The dielectric is assumed to be lossless to simplify 
the investigation.  
For a center frequency 30GHz, the width of SIW is chosen to be 2738μm. MSL is designed 
for 50Ω characteristic impedance with three layer height and 180μm width. First Rin is 
calculated separately by (15) and HFSS for different SIW heights, where in HFSS Rin is 
calculated by (6), current flows through the via is obtained by integrating the magnetic field 
enclosing the via and integrating the Poynting vector on SIW cross section gives power flow. 
Results are listed in Table 2. About 20% relative error is obtained with similar trend. This 
may be partly contributed to the negligence of the coupling due to the opening on the anti 
pad on the upper metallic wall of SIW. It can also be seen that as the height of SIW increases, 
the assumption of uniform current distribution in the via becomes less applicable. 
 

SIW 
Layers 

Formula 
(15) 

HFSS 
Simulation 

Relative 
Error 

2 6.8Ω 8.1Ω 16% 
4 13.6Ω 16.7Ω 18% 
6 20.4Ω 25.2Ω 19% 

Table 2. Input resistance with different SIW thickness by (15) and HFSS simulation. 
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In order to verify the transition model, a test transition structure was designed and 
simulated with Ansoft HFSS, a widely used commercial full-wave simulator. All transition 
structures were designed on a multilayer LTCC substrate with a relative dielectric constant 
7.8 and a thickness 50.8μm for each layer. The dielectric is assumed to be lossless to simplify 
the investigation.  
For a center frequency 30GHz, the width of SIW is chosen to be 2738μm. MSL is designed 
for 50Ω characteristic impedance with three layer height and 180μm width. First Rin is 
calculated separately by (15) and HFSS for different SIW heights, where in HFSS Rin is 
calculated by (6), current flows through the via is obtained by integrating the magnetic field 
enclosing the via and integrating the Poynting vector on SIW cross section gives power flow. 
Results are listed in Table 2. About 20% relative error is obtained with similar trend. This 
may be partly contributed to the negligence of the coupling due to the opening on the anti 
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SIW 
Layers 

Formula 
(15) 

HFSS 
Simulation 

Relative 
Error 

2 6.8Ω 8.1Ω 16% 
4 13.6Ω 16.7Ω 18% 
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Given the input resistance, the passive network can be adjusted for impedance matching. 
The main contribution of the series inductance comes from the via section above SIW, hence 
the adjustable range is limited. On the other hand, the value of the shunt capacitance can be 
easily changed by adjusting the size of the via pad and the antipad. Table 3 shows the 
element values tuned for the Rin of SIW with different layers. Size of the via pad is changed 
with the edge of square antipad fixed at 460μm. Also note that the closer the input resistance 
is to the port characteristic impedance, the wider fine tuned transition bandwidth can be 
obtained. 
 

SIW 
Layers Rin (Ω) L (nH) C (pF) Viapad 

Size (μm) 
Fractional 

Bandwidth 
2 6.8 0.110 0.225 640 33% 
4 13.6 0.118 0.17 480 43% 
6 20.4 0.129 0.124 400 46% 

Table 3. Element values tuned for the Rin of SIW with different layers and viapad sizes. 
 

 
Fig. 10. Responses obtained by the shorting via transition model and HFSS. (a) Smith chart. 
(b) Rectangular plot. 
 
For the test transition structure with 2-layer SIW described above, figure 10 shows the 
responses of the full transition model shown in Fig. 9b and the full-wave simulation results 
by HFSS. As can be seen, highly coherent results were obtained by the model and HFSS 
except a 10° phase difference in S21. This may be attributed in the phase change during 
power transition along the via structure, which is not included in the transition model. 
However the model still shows its usefulness for designing MSL to SIW transitions of this 
type. Two practical examples were designed and fabricated on LTCC substrates, as given in 
the following subsections. 

 

 

3.3 Ka-Band Transition Design 
A transition is designed for a Ka-band transceiver module with a 31GHz center frequency, a 
28-34GHz transition band for 10dB return loss and 3dB insertion loss in the back-to-back 
transition structure. The structure is designed on an LTCC substrate with a 7.8 relative 
dielectric constant and a 0.005 loss tangent at 30GHz. Thickness for each dielectric layer is 
50.8μm with a 13μm silver metallization between each layer. The feeding MSL is designed 
for 50Ω characteristic impedance with 180μm width and 152.4μm height. The SIW is chosen 
to be 2738μm wide with 101.6μm thickness. Probe feeding is achieved by a shorting via 
located at 920μm from the shorted end of the SIW. The widths for the square viapad and 
antipad are 640μm and 460μm, respectively.  
Figure 11a shows the simulation result by HFSS for a single transition. 9GHz bandwidth is 
achieved for 15dB return loss. In-band insertion loss is within 0.6dB. A back-to-back 
transition structure is fabricated for measurement. Figure 11b shows the comparison 
between simulation and measurement. As shown in the figure, 9GHz bandwidth is achieved 
for 10dB return loss. Insertion loss is better than 1.2dB in the entire transition band. 
 

 
Fig. 11. Results of Ka-band MSL to SIW transition design with probe feeding by shorting via. 
(a) Simulation result for a single transition. (b) Comparison between simulation and 
measurement for the back-to-back transition. 

 
3.4 E-Band Transition Design 
Another transition is designed for an E-band transceiver module. A 73GHz center frequency 
is desired with a 71-76GHz transition band for 15dB return loss. The structure is designed 
on an LTCC substrate with a 7.8 relative dielectric constant and a 0.0078 loss tangent at 
60GHz. Thickness for each dielectric layer is 50.8μm with 13μm silver metallization between 
each layer. The feeding MSL is designed for 50Ω characteristic impedance with 112μm width 
and 101.6μm height. The SIW is chosen to be 1140μm wide with 101.6μm thickness. Probe 
feeding is achieved by a shorting via located at 630μm from the shorted end of the SIW. The 
widths for the square via pad and antipad are 273μm and 373μm, respectively.  
Figure 12a shows the simulation result by HFSS for a single transition. A 17% fractional 
bandwidth is achieved for 15dB return loss. In-band insertion loss is within 0.72dB. A back-
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Given the input resistance, the passive network can be adjusted for impedance matching. 
The main contribution of the series inductance comes from the via section above SIW, hence 
the adjustable range is limited. On the other hand, the value of the shunt capacitance can be 
easily changed by adjusting the size of the via pad and the antipad. Table 3 shows the 
element values tuned for the Rin of SIW with different layers. Size of the via pad is changed 
with the edge of square antipad fixed at 460μm. Also note that the closer the input resistance 
is to the port characteristic impedance, the wider fine tuned transition bandwidth can be 
obtained. 
 

SIW 
Layers Rin (Ω) L (nH) C (pF) Viapad 

Size (μm) 
Fractional 

Bandwidth 
2 6.8 0.110 0.225 640 33% 
4 13.6 0.118 0.17 480 43% 
6 20.4 0.129 0.124 400 46% 

Table 3. Element values tuned for the Rin of SIW with different layers and viapad sizes. 
 

 
Fig. 10. Responses obtained by the shorting via transition model and HFSS. (a) Smith chart. 
(b) Rectangular plot. 
 
For the test transition structure with 2-layer SIW described above, figure 10 shows the 
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transition structure is fabricated for measurement. Figure 11b shows the comparison 
between simulation and measurement. As shown in the figure, 9GHz bandwidth is achieved 
for 10dB return loss. Insertion loss is better than 1.2dB in the entire transition band. 
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and 101.6μm height. The SIW is chosen to be 1140μm wide with 101.6μm thickness. Probe 
feeding is achieved by a shorting via located at 630μm from the shorted end of the SIW. The 
widths for the square via pad and antipad are 273μm and 373μm, respectively.  
Figure 12a shows the simulation result by HFSS for a single transition. A 17% fractional 
bandwidth is achieved for 15dB return loss. In-band insertion loss is within 0.72dB. A back-
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to-back transition structure is fabricated for measurement. Figure 12b shows the comparison 
between simulation and measurement, where the measured result is obtained only below 
75GHz owing to equipment limitation. As shown in the figure, 13GHz bandwidth is 
achieved for 10dB return loss. Insertion loss is better than 2.56dB in the entire transition 
band. 

 
Fig. 12. Results of E-band MSL to SIW transition design with probe feeding by shorting via. 
(a) Simulation result for a single transition. (b) Comparison between simulation and 
measurement for back-to-back transition. 

 
4. MSL to SIW Transition with Open Slot 
 

The structure of a transition between MSL and SIW by slot coupling is shown in Fig. 3. Input 
conductance will be calculated first in this section followed by the construction of transition 
model. A Ka band and an E band transitions will also be demonstrated as examples. 

 
4.1 Input Conductance 
In contract to the probe feeding, the electric field excited by the slot is in the opposite 
directions for the forward and backward traveling waves. Therefore the slot should be 
opened as close as possible to the shorted end of the SIW to get maximum energy transfer. 
The transition problem can then be simplified as Fig. 13a, which shows a z-directed SIW 
with equivalent width a and substrate thickness b excited by a slot with length 2l at z = d. 
The SIW and the slot are center aligned at x = a/2. If the width t of the slot is small, the 
electric field at the slot can be assumed uniform along that direction.  
In order to use the theory developed in 2.3 for the calculation of input conductance Gin, 
image theory is applied to construct an equivalent problem, as shown in Fig. 8b. A 
rectangular waveguide with both ends stretching to infinity is excited by two slots with the 
same magnetic current Jm at z = ±d. 

 

 
Fig. 13. (a) Top view of simplified slot coupling problem. (b) Top view of equivalent 
problem. 
 
Assume the slot voltage distributes as on a slot antenna, i.e., 

 














 

2
sin0

axlkVV . (16) 

For a thin slot as described above, the electric field can be expressed as 

 
zzs aaxlk

t
Va

t
VE ˆ

2
sinˆ 0















 

 . (17) 

Therefore the magnetic current on the slot can be obtained. 
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Substitute (18) into (8) with the SIW normalized field derived in (12), the coefficient of the 
magnetic field propagating in +z direction which is excited by the current I0 at z = d can be 
calculated as 

   10
10 10 ,10 2

10 10

2 22 cos cos j d
n c

ka V k l kl e
abk



 
   , (19a) 

On the other hand, the contribution of the image magnetic current can also be determined as 
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Power flows through waveguide cross section can then be easily calculate as 
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It should be noted that maximum power occurs at d = 0, i.e., the slot is opened at the shorted 
end of the SIW, which agrees with the discussion in the beginning of this subsection. With 
the calculated power flow and the defined slot voltage, the input conductance can be 
calculated by (9) as 
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In order to use the theory developed in 2.3 for the calculation of input conductance Gin, 
image theory is applied to construct an equivalent problem, as shown in Fig. 8b. A 
rectangular waveguide with both ends stretching to infinity is excited by two slots with the 
same magnetic current Jm at z = ±d. 
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2
sin0

axlkVV . (16) 

For a thin slot as described above, the electric field can be expressed as 

 
zzs aaxlk

t
Va

t
VE ˆ

2
sinˆ 0















 

 . (17) 

Therefore the magnetic current on the slot can be obtained. 
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Substitute (18) into (8) with the SIW normalized field derived in (12), the coefficient of the 
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It should be noted that maximum power occurs at d = 0, i.e., the slot is opened at the shorted 
end of the SIW, which agrees with the discussion in the beginning of this subsection. With 
the calculated power flow and the defined slot voltage, the input conductance can be 
calculated by (9) as 
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Fig. 14. Model construction for MSL to SIW transition by slot coupling. (a) Simplified 
transition structure. (b) Equivalent circuit using transmission line models and Gin. (c) Full 
transition model. 

 
4.2 Transition Model 
Referring to the simplified transition structure shown in Fig. 14a, Gin is the input 
conductance looking into the center of the slot on the SIW. The actual input port, i.e., Port 1, 
is located at the feeding MSL right above the slot. An open ended microstrip stub with 
length l is connected in serial with the feeding MSL. In addition, two short ended slot stubs 
with length d/2 are connected in parallel with Gin.  
Figure 14b shows the equivalent circuit of the transition with transmission line models and 
Gin. Therefore the length for each stub can be easily determined as a quarter guided 
wavelength at center frequency. With these lengths, input impedance at Port 1 is equal to Gin 
at center frequency. This equivalent circuit can be further simplified around center 
frequency. The series microstrip open stub can be replaced by a capacitor and an inductor in 
serial, while the two shunt slot short stubs can be combined and replaced by a capacitor and 
an inductor in parallel. After replacing Gin by a transformer with frequency dependent ratio 
n, the full transition model is constructed, as shown in Fig. 14c. 
A test transition structure is also designed for the verification of this model. All transition 
structures were designed on the same multilayer LTCC substrate with a relative dielectric 

 

constant 7.8 and a thickness 50.8μm for each layer with lossless assumption. For a center 
frequency 30GHz, the width of SIW a is chosen to be 2738μm. MSL is designed for 50Ω 
characteristic impedance with three layer height and 180μm width. Due to the limit of 
fabrication process, the slot cannot be opened right at the shorted end of SIW, a minimal 
distance satisfying the design rules from the shorting via is used, i.e., d = 200μm.  
 

Slot Lengths Formula (21) (mS) HFSS Simulation (mS) 
2l = 0.7a 9.2 11.9 
2l = 0.8a 12.2 14.1 
2l = 0.9a 14.6 14.9 

2l = a 15.6 15.9 
Table 4. Input conductance by (21) and HFSS simulation for a 6-layer SIW with a slot at d = 
200μm and different slot lengths 2l in terms of SIW width a. 
 

SIW Layers Formula (21) (mS) HFSS Simulation (mS) 
2 46.7 31.3 
3 31.5 26.3 
4 23.9 21.7 
5 18.8 17.9 
6 15.6 15.9 

Table 5. Input conductance by (21) and HFSS simulation for SIWs with different layers with 
a slot at d = 200μm and slot length 2l = a. 
 
Instead of (21), Gin can also be calculated directly by (9) using HFSS, where a line integration 
of electric field at the center of the slot gives the slot voltage and integrating the Poynting 
vector on SIW cross section gives the power flow. Results for different slot length on a 6-
layer SIW are shown in Table 4. As slot length increases, the input resistance decreases. It is 
worth mentioning that as the slot length increases toward resonance, the input resistance 
can be calculated by (21) more accurately. On the other hand, results for SIWs with different 
layers and a slot length 2l = a are listed in Table 5. As SIW layer increases, the input 
conductance decreases and the agreement with simulation results becomes better. 

 
Fig. 15. Modified coupling slots. (a) H-shape slot. (b) U-shape slot. 
As the transition model indicated, bandwidth is maximized for Gin = 1/50 Siemens. This can 
be achieved by adjusting the slot length for SIWs with different layers. However slot length 
near resonance is often desired because of maximum power transition. Therefore H-shape or 
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4.2 Transition Model 
Referring to the simplified transition structure shown in Fig. 14a, Gin is the input 
conductance looking into the center of the slot on the SIW. The actual input port, i.e., Port 1, 
is located at the feeding MSL right above the slot. An open ended microstrip stub with 
length l is connected in serial with the feeding MSL. In addition, two short ended slot stubs 
with length d/2 are connected in parallel with Gin.  
Figure 14b shows the equivalent circuit of the transition with transmission line models and 
Gin. Therefore the length for each stub can be easily determined as a quarter guided 
wavelength at center frequency. With these lengths, input impedance at Port 1 is equal to Gin 
at center frequency. This equivalent circuit can be further simplified around center 
frequency. The series microstrip open stub can be replaced by a capacitor and an inductor in 
serial, while the two shunt slot short stubs can be combined and replaced by a capacitor and 
an inductor in parallel. After replacing Gin by a transformer with frequency dependent ratio 
n, the full transition model is constructed, as shown in Fig. 14c. 
A test transition structure is also designed for the verification of this model. All transition 
structures were designed on the same multilayer LTCC substrate with a relative dielectric 

 

constant 7.8 and a thickness 50.8μm for each layer with lossless assumption. For a center 
frequency 30GHz, the width of SIW a is chosen to be 2738μm. MSL is designed for 50Ω 
characteristic impedance with three layer height and 180μm width. Due to the limit of 
fabrication process, the slot cannot be opened right at the shorted end of SIW, a minimal 
distance satisfying the design rules from the shorting via is used, i.e., d = 200μm.  
 

Slot Lengths Formula (21) (mS) HFSS Simulation (mS) 
2l = 0.7a 9.2 11.9 
2l = 0.8a 12.2 14.1 
2l = 0.9a 14.6 14.9 

2l = a 15.6 15.9 
Table 4. Input conductance by (21) and HFSS simulation for a 6-layer SIW with a slot at d = 
200μm and different slot lengths 2l in terms of SIW width a. 
 

SIW Layers Formula (21) (mS) HFSS Simulation (mS) 
2 46.7 31.3 
3 31.5 26.3 
4 23.9 21.7 
5 18.8 17.9 
6 15.6 15.9 

Table 5. Input conductance by (21) and HFSS simulation for SIWs with different layers with 
a slot at d = 200μm and slot length 2l = a. 
 
Instead of (21), Gin can also be calculated directly by (9) using HFSS, where a line integration 
of electric field at the center of the slot gives the slot voltage and integrating the Poynting 
vector on SIW cross section gives the power flow. Results for different slot length on a 6-
layer SIW are shown in Table 4. As slot length increases, the input resistance decreases. It is 
worth mentioning that as the slot length increases toward resonance, the input resistance 
can be calculated by (21) more accurately. On the other hand, results for SIWs with different 
layers and a slot length 2l = a are listed in Table 5. As SIW layer increases, the input 
conductance decreases and the agreement with simulation results becomes better. 

 
Fig. 15. Modified coupling slots. (a) H-shape slot. (b) U-shape slot. 
As the transition model indicated, bandwidth is maximized for Gin = 1/50 Siemens. This can 
be achieved by adjusting the slot length for SIWs with different layers. However slot length 
near resonance is often desired because of maximum power transition. Therefore H-shape or 
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U-shape slots, as shown in Fig. 15, will be used in the following designs. In these cases, the 
input admittances can also be found as 
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Note that the last term in the bracket vanishes when k(l1+l2)=π/2, i.e., total slot length equals 
to half wavelength. With these kinds of slots, the effective feeding lengths of the slots can be 
adjusted while total slot lengths are kept near resonance. 
Figure 16 shows the responses for a test transition structure with design parameters 
mentioned above, where 6-layer SIW is used. An H-shape slot with l1 = 2000μm, l2 = 600μm 
is opened on the SIW. Phase difference between transition model and HFSS simulation can 
be attributed to the phase delay during power transition, which is not included in the 
transition model. However the model still shows its usefulness for designing MSL to SIW 
transitions of this type. 
As shown in Fig. 17, responses of another two transition structures are obtained. By 
adjusting the slot shape and length, wideband transition from MSL to SIW with different 
layers can be obtained. Figure 17a shows the response of transition to a 10-layer SIW by an 
H-shape slot with l1 = 2500μm, l2 = 500μm. On the other hand, Fig. 17b shows the response 
of transition to a 4-layer SIW by a U-shape slot with l1 = 1100μm, l2 = 900μm. 40% fractional 
bandwidth is achieved in both cases. Two practical examples were designed and fabricated 
on LTCC substrates, as given in the following subsections. 

 
Fig. 16. Responses obtained by slot-coupled transition model and HFSS. (a) Smith chart. (b) 
Rectangular plot. 
 

 

 
Fig. 17. Responses of slot-coupled transition with a slot at d=200μm for different slot shapes 
and SIW layers. (a) H-shape slot (l1 = 2500μm, l2 = 500μm), 10-layer SIW. (b) U-shape slot (l1 
= 1100μm, l2 = 900μm), 4-layer SIW. 

 
4.3 Ka-Band Transition Design 
A Ka-band MSL to SIW transition by slot coupling is designed, with 31GHz center 
frequency, 28-34GHz transition band, 10dB return loss, and 3dB insertion loss in the back-to-
back transition structure. The structure is designed on an LTCC substrate with relative 
dielectric constant 7.8 and loss tangent 0.005 at 30GHz. Thickness for each dielectric layer is 
50.8μm with 13μm silver metallization between each layer. The feeding MSL is designed for 
50Ω characteristic impedance with 180μm width and 152.4μm height. The SIW is chosen to 
be 2738μm wide with 304.8μm thickness. An H-shape slot with l1 = 2000μm and l2 = 600μm 
is used for the coupling.  
Figure 18a shows the simulation results by HFSS for a single transition. 38% fractional 
bandwidth is achieved for 15dB return loss. In-band insertion loss is within 0.6dB. A back-
to-back transition structure is fabricated for measurement. Figure 18b shows the comparison 
between simulation and measurement. As shown in the figure, more than 15GHz 
bandwidth is achieved for 10dB return loss. Insertion loss is better than 1.3dB in the entire 
transition band. 

 
Fig. 18. Results of Ka-band MSL to SIW transition design by slot coupling. (a) Simulation 
result for a single transition. (b) Comparison between simulation and measurement for 
back-to-back transition. 
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Note that the last term in the bracket vanishes when k(l1+l2)=π/2, i.e., total slot length equals 
to half wavelength. With these kinds of slots, the effective feeding lengths of the slots can be 
adjusted while total slot lengths are kept near resonance. 
Figure 16 shows the responses for a test transition structure with design parameters 
mentioned above, where 6-layer SIW is used. An H-shape slot with l1 = 2000μm, l2 = 600μm 
is opened on the SIW. Phase difference between transition model and HFSS simulation can 
be attributed to the phase delay during power transition, which is not included in the 
transition model. However the model still shows its usefulness for designing MSL to SIW 
transitions of this type. 
As shown in Fig. 17, responses of another two transition structures are obtained. By 
adjusting the slot shape and length, wideband transition from MSL to SIW with different 
layers can be obtained. Figure 17a shows the response of transition to a 10-layer SIW by an 
H-shape slot with l1 = 2500μm, l2 = 500μm. On the other hand, Fig. 17b shows the response 
of transition to a 4-layer SIW by a U-shape slot with l1 = 1100μm, l2 = 900μm. 40% fractional 
bandwidth is achieved in both cases. Two practical examples were designed and fabricated 
on LTCC substrates, as given in the following subsections. 

 
Fig. 16. Responses obtained by slot-coupled transition model and HFSS. (a) Smith chart. (b) 
Rectangular plot. 
 

 

 
Fig. 17. Responses of slot-coupled transition with a slot at d=200μm for different slot shapes 
and SIW layers. (a) H-shape slot (l1 = 2500μm, l2 = 500μm), 10-layer SIW. (b) U-shape slot (l1 
= 1100μm, l2 = 900μm), 4-layer SIW. 

 
4.3 Ka-Band Transition Design 
A Ka-band MSL to SIW transition by slot coupling is designed, with 31GHz center 
frequency, 28-34GHz transition band, 10dB return loss, and 3dB insertion loss in the back-to-
back transition structure. The structure is designed on an LTCC substrate with relative 
dielectric constant 7.8 and loss tangent 0.005 at 30GHz. Thickness for each dielectric layer is 
50.8μm with 13μm silver metallization between each layer. The feeding MSL is designed for 
50Ω characteristic impedance with 180μm width and 152.4μm height. The SIW is chosen to 
be 2738μm wide with 304.8μm thickness. An H-shape slot with l1 = 2000μm and l2 = 600μm 
is used for the coupling.  
Figure 18a shows the simulation results by HFSS for a single transition. 38% fractional 
bandwidth is achieved for 15dB return loss. In-band insertion loss is within 0.6dB. A back-
to-back transition structure is fabricated for measurement. Figure 18b shows the comparison 
between simulation and measurement. As shown in the figure, more than 15GHz 
bandwidth is achieved for 10dB return loss. Insertion loss is better than 1.3dB in the entire 
transition band. 

 
Fig. 18. Results of Ka-band MSL to SIW transition design by slot coupling. (a) Simulation 
result for a single transition. (b) Comparison between simulation and measurement for 
back-to-back transition. 
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4.4 E-Band Transition Design 
An E-band MSL to SIW transition by slot coupling is also designed. A 73GHz center 
frequency is desired with 71-76GHz transition band for 15dB return loss. The structure is 
also designed on an LTCC substrate with relative dielectric constant 7.8 and loss tangent 
0.0078 at 60GHz. Thickness for each dielectric layer is 50.8μm with a 13μm silver 
metallization between each layer. The feeding MSL is designed for 50Ω characteristic 
impedance with 112μm width and 101.6μm height. The SIW is chosen to be 1140μm wide 
with 203.2μm thickness. A U-shape slot with l1 = 580μm and l2 = 150μm is used for the 
coupling.  
Figure 19a shows the simulation result by HFSS for a single transition. A 39% fractional 
bandwidth is achieved for 15dB return loss. In-band insertion loss is within 1.07dB. A back-
to-back transition structure is fabricated for measurement. Figure 19b shows the comparison 
between simulation and measurement, where the measured result is obtained only below 
75GHz owing to equipment limitation. As shown in the figure, 21GHz bandwidth is 
achieved for 15dB return loss. Insertion loss is better than 2.8dB in the entire transition band. 

 
Fig. 19. Results of E-band MSL to SIW transition design by slot coupling. (a) Simulation 
result for a single transition. (b) Comparison between simulation and measurement for 
back-to-back transition. 

 
5. Conclusions 
 

This chapter presents systematic procedures for the design and modeling of transition 
structures between MSL and SIW. Input resistance or conductance of the equivalent 
waveguide excitation is firstly derived analytically with respect to the structural parameters 
of the transition. Reactive parts are then added to build the complete equivalent circuit 
according to the relations between voltage and current at transition discontinuities. The 
reactance values can be extracted by full-wave electromagnetic simulation only at center 
frequency. With the derived resistance and the extracted reactance values, the equivalent 
circuit is sufficient for wideband responses. Local compensation can then be made for 
maximizing the transition bandwidth. Various transition structures are designed and 
fabricated on LTCC substrates with center frequencies at Ka-band and E-band. 

 

Measurements are performed on back-to-back transition structures. Good agreement 
between simulation and measurement results are also obtained. 
For transition structures between MSL and SIW by probe feeding with a shorting via, the 
input resistances decrease with the thickness of SIW. Local compensation is achieved by 
adjusting the sizes of the via pad and the antipad. Larger transition bandwidth can be 
obtained for input resistances closer to the characteristic impedance of the feeding MSL. In 
the Ka-band designs, simulation by HFSS shows that for a single transition to SIWs with 2, 4, 
and 6 layers, 33%, 43%, and 46% fractional bandwidths for 15 dB return loss can be obtained, 
respectively. A back-to-back transition with 2-layer SIW is fabricated for measurement. 
Highly coherent results between simulation and measurement show that more than 30% 
fractional bandwidth for 10dB return loss was achieved with in band insertion loss better 
than 1.2dB. In the E-band design, 17% fractional bandwidth for a single transition for 15 dB 
return loss was obtained in HFSS simulation. Back-to-back measurement also agreed with 
simulation, which showed a 17% fractional bandwidth for 10dB return loss and 2.56dB in 
band insertion loss. 
For MSL to SIW transition by slot coupling, the input conductance decreases with the 
thickness of SIW but increases with slot length. For different SIW layers, local compensation 
can be accomplished by adjusting the length and shape of the slot. Transition bandwidth can 
be maximized by placing the input resistances as close as to the characteristic impedance of 
the feeding MSL. In the Ka-band designs, simulations by HFSS show that more than 40% 
fractional bandwidth for 15 dB return loss can be obtained for SIWs with different layers 
from 4 to 10. Measurement for a fabricated back-to-back transition with 6-layer SIW agreed 
with simulation. More than 15GHz bandwidth for 10dB return loss was achieved with in 
band insertion loss better than 1.3dB. In the E-band design, 39% fractional bandwidth for 15 
dB return loss was obtained in a single transition simulated by HFSS. The highly coherent 
results between simulation and measurement for a back-to-back structure also showed a 
21GHz bandwidth for 15dB return loss. In band insertion loss is within 2.8dB. In general, the 
transition with slot coupling provides a wider transition bandwidth than the probe feeding. 
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result for a single transition. (b) Comparison between simulation and measurement for 
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1. Introduction    
 

The rapid development of wireless communication systems has put a lot of demand for 
compact RF fronts. Nowadays, these subsystems mostly operate in microwave frequency 
bands and include amplifiers, filters and mixers, which are accompanied by lumped 
capacitors, inductors, resistors and distributed circuits in the form of sections of 
transmission lines. With regard to the choice of technology, planar technology including 
microstrip, stripline, slotline or coplanar waveguide is preferred for an RF front end design 
because of low manufacturing cost. The demand on minimizing the occupied area by RF 
front end requires utilization of two sides of substrates on which passive and active devices 
are to be developed. A further demand on compactness calls for use of a multilayer planar 
approach. In such cases, the challenge is in passing a signal between two sides of a dielectric 
layer. A suitable transition (also named via) of wire or wireless type is required to 
accomplish this task. To couple DC signals wire-type transitions are unavoidable.  However, 
when only a RF signal has to be passed, a wireless via can be a more convenient choice. The 
most common transition for coupling a RF signal between two sides of planar dielectric 
structure is the microstrip-to-slotline transition. Its convenience is that it achieves this 
function using wireless means, making the manufacturing process cost effective. It is 
important to understand the fundamental properties of this transition, as well as it is 
imperative to have its design guidelines. Also it is important to know its applications in 
basic microwave circuits and devices.  This chapter provides an overview of design of a 
microstrip-slot transition, explains its operation and gives examples in which such transition 
can play a useful role.   

 
2. Microstrip-Slot Transition 
 

A microstrip-slot transition is a structure that uses a microstrip line on one side of a planar 
dielectric substrate and a slotline in the ground so that a signal is passed between the two 
sides. In order to perform this function with minimal power losses, the microstrip line and 
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the slotline have to be orthogonal to each other and use suitable reactive terminations at 
their ends. For the microstrip line, the termination has to represent a short circuit, while for 
the slotline it has to be an open circuit at the two transmission lines junction. In practice, the 
two types of terminations can be accomplished by virtual open and virtual short circuits 
(open or short-circuited stubs). Different shapes can be used to realize them. They can be 
circular (Seman et al., 2007; Schüppert, 1998), radial (Zinieris et al., 1998), or in the form of 
rectangular/uniform line (Schüppert, 1988) or multi-arm lines (Soltysiak & Chramiec, 1994).  
One of the first microstrip-slot transitions, which was reported by Robinson and Allen in 
(Robinson & Allen, 1969) is shown in Fig. 1.  
 

 
Fig. 1. Microstrip-slot transition with a radial stub and a uniform slotline (Robinson & Allen, 
1969; Gupta et al., 1979). 
 
In this configuration, the microstrip line is terminated in a radial stub, which is about one 
quarter wavelength at the design frequency. The slotline is terminated in a straight stub 
which is extended about one quarter of a wavelength beyond the microstrip line. The use of 
a quarter-wave length microstrip stub leads to a virtual short-circuit at the junction. In turn, 
a quarter-wave length slot stub makes a virtual open-circuit at the junction. In the proposed 
design, microstrip line characteristic impedance is assumed 50 ohm while the slotline 
impedance is 72 ohm. The design offers the VSWR less than 1.1 across the operational 
frequency band of 8 to 10 GHz which is about 20% with respect to the middle frequency of 9 
GHz.  
Zinieris et al. in (Zinieris et al., 1998) employed a similar approach to obtain a double slot-
line-microstrip transition with a 90 crossover. Using radial stubs at the crossover between 
the transmission lines, the measured insertion loss of less than 1.3 dB for over the 3-15 GHz 
range was achieved.  
Schüppert in (Schüppert, 1988) investigated four different configurations of microstrip-slot 
transition. These are shown in Fig. 2 and Fig. 3.  The configurations in Fig. 2(a) and Fig. 3(a) 
use actual microstrip short-circuited stubs while the slot stub of about quarter-wave length 
represents a virtual open-circuit at the junction. The actual short-circuited stub is realized by 
using a 0.57-mm-wide copper sheet fed through the substrate and soldered at its ends to the 
microstrip line and ground.   

 

                                 
              (a) soldered microstrip short and                  (b) virtual short with uniform λ/4 open  
                       uniform λ/4 slotline                                microstrip and uniform λ/4 slotline 
Fig. 2. Microstrip-slot transitions terminated by uniform line stub as investigated in 
(Schüppert, 1988).  

 

 
(a) soldered microstrip short and slotline 

terminated with virtual open circular 
stub 

 
(b) microstrip and slotline terminated with 

short and open circular stub 
 

Fig. 3. Microstrip-slot transitions terminated by either a soldered microstrip short or non-
uniform line (circular) stub as investigated in (Schüppert, 1988).  
 
The configurations shown in Fig. 2(b) and Fig. 3(b) replace the actual short-circuit by its 
virtual equivalent. The operation of these transitions is studied within the frequency range 
of 1 to 16 GHz. The characteristic impedances for microstrip and slotline are assumed 50 
ohm. For the structures shown in Fig. 2(a) and (b), the normalized impedance factor for the 
slot and microstrip stub is introduced using the following expression (Schüppert, 1988): 
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where ssZ  and smZ  are the characteristic impedance of slotline and microstrip uniform 

line stub, respectively.  
It is shown that the frequency response with an improved flatness in the passband is 
obtained when the normalized impedance factor v is equal to w (v=w).  Furthermore, the 
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which is extended about one quarter of a wavelength beyond the microstrip line. The use of 
a quarter-wave length microstrip stub leads to a virtual short-circuit at the junction. In turn, 
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design, microstrip line characteristic impedance is assumed 50 ohm while the slotline 
impedance is 72 ohm. The design offers the VSWR less than 1.1 across the operational 
frequency band of 8 to 10 GHz which is about 20% with respect to the middle frequency of 9 
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Zinieris et al. in (Zinieris et al., 1998) employed a similar approach to obtain a double slot-
line-microstrip transition with a 90 crossover. Using radial stubs at the crossover between 
the transmission lines, the measured insertion loss of less than 1.3 dB for over the 3-15 GHz 
range was achieved.  
Schüppert in (Schüppert, 1988) investigated four different configurations of microstrip-slot 
transition. These are shown in Fig. 2 and Fig. 3.  The configurations in Fig. 2(a) and Fig. 3(a) 
use actual microstrip short-circuited stubs while the slot stub of about quarter-wave length 
represents a virtual open-circuit at the junction. The actual short-circuited stub is realized by 
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The configurations shown in Fig. 2(b) and Fig. 3(b) replace the actual short-circuit by its 
virtual equivalent. The operation of these transitions is studied within the frequency range 
of 1 to 16 GHz. The characteristic impedances for microstrip and slotline are assumed 50 
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slot and microstrip stub is introduced using the following expression (Schüppert, 1988): 

 

 



50

ssZ
v  (1) 

 
smZ

w 

50  (2) 

where ssZ  and smZ  are the characteristic impedance of slotline and microstrip uniform 

line stub, respectively.  
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bandwidth performance is improved with increasing v=w. A wide bandwidth, referenced to 
1.0 dB insertion loss, is achieved for 2≤ w/v ≤2.618. The optimum result is obtained at 
w/v=2.618. The use of a virtual short stub accomplished with a uniform line, as shown in 
Fig. 2(b), offers an improved flatness in the passband and/or improved bandwidth 
performance. This is explained by better compensation of the junction reactance compared 
with the soldered short of Fig. 2(a) (Schüppert, 1988). 
The positive effect of reactance compensation is also observed for non-uniform (circular) 
stubs of Fig. 3(b). When compared with the soldered transition of Fig. 3(a), an improved 
flatness is achieved. However, this is at the expense of reduced (about 10%) bandwidth. The 
transition with circular stubs offers a wider bandwidth compared to the one with the stub 
using a uniform line. The operating frequency band can be controlled through the choice of 
slot and microstrip stub radii. By using larger radii of circular stubs the operational 
frequency band is shifted downwards (Schüppert, 1988).  
Soltysiak and Chramiec (Soltysiak & Chramiec, 1994) proposed multi-arm stubs to improve 
performance of the microstrip-slot transition. Their configuration is shown in Fig. 4.  
 

 
Fig. 4. Transition with multi-arm stubs proposed by P. Soltysiak and J. Chramiec (Soltysiak 
& Chramiec, 1994) and Schiek and Kohler (Schiek & Kohler, 1976). 
 
They pointed out that for an improved operation, stubs of high characteristic impedance 
have to be used for the slotline and low characteristic impedance stubs have to be employed 
for the microstrip line. Also they suggested reducing the coupling between the microstrip 
and slotline stubs. To achieve this goal, the angle between the stubs appearing on two sides 
of substrate should be as large as possible. Any overlap of the microstrip and slotline parts 
should be avoided. Because of this requirement, the angle between the stub axes of 
symmetry and the input transmission lines may be different from a right angle. In the 
design, the input impedance of slotline composite stubs is approximately equal to the sum 
of single stub input impedances. The design was demonstrated experimentally for a decade-
wide L-X band.   
The design configuration of Fig. 4 with some modifications was included in a six-port 
junction design in (Schiek & Kohler, 1976).  The broadband transition with an insertion loss 
less than 0.2 dB in the frequency band of 2 to 9 GHz was demonstrated.  

 
3. Wireless Via for Multilayer Microstrip Structures  
 

The microstrip-slot transition whose operation was described in the previous section can be 
used for an efficient power transfer between two microstrip lines located on opposite sides 

 

of a two-dielectric layer structure that is supported by a common ground plane. Such a 
broadband wireless via or slice interconnect using an earlier work of Schüppert (Schüppert, 
1988) was proposed in (Ho et al., 1993). This vertical interconnect is attractive because it does 
not use any wires to couple the signal between the two microstrip lines. Therefore it is easy 
to manufacture.  Its importance is that it is capable to achieve a low insertion loss coupling 
over an ultra wide frequency band (UWB). Therefore, it can be of significance to developing 
compact UWB microwave multilayer front-ends. In (Ho et al., 1993), the operation of this 
interconnect was demonstrated using experimental means and was limited to one example.  
Here, its comprehensive theoretical and experimental investigation is presented. The 
following sections show the design of such an UWB via aimed for operation in the 3.1 to 10.6 
GHz band.  

 
3.1 Wireless Via Design 
In the undertaken design, the initial concept of (Ho et al., 1993) with some modifications is 
followed. The first design step includes making a rectangular slot in the ground plane which 
supports the two microstrip lines. In order to obtain signal transmission with minimal 
power losses, the two microstrip lines and the slotline are suitably terminated. Here, circular 
microstrip and slot stubs are chosen as terminations.  
 

 
Fig. 5. Configuration of via A including details of common ground plane, with input/output 
port microstrip lines run in opposite directions. 
 

 
Fig. 6. Configuration of via B with input/output microstrip lines run in the same direction. 
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bandwidth performance is improved with increasing v=w. A wide bandwidth, referenced to 
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frequency band is shifted downwards (Schüppert, 1988).  
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Fig. 5. Configuration of via A including details of common ground plane, with input/output 
port microstrip lines run in opposite directions. 
 

 
Fig. 6. Configuration of via B with input/output microstrip lines run in the same direction. 
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The role of virtual open circular stubs at the ends of slotline is to enforce the maximum 
electromagnetic power flow through the coupling slot (Ho et al., 1993). Following the 
recommendations in (Schüppert, 1988) and (Ho et al., 1993), the slot width is chosen such 
that the 50 ohm impedance is observed from the microstrip side. A better performance is 
expected for smaller values of impedance. However, they face manufacturing limitations 
because smaller characteristic impedances of slotline require a very narrow slot. Here, 
investigations include two types of this interconnect, which are named here as via A and B. 
They are shown in Fig. 5 and Fig. 6.  
The difference between these two configurations is the direction of the output microstrip 
transmission lines. Via A has its output microstrip lines in the opposite directions while via 
B uses them in the same direction. Assuming that the microstrip lines have a characteristic 
impedance of 50 ohm, the aim is to choose suitable dimensions of a virtual microstrip short 
circuit and a virtual slotline open circuit so that a broadband performance in terms of low 
insertion losses and high return losses is obtained. The design is assisted with the full EM-
wave simulation package, CST Microwave Studio (CST MWS). The design assumes a double 
layer of Rogers RO4003 substrate with dielectric constant of 3.38 and thickness of 0.508 mm.   

 
3.2 Wireless Via Results 
Here, the slotline characteristic impedance of 120 ohm is chosen. This gives a 0.2 mm width 
of the slot. The slot length is varied in order to obtain a low insertion loss and a high return 
loss for equivalent two-ports representing via A and B. The radius of circular stub is about 
twice the microstrip transmission line width which is 2 mm (Bialkowski & Abbosh, 2007). 
The microstrip line width is 1.18 mm for the 50 ohm characteristic impedance. For the 
configuration shown in Fig. 5 and Fig. 6, the radius of circular stub, r, the slotline length, l 
and the width, s is varied during the optimization process, which is performed with CST 
Microwave Studio across the frequency band 3.1-10.6 GHz. The optimized dimensions (wm, 
s, l and r) of via A and B are 1.18 mm, 0.2 mm, 1.05 mm and 2.2 mm, respectively. The 
overall size of the structure is 28 mm x 20 mm, assuming the distance between ports 1 and 2 
of 20 mm. The S-parameter responses of via A and B are compared against the reference 20 
mm-long 50 ohm microstrip line in Rogers RO4003 substrate.  
The CST simulated results shown in Fig. 7 reveal that the designed via A offers insertion 
losses less than 1 dB between 2.8 and 14 GHz while via B exhibits the 2.7 to 13.9 GHz 
frequency bandwidth for the same insertion loss specification. Note that Fig. 7 also shows 
the results for an equivalent microstrip line. This is show insight into simulations accuracy.  

 
Fig. 7. Comparison of S21 responses of via A and B against the 20 mm-long 50 ohm reference 
microstrip line. 

 

The return losses (RL) of via A and B are shown in Fig. 8. The obtained results indicate that 
via A has a better RL performance than via B.  
 

 
Fig. 8. Comparison of parameter S11 of via A and B against the 20 mm-long 50 ohm reference 
microstrip line. 
 
Fig. 9 shows the results for the phase of transmission coefficient, S21 for both vias. The results 
indicate that the difference in direction of output ports in via A and B is responsible for the 
180° phase difference between the two sets of results for transmission coefficient (S21).  
 

 
Fig. 9. Phase characteristic of via A and B compared against each other and the reference 
20mm-long 50 ohm microstrip line. 
 
The last step in the design process includes an experimental verification. To this purpose, 
via A with radius, r 2.2 mm is developed and tested in laboratory. The photograph of the 
fabricated via A is shown in Fig. 10.  As seen in Fig. 10, SMA connectors are attached to the 
two ports for the purpose of experimental measurement. The two dielectric layers are 
affixed by plastic screws to minimize air gaps.  



Microstrip-Slot	Transition	and	Its	Applications	in	Multilayer	Microwave	Circuits 253

 

The role of virtual open circular stubs at the ends of slotline is to enforce the maximum 
electromagnetic power flow through the coupling slot (Ho et al., 1993). Following the 
recommendations in (Schüppert, 1988) and (Ho et al., 1993), the slot width is chosen such 
that the 50 ohm impedance is observed from the microstrip side. A better performance is 
expected for smaller values of impedance. However, they face manufacturing limitations 
because smaller characteristic impedances of slotline require a very narrow slot. Here, 
investigations include two types of this interconnect, which are named here as via A and B. 
They are shown in Fig. 5 and Fig. 6.  
The difference between these two configurations is the direction of the output microstrip 
transmission lines. Via A has its output microstrip lines in the opposite directions while via 
B uses them in the same direction. Assuming that the microstrip lines have a characteristic 
impedance of 50 ohm, the aim is to choose suitable dimensions of a virtual microstrip short 
circuit and a virtual slotline open circuit so that a broadband performance in terms of low 
insertion losses and high return losses is obtained. The design is assisted with the full EM-
wave simulation package, CST Microwave Studio (CST MWS). The design assumes a double 
layer of Rogers RO4003 substrate with dielectric constant of 3.38 and thickness of 0.508 mm.   

 
3.2 Wireless Via Results 
Here, the slotline characteristic impedance of 120 ohm is chosen. This gives a 0.2 mm width 
of the slot. The slot length is varied in order to obtain a low insertion loss and a high return 
loss for equivalent two-ports representing via A and B. The radius of circular stub is about 
twice the microstrip transmission line width which is 2 mm (Bialkowski & Abbosh, 2007). 
The microstrip line width is 1.18 mm for the 50 ohm characteristic impedance. For the 
configuration shown in Fig. 5 and Fig. 6, the radius of circular stub, r, the slotline length, l 
and the width, s is varied during the optimization process, which is performed with CST 
Microwave Studio across the frequency band 3.1-10.6 GHz. The optimized dimensions (wm, 
s, l and r) of via A and B are 1.18 mm, 0.2 mm, 1.05 mm and 2.2 mm, respectively. The 
overall size of the structure is 28 mm x 20 mm, assuming the distance between ports 1 and 2 
of 20 mm. The S-parameter responses of via A and B are compared against the reference 20 
mm-long 50 ohm microstrip line in Rogers RO4003 substrate.  
The CST simulated results shown in Fig. 7 reveal that the designed via A offers insertion 
losses less than 1 dB between 2.8 and 14 GHz while via B exhibits the 2.7 to 13.9 GHz 
frequency bandwidth for the same insertion loss specification. Note that Fig. 7 also shows 
the results for an equivalent microstrip line. This is show insight into simulations accuracy.  

 
Fig. 7. Comparison of S21 responses of via A and B against the 20 mm-long 50 ohm reference 
microstrip line. 

 

The return losses (RL) of via A and B are shown in Fig. 8. The obtained results indicate that 
via A has a better RL performance than via B.  
 

 
Fig. 8. Comparison of parameter S11 of via A and B against the 20 mm-long 50 ohm reference 
microstrip line. 
 
Fig. 9 shows the results for the phase of transmission coefficient, S21 for both vias. The results 
indicate that the difference in direction of output ports in via A and B is responsible for the 
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The last step in the design process includes an experimental verification. To this purpose, 
via A with radius, r 2.2 mm is developed and tested in laboratory. The photograph of the 
fabricated via A is shown in Fig. 10.  As seen in Fig. 10, SMA connectors are attached to the 
two ports for the purpose of experimental measurement. The two dielectric layers are 
affixed by plastic screws to minimize air gaps.  
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Fig. 10. Photograph of via A with a 2.2 mm radius stub and SMAs attached to the 
input/output ports. 
 
Fig. 11 and Fig. 12 present a comparison between the simulated and measured results for the 
transmission coefficient and return loss for the designed via. The experimental S21 curve is 
slightly shifted to the lower frequency band compared to the simulated result. The 
measured transmission coefficient is greater than -1 dB for 2.5 to 11 GHz frequency range. 
The return losses at Port 1 and 2 are greater than 12 dB over the frequency band from 2.5 to 
12 GHz.  

 
Fig. 11. Measured, m and simulated, s transmission coefficients of via A with radius 2.2 mm. 
 

 
Fig. 12. Measured, m and simulated, s results for return loss at Port 1 and 2 of via A with 
radius, r of 2.2 mm. 

 

A relatively good agreement between the simulated and measured results is achieved. The 
observed discrepancies can be due to the use of coaxial-to-microstrip transitions in the 
experiment. Nevertheless, the obtained agreement provides high confidence in using CST 
Microwave Studio as the design tool for the investigated via.  
The next step includes the investigations into the effect of stub radii on via’s performance. 
Fig. 13 and Fig. 14 show the simulated results for the S-parameters for via A when the 
circular stub radius, r is varied from 1.5 mm to 2.5 mm. It is observed that the smallest 
radius of 1.5 mm provides a 16 GHz 10-dB return loss bandwidth from 4 to 20 GHz. In turn, 
the radius of 2.5 mm offers a narrower bandwidth between 2 to 12 GHz. The obtained 
responses show that by decreasing the circular stub radius, the operating band is shifted 
towards higher frequencies. 
 

 
Fig. 13. Insertion loss performance of via A for the varying value of radius, r of circular stubs 
representing open or short circuits. 
 

 
Fig. 14. Return loss performance of via A for the varying value of radius, r of circular stubs 
representing open or short circuits. 
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responses show that by decreasing the circular stub radius, the operating band is shifted 
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Fig. 13. Insertion loss performance of via A for the varying value of radius, r of circular stubs 
representing open or short circuits. 
 

 
Fig. 14. Return loss performance of via A for the varying value of radius, r of circular stubs 
representing open or short circuits. 
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In the next step, the five vias with different stub radii are fabricated and tested 
experimentally.  Fig. 15 shows the magnitude of measured S21 for the five developed vias for 
the frequency band from 2 to 16 GHz. The 1-dB insertion loss bandwidths are: 11.85 GHz 
(3.85-15.2 GHz) for radius 1.5 mm, 11.35 GHz (2.65-14 GHz) for 1.75 mm, 9 GHz (2.3-11.3 
GHz) for 2 mm, 8.7 GHz (2.25-10.95 GHz) for 2.25 mm,  and 8.65 (2.1-10.75 GHz) for the 2.5 
mm circular stub. The return loss measured at the input port is shown in Fig. 16. The 
measured results confirm a UWB performance of all five manufactured vias although across 
slightly different frequency ranges.  
 

 
Fig. 15. Measured S21 performance of via A for the varying value of radius, r of circular 
stubs. 

 
Fig. 16. Measured return loss performance of via A for the varying value of radius, r of 
circular stubs. 
 
There is a slight discrepancy with the simulated results of Fig. 13 and 14. This can be due to 
fabrication errors, as well as due to the use of coaxial connectors and transitions which were 
used in the experiment but were not taken into account during CST MWS simulations. 

 
4. Phase Shift due to Wireless Via 
 

The presented simulation and experimental results have shown that the investigated 
wireless via can offer a UWB low-loss coupling between two microstrip lines located on two 

 

sides of common ground plane. This property has been demonstrated by investigating the 
behaviour of the wireless via magnitude of transmission and reflection coefficients as a 
function of frequency.   
In order to complete the investigation, one has to have a close look at the phase 
characteristics. In this case, it is useful to compare the phase of transmission coefficient of 
this vertical interconnect against the one of a reference microstrip line.    
Here a 50 ohm microstrip line of certain length is chosen as a reference line. The differential 
phase shift defined by the following equation, as adapted from (Meschanov et al., 1994), can 
be used to this purpose: 
   phaserefSphaseSphase 21)(21)(   (3) 

 
where S21 and S21ref  are the scattering matrix elements of two-ports, the transition and the 
reference microstrip transmission line, respectively.  
Because in the vertical interconnect, the two microstrip lines are electromagnetically 
coupled, one can expect that the slot transition introduces a series reactance. This reactance 
is responsible for introducing a phase shift compared to the continuous reference microstrip 
line. This principle is used in so-called loaded line phase shifters (Pozar, 2005). An initial 
analysis of results in Fig. 9 had shown that the obtained differential phase shift was 
approximately constant across a wide frequency band.  This property can be useful to 
design a wideband phase shifter, as illustrated in the following examples.  
In the undertaken designs, two configurations of via A and B are utilized.  An attempt is 
made to obtain a differential phase shift of 45, 67.5, 78.75 and -90 by varying the 
dimension of slot length, l, slot width, s, stub radius, r, and by adjusting the reference 
microstrip line length, Lref . 
Table 1. summarizes the parameters of six phase shifters, named here as T-T5, whose 
dimensions were worked out through manual iterations involving CST Microwave Studio.  
 

Phase Shift 
(Δθ) Transition Orientation  Dimension (mm) Lref (mm) l s r 

45 T1 A 1.05 4.0 2.5 32.40 
T3 3.2 33.13 

67.5 T2 B 1.05 0.2 2.5 24.54 
T4 3.2 25.45 

78.75 T2 B 1.05 0.2 2.5 25.16 
T4 3.2 26.21 

-90 T A 1.05 0.2 2.5 36.18 
T5 3.2 38.09 

Table 1. Parameters of six phase shifters. 
 
Table 1 shows that two orientations of via, A and B, are employed to obtain the desired 
phase shift. Via A is suitable to get phase shifts of 45 and -90 whilst via B is best to obtain 
the phase shift of 67.5 and 78.75. It also reveals that the needed length, Lref of the reference 
microstrip line is proportional to the required phase shift value (Δθ). A higher value of 
phase shift calls for a longer reference transmission line. In the case of 45 phase, the wider 
slot width of 4 mm is needed compared to the rest of phase shifters which use width of 0.2 
mm. The optimum slot length is the same for all of the presented phase shifters and is equal 
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to 1.05 mm. This length was selected to obtain the best return loss at the frequency of about 
6 GHz. Table 1 also shows that with respect to the choice of microstrip and slot terminations, 
two circular stubs sizes were used.    
The plots of magnitudes of S11 and S21 parameters versus frequency for the five wireless vias 
with dimensions shown in Table 1 are presented in Fig. 17.  
As observed in Fig. 17, all five wireless vias feature insertion losses greater than 2 dB across 
the frequency band from 2 to 12 GHz. The corresponding return losses are higher than 10 dB 
across 2-7 GHz band and they decrease below 10 dB at higher frequencies. 
 

 
Fig. 17. Magnitudes of S-parameters of five wireless vias operating as phase shifters. 
 
The frequency ranges over which the phase shifters of 45, 67.5, 78.75 and -90 with the 2.5 
mm stub first radius perform well in terms of 10 dB return loss are: 6-7 GHz, 3.95-12 GHz, 
3.4-12 GHz and 3.1-12.5 GHz, respectively. The 45phase shifter with the  stub radius of 3.2 
mm provides a greater 10-dB return loss bandwidth of 2.8 GHz (4.2 to 7 GHz) than its 
counterpart with the 2.5 mm radius stub. In turn, the 67.5and 78.75 phase shifters with the 
3.2 mm stub radius offer the 10-dB RL operation in the 2.7-10.1 GHz and 2.35-10.1 GHz band 
respectively, which are comparable to those of the 2.5 mm counterpart. The worst results 
with respect to 10-dB return loss from 3.85 to 6.3 GHz are obtained for the -90 phase shifter 
that uses the 3.2 mm radius stub.  
Fig. 18 and Fig. 19 show the simulated phase shift responses for two cases of stub radii of 2.5 
mm and 3.2 mm. As observed in the graphs plotted in Fig. 18 and 19, the use of the smaller 
stub radius shifts the operating frequency band upwards.  
By taking into account both the desired phase and the 10-dB return loss bandwidth, the best 
performer seems to be the 45 phase shifter. The results also show that the investigated 
wireless via can be used to achieve phase shifts in the range of 45-78.5 over an ultra wide 
frequency band. Obtaining smaller differential phase shift may require a further increase in 
slot width, which is not trivial with respect to the chosen configuration of via.  

 

 
Fig. 18. Phase shift versus frequency for the phase shifters with stub radius of 2.5 mm. 
 

 
Fig. 19. Phase shift versus frequency for the phase shifters with stub radius of 3.2 mm. 
 
This shortfall can be overcome using a different configuration of wireless via. Such an idea 
was explored in (Abbosh, 2007). The configuration of the microstrip-slot transition used in 
(Abbosh, 2007) is shown in Fig. 20.   
Similarly as for the configuration of Fig. 5, this alternative vertical interconnect uses a 
microstrip-slot structure with two microstrip lines located on two sides of two-layer 
dielectric substrate coupled via a slot in the common ground to obtain a phase shifter. It was 
shown in (Abbosh, 2007) that the resulting phase shift is related to the coupling coefficient 
with the following rule: a larger coupling offers a smaller phase shift. This rule seems to be 
also applicable for the phase shifters based on via A and B where it was observed that a 
smaller phase shift requires a larger slot opening in the ground.  For configuration of Fig. 20 
the coupling factor and thus the phase shift can be adjusted through the choice of 
dimensions of elliptically shaped microstrip lines and the slot. Using this tuning mechanism, 
a phase shift in the range of 30° and 70° accompanied by good return losses over an ultra 
wide frequency band was demonstrated (Abbosh, 2007). Similarly, as for the via 
investigated in this article, the best results in terms of return loss and desired phase shift 
was offered by the 45° phase shifter.   
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was explored in (Abbosh, 2007). The configuration of the microstrip-slot transition used in 
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Similarly as for the configuration of Fig. 5, this alternative vertical interconnect uses a 
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shown in (Abbosh, 2007) that the resulting phase shift is related to the coupling coefficient 
with the following rule: a larger coupling offers a smaller phase shift. This rule seems to be 
also applicable for the phase shifters based on via A and B where it was observed that a 
smaller phase shift requires a larger slot opening in the ground.  For configuration of Fig. 20 
the coupling factor and thus the phase shift can be adjusted through the choice of 
dimensions of elliptically shaped microstrip lines and the slot. Using this tuning mechanism, 
a phase shift in the range of 30° and 70° accompanied by good return losses over an ultra 
wide frequency band was demonstrated (Abbosh, 2007). Similarly, as for the via 
investigated in this article, the best results in terms of return loss and desired phase shift 
was offered by the 45° phase shifter.   
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Fig. 20. Configuration of multilayer phase shifter investigated in (Abbosh, 2007). 

 
5. Power Dividers 
 

Besides providing an ultra wideband coupling of a microwave signal between two 
microstrip lines located on opposite sides of a double-layer dielectric with a common 
ground plane, the microstrip-slot transition can also be used to design ultra wideband in- 
and out-of-phase power dividers. The design of such devices is presented in this section. 
The resulting devices differ from commonly known uniplanar power dividers such as a 
lossless microstrip T-junction or Wilkinson divider (Pozar, 2005). This is because their two 
microstrip output ports appear on two sides of the common ground. The motivation for 
designing these dividers is that they can be integrated with other multilayer structures such 
as broadside coupled microstrip couplers (Abbosh & Bialkowski, 2007; Seman et al., 2008).     

 
5.1 Out of Phase Power Divider 
The configuration of an out-of-phase microstrip-slot power divider is shown in Fig. 21. The 
divider has an input port and one of the output port at the top layer and another output port 
at the bottom layer. This divider uses the microstrip to slot transition (Schüppert, 1988) with 
microstrip Port 1 to vertical slotline and a microstrip T-junction with a vertical slot as via to 
the microstrip output ports. The narrow slot in the common middle ground plane guides the 
signal from the input to the two output microstrip lines. The arrangement shown in Fig. 21 
offers an equal signal division (3 dB) between two output ports with a 180 phase difference. 
The phase difference of 180 is due to the chosen orientation of the output ports which 
enable E-field lines propagate in opposite directions. 

 

 
(a) 

 
(b)  

Fig. 21. The CST MWS layout of out-of-phase microstrip-slot power divider including (a) 
dimensions and (b) details of the slot layer in the ground plane. 
 
As observed in Fig. 21, the design employs two mitre bends at the output ports of the 
divider. In order to obtain the best performance, the bend should have the optimum amount 
of chamfering dimension (Douville & James, 1978), as given by the following expressions:  
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transmission line and h is the thickness of substrate. For the other cases, a curve bend can be 
employed with an optimum bend radius to achieve minimum power loss. 
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Fig. 20. Configuration of multilayer phase shifter investigated in (Abbosh, 2007). 
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Fig. 22. Configuration of a mitre bend showing its dimensions. 
 
In the design of power divider, input and output microstrip line characteristic impedance is 
assumed to be 50 ohm. The ends of microstrip lines are terminated in circular stubs 
representing virtual short circuits. In turn, the slotline is terminated with circular stubs 
representing virtual open circuits. The slot width is chosen to make a compromise between 
obtaining 50 ohm impedance, as observed from the side of microstrip line, and the 
manufacturing limitation. Here, the slotline impedance of 120 ohm is selected.  
In order to improve matching of the input port, impedance steps realized by changes in 
width (w1, w2) in the microstrip lines and slotline are used. This makes the design different 
from the one reported in (Bialkowski  & Abbosh, 2007). Slight changes in the slot width are 
also made, as illustrated in Fig. 21. The distance, d between centre of the input port and 
centre of the microstrip output line is chosen to be a quarter wavelength at the centre design 
frequency (fc = 6.85 GHz) as expressed in equation (7) (Bialkowski & Abbosh, 2007): 
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where εre is the effective dielectric constant. It is determined using the following 
approximate expression:  
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Length of the slot, l is chosen to be equal to the distance between the input port and 
microstrip output line plus the microstrip line width, wm: 
 
 mwdl   (9)  
 
The design is accomplished with CST Microwave Studio. The dimensions of power divider 
are varied to obtain the best performance in the frequency band of 3.1 to 10.6 GHz. The 
divider’s final dimensions are: wm  = 1.18 mm (for 50 Ω microstrip line), w1 = 1.05 mm, w2 = 
0.73 mm, s = 0.2 mm, sm = 0.22 mm, r = 3.2 mm, d = 6.51 mm and l = 7.69 mm. The prototype 
of the designed power divider is fabricated and tested in laboratory. Fig. 23 shows a 
photograph of the developed out-of-phase power divider.  

 

 
Fig. 23. Photograph of fabricated 3 dB out-of-phase power divider in microstrip-slot 
technology. 
 
The simulation and measurement results for this device are presented in Fig. 24 and 25. The 
CST Microwave Studio’s simulated responses show that the power supplied to the input 
port (Port 1) is equally divided between the output ports (Port 2 and Port 3) with the 
insertion loss less than 1.2 dB across the frequency band of 3 to 10.6 GHz. The return loss at 
Port 1 of the designed power divider is greater than 12.5 dB over the frequency range from 3 
to 11 GHz. The phase difference between the output ports fluctuates between 178 and 180 
across the same frequency band.  

 
Fig. 24. The return and insertion loss performance of the designed out-of-phase microstrip-
slot power divider. 

 
Fig. 25. Phase difference between output ports of out-of-phase power divider. 
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For the measured result, the average insertion losses between Port 1 and Ports 2 and 3 are 
3.5 dB ± 1.43 dB from 3 to 10.4 GHz. These are slightly worse than the simulated ones. The 
measured return loss at Port 1 is greater than 10 dB across frequency band between 3 and 11 
GHz. With respect to the phase difference between the two output ports, the fabricated 
prototype shows the discrepancy of ± 2 with the simulated results.  

 
5.2 In Phase Power Divider 
The design of an in-phase microstrip-slot power divider, shown in Fig. 26, is accomplished 
using a slight modification of the out-of-phase (180) power divider of Fig. 21. 

 
Fig. 26. Configuration of in-phase microstrip-slot power divider. 
 
The difference is that in the in-phase power divider of Fig. 26 the microstrip lines connected 
to Port 2 and Port 3 are run in the same direction along the x-axis while for the out-of-phase 
divider they are in opposite directions. The dimensions used in the in-phase divider are the 
same as for the 180 power divider. The arrangement of this divider enables equal power 
division with same phase at the output ports. This can be explained by E-field lines being in 
the same direction for the two output ports.  
A photograph of the fabricated in-phase power divider is shown in Fig. 27.   
 

 
Fig. 27. Photograph of fabricated in-phase microstrip-slot power divider.  
 
The simulated and measured results for the in-phase divider are presented in Fig. 28. The 
simulated power division to Port 2 and 3 is comparable to that of the out-of-phase power 

 

divider. The return loss is greater than 11 dB in the frequency band of 3 to 11 GHz, similarly 
as for the out-of-phase divider,. The phase difference between the output ports is 
approximately 0 to 3 from 3.1 to 10.6 GHz.  
 

 
Fig. 28. Magnitudes of S-parameters of in-phase microstrip-slot power divider. 
 

 
Fig. 29. Phase difference between output ports of in-phase microstrip-slot power divider. 
 
The measured result for power division to Port 2 and 3 is 3.7 dB ± 1.3 dB and the return loss 
at Port 1 is greater than 9.4 dB across the frequency range between 3 and 11 GHz. The phase 
characteristic of the fabricated prototype shows a small deviation of ± 2 from the simulated 
result. The measured insertion and return losses are comparable with the simulated ones. 

 
6. Conclusion 
 

This chapter has reported on a microstrip-slot transition and its application to the design of 
wireless vertical interconnects, phase shifters and power dividers in microstrip-slot 
technique. The design and analysis of operation of all these components has been 
accomplished using CST Microwave Studio simulator. It has been shown that the use of this 
transition enables an ultra wideband performance of multilayer microstrip-slot vias, phase 
shifters and power dividers. Prototypes of these components have been fabricated and 
experimentally tested. The presented experimental results have demonstrated that all of 
these components can be manufactured using ample microwave fabrication facilities. The 
measured results have confirmed a very good ultra-wideband performance, as observed in 
simulations. Because of small size and wideband performance the investigated components 
should be of considerable interest to the designers of compact ultra wideband sub-systems.   
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1. Introduction     
 

Multilayer substrates such as interposers and printed circuit boards (PCBs) are basic 
interconnect technologies in modern and next-generation systems in which chip, package 
and board have been used as constructing elements. Consequently, multilayer substrates 
have been intensively studied in worldly dispersed electronics packaging research centers in 
which questions related to how to improve electrical, mechanical, thermal and reliable 
performances are on the agenda. Moreover, interconnection items affect directly on 
miniaturization, integration, cost-effectiveness and electrical characteristics of electronics 
components and, as a result, on promotion of electronics products to the market. 
 

 
Fig. 1a. A chip-package-board part of a            Fig. 1b. A division of an interconnection on 
system                                                                    bulding blocks 
 
Microwave and millimeter wave areas extremely enhance difficulties in electrical design of 
interconnected circuits based on multilayer substrate technologies due to impedance 
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mismatching problems, crosstalk effects, leakage losses, unwanted resonances, dielectric 
and metal losses, and so on. These issues can be particularly overcome forming 
interconnections as well wave-guiding structures which can be also used as basic 
transmission lines of distributed-element passives and actives. 
In Fig.1a, an example of a chip-package-board part of a system is shown. Multilayer 
substrate technologies are realized in the example presented by means of a package and a 
PCB. An interconnection in the multilayer substrates demonstrated in Fig.1a can be divided 
into blocks, having their specific characteristics, as shown in Fig.1b. These blocks are 
represented by planar transmission lines, bumps and vias for the electrical channel shown. 
One can generalize such building blocks by two groups - horizontal and vertical 
interconnections - as exhibited in Fig.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. A generalization of interconnections in a chip-package-board system 
 
To design horizontal interconnections of a high electrical performance, planar transmission 
lines have been usually used because these structures can provide operation on one 
(fundamental) mode (for an example, TEM or Quasi-TEM), which has well-defined 
propagation constant and characteristic impedance, in a wide frequency band. That is why, 
short and long transmission lines have been used in high-frequency and high-speed systems. 
Besides that, planar transmission lines in the substrates serve not only as interconnected 
circuits but also as forming blocks of distributed passive and active components. 
Consequently, electrical study of planar transmission lines and different functional devices 
based on these lines has been widely and deeply presented in numerous literatures 
published (for an example, see comprehensive books (Hoffmann, 1987; Gupta et al., 1996), as 
for planar transmission lines). 
In this chapter, attention will be attracted to the second group of interconnections (see Fig.2) 
in multilayer substrates, that is, vertical transitions.  
Reasons why it will be concentrated on these structures are as following.  
Firstly, it can be explained by a significant increase of the vertical transition role in 
achieving high electrical performance of signal interconnection paths in multilayer 
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substrates at microwaves and millimeter waves and a contribution of the vertical transitions 
to impedance mismatching, crosstalk, energy leakage, and other problems which can be 
excited due to these structures that can finally lead to the fault of the systems, 
electromagnetic interference (EMI), and other difficulties. 
Secondly, it is attractive to use vertical transitions as forming elements of passives and 
actives (as for an example, short- or open-circuited stubs for filters) and in such way to 
reduce considerably their dimensions due to:  
1) Three-dimensional (3-D) design;  
2) Providing an approach to move a functional area for a component to a vertical transition 
region (see Fig.3). 
 

Chip 

Package 

PCB 

Functional areas for components in 
traditional planar transmission line design 

Functional areas for components if 
vertical transition will be used in design

 
Fig. 3. Approach for miniaturization of a chip-package-board system by means of the use of 
vertical transitions as forming blocks of a component 

 
2. Shield Via as Vertical Transmission Lines for Multilayer Substrates 
 

Consider vias, as representative structures of vertical transitions, which serve usually to 
connect planar transmission lines disposed at different conductor layers of multilayer 
substrates. At microwave and millimeter wave bands, structures similar to a single signal 
via have poor-defined wave guiding properties and, as a result, they have increasing 
leakage losses with the growth of the frequency. That is why at these frequencies, 
propagation constant and characteristic impedance cannot be defined using traditional 
inductance and capacitance. 
As an illustrative example, in Fig.4, the peak of the E-field at 10 GHz calculated by a three-
dimensional full-wave technique (Weiland, 1996) in a horizontal cross-section between 
conductor planes of a multilayer substrate comprising the single signal via is shown. As one 
can see, if the single signal via is placed in the multilayer substrate, then it becomes an 
effective source of the parallel plate mode excitation. It acts like an antenna exciting parallel 
plate modes between conductor planes. As a result, such via structure leads to a dramatic 
reduction of the electrical performance of a whole interconnection due to in-substrate 
parallel plate-mode resonances and, as their consequence, signal integrity, power integrity 
and EMI problems. In Fig.5, an impact of the parallel plate-mode resonances on the electrical 
characteristics of the via is shown by means of the insertion loss. As one can see, the 
electrical performance of the via dramatically degrades at higher frequencies (in present 
example, starting from about 2GHz). 
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reduction of the electrical performance of a whole interconnection due to in-substrate 
parallel plate-mode resonances and, as their consequence, signal integrity, power integrity 
and EMI problems. In Fig.5, an impact of the parallel plate-mode resonances on the electrical 
characteristics of the via is shown by means of the insertion loss. As one can see, the 
electrical performance of the via dramatically degrades at higher frequencies (in present 
example, starting from about 2GHz). 
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Electrical characteristics of vertical transitions can be improved by progressing from 
through-hole (see Fig.6a) to blind, counter-bored and buried via technologies explained 
respectively in Figs.6b, 6c and 6d. In these cases, stub effect (Laermans et al., 2001; Kushta et 
al., 2003) can be removed providing an improvement of signal transmission channel 
parameters, and the signal via conductor length can be shortened providing a reduction of 
coupling and radiating areas. 
However, in spite of such advancements problems emphasized above remain at microwaves 
and millimeter waves.  
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Fig. 4. Simulated peak of the E-field taken at 10GHz in a cross-section of a multilayer 
substrate comprising a single signal via  
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Fig.5. Experimental data for the insertion loss of the single signal via in the multilayer 
substrate 

 

 
Fig. 6a. Cross-sectional view of through-hole via 
 

 

 
Fig. 6b. Cross-sectional view of blind via 
 

 
Fig. 6c. Cross-sectional view of counter-bored via 

 

 
Fig. 6d. Cross-sectional view of buried via 
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Thus, it comes to be clear that vertical transitions including via structures become an 
important element in design of high-frequency and high-performance interconnections and 
components grounded on multilayer substrate technologies. 
A solution proposed to provide a high-performance vertical transition in a multilayer 
substrate is based on forming a shield via as a result of the conjoint use of signal and ground 
vias. In this case, a specific coaxial waveguide can be formed in the vertical direction of the 
multilayer substrate (Pillai, 1997; Tarvainen, 2000; Kushta et al. 2002). 
Following distinctive examples show advanced characteristics for the shield via compared 
with the single signal via case. In Fig.7, simulated peak of the E-field for the shield via 
obtained in the same way as for Fig.4 is presented for the identical dimensions of the 
substrate. As one can see, electromagnetic energy propagating through the shield via is 
disposed between signal and ground vias. This effect leads to a considerable improvement 
of the electrical performance for signaling as shown in Fig.8 by means of measured insertion 
losses (photo of the shield via experimental pattern is in Fig.9). In Fig.8 electrical 
characteristics of the single via are also given for comparison.  
It is well known, to estimate leakage losses in a wide frequency band, S-parameters can be 
used and as for example by means of such equation: 
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where 11S  is the return loss and 21S  is the insertion loss. 
In Fig.10, simulated leakage losses for single signal via and shield via with the same 
parameters as for Figs.4 and 7 are presented. As one can see, the application of the shield via 
suppresses leakage losses in considered frequency band. It also means that EMI problems 
can be considerably reduced by the use of such vias in electronics design (Kushta et al., 2004; 
Kushta & Narita, 2004). 
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Fig. 7. Simulated peak of E-field taken at 10GHz in the cross-section of the multilayer 
substrate comprising a shield via 
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Fig. 8. Experimental data for the insertion loss of both the shield via and the single signal via 
in the multilayer substrate 
 
Consider leakage effect on the electrical performance of both single and shield via structures 
in which a digital signal is propagating. In Fig.11, the pulse transmitted through such via 
structures is shown. As one can see in this figure, signal transmitted through the single 
signal via has not only higher insertion loss but also higher deformation of the pulse shape 
that is one of the most important issues in high-speed signaling because, in this case, it is 
necessary to apply additional techniques like pre-emphasis.  
 

 
Fig. 9. Photo of the shield via formed by signal and ground vias conjointly 
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Fig. 10. Simulated leakage losses for via structures calculated according to Eq.1  
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On the other hand, forming the shield via in the multilayer substrate gives a possibility for a 
considerable improvement of the electrical performance of the vertical transitions. As 
follows from Fig.11, the shield via provides significantly lower loss, if it is compared with 
single signal via case. Moreover, the pulse shape (especially, the width for the signal 
transmitted) is considerably better for the shield via. 
 

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0

0.2

0.4

0.6

0.8

1.0 input pulse
transmitted pulse

 single signal via
 shield via

A
m

pl
itu

de

Time, ns  
Fig. 11. Signal propagation in single signal via and shield via (transmission) 
 

0.00 0.05 0.10 0.15 0.20 0.25 0.30

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

-0.2

0.0

0.2

0.4

0.6

0.8

1.0 input pulse
reflected pulse

 single signal via
 shield via

A
m

pl
itu

de

Time, ns  
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However, as follows from Fig.12, the amplitude of the reflected pulse is large enough for 
both via structures. That is why, providing characteristic impedance controlling in a wide 
frequency band is another important issue to implement the shield vias in real substrates 
and to achieve their electrical performance similar to that as in planar transmission lines. 
Therefore, an appropriate physical model showing mechanisms affecting on the electrical 
characteristics of such type of vertical transitions has to be defined. 
Consider the shield via as in Figs.13a and 13b. This structure is formed in an 8-conductor 
layer substrate. Corrugated coaxial waveguide model (Kushta et al., 2002; Kushta et al., 
2004) is proposed to describe physical processes in the shield via. In this model, ground vias 
are replaced by continuous and smooth conductive surface which acts as an outer 

 

conductive boundary and the signal via serves as an inner conductive boundary of such 
coaxial waveguide. Also in the model, conductive plates from conductive layers of the 
multilayer substrate disposed between inner and outer conductive boundaries are 
considered as specific corrugations of the outer conductive boundary. The corrugated 
coaxial waveguide model for the shield via shown in Figs. 13a and 13b is presented in 
Figs.14a and 14b. 
In consequence, the outer conductive boundary of such corrugated coaxial waveguide 
model can be characterized as a surface for which the surface impedance can be 
approximately defined as: 
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where d is the corrugation depth defined as   2, grrcler ddDd  , f  is the frequency and c  
is the velocity of light in free space. Note that Eq.(2) is valid under following conditions: 
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where   is the shortest wavelength in the isolation material of the multilayer substrate in 
considered frequency range; jiH ,  is the distance between i-th and j-th conductor planes; j = i + 1. 
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Fig. 13a. Cross-sectional view of shield via 
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Fig. 13b. Top and bottom views of shield via 
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On the other hand, forming the shield via in the multilayer substrate gives a possibility for a 
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both via structures. That is why, providing characteristic impedance controlling in a wide 
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2004) is proposed to describe physical processes in the shield via. In this model, ground vias 
are replaced by continuous and smooth conductive surface which acts as an outer 

 

conductive boundary and the signal via serves as an inner conductive boundary of such 
coaxial waveguide. Also in the model, conductive plates from conductive layers of the 
multilayer substrate disposed between inner and outer conductive boundaries are 
considered as specific corrugations of the outer conductive boundary. The corrugated 
coaxial waveguide model for the shield via shown in Figs. 13a and 13b is presented in 
Figs.14a and 14b. 
In consequence, the outer conductive boundary of such corrugated coaxial waveguide 
model can be characterized as a surface for which the surface impedance can be 
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where d is the corrugation depth defined as   2, grrcler ddDd  , f  is the frequency and c  
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Fig. 13a. Cross-sectional view of shield via 
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Fig. 14a. Cross-sectional view of corrugated coaxial waveguide model 
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Fig. 14b. Top and bottom views of corrugated coaxial waveguide model 
 
Eq.2 gives a simplified physical mechanism which can explain signal propagation in the 
shield via. In particular, if corrugations in the coaxial waveguide model are large enough, 
then the surface impedance of the outer conductive boundary is dependent on the 
frequency. It means that broadband matching of the shield via with other interconnected 
circuits having usually approximately constant (or weakly frequency-dependent) 
characteristic impedance is a difficult problem. 
Thus, to provide a broadband high-performance operation of the shield via it is necessary to 
decrease such the corrugations as much as possible. If this condition will be satisfied, then 
an approximate equation for the surface impedance can be written as follows: 
 
    0sZ .      (4) 

 
The surface impedance defined according to Eq.4 corresponds to the smooth conductive 
boundary and, in this case, signal propagation in the shield via can be considered as in a 
corresponding coaxial waveguide. 

 

As a validation of this coaxial waveguide model, consider two types of shield vias in the 
multilayer substrate. The first type comprises the outer conductive boundary of a round 
arrangement of ground vias. The second type is consisted of ground vias with a square 
arrangement. From coaxial transmission line theory (Wheeler, 1979), there are known 
analytical formulas for the characteristic impedance of round and square coaxial 
waveguides. In Figs.15a and 15b, expressions for these coaxial waveguides are presented 
under the drawing of the corresponding structure by Equations (5) and (6), respectively.  
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Fig. 15a. Cross-section view of round coaxial waveguide and its characteristic impedance 
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Fig. 15b. Cross-section view of square coaxial waveguide and its characteristic impedance 
 
As follows from these equations, which are defined for the coaxial transmission lines with 
continuous and smooth inner and outer conductive boundaries, the characteristic 
impedance will have the same magnitude for round and square cases if the diameter of 
outer boundary of the round transmission line and the side of the square transmission line 
will satisfy the following identity: 
 

sc DD  0787.1 .     (7) 
 

It should be noted that Eq.7 is valid if other parameters of round and square coaxial 
transmission lines such as the diameter of the inner conductor and constitutive parameters 
(such as relative permittivity,   and relative permeability,  ) of the isolating material are 
the same. 
So, first of all, a validation of the coaxial waveguide model will be provided in such manner. 
If this model is appropriate for the shield via, then identity (7) will be satisfied for shield 
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Fig. 14b. Top and bottom views of corrugated coaxial waveguide model 
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Fig. 15a. Cross-section view of round coaxial waveguide and its characteristic impedance 
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Fig. 15b. Cross-section view of square coaxial waveguide and its characteristic impedance 
 
As follows from these equations, which are defined for the coaxial transmission lines with 
continuous and smooth inner and outer conductive boundaries, the characteristic 
impedance will have the same magnitude for round and square cases if the diameter of 
outer boundary of the round transmission line and the side of the square transmission line 
will satisfy the following identity: 
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It should be noted that Eq.7 is valid if other parameters of round and square coaxial 
transmission lines such as the diameter of the inner conductor and constitutive parameters 
(such as relative permittivity,   and relative permeability,  ) of the isolating material are 
the same. 
So, first of all, a validation of the coaxial waveguide model will be provided in such manner. 
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vias with round and square arrangements of ground vias around the signal via. To verify 
this feature, round and square shield vias with mmDc 2.3 and mmDs 967.2  have been 
considered. Cross-sectional views of these via structures are presented in Figs.16a and 16b. 
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Fig. 16a. Shield via with round arrangement of ground vias 
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Fig. 16b. Shield via with square arrangement of ground vias 
 
Other dimensions of aforementioned shield via structures are as following (see Fig.17): 

mmd pad 95.0 , mmd rcle 65.1,  , mmd scle 53.1,   and mmds 65.0 . The shield via structures have 
been embedded in the substrate which consists of eight copper planar conductor layers 
isolated by FR-4 material with the relative permittivity of 17.4  and loss tangent of 

023.0tan   as assumed in simulations. Spaces between planar conductor layers as shown in 
Fig.17 are: mmH 2.01  , mmH 385.02   and mmH 24.03  ; the thickness of conductor planes 
embedded in the substrate is mmt 035.0 ; the thickness of top and bottom conductor planes 
is mmtt bt 055.0 . 
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Fig. 17. Vertical cross-section view of shield via in 8-conductor-layer substrate 
 
In Figs.18a and 18b, magnitudes of simulated S-parameters for two shield vias with round 
( mmDc 2.3 ) and square ( mmDs 967.2 ) arrangements of the ground vias in the 8-conductor-
layer substrate are presented. As follows from simulated S-parameter data shown in these 
figures, structures with round and square arrangements of ground vias having transverse 
dimensions defined according to Eq.7 demonstrate practically the same electrical 
performance in considered frequency band. It means also that the characteristic impedance 
in structures presented is the same one and, as a result, aforementioned shield vias are 
practically equivalent. 
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Fig. 18a. Simulated return losses for two shield vias with round and square arrangements of 
ground vias 
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vias with round and square arrangements of ground vias around the signal via. To verify 
this feature, round and square shield vias with mmDc 2.3 and mmDs 967.2  have been 
considered. Cross-sectional views of these via structures are presented in Figs.16a and 16b. 
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Fig. 17. Vertical cross-section view of shield via in 8-conductor-layer substrate 
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Fig. 18a. Simulated return losses for two shield vias with round and square arrangements of 
ground vias 
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Fig. 18b. Simulated insertion losses for two shield vias with round and square arrangements 
of ground vias 

 
Simulated results presented in Fig. 18a and 18b serve a proof of a simplified mechanism for 
signal propagations in the shield via formed by signal and ground vias conjointly as in the 
corresponding coaxial waveguide with smooth and continuous conductive boundaries. This 
consideration gives a way to define the characteristic impedance of the shield via in the 
multilayer substrate that is important to design well-matched interconnected circuits using 
multilayer substrate technologies. 
Note that the corrugation depth for considered round and square coaxial waveguides is the 
same due to the appropriate choice of the clearance hole form and dimensions. In these 
cases, the round shield via has the round clearance hole, while the square shield via has the 
square clearance hole. Also, dimensions of the clearance holes are defined according to Eq.7. 
Above-mentioned data have been obtained by three-dimensional full-wave simulations 
which usually give an adequate description of electromagnetic processes in a test structure. 
However, each theoretical model is idealized one, which does not include the frequency 
dependency of board isolating material, roughness and tolerances of shapes of conductive 
surfaces, and so on. That is why the experimental study of test structures serves not only as 
an evidence of their theoretical models but also gives a real wide-frequency band behavior 
of the structures studied. 
In following Fig.19a and 19b, measured magnitudes of S-parameters for the shield vias 
whose simulated data are respectively presented in Figs. 18a and 18b are shown and 
demonstrate the electrical behavior similar to their simulation models. As follows from 
theoretical and experimental data, characterization of the shield vias in the multilayer 
substrate as specific coaxial waveguides is a vital and useful approach to design high-
frequency and high-speed electrical vertical transitions. 
 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-40

-35

-30

-25

-20

-15

-10

-5

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-40

-35

-30

-25

-20

-15

-10

-5

0

|S 11
|, 

dB

Frequency, GHz

measurement
 Dc = 3.2mm
 Ds = 2.967mm

 
Fig. 19a. Measured return losses for two vertical transitions with round and square 
arrangements of ground vias 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0

|S 21
|, 

dB

Frequency, GHz

measurement
 Dc = 3.2mm
 Ds = 2.967mm

 
Fig. 19b. Measured insertion losses for two equivalent vertical transitions with round and 
square arrangements of ground vias 
 
As another verification of the corrugated coaxial waveguide model and also as 
recommended design steps based on the application of this model, an effect of the distance 
between signal and ground vias on the electrical performance of the shield via is presented. 
Two square arrangements of ground vias having mmDs 04.2 and mmDs 967.2 (other 
parameters are the same as in aforementioned cases, except that the clearance hole has the 
side mmd scle 16.1,  ) have been considered here that approximately corresponds characteristic 
impedances calculated according to Eq.6 as OhmsZsq 36  and OhmsZsq 47 . Measurement 
data for these shield vias are shown in Figs.20a and 20b.  Note that top and bottom parts of 
the shield vias considered were connected to 50Ohms coaxial cables. As follows from figures 
presented the highest electrical performance in all frequency band (up to 15GHz) is achieved 
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Fig. 18b. Simulated insertion losses for two shield vias with round and square arrangements 
of ground vias 
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corresponding coaxial waveguide with smooth and continuous conductive boundaries. This 
consideration gives a way to define the characteristic impedance of the shield via in the 
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Fig. 19a. Measured return losses for two vertical transitions with round and square 
arrangements of ground vias 
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Fig. 19b. Measured insertion losses for two equivalent vertical transitions with round and 
square arrangements of ground vias 
 
As another verification of the corrugated coaxial waveguide model and also as 
recommended design steps based on the application of this model, an effect of the distance 
between signal and ground vias on the electrical performance of the shield via is presented. 
Two square arrangements of ground vias having mmDs 04.2 and mmDs 967.2 (other 
parameters are the same as in aforementioned cases, except that the clearance hole has the 
side mmd scle 16.1,  ) have been considered here that approximately corresponds characteristic 
impedances calculated according to Eq.6 as OhmsZsq 36  and OhmsZsq 47 . Measurement 
data for these shield vias are shown in Figs.20a and 20b.  Note that top and bottom parts of 
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for the shield via with mmDs 967.2 . This shield via is better matched to 50Ohm cables that is 
an indirect validation of the coaxial waveguide model. However this is only one important 
point of the physical model presented because corrugations are another its key point. 
Thus, as next, the clearance hole effect on the electrical performance of the shield via is 
shown that is associated with the corrugation depth in the physical model presented. 
Measurement data for two shield vias with different dimensions of the clearance hole are 
demonstrated in Fig.21a and 21b.  
The shield vias have the same dimensions and are embedded in the same 8-conductor-layer 
substrate, as in above-mentioned examples. In considered shield vias, clearance holes have 
the square form with the side of mmd scle 53.1,  and 1.16mm and for both shield vias 

mmDs 967.2 . As one can see increasing the clearance hole dimensions leads to a 
considerable improvement of the electrical performance of the shield via in the wide 
frequency band. 
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Fig. 20a. Measured return losses for shield vias with square arrangements of ground vias 
(effect of distance between signal and ground vias) 
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Fig. 20b. Measured insertion losses for shield vias with square arrangements of ground vias 
(effect of distance between signal and ground vias) 
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Fig. 21a. Measured return losses for shield vias with square arrangements of ground vias 
(clearance hole effect) 
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Fig. 21b. Measured insertion losses for shield vias with square arrangements of ground vias 
(clearance hole effect) 
 
As a result of these considerations, two main points can be categorized as a basis which can 
provide a high-performance vertical transition in the form of the shield via. They are 
obtained as following from the corrugated coaxial waveguide model given here. 
1) Signal via transversal dimensions and distance between signal and ground vias in a 
shield via have to be chosen in such way to provide a required characteristic impedance 
calculated according to an appropriate coaxial transmission line corresponding to the shield 
via.  
2) A clearance hole has to provide minimal corrugations of the ground plates in the coaxial 
wave guiding channel.  
As one can see, in presented examples, cases when signal is propagating from the top to the 
bottom of the multilayer substrate are considered. However in real applications, the shield 
via has to be connected to a planar transmission line disposed at a conductive layer of a 
multilayer substrate. And this connection can not be decided in a simple way at microwaves 
and millimeter waves and, that is why, it becomes an important issue. In following 
paragraph, a technique to provide a high-performance transition from the shield via to the 
planar transmission line will be shown. 
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Fig. 20a. Measured return losses for shield vias with square arrangements of ground vias 
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Fig. 20b. Measured insertion losses for shield vias with square arrangements of ground vias 
(effect of distance between signal and ground vias) 
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Fig. 21a. Measured return losses for shield vias with square arrangements of ground vias 
(clearance hole effect) 
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Fig. 21b. Measured insertion losses for shield vias with square arrangements of ground vias 
(clearance hole effect) 
 
As a result of these considerations, two main points can be categorized as a basis which can 
provide a high-performance vertical transition in the form of the shield via. They are 
obtained as following from the corrugated coaxial waveguide model given here. 
1) Signal via transversal dimensions and distance between signal and ground vias in a 
shield via have to be chosen in such way to provide a required characteristic impedance 
calculated according to an appropriate coaxial transmission line corresponding to the shield 
via.  
2) A clearance hole has to provide minimal corrugations of the ground plates in the coaxial 
wave guiding channel.  
As one can see, in presented examples, cases when signal is propagating from the top to the 
bottom of the multilayer substrate are considered. However in real applications, the shield 
via has to be connected to a planar transmission line disposed at a conductive layer of a 
multilayer substrate. And this connection can not be decided in a simple way at microwaves 
and millimeter waves and, that is why, it becomes an important issue. In following 
paragraph, a technique to provide a high-performance transition from the shield via to the 
planar transmission line will be shown. 
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3. Broadband Trasition from a Shield Via Structue to a Planar Transmission 
Line in a Multilayer Substrate 
 

Thus, development of a vertical transition itself is not enough to provide a high-
performance interconnection at microwaves and millimeter waves. It is important to match 
such vertical transition with other interconnected ciruits (Kushta & Harada, 2008), including 
a planar transmission line as for an example. 
In Figs.22a and 22b, cross-sectional views of a shield via in a 14-conductor-layer substrate 
are shown. The electrical performance of the via structure is strongly-dependent on the 
shape and dimensions of the clearance hole as it has been shown above. 
In real design, dimensions of the clearance hole can be big enough due to a large distance 
between the signal via and ground vias which conjointly with the radius of the signal via 
and constitutive parameters of an isolating material in the multilayer substrate provide 
controlling the characteristic impedance in the shield via. In the case of connection of the 
shield via to a planar transmission line such clearance hole can excite characteristic 
impedance mismatching problems that will be shown in following example. 
Consider the model presented in Figs.22a and 22b in which the shield via is connected to a 
stripline disposed at the 12th conductor layer of the 14-conductor-layer substrate.  The 
shield via has such dimensions: mmds 6.0 ; mmd pad 2.1 ; mmd rcle 4.1,   or 

mmd rcle 4.3,  ; mmd rgr 3.0,  . 
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Fig. 22a. Horizontal cross-sectional view of shield via in multilayer substrate taken in the 
position of stripline 
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Fig.22b. Vertical cross-sectional view of shield via in multilayer substrate 

 

Note that two dimensions of the clearance hole are considered here. The multilayer subsrate 
formed by PCB technologies consists of fourteen copper planar layers isolated by the FR-5 
material of the relative permittivity of 78.3  as assumed in simulations. Spaces between 
planar conductor layers (see Fig.22b) are: mmhh 14.081  ; mmhh 335.032  ; 

mmh 56.04  ; mmh 15.05  ; mmhh 335.076  . The thickness of conductor planes embedded in 
the PCB is 0.035mm; the thickness of top and bottom conductor planes is 0.055mm. The 
signal conductor in the shield via is connected to the stripline by means of the pad having 
the same diameter, mmd pad 2.1 , as via pads at top and bottom conductor layers. The width 
of the stripline is mmwstr 14.0  providing the characteristic impedance of about 50Ohms. 
Here, both TDR (Time Domain Reflectometry) and S-parameter data obtained by the use of 
the 3-D full-wave electromagnetic simulator are presented. 
As input signal, the Gaussian pulse, shown in Fig.23, has been applied to stimulate a test 
model. Note the width of applied pulse is short (about 40ps at the 0.5-amplitude level). This 
corresponds a high-speed data transmission system. 
Characteristic impedance in time domain is calculated according to following well-known 
equation: 
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where 0Z  is the characteristic impedance of input and output ports of the test structure and 

)(t  is the reflection coefficient from the test model taken in time domain. 
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Fig. 23. Input Gaussian pulse used in simulations 
 
In Fig.24, simulated results of the characteristic impedance are presented for models of two 
different clearance holes: The first is typical clearance hole defined by a technological 
process to provide a non-contact fabrication of the signal via and conductor layers in the 
PCB (for this case, mmd rcle 4.1,  ); The second is an optimized clearance hole ( mmd rcle 4.3,  ) 
obtained according to the corrugated coaxial waveguide model presented. 
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Note that two dimensions of the clearance hole are considered here. The multilayer subsrate 
formed by PCB technologies consists of fourteen copper planar layers isolated by the FR-5 
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the same diameter, mmd pad 2.1 , as via pads at top and bottom conductor layers. The width 
of the stripline is mmwstr 14.0  providing the characteristic impedance of about 50Ohms. 
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the 3-D full-wave electromagnetic simulator are presented. 
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where 0Z  is the characteristic impedance of input and output ports of the test structure and 
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Fig. 23. Input Gaussian pulse used in simulations 
 
In Fig.24, simulated results of the characteristic impedance are presented for models of two 
different clearance holes: The first is typical clearance hole defined by a technological 
process to provide a non-contact fabrication of the signal via and conductor layers in the 
PCB (for this case, mmd rcle 4.1,  ); The second is an optimized clearance hole ( mmd rcle 4.3,  ) 
obtained according to the corrugated coaxial waveguide model presented. 
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Fig. 24. Characteristic impedance in time domain for the test models 
 
As one can see, a large impedance mismatching for the model comprising the shield via 
with the typical clearance hole is excited by an excess capacitance reactance due to coupling 
between the signal via and conductor planes of the PCB. 
Optimized clearance hole removed the effect of excess capacitive reactance and considerably 
improved the electrical performance of the model as it can be traced from simulated S-
parameter data presented in Figs.25a and 25b.  
In spite of a considerable improvement of the interconnection comprising the shield via with 
the clearance hole optimized, another problem is appeared in the transition from the signal 
via to the stripline. This is impedance mismatching due to excess inductive reactance (see 
Fig.24) which is originated by the strip segment disposed between the signal via pad and the 
stripline. This segment acts as a flat wire inductor for which the characteristic impedance 
can be approximately represented by the following formula: 
 

LfiXZ ww  2 ,        (9) 
 

where wX  is the inductive reactance of the strip, f is frequency, and L is the inductance of 
the strip segment. 
To provide the characteristic impedance matching in the transition from the signal via pad 
to the planar transmission line in a multilayer substrate, a method to compensate the excess 
inductive reactance of the strip segment in the area of the clearance hole has been developed. 
Basis of this method can be traced by a block diagram shown in Fig.26, in which an 
additional capacitance reactance, addadd fCX  21 , is introduced to reduce or to suppress the 
effect of the excess inductive reactance of the strip segment. 
 

 

0 2 4 6 8 10 12 14 16 18 20
-14

-12

-10

-8

-6

-4

-2

0
0 2 4 6 8 10 12 14 16 18 20

-14

-12

-10

-8

-6

-4

-2

0

|S
21

|, 
dB

Frequency, GHz

 typical clearance hole
 optimized clearance hole

 
Fig.25a. Simulated insertion loss for the model shown in Figs.22a and 22b 
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Fig.25b. Simulated return losses for the models shown in Figs.22a and 22b 
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Fig.26. Block diagram of signal propagation in the model shown in Figs.22a and 22b 
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Fig. 24. Characteristic impedance in time domain for the test models 
 
As one can see, a large impedance mismatching for the model comprising the shield via 
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Fig.25a. Simulated insertion loss for the model shown in Figs.22a and 22b 
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Fig.25b. Simulated return losses for the models shown in Figs.22a and 22b 
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Fig.26. Block diagram of signal propagation in the model shown in Figs.22a and 22b 
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The additional capacitance can be obtained by forming a transition from the signal via pad 
to the stripline as the liner taper of the strictly-defined length. Note that the taper length, in 
this case, is an important parameter to control the magnitude of the additional capacitance 
and, as a result, the characteristic impedance matching in the considered model. In Fig.27, 
the horizontal cross-section view is presented for the same model as in Figs.22a and 22b, but 
only here a linear taper is formed as the transition from the signal via pad to the stripline. 
The dimensions of the via-stripline structure and parameters of the PCB are the same as for 
Figs.22a and 22b. 
The effect of the taper length is presented in Fig.28 by means of TDR data. In this figure, 
four characteristic cases of via-to-stripline transitions are presented: The first is the model 
without application of the compensating method; The second is the transition formed as the 
linear taper for which the length is equal to the radius of the clearance hole; The third is the 
optimal taper length application; The fourth is the transition in which a long taper is used. 
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Fig. 27. Horizontal cross-sectional view of shield via in multilayer board taken in the 
position of stripline. 
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Fig. 28. Characteristic impedance in time domain  
 
As follows from this figure, a good impedance matching (within Ohms5  or 10% of the 
nominal value) is achieved by the use of the linear taper having the length of l=2.1mm. Note 
that this length is larger than the radius of the optimal clearance hole used in the via 
structure. 

 

On the one hand, the taper with the length equal to the radius of the clearance hole shows 
the higher excess inductive reactance than indicated nominal value (50Ohms). On the other 
hand, the long taper (2.95mm for presented test structure) leads to a high excess capacitance 
reactance. 
Thus, a key point to realize a high-performance transition from the via pad to the planar 
transmission line is not only the use of the compensating part in the form of a linear taper 
but also its strictly-defined length as follows from data demonstrated in Fig.28. 
Such result can be also traced by means of magnitudes of S-parameter data presented in 
Fig.29a and 29b in the frequency band up to 20GHz. These figures shows that the model 
with the linear taper of the optimal length (l=2.1mm) has the highest electrical performance 
compared with other transitions used. 
To verify simulated results, experimental patterns of the same models disposed in the FR-5 
multilayer board have been designed. In the measurement system, the SMA connectors have 
been used to provide the connection of the test model and a vector network analyzer. In 
Fig.30, a block diagram of the experimental patterns is presented. 
In Fig.31, photo of bottom view of the test model is demonstrated. Also in Fig.32, photo of 
the total view of the top side of experimental patterns is shown. 
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Fig. 29a Simulated insertion loss for test models 
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Fig. 29b Simulated return loss for test models 
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Fig. 27. Horizontal cross-sectional view of shield via in multilayer board taken in the 
position of stripline. 
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Fig. 28. Characteristic impedance in time domain  
 
As follows from this figure, a good impedance matching (within Ohms5  or 10% of the 
nominal value) is achieved by the use of the linear taper having the length of l=2.1mm. Note 
that this length is larger than the radius of the optimal clearance hole used in the via 
structure. 

 

On the one hand, the taper with the length equal to the radius of the clearance hole shows 
the higher excess inductive reactance than indicated nominal value (50Ohms). On the other 
hand, the long taper (2.95mm for presented test structure) leads to a high excess capacitance 
reactance. 
Thus, a key point to realize a high-performance transition from the via pad to the planar 
transmission line is not only the use of the compensating part in the form of a linear taper 
but also its strictly-defined length as follows from data demonstrated in Fig.28. 
Such result can be also traced by means of magnitudes of S-parameter data presented in 
Fig.29a and 29b in the frequency band up to 20GHz. These figures shows that the model 
with the linear taper of the optimal length (l=2.1mm) has the highest electrical performance 
compared with other transitions used. 
To verify simulated results, experimental patterns of the same models disposed in the FR-5 
multilayer board have been designed. In the measurement system, the SMA connectors have 
been used to provide the connection of the test model and a vector network analyzer. In 
Fig.30, a block diagram of the experimental patterns is presented. 
In Fig.31, photo of bottom view of the test model is demonstrated. Also in Fig.32, photo of 
the total view of the top side of experimental patterns is shown. 
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Fig. 29a Simulated insertion loss for test models 
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Fig. 29b Simulated return loss for test models 
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In Fig. 33 and 34, measured time-domain responses from the test models without the 
compensating technique application and with the taper optimized are respectively 
presented. 
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Fig. 30. Block diagram of experimental pattern 
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Fig. 31. Photo of experimental pattern (bottom view) of the test model 
 

 

 
Fig. 32. Photo of experimental patterns (top view) of test models 
 
As one can see in Fig. 33, measured TDR data demonstrate impedance mismatching up to 
63Ohms in the area of the connection of the shield via having the characteristic impedance of 
about 50Ohms and the 50Ohms stripline. Also, presented measurement results are in a good 
agreement with the simulated data demonstrated in Fig.28. 
Experimental data shown in Fig.34 make an approval of effectiveness of the use of the taper 
of the strictly-defined length to compensate the excess inductive reactance excited in the 
area of the clearance hole of the via-to-stripline transition. Thus, the use of the linear taper of 
l=2.1mm leads to impedance matching within ±10% of the nominal value 50Ohms (see 
Fig.34) that is corresponding to simulation data.  
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Fig. 33. Characteristic impedance in time domain for the test model without application of 
linear taper between signal via pad and stripline 
 

54.5Ohms

 
Fig. 34. Characteristic impedance in time domain for the test model with application of 
optimal linear taper (l=2.1mm) between signal via pad and stripline  
 
Compensating method to improve impedance matching between a via structure and a 
planar transmission line disposed in a multilayer substrate is presented here. This method is 
a powerful technique to obtain high-performance electrical interconnections in high–speed 
multilayer substrates  in which a liner taper of the strictly-defined length between the signal 
via pad and the planar transmission line is used to compensate the excess inductive 
reactance and to achieve required impedance matching. 

 
4. Bandpass and Bandstop Filter Design Using Shield Via Approach 
 

Two above-mentioned sections serve a good basis for development of high-performance 
interconnections and can be applied in high-frequency and high-speed multilayer substrates 
of present and next-generation communication and computing equipment. 
Key point of this paragraph is a promotion of an approach using shield vias presented as a 
basis for providing miniaturization of both systems and components. Positioning of these 
directions is shown in Fig.35. 
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Two above-mentioned sections serve a good basis for development of high-performance 
interconnections and can be applied in high-frequency and high-speed multilayer substrates 
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Fig. 35. Target of development of a component by means of the use of a shield via 
 
So, we will start directly from an interconnected circuit which has been developed to realize 
the approach (Kushta et al., 2005; Kushta & Harada, 2008). Characteristic feature of this 
configuration is shown in Fig.36.  
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Fig. 36. A combined via structure in a multilayer substrate to form an open-circuited stub 
 
First of all, a combined via structure, which includes two functional parts, is a 
distinguishing point. Consider each functional part in details.  
The first functional part of the composite via structure is extended in the vertical direction 
from the top conductor layer to the signal conductor layer (where a stripline is disposed) of 
the multilayer substrate (see Fig.36). This functional part, formed as a shield via segment, 
provides impedance-matched low-loss signal transmission between signal pad disposed at 
the top conductor layer and stripline formed at signal conductor layer (third conductor layer 
in the structure presented). Its design can be made on the basis of the corrugated coaxial 
waveguide model given here. 
The second functional part is extended in the vertical direction from the signal conductor 
layer to the bottom conductor layer. This functional part of the combined via structure 
serves to obtain a resonant stub. The resonant stub, besides the signal via surrounded by 
ground vias, comprises conductive plates connected to the signal via and separated from 
ground conductors by isolating slits. 
Each functional part of the combined via can be characterized as a transmission line with 
appropriate characteristic impedance and propagation constant.  

2) System Minituarization 
due to Efficient Use of  

Substrate Layout 

1) Component Minituarization  
due to 3-D Design 

 

Electromagnetic properties of the first functional part can defined by means the 

characteristic impedance   ,,1 drfZ and propagation constant 



c1 , wherein 

  ,,1 drfZ  shows a dependency of the characteristic impedance on transverse dimensions 
of the signal via, r, distance between the signal via and ground vias, d, and relative 
permittivity of an isolating material filling in the multilayer substrate,  ;   is the angular 
frequency, c is the velocity of light in free space. 
For the second functional part, the characteristic impedance and propagation constant can 

be represented as following:  effdrfZ  ,,2  and effc



2 , wherein, besides dimensional 

dependency for the characteristic impedance similar to the first functional part, the second 
functional parameters are a function of eff  which is dependent on dimensions and form of 
the conductive plates connected to the signal via, the distance between these conductive 
plates in the vertical direction, and the relative permittivity of the isolating material filling in 
the multilayer substrate. 
Thus, by means of the combined via structure, we have obtained a cost-effective approach to 
design a miniaturized stub in which the resonant frequency is dependent on the stub length, 
l0, and eff , which can be much higher (!) than the relative permittivity of the substrate 
isolating material and in such way providing compactness of a filter using such stub. 
Consider a representative example of the combined via structure used to form the open-
circuited stub for which top, bottom and cross-sectional views are shown in Figs.37a, 37b, 
37c and 37d.  
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First of all, a combined via structure, which includes two functional parts, is a 
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design a miniaturized stub in which the resonant frequency is dependent on the stub length, 
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c) Horizontal cross-sectional view at signal layer 
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d) Vertical cross-sectional view 
Fig. 37. Open-circuited stub formed by combined via structure in 8-conductor-layer PCB 
 
Here, the stub is formed as a part of the shield via between the stripline disposed at the third 
conductor layer and pad formed at the bottom conductor layer of an 8-conductor-layer PCB 
Copper planar conductor layers of this PCB are isolated by the FR-4 material with the 
relative permittivity of 17.4  as assumed in simulations. Arrangement of ground vias in 
the shield via has a square contour. Dimensions of the shield via (see Figs.37a, 37b, 37c, and 
37d) are as following:  mmdr 65.0 ,    mmdcle 65.1 , mmd p 95.0 , mmd grr 25.0,  , 

mmlgr 66.1 , mmlgr 83.01,  , mmDsq 32.3 . 
Conductive plates connected to the signal via to control the resonance frequency of the stub 
by means eff  have a square form with side of mmdadd 1.1 . The plates are separated from 

ground plates at the conductor layers by isolating slits of mmwsl 2.0 .  
Total thickness of the PCB including all conductor layers is 1.847mm. The thickness of the 
conductor layers is as follows: 0.062mm for layer 1; 0.069mm for layer 8; 0.035mm for layers 2, 
3, 4, 5, and 6. The distance between conductor layers is as follows: 0.146mm is between layers 
1 and 2; 0.123mm is between layers 2 and 3; 0.138mm is between layers 3 and 4; 0.677mm is 
between layers 4 and 5; 0.138mm is between layers 5 and 6; 0.138mm is between layers 6 and 

 

7; and 0.146mm is between layers 7 and 8. Width of the stripline, stw , at the third layer is 
0.19mm. 
In simulations, the same 3-D full-wave electromagnetic field solver has been used. 
Electromagnetic properties of such open-circuited stub are studied by means of S-parameter 
matrices in the frequency band up to 20GHz and are presented in Fig.38. Note that in these 
simulations signal is propagating between the pad of the combined via structure at the top 
conductor layer and the end of the stripline embedded in the PCB. From presented results 
the bandstop effect of the open-circuited stub at the central frequency of about 8GHz  is 
clearly traced. This example demonstrates a possibility to form a filter using such open-
circuited stub as a building block. The resonance frequency, rof , of the open-circuited stub 
can be defined as following: 
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where ol  is the length of the stub (or the second functional part in the vertical direction) as 
shown in Fig.37d.  
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Fig. 38. Simulated insertion ( 21S -parameter) and return ( 11S -parameter) losses for open-
circuited stub in 8-conductor-layer PCB 
 
In the similar manner, a short-circuited stub can be obtained by means of another combined 
via structure in a transition from this via structure to a stripline as presented in Fig.39. In 
this case, the pad of the second functional part disposed at the bottom conductor layer is 
connected to the ground plane. Magnitudes of S-parameters for such configuration are 
demonstrated in Fig.40. Dimensions of the via structures, conductor plates connected to the 
signal via, stripline, and PCB are the same as for the aforementioned open-circuited stub 
case. Shown data demonstrate the bandpass effect with the central resonance frequency 
about 13GHz. This resonance frequency can be defined for this structure as following: 
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d) Vertical cross-sectional view 
Fig. 37. Open-circuited stub formed by combined via structure in 8-conductor-layer PCB 
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Fig. 38. Simulated insertion ( 21S -parameter) and return ( 11S -parameter) losses for open-
circuited stub in 8-conductor-layer PCB 
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It is important to note that effseffo  , because different number of conductive plates is used 
to form the effective medium in short-circuited and open-circuited stubs. As one can see 
from Figs. 38 and 40, conductive plates connected to the signal via are powerful parameter 
to control resonance characteristics of both open- and short-circuited stubs. 
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Fig. 39. A combined via structure in a multilayer substrate to form a short-circuited stub 
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Fig. 40. Simulated insertion and return losses for short-circuited stub 
 
As the next step, it will be shown here that the combined via structures can be effectively 
used to form high-performance filtering components. In Figs.41a and 41b, 41c and 41d, top 
and bottom views, horizontal and vertical cross-sectional views of a bandpass filter are 
shown, respectively. This filter is designed by the use of two identical combined via 
structures (discussed above) forming short-circuited stubs in the 8-conductor-layer PCB. 
Photographs of an experimental pattern of such bandpass filter are presented in Fig.42. 
Dimensions of the shield via, conductive plates connected to the signal vias, isolating slits, 
stripline connecting two signal vias, and PCB are the same as for the combined via structure 
forming aforementioned short-circuited stub. The distance between the centers of signal via 
conductors, fL , is 3.32mm. Input and output ports of the filter are at the pads of the signal 
vias as shown in Fig.41d. 

 

Simulated data of magnitudes of S-parameters for the considered bandpass filter in the 8-
conductor-layer PCB are shown in Fig.43. In this figure one can define clearly-expressed 
bandpass properties of the filter in the frequency band from about 9GHz to 15GHz. 
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Fig. 41. Bandpass filter in 8-conductor-layer PCB 
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Fig. 39. A combined via structure in a multilayer substrate to form a short-circuited stub 

0 2 4 6 8 10 12 14 16 18 20
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
0 2 4 6 8 10 12 14 16 18 20

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

 

S-
Pa

ra
m

et
er

Frequency, GHz

simulation
 |S21|, dB
 |S11|, dB

frsh

 
Fig. 40. Simulated insertion and return losses for short-circuited stub 
 
As the next step, it will be shown here that the combined via structures can be effectively 
used to form high-performance filtering components. In Figs.41a and 41b, 41c and 41d, top 
and bottom views, horizontal and vertical cross-sectional views of a bandpass filter are 
shown, respectively. This filter is designed by the use of two identical combined via 
structures (discussed above) forming short-circuited stubs in the 8-conductor-layer PCB. 
Photographs of an experimental pattern of such bandpass filter are presented in Fig.42. 
Dimensions of the shield via, conductive plates connected to the signal vias, isolating slits, 
stripline connecting two signal vias, and PCB are the same as for the combined via structure 
forming aforementioned short-circuited stub. The distance between the centers of signal via 
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Fig. 42. Photos of top and bottom views of the experimental pattern of the filter 
 

0 2 4 6 8 10 12 14 16 18 20
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
0 2 4 6 8 10 12 14 16 18 20

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

S-
Pa

ra
m

et
er

Frequency, GHz

simulations
 |S21|, dB
 |S11|, dB

 
Fig. 43. Simulated insertion and return losses for bandpass filter formed by two short-
circuited stubs  
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Fig. 44. Measured insertion and return losses for bandpass filter formed by two short-
circuited stubs  
 

 

Experimental verification of the bandpass filter presented and proposed 3-D approach are 
shown in Fig.44. In this figure, measured data for the filter having the same dimensions as 
for Fig.43 are presented. These data demonstrate similar bandpass characteristics and are in 
a good agreement with the simulation results. 
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Fig. 45. Cross-sectional view of filter formed by two open-circuited stubs 
 
Another type of filters can be obtained if open-circuited stubs will be used instead of short-
circuited ones. Cross-section view of such filter is presented in Fig.45.  
In Fig.46, simulated magnitudes of S-parameters are shown. This filter demonstrates clearly-
expressed bandstop properties with the central frequency of about 8GHz. 
As a validation of simulated results, in Fig.47, measured data for the filter are presented. As 
one can see, these data are corresponding to simulation with a good accuracy, including the 
central frequency. 
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Fig. 46. Simulated insertion and return losses for bandpass filter formed by two short-
circuited stubs in 8-conductor-layer PCB 
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Fig. 42. Photos of top and bottom views of the experimental pattern of the filter 
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Fig. 43. Simulated insertion and return losses for bandpass filter formed by two short-
circuited stubs  
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Fig. 44. Measured insertion and return losses for bandpass filter formed by two short-
circuited stubs  
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Fig. 45. Cross-sectional view of filter formed by two open-circuited stubs 
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circuited ones. Cross-section view of such filter is presented in Fig.45.  
In Fig.46, simulated magnitudes of S-parameters are shown. This filter demonstrates clearly-
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As a validation of simulated results, in Fig.47, measured data for the filter are presented. As 
one can see, these data are corresponding to simulation with a good accuracy, including the 
central frequency. 
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Fig. 47. Measured insertion and return losses for bandpass filter formed by two short-
circuited stubs in 8-conductor-layer PCB 
 
Developed approach can be applied to obtain a multipole filter. In Fig.48, a compact four-
pole bandpass filter is presented. This filter consists of four identical short-circuited stub 
elements (as in two-pole filter) connected by the stripline. In Fig.49, simulated S-parameters 
for the filter are shown. As one can see, the increase of quantity of stub elements can control 
bandpass characteristics. In present example, it leads to sharpening the pass band compared 
with the two-pole filter. 
 

 
Fig. 48. Cross-sectional view at the signal layer of the  bandpass filter formed by four short-
circuited stubs in 8-conductor-layer PCB 
 
Thus, these examples of the bandpass and bandstop filters demonstrate applicability of 
presented approach to design compact and cost-effective filtering components using shield 
vias in a multilayer substrate.  
Required frequency band and desired characteristics of the filter can be achieved by an 
appropriate choice of dimensions and quantity of the short-circuited or open-circuited stubs. 
Also, an optimization of the parameters of the filter can be provided by the determination of 
an appropriate distance between the stubs. Such design techniques will be studied and 
presented in the future in details. 
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Fig. 49. Simulated insertion and return losses for bandpass filter formed by four short-
circuited stubs in 8-conductor-layer PCB 

 
5. Conclusion 
 

In this chapter, advantages of shield vias disposed in a multilayer substrate at the higher 
frequencies have been shown. These structures have low leakage losses, well-controlled 
characteristic impedance and definite propagation constant. Presented physical model for 
the electromagnetic behavior of the shield via is consistent with results obtained by 
simulations and measurements and can be used for optimum design of vertical transitions 
in multilayer substrates for high-speed and high-frequency applications. Moreover, vertical 
transitions demonstrating the electrical performance similar to planar transmission lines can 
be obtained in multilayer substrate structures. 
Also, a powerful 3-D approach to design filtering components using shield vias is presented 
here. A distinguishing point of this approach is a combined via structure comprising two 
functional parts. The first functional part is responsible for low-loss signal transmission in a 
wide frequency band and can be design by means of the corrugated coaxial waveguide 
model presented here for shield via. The second functional part serves to form a compact 
short-circuited or open-circuited resonant stub acting as a building block of a filter and 
comprises conductor plates connected to the signal via to control characteristic impedance 
and propagation constant in this functional part. Simulation and measurement data for 
bandpass and bandstop filters presented demonstrate applicability of the approach to 
design compact and cost-effective filters for highly integrated systems at microwave and 
millimeter waves with an improved EMI performance. 
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Fig. 47. Measured insertion and return losses for bandpass filter formed by two short-
circuited stubs in 8-conductor-layer PCB 
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1. Introduction     
 

Impedance matching is an important aspect in the design of microwave and millimeter 
wave circuitry since impedance mismatches may severely deteriorate the overall 
performance of electronic systems. 
In high-power applications, the standing electromagnetic wave resulting from mismatch in 
a transmission line is highly undesirable as it leads to amplitudes of voltage and current 
which might be several times higher than those in a matched line. This can lead to 
disruption or even damage of the dielectric in the transmission line. A reflected 
electromagnetic wave can also result in frequency pulling of signal generators connected to 
the mismatched transmission line, thereby shifting the oscillation frequency from the 
desired. 
In transceiver applications, antenna mismatch leads to signal power loss and lower signal-
to-noise ratio, thereby deteriorating the overall transmit or receive performance. 
When designing low-noise amplifiers, it is often required to control the input network 
mismatch. Generally, it is not possible to design an amplifier which has the optimum input 
impedance for minimum noise figure equal in value to the optimum impedance for 
maximum gain. The input network is then should be mismatched in order to provide a low-
noise operation. 
Impedance transformers can also be effectively used to improve selectivity of resonant 
circuits and are very useful in filter design. Low values of source and load impedance 
decrease the loaded quality factor Q and increase the bandwidth of a given resonant circuit. 
This makes it very difficult to design even a basic LC high-Q resonant circuit for use 
between two very low values of source and load resistances. A common method to 
overcome this problem is to use impedance transforming circuits to present the resonant 
circuit with a source or load resistance that is much larger than what is actually present. 
Consequently, by utilizing impedance transformers, both the Q of the resonator and its 
selectivity can be increased. 
Matching a complex impedance in a wide frequency range is most commonly achieved by 
using one of the following techniques: 

- passive two-port networks consisting of reactive components; 
- passive two-port networks consisting of resistive components; 

14
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Wideband matching can also be achieved by means of ferrite circulators in which the 
reflected wave is guided to an absorbing load, and ferrite isolators in which the transmission 
losses are different for the incident and reflected waves. 
For a wideband matching, it is preferable to place the matching network as close as possible 
to the load, as it is illustrated in Fig. 1. 

 
Fig. 1. Voltage standing wave patterns. Placing of the matching network with regard to the 
generator for wideband (a), and narrowband (b) matching. 
 
This concept will be demonstrated in the later section 3.1 by considering an example of 
matching a complex load using shunt stubs. 
In this chapter, different techniques for wideband matching are presented. Sections 2 thru 4 
briefly present some of the well-known matching techniques while the use of coupled 
transmission lines for wideband matching is treated in depth in Section 5. The first part of 
the chapter includes a discussion of resistive and reactive lumped elements in Section 2, 
different types of stub matching in Section 3, and the use of series of transmission lines in 
Section 4. Since these techniques are all thoroughly treated in the literature, only the design-
considerations relevant for applying the techniques for wideband matching are treated here 
while the reader is referred to the literature for specifics, such as the relevant formulas for 
calculating the values of the different components.  
The use of coupled transmission lines for wideband impedance matching is not as widely 
used as the techniques described in sections 2 thru 4. Hence, in Section 5, a detailed 
presentation of this technique is given. 
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2. Matching Using Resistive and Reactive Lumped Elements 
 

Resistive elements or attenuators can be effectively used to lower the level of the reflected 
signal from the load in a very wide frequency range. It should be noted, though, that the 
efficiency of such matching networks is low because they attenuate not only the reflected 
but also the incident wave. 
Another type of matching network uses lumped reactive components to match a complex 
load impedance to a desired complex impedance. For moderate bandwidths, the component 
values of two-element matching networks can be found relatively easy by first choosing a 
pair of initial values on the basis of the Smith Chart and then applying computational 
optimization. To increase the bandwidth, more than two reactive elements are required. The 
synthesis and optimization of multi-element wideband matching circuits can be 
accomplished by means of software tools, which are currently available in a wide variety. 
The implementation of this type of transformers in microwave and millimeter wave range is 
limited due to the low Q-factor of lumped components. Therefore, lumped element 
matching is usually employed only at low frequencies, or in applications where compact 
size is a major requirement, e.g., in monolithic microwave integrated circuits design 
(Kinayman & Aksun, 2005). 
 
3. Stub matching 
 

This section is dedicated to matching circuits that use open-circuited or short-circuited 
transmission line sections, connected in parallel with the load or transmission feed line. This 
is a well developed matching technique which is often used in microwave and millimeter 
wave circuits.  In this section, some of the important operational principles and properties of 
shunt stub matching circuits are discussed. More detailed analysis of this type of matching 
technique is available in the literature (Pozar, 1998), (Kinayman & Aksun, 2005). 

 
3.1 Single-Stub Matching 
This is one of the most simple and convenient ways of matching a transmission line with a 
load which has real or complex impedance. This method was developed by Tatarinov V. V. 
in 1931 and is widely used for narrow-band matching in microwave and millimeter wave 
applications. It consists of a short circuited or open circuited stub and a piece of 
transmission line between the load and the stub. An example of the single-stub matching 
circuit is shown in Fig. 2.   
There are several choices of electric distance θd from the load to the matching stub. In the 
first case (Fig. 2 (a)), the distance between the load and matching stub is chosen as short as 
possible while this distance is chosen to be several times longer in the second case 
(Fig. 2 (b)). The responses of these two matching circuits are shown in Fig. 3. The 10 dB 
reflection loss bandwidth of the circuit in Fig. 2 (a) is 10.3 % while the same parameter for 
the circuit in Fig. 2 (b) is equal to 1.9 %. Thus, by using θd = 56.85° instead of θd = 282.05°, the 
bandwidth is increased by more than a factor of 5. 
There is also a difference in the wideband response of the matching circuits. The circuit with 
long distance between the load and the matching stub demonstrates more passbands in the 
same frequency range. 
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Wideband matching can also be achieved by means of ferrite circulators in which the 
reflected wave is guided to an absorbing load, and ferrite isolators in which the transmission 
losses are different for the incident and reflected waves. 
For a wideband matching, it is preferable to place the matching network as close as possible 
to the load, as it is illustrated in Fig. 1. 
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2. Matching Using Resistive and Reactive Lumped Elements 
 

Resistive elements or attenuators can be effectively used to lower the level of the reflected 
signal from the load in a very wide frequency range. It should be noted, though, that the 
efficiency of such matching networks is low because they attenuate not only the reflected 
but also the incident wave. 
Another type of matching network uses lumped reactive components to match a complex 
load impedance to a desired complex impedance. For moderate bandwidths, the component 
values of two-element matching networks can be found relatively easy by first choosing a 
pair of initial values on the basis of the Smith Chart and then applying computational 
optimization. To increase the bandwidth, more than two reactive elements are required. The 
synthesis and optimization of multi-element wideband matching circuits can be 
accomplished by means of software tools, which are currently available in a wide variety. 
The implementation of this type of transformers in microwave and millimeter wave range is 
limited due to the low Q-factor of lumped components. Therefore, lumped element 
matching is usually employed only at low frequencies, or in applications where compact 
size is a major requirement, e.g., in monolithic microwave integrated circuits design 
(Kinayman & Aksun, 2005). 
 
3. Stub matching 
 

This section is dedicated to matching circuits that use open-circuited or short-circuited 
transmission line sections, connected in parallel with the load or transmission feed line. This 
is a well developed matching technique which is often used in microwave and millimeter 
wave circuits.  In this section, some of the important operational principles and properties of 
shunt stub matching circuits are discussed. More detailed analysis of this type of matching 
technique is available in the literature (Pozar, 1998), (Kinayman & Aksun, 2005). 

 
3.1 Single-Stub Matching 
This is one of the most simple and convenient ways of matching a transmission line with a 
load which has real or complex impedance. This method was developed by Tatarinov V. V. 
in 1931 and is widely used for narrow-band matching in microwave and millimeter wave 
applications. It consists of a short circuited or open circuited stub and a piece of 
transmission line between the load and the stub. An example of the single-stub matching 
circuit is shown in Fig. 2.   
There are several choices of electric distance θd from the load to the matching stub. In the 
first case (Fig. 2 (a)), the distance between the load and matching stub is chosen as short as 
possible while this distance is chosen to be several times longer in the second case 
(Fig. 2 (b)). The responses of these two matching circuits are shown in Fig. 3. The 10 dB 
reflection loss bandwidth of the circuit in Fig. 2 (a) is 10.3 % while the same parameter for 
the circuit in Fig. 2 (b) is equal to 1.9 %. Thus, by using θd = 56.85° instead of θd = 282.05°, the 
bandwidth is increased by more than a factor of 5. 
There is also a difference in the wideband response of the matching circuits. The circuit with 
long distance between the load and the matching stub demonstrates more passbands in the 
same frequency range. 
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3.2 Double-Stub Matching 
Single-stub matching can match any load impedance, but it requires a variable electric 
length of the transmission line between the load and the stub. This poses practical 
difficulties for adjustable tuners. 

 
Fig. 2. Two single-stub matching solutions. (a) wideband, (b) narrowband. The load is 
matched at f0 = 1 GHz. 

 
Fig. 3. Magnitude of S11 versus offset frequency for the matching circuits in Fig. 2. Here, 
f0 = 1 GHz is the center frequency of operation. 
 
Therefore, it would be more useful to have the length fixed and still be able to match a wide 
range of load impedances. This can be achieved with double-stub matching, as shown in 
Fig. 4, which allows for an arbitrary electric distance between the load and the stub. 
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Fig. 4. Double-stub matching. The first stub can be placed at arbitrary distance from the 
load. 
 
It should be noted that stub spacings near 0 or λg/2 (where λg is the guided wavelength) lead 
to matching networks that are very frequency sensitive (Pozar, 1998), and consequently, 
very narrowband.  In practice, stub spacings are usually chosen as odd number of λg/8, for 
example λg/8, 3λg/8 or 5λg/8. 

 
3.3 Triple-Stub Matching 
The double-stub matching circuit can not match all load impedances. For a specified 
distance between two stubs, the matching is possible only for limited values of loads, which 
depend on amplitude and phase of the standing wave. This limitation arises from the fact, 
that the stub itself can not change the real part of the impedance at the point of connection to 
the transmission line. 
 This limitation can be overcomed by using a triple-stub matching as the one shown in 
Fig. 5.  

 
Fig. 5. Triple-stub matching. The first stub can be placed at arbitrary distance from the load. 
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Fig. 4. Double-stub matching. The first stub can be placed at arbitrary distance from the 
load. 
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It allows for an arbitrary distance between the load and the stub and also allows to match 
arbitrary load impedance. The operation of triple-stub matching circuit can be treated as a 
combination of two double-stub matching circuits and stub spacings are usually chosen as 
λg/4. 

 
4. Series Transmission Line Matching 
 

This section is dedicated to matching circuits that use series transmission lines, such as 
single section quarter-wave transformer, multisection transformers, and tapered 
transmission lines. 

 
4.1 The Quarter-Wave Transformer 
The quarter-wave transformer is one of the most simple and practical circuits for impedance 
matching, especially for matching of real load impedances. It is also possible to match a 
complex load using the quarter-wave transformer, but this requires an additional length of 
transmission line between the load and the quarter-wave transformer to transform the 
complex load impedance into a real impedance. A circuit employing a quarter-wave 
transformer is shown in Fig. 6. 

 
Fig. 6. A single section quarter-wave matching transformer. 
 
One of the main drawbacks of this transformer is the requirement to have available a 
transmission line with an impedance of 20101 ZZZ  . In some cases, e.g., matching with 

coaxial cable, the required quarter wave transmission line calls for a nonstandard value of 
the characteristic impedance.  

 
4.2. Transformers with Fixed Values of Characteristic Impedance 
Another useful type of series transformers are those which are based on transmission lines 
with the same characteristic impedances as the lines which should be matched. Such 
transformers are convenient for interconnection of standard lines as well as transmission 
lines with different geometry, where realization of transmission lines of arbitrary 
characteristic impedance involve difficulties. 
The simplest realization of such transformer is shown in Fig. 7 (a) and described in detail by 
(Aizenberg et al., 1985).  
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Fig. 7. Transformers with fixed values of characteristic impedance consisting of (a) two 
sections and (b) four sections. 
 
This transformer consists of two transmission line sections. The characteristic impedances of 
these lines are the same as impedances of lines to be matched. The length of one section is  
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where n = Z02/Z01 is the transformation ratio.  
For small values of n, the value of l approaches λg/12, implying that the total length of the 
transformer approaches λg/6. For increasing n, the value of l approaches 0. 
The operating frequency band of the described transformer is about 5 % narrower in 
comparison to the quarter-wave transformer, and its length for practical values of n is 1.5 - 2 
times shorter. 
The response of the transformer in Fig. 7 (a) is shown in Fig. 8 (curve (a)) and compared to 
the response of the conventional quarter-wave transformer (Fig. 8 curve (b)). For 
transformation ratio 2:1 the electrical length of the section in Fig. 7 (a) is equal to 28.1°. The 
achieved for this ratio bandwidth at 20 dB return loss level is 31 %. 
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It allows for an arbitrary distance between the load and the stub and also allows to match 
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where n = Z02/Z01 is the transformation ratio.  
For small values of n, the value of l approaches λg/12, implying that the total length of the 
transformer approaches λg/6. For increasing n, the value of l approaches 0. 
The operating frequency band of the described transformer is about 5 % narrower in 
comparison to the quarter-wave transformer, and its length for practical values of n is 1.5 - 2 
times shorter. 
The response of the transformer in Fig. 7 (a) is shown in Fig. 8 (curve (a)) and compared to 
the response of the conventional quarter-wave transformer (Fig. 8 curve (b)). For 
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Fig. 8. Comparison of matching characteristic of quarter-wave transformer (Fig. 6) and 
transformers with fixed values of characteristic impedance (Fig. 7). The transformation ratio 
is 2:1. Here, f0 is the center frequency of operation. 
 
A more broadband stepped impedance transformer is shown in Fig. 7 (b)). It consists of four 
sections with the length of the outermost sections being shorter than the length of sections in 
the middle. Fig. 8 (curve (c)) shows the magnitude of S11 for a transformer with the 
fallowing parameters: the transformation ratio is 2:1; θ1/θ2= l1/l2 = 0.35. 
Here  
 

θ1 = 2π l1/ λg ,   and    θ1 = 2π l1/ λg     (2) 
 
are the electrical lengths of the sections in  Fig. 7 (b). 
The total length of the transformer is 2l1 + 2l2 = 0.346λg. The achieved bandwidth at 20 dB  
return loss level is 71 %. The bandwidth and inband reflection level of this type of 
transformer depend on length of the sections (Aizenberg et al., 1985).  

 
4.3 Tapered Transmission Lines 
As described above, the bandwidth of the quarter-wave transformer is limited. In order to 
extend its operating frequency band, multisection transformers, with different characteristic 
impedance in each section, may be used. In contrast to the transformers described in the 
previous section, the lengths of the sections used in the multisection transformer can be 
chosen equal to each other. The desired reflection coefficient response as a function of 
frequency can be achieved by properly choosing the characteristic impedance of the 
transmission line sections. In the limit of an infinite number of sections, the multisection 
transformer becomes a continuously tapered line.  There are many ways to choose the taper 
profile. By changing the type of taper, one can obtain different passband characteristics.  
Several taper profiles may be considered: linear, exponential, triangular, and so on. 
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For a given taper length, the Klopfenstein taper has been shown to be optimum in the sense 
that the reflection coefficient is minimum over the passband (Pozar, 1998). Alternatively, for 
a specified level of reflection coefficient, the Klopfenstein taper yields the shortest matching 
section. However, it should be noted that the response of this taper has equal level of ripples 
in its passband. 
In many cases, the relation between the physical dimensions and the characteristic 
impedance of a guiding structure is complicated and the generation of an optimal tapering 
configuration is thus not a trivial task. This implies that a linear or exponential tapering of 
the physical dimensions of the transmission line is often chosen for practical 
implementations. 

 
5. Coupled Line Transformers 
 

In recent years, coupled transmission lines have been suggested as a matching element due 
to greater flexibility and compactness in comparison to quarter wavelength transmission 
lines (Jensen et al., 2007). It has been demonstrated that matching real and complex loads 
with coupled lines leads to more compact realizations and could therefore become 
important at millimeter-wave frequencies for on-chip matching solutions. Another area 
where coupled line structures are useful is matching of antenna array structures, as 
successfully demonstrated by (Jaworski & Krozer, 2004). 
As it was shown above, the quarter-wave transformer is simple and easy to use, but it has 
no flexibility beyond the ability to provide a perfect match at the center frequency for a real-
valued load, although a complex load of course can be matched by increasing the overall 
length of the transformer. The coupled line section provides a number of variables which 
can be utilized for matching purposes. These variables are the even and odd mode 
impedances and loads of the through and coupled ports. This loading can be done in form 
of a feedback connection which provides additional zeros for broadband matching. 
These variables can be chosen to provide a perfect match or any desired value of the 
reflection coefficient at the operating frequency. The bandwidth of the coupled line 
transformer can be further increased in case of mismatch. In addition, it is also possible to 
match a complex load. 
In the lower GHz range the loading of the through and coupled ports can be done with 
lumped elements which allows for easy matching of both real and imaginary impedance 
values. At higher frequencies it is not possible to use lumped elements, but the difference 
between the even and odd mode impedances is a parameter which makes it possible to turn 
a mixed real and imaginary control load at the through port into a purely imaginary one, 
which can be implemented with a transmission line stub. 

 
5.1 Symmetric Coupled Line Section 
Coupled line impedance transformers are very useful at millimetre wave frequencies where 
they successfully perform direct current blocking and can handle large impedance 
transformation avoiding transverse resonances which occur in a conventional low 
impedance quarter-wave transformer.  The most common configuration of the transformer 
is shown in Fig. 9. 
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Here  
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are the electrical lengths of the sections in  Fig. 7 (b). 
The total length of the transformer is 2l1 + 2l2 = 0.346λg. The achieved bandwidth at 20 dB  
return loss level is 71 %. The bandwidth and inband reflection level of this type of 
transformer depend on length of the sections (Aizenberg et al., 1985).  

 
4.3 Tapered Transmission Lines 
As described above, the bandwidth of the quarter-wave transformer is limited. In order to 
extend its operating frequency band, multisection transformers, with different characteristic 
impedance in each section, may be used. In contrast to the transformers described in the 
previous section, the lengths of the sections used in the multisection transformer can be 
chosen equal to each other. The desired reflection coefficient response as a function of 
frequency can be achieved by properly choosing the characteristic impedance of the 
transmission line sections. In the limit of an infinite number of sections, the multisection 
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profile. By changing the type of taper, one can obtain different passband characteristics.  
Several taper profiles may be considered: linear, exponential, triangular, and so on. 
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For a given taper length, the Klopfenstein taper has been shown to be optimum in the sense 
that the reflection coefficient is minimum over the passband (Pozar, 1998). Alternatively, for 
a specified level of reflection coefficient, the Klopfenstein taper yields the shortest matching 
section. However, it should be noted that the response of this taper has equal level of ripples 
in its passband. 
In many cases, the relation between the physical dimensions and the characteristic 
impedance of a guiding structure is complicated and the generation of an optimal tapering 
configuration is thus not a trivial task. This implies that a linear or exponential tapering of 
the physical dimensions of the transmission line is often chosen for practical 
implementations. 

 
5. Coupled Line Transformers 
 

In recent years, coupled transmission lines have been suggested as a matching element due 
to greater flexibility and compactness in comparison to quarter wavelength transmission 
lines (Jensen et al., 2007). It has been demonstrated that matching real and complex loads 
with coupled lines leads to more compact realizations and could therefore become 
important at millimeter-wave frequencies for on-chip matching solutions. Another area 
where coupled line structures are useful is matching of antenna array structures, as 
successfully demonstrated by (Jaworski & Krozer, 2004). 
As it was shown above, the quarter-wave transformer is simple and easy to use, but it has 
no flexibility beyond the ability to provide a perfect match at the center frequency for a real-
valued load, although a complex load of course can be matched by increasing the overall 
length of the transformer. The coupled line section provides a number of variables which 
can be utilized for matching purposes. These variables are the even and odd mode 
impedances and loads of the through and coupled ports. This loading can be done in form 
of a feedback connection which provides additional zeros for broadband matching. 
These variables can be chosen to provide a perfect match or any desired value of the 
reflection coefficient at the operating frequency. The bandwidth of the coupled line 
transformer can be further increased in case of mismatch. In addition, it is also possible to 
match a complex load. 
In the lower GHz range the loading of the through and coupled ports can be done with 
lumped elements which allows for easy matching of both real and imaginary impedance 
values. At higher frequencies it is not possible to use lumped elements, but the difference 
between the even and odd mode impedances is a parameter which makes it possible to turn 
a mixed real and imaginary control load at the through port into a purely imaginary one, 
which can be implemented with a transmission line stub. 

 
5.1 Symmetric Coupled Line Section 
Coupled line impedance transformers are very useful at millimetre wave frequencies where 
they successfully perform direct current blocking and can handle large impedance 
transformation avoiding transverse resonances which occur in a conventional low 
impedance quarter-wave transformer.  The most common configuration of the transformer 
is shown in Fig. 9. 
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Fig. 9. Symmetric coupled transmission line transformer. 
 
In this configuration, the diagonal terminals of the coupled line section are loaded with 
generator (Zg) and load (ZL) impedances. The opposite terminals are open circuited.  In this 
standard configuration however, the electrical performance of the coupled lines transformer 
in terms of insertion loss and bandwidth can not compete with performance of the 
corresponding quarter-wave transformer (Mongia et al., 1999).  

 
5.2 Asymmetric Coupled Line Section 
Symmetric coupled lines represent a restricted configuration of the more general class of 
coupled lines. They allow for a simpler analysis, however, for wideband applications 
asymmetric coupled lines are preferable. For example, the bandwidth of a forward-wave 
directional coupler using asymmetric coupled transmission lines is greater than the one 
formed using symmetric ones (Jones & Bolljahn, 1956). 
In this section the design of a wideband impedance transformer based on asymmetric 
coupled lines is described. 
The considered wideband impedance transformer is based on asymmetric, uniform coupled 
lines in nonhomogeneous medium. A microstrip line is one of the most commonly used 
classes of transmission lines in nonhomogeneous medium. Edge-coupled microstrip lines 
are shown in Fig. 10. 

 
Fig. 10. A coupled microstrip line four-port. 
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For the purpose of analysis, this coupled line four-port is transformed to a two-port network 
with arbitrary load using impedance matrix representation. 
The investigations presented in this book are only for the most commonly used 
configuration, when diagonal terminals of the coupled lines are loaded with generator and 
load impedances. Thus, the entire circuit can be represented as a two-port network, which 
performs impedance transformation between a generator impedance Zg connected to a 
port 1 and a load impedance ZL connected to a port 3, as shown in Fig. 11. 

 
Fig. 11. Two-port network representation for the coupled line impedance transformer. 
 
As it can be seen in Fig. 11, the network consists of the coupled line four-port network 
described by an impedance matrix [Z] and arbitrary load matrix at opposite terminals 
described by matrix [Z"]. In practice, ports 2 and 4 are in general either short-circuited or 
open-circuited with a corresponding representation of the two-port network [Z"].  
The magnitude of S11 is equal to 
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where ZIN is the input impedance of the transformer, which is a function of the load 
impedance ZL, impedance matrix elements of coupled lines Zij and the arbitrary load ijZ   (i 

and j are the indexes of the matrix elements). Using the general impedance matrix 
representation for coupled lines (Tripathi, 1975) and boundary conditions at ports 2 and 4 the 
input impedance is expressed by 
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A total number of six quantities is required to describe asymmetric coupled lines (Mongia 
et al., 1999), being: Zc1 and Zπ1, which are, respectively, the characteristic impedances of 
line 1 for c and π modes of propagation; γc and γπ, the propagation constants of c and π 
modes; Rc and Rπ, the ratios of the voltages on the two lines for c and π modes. Thus, the 
elements of the impedance matrix are given by  
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where l is the length of the coupled line section, as it is shown in Fig. 10. These relations are 
substituted into (5) and (4) to calculate the input impedance and finally the reflection 
coefficient of the transformer. 
From relation (3) it can be seen that the matching properties of the transformer depend not 
only on coupled line parameters, but also on load of ports 2 and 4, which are described by 
elements ijZ  . This dependence introduces additional degree of freedom during design 

procedure and can be used to expand the bandwidth of the impedance transformer, as 
shown below. 
 
Loading With Transmission Line 
 

As an example, terminals 2 and 4 can be loaded with a microstrip transmission line. The 
impedance matrix of the transmission line with characteristic impedance Z0, length l, and 
propagation constant γ is given by 
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The transformer configuration is shown in Fig. 12. 

 
Fig. 12. Schematic illustration of the transformer based on coupled line section and a 
transmission line load. 
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where l is the length of the coupled line section, as it is shown in Fig. 10. These relations are 
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elements ijZ  . This dependence introduces additional degree of freedom during design 

procedure and can be used to expand the bandwidth of the impedance transformer, as 
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The transformer configuration is shown in Fig. 12. 

 
Fig. 12. Schematic illustration of the transformer based on coupled line section and a 
transmission line load. 
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In order to simplify further calculations, the transmission lines are considered to be lossless, 
and electrical lengths of the coupled line section (θc + θπ)/2 and the microstrip transmission 
line θ are assumed equal, resulting in 
 

γl = jβl = jθ,   γcl = jθc,   γπl = jθπ  ,    (8) 
 

θ = (θc +θπ)/2  ,     (9) 
 
where θc and θπ are the electrical lengths of the coupled line section for c and π mode 
respectively. θ is a function of frequency and can be used for the analysis of the spectrum of 
the transformer reflection coefficient. The response (3) for the transformer of Fig. 12 is 
shown in Fig. 13. 

 
Fig. 13. Response of transformer shown in Fig. 12. The transformation ratio is 1:2. 
 
As it can be seen in Fig. 13, this transformer configuration exhibits an additional minimum 
in the magnitude of S11 in comparison to the traditional impedance transformer based on 
coupled line section with open-circuited terminals (Kajfez, 1981). These minima are non-
uniformly distributed in the frequency domain. This is due to the differences in electrical 
lengths θc and θπ for two coupled line modes in nonhomogeneous medium. 
For the case of homogeneous medium the propagation constants for the two modes are 
equal, γc = γπ, and hence the electrical lengths for the two propagating modes are also equal. 
It is therefore possible to obtain three equidistant reflection zeros in the spectrum of the 
reflection coefficient. Because transmission lines in a homogeneous medium are a special 
case of transmission lines in a nonhomogeneous medium the expressions given above are 
also valid for response calculations. 
It can be depicted from the data in Fig. 14 that the transformer provides wideband operation 
with uniformly distributed reflection zeros in the frequency domain. In addition, the 
distance between the zero locations can be varied by adjusting the parameters of the 
structure. 
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Fig. 14. Response of the transformer in homogeneous medium case.  
 
The electrical length of the transformer is equal to a quarter wavelength at the center 
frequency. Comparing the results in Fig. 13 and Fig. 14 it can be deduced that the impedance 
transformer in nonhomogeneous medium has approximately the same bandwidth as the 
one in homogenous medium. However, in many cases, like for example in surface mount 
technology, it is more useful to deal with microstrip structures. 
 
Loading With Stepped Impedance Transmission Line 
 
The differences in electrical lengths of the coupled lines in nonhomogeneous medium can be 
compensated by introducing a stepped impedance transmission line, as it is shown in 
Fig. 15. 

 
Fig. 15. Schematic illustration of the wideband impedance transformer. 
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impedances Z01 and Z02, as shown in Fig. 15. The electrical length of each transmission line is 
set to be half the electrical length of the coupled line section to reduce the number of design 
parameters. 
For the purpose of analysis, this structure is transformed into a two-port network with 
arbitrary load using an impedance matrix representation. Thus, the entire circuit can be 
represented as a two-port network, which performs impedance transformation between a 
generator impedance Zg connected to the port 1 and a load impedance ZL connected to the 
port 3, as shown in Fig. 11. The magnitude of S11 at the port 1 is defined by (3). The input 
impedance ZIN in (3) is calculated using relations (4)-(6) together with the corresponding 
elements of the impedance matrix [Z"] for the stepped impedance transmission line. A series 
connection of two transmission lines shown in Fig. 16 can be described as a connection of 
two two-port networks. 

 
Fig. 16. Series connection of transmission lines. 
 
The impedance matrices of the transmission lines with characteristic impedances Z01, Z02, 
lengths l1, l2, and propagation constants γ1 , γ2 are given by 
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Impedance matrix for the overall circuit in Fig. 16 is derived using boundary conditions at 
the common terminal. At this terminal the voltages of two two-ports are equal, and currents 
are equal and oppositely directed. 
Thus, impedance matrix elements are found to be: 
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In case of transmission lines with equal electrical length θ/2  (12) can be rewritten as  
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These equations are used for the calculation of elements of the matrix [Z"] in Fig. 11. 
Thus, the analysis of the structure now can be performed using (3). 
It can be depicted from the data in Fig. 17 that the transformer provides wideband 
operation, and the electrical length of the transformer is equal to a quarter wavelength at the 
center frequency. 

 
Fig. 17. Response of the 50-100 Ω impedance transformer shown in Fig. 15. 
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impedances Z01 and Z02, as shown in Fig. 15. The electrical length of each transmission line is 
set to be half the electrical length of the coupled line section to reduce the number of design 
parameters. 
For the purpose of analysis, this structure is transformed into a two-port network with 
arbitrary load using an impedance matrix representation. Thus, the entire circuit can be 
represented as a two-port network, which performs impedance transformation between a 
generator impedance Zg connected to the port 1 and a load impedance ZL connected to the 
port 3, as shown in Fig. 11. The magnitude of S11 at the port 1 is defined by (3). The input 
impedance ZIN in (3) is calculated using relations (4)-(6) together with the corresponding 
elements of the impedance matrix [Z"] for the stepped impedance transmission line. A series 
connection of two transmission lines shown in Fig. 16 can be described as a connection of 
two two-port networks. 

 
Fig. 16. Series connection of transmission lines. 
 
The impedance matrices of the transmission lines with characteristic impedances Z01, Z02, 
lengths l1, l2, and propagation constants γ1 , γ2 are given by 
 

 
   

   




























1101
11

01

11

01
1101

)1(
22

)1(
21

)1(
12

)1(
11)1(

coth 
sinh

sinh
coth 

lZ
l

Z
l

ZlZ

ZZ
ZZ

Z







,   (10) 

 

 
   

   




























2202
22

0

22

02
2202

)2(
22

)2(
21

)2(
12

)2(
11)2(

coth 
sinh

sinh
coth 

lZ
l

Z
l

ZlZ

ZZ
ZZ

Z







.   (11) 

 
Impedance matrix for the overall circuit in Fig. 16 is derived using boundary conditions at 
the common terminal. At this terminal the voltages of two two-ports are equal, and currents 
are equal and oppositely directed. 
Thus, impedance matrix elements are found to be: 
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In case of transmission lines with equal electrical length θ/2  (12) can be rewritten as  
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These equations are used for the calculation of elements of the matrix [Z"] in Fig. 11. 
Thus, the analysis of the structure now can be performed using (3). 
It can be depicted from the data in Fig. 17 that the transformer provides wideband 
operation, and the electrical length of the transformer is equal to a quarter wavelength at the 
center frequency. 

 
Fig. 17. Response of the 50-100 Ω impedance transformer shown in Fig. 15. 
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In addition, the distance between the minima locations Δθ can be varied by adjusting the 
parameters of the structure. This distance Δθ characterizes operating frequency bandwidth 
of the transformer. The characteristics of the transformer for three different values of Δθ are 
shown in Fig. 17. As it can be seen, the in-band level of the reflection coefficient depends on 
parameter Δθ. The estimation of the maximum level of the return loss between minima for 
different transformation ratios can be found using the data shown in Fig. 18. 

 
Fig. 18. The minimum level of the return loss between minima in Fig. 17. 
 
As expected, the level of in-band return loss for the transformer increases with reducing of 
transformation ratio, and reaches the absolute maximum at ZL/Zg = 1. 

 
5.3 Multisection Coupled Line Transformers 
To further increase the bandwidth, it is possible to create an impedance transformer using 
more coupled line sections connected in series. The example of a microstrip two section 
impedance transformer is shown in Fig. 19. 

 
Fig. 19. Layout of the 12.5-50 Ω  multi section impedance transformer. 
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The total electrical length of the transformer is equal to half a wavelength at the center 
frequency. The response of the transformer is shown in Fig. 20. 
 

 
Fig. 20. Response of the 12.5-50 Ω impedance transformer shown in Fig. 19. 
 
The transformer exhibits six minima in the spectrum of reflection coefficient. The achieved 
fractional matching bandwidth is beyond a decade at -10 dB reflection coefficient level. The 
distance between the minima locations can be varied by adjusting the parameters of the 
structure. 
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In addition, the distance between the minima locations Δθ can be varied by adjusting the 
parameters of the structure. This distance Δθ characterizes operating frequency bandwidth 
of the transformer. The characteristics of the transformer for three different values of Δθ are 
shown in Fig. 17. As it can be seen, the in-band level of the reflection coefficient depends on 
parameter Δθ. The estimation of the maximum level of the return loss between minima for 
different transformation ratios can be found using the data shown in Fig. 18. 
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The total electrical length of the transformer is equal to half a wavelength at the center 
frequency. The response of the transformer is shown in Fig. 20. 
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1. Introduction 
 

Since the Federal Communication Commission (FCC) adopted a First Report and Order in 
2002, a wide frequency range from 3.1 GHz to 10.6 GHz has been released for the marketing 
and operation of new types of wireless communication systems incorporating ultra-
wideband (UWB) technology. Because of the high-speed data handling capability, the UWB 
system is expected to be used for delivering real-time HDTV video streaming, transmitting 
of non-compressible audio/visual signals, and replacing USB cables with wireless 
connections. In addition, due to the low-power consumption, new short-range wireless 
applications have attracted considerable attentions in the fields of home electronics, home 
entertainment, security sensors, and health care devices. To meet today's huge demands, the 
research on UWB devices has been greatly accelerated. 
One of the difficulties in developing the UWB system is the bandwidth utilized for 
communication. Since the system uses very short impulse signals to transmit bit-data trains, 
it inherently requires an extremely wide frequency range. This unique feature always 
presses us to develop new technologies. In an RF front-end design, for instance, high-
performance bandpass filters and antennas have been too large when we engaged in the 
conventional design methodology. An initial UWB filter was realized by a combination of 
low-pass and high-pass filters. Since then, tremendous efforts have been devoted to this 
subject, and a way to use a multi-mode resonator (MMR) was proposed in 2005. In this 
design, the first three resonant frequencies of the MMR are placed equally within the UWB 
band so as to create the huge passband response. By applying this technology, overall filter 
dimension was drastically reduced to less than 10 mm x 15 mm. After that, a variety of UWB 
filters have been proposed based on the MMR configuration. For example, some had a 
ground defected structure (DGS) or a periodic band gap (PBG) structure, and some used 
plural stages of MMRs to obtain the high selectivity performance. However, such 
approaches can sometimes cause an increase of the filter dimensions, leading to fabrication 
difficulties in a practical system design. Again, it should be noted that the short-range UWB 
systems are extremely low-power consumption and need to be pocket-sized or smaller.  
My goal is to develop a super-compact planar UWB filter based on the microstrip line 
configuration. For this purpose, the following requirements are assumed; 
(1) For frequency response 

15
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       - To meet the FCC spectrum musk regulation 
       - Low insertion loss (less than 0.5 dB) 
       - Low ripples (less than 0.5 dB)  
       - Mild group delay variation (less than 0.2 ns) 
       - Transmission zeros above and below the passband 
  (2) For configuration 
       - Super-compact design (less than 5.0 mm x 5.0 mm)  
       - To use a microstrip line configuration 
       - No defections on a ground plane 
       - Compatible with the conventional PCB technology 
       - Low cost and mass productivity 

In Sec. 2, a useful equivalent circuit is developed for design of super-compact UWB 
bandpass filters. In Sec. 3, actual filter designs are presented together with convenient 
design procedure to optimize the filter response. 

 
2. Equivalent circuits 
 

UWB bandpass filters need to be designed in an extremely wide frequency range from DC 
to around 20 GHz to meet the FCC spectrum musk regulation. The free-space wavelength at 
both passband edges are 96.8 mm at 3.1 GHz and 28.3 mm at 10.6 GHz. The wavelength will 
be compressed much more when a high permittivity substrate is applied to the filter. 
Therefore, even a small metal patch with 5 mm length can easily act as a resonator. This 
indicates that the UWB filters having a few millimeter dimension, work as a concentrated 
constant circuit at the lower frequency and as a distributed constant circuit at the higher 
frequency. Therefore, when the filter is designed, we should take these effects into 
consideration. 
An equivalent circuit of the UWB bandpass filter, which is demonstrated in this chapter, is 
shown in Fig. 1. The notations, CL1, CL2, CL3 and CL4 in the figure, represent a coupled-
line, each of which consists of tightly coupled three transmission lines placed in parallel 
with a small spacing. Among the coupled lines, a center line is short-circuited (SC) for 
grounding and the lines on both sides are open-circuited (OC) at their top, while these lines 
are connected to each other at their bottom. The coupled-line on the left-hand side (CL1 and 
CL2) is also coupled to that on the right-hand side (CL3 and CL4) with a coupling 
capacitance C0. In addition, a coupled-inductor (CI) with a self-inductance L0 and a mutual-
inductance M0 is presented in parallel with the capacitor C0. 
The typical circuit parameters of the filter are assumed as shown in Table 1, and the 
corresponding filter response is calculated by using the commercial circuit simulator 
ANSOFT Designer SV2. The result, presented in Fig. 2, shows that the filter has a huge flat 
passband together with deep transmission zeros just below and above the passband. In 
addition, well-suppressed out-of-passbands are obtained in a wide frequency range. 
This UWB response can be explained by looking at the circuit from two points of view; one 
way is to look at the circuit as a concentrated constant circuit, which is available at the lower 
frequency, while the other way is to look at it as a distributed constant circuit in the higher 
frequency. According to such points of view, the equivalent circuits can also be expressed in 
a different way as shown in Fig. 3 and Fig. 5, respectively. 

 

 
 

Fig. 1. An basic equivalent circuit of the super-compact planar UWB bandpass filters studied in 
this chapter. The circuit is configured by some lumped elements and distributed constant lines. 
 

Coupled-lines CL1 CL2 CL3 CL4 
   length 2.90 mm 1.60 mm 2.90 mm 1.60 mm 
   line width 1 0.50 mm 0.50 mm 0.50 mm 0.50 mm 
     spacing 0.35 mm 0.35 mm 0.35 mm 0.35 mm 
   line width 2 0.30 mm 0.30 mm 0.30 mm 0.30 mm 
     spacing 0.35 mm 0.35 mm 0.35 mm 0.35 mm 
   line width 3 0.50 mm 0.50 mm 0.50 mm 0.50 mm 
Open circuit  (OC)  Short circuit (SC)  
   line width 0.50 mm    line width 0.30 mm 
   line length 0.00 mm    line length 0.50 mm 
Coupled-inductor   (CL)  Substrate  
   self-inductance   L0 7.0 nH    thickness 0.80 mm 
   Mutual-inductance M0 3.5 nH    relative permittivity 2.62 
Capacitance          C0 0.70 pF  

Table 1. Circuit parameters of the equivalent circuit shown in Figs. 1, 3, and 5. Scattering 
characteristics of these circuits are presented in Fig. 2, 4, and 6. These parameters are tuned 
so as to obtain the UWB response. 
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Fig. 2. Scattering characteristic of a UWB bandpass filter, calculated by an equivalent circuit 
shown in Fig. 1. Circuit parameters are listed in Table 1.  
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shown in Fig. 1. The notations, CL1, CL2, CL3 and CL4 in the figure, represent a coupled-
line, each of which consists of tightly coupled three transmission lines placed in parallel 
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This UWB response can be explained by looking at the circuit from two points of view; one 
way is to look at the circuit as a concentrated constant circuit, which is available at the lower 
frequency, while the other way is to look at it as a distributed constant circuit in the higher 
frequency. According to such points of view, the equivalent circuits can also be expressed in 
a different way as shown in Fig. 3 and Fig. 5, respectively. 
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Fig. 2. Scattering characteristic of a UWB bandpass filter, calculated by an equivalent circuit 
shown in Fig. 1. Circuit parameters are listed in Table 1.  
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Fig. 3a, derived partially from the original equivalent circuit in Fig. 1, presents the circuit 
which creates the lower frequency response. The coupled-inductance (L0, L0 and M0) 
inserted at the center of the figure can be transformed into three inductors (L1, L2 and L3) as 
shown Fig. 3b, and a new series inductor L2 forms an LC-tank circuit with the original series 
capacitor C0. As a result, corresponding to the resonance of the LC-tank, a transmission zero 
is created below the passband. In addition, two shunt inductors (L1 and L3) and a series 
capacitor (C0) stop the DC and the lower frequency signals from passing through the circuit. 
Contrarily, the circuit components related to create the higher frequency response are 
derived from the original circuit in the same manner. The resultant equivalent circuit and its 
scattering characteristic are shown in Figs. 5 and 6, respectively. The length of the coupled-
lines are chosen so that the open-circuited lines in the coupled-line work as a quoter-
wavelength open-stub in a frequency range from 11 GHz to 15 GHz. Consequently, two 
stopbands are created above 11 GHz in accordance with the lines. 
This study clearly indicates that the lower and the higher frequency responses in Fig. 2 are 
produced by the combination of the concentrated constant circuit and the distributed 
constant circuit, and each response can be controlled independently by tuning 
corresponding circuit parameters. In other words, the lower and the higher cutoff 
frequencies of the passband are created by different mechanisms. Thus, the equivalent 
circuit presented in Fig. 1 gives us a great insight of a new filter topology. 
 

 
(a) 

 
(b) 

Fig. 3. An equivalent circuit, describing the lower frequency response of the UWB filter. (a) 
The circuit configured by lumped elements, which is derived from the original equivalent 
circuit presented in Fig. 1. (b) The coupled-inductor in Fig. 3a can be transformed 
equivalently into three inductors. An LC-tank creates a transmission zero below the UWB 
passband.  
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Fig. 4. Scattering characteristic of the equivalent circuit shown in Fig. 3a with circuit 
parameters listed in Table 1.  
 

 
Fig. 5. An equivalent circuit, describing the higher frequency response of the UWB filter. The 
circuit is mainly composed of distributed constant transmission lines, which work as a 
quoter-wavelength open-stub to create a stopband above the UWB passband. 
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Fig. 6. Scattering characteristic of the equivalent circuit shown in Fig. 5 with circuit 
parameters listed in Table 1.  
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Fig. 3a, derived partially from the original equivalent circuit in Fig. 1, presents the circuit 
which creates the lower frequency response. The coupled-inductance (L0, L0 and M0) 
inserted at the center of the figure can be transformed into three inductors (L1, L2 and L3) as 
shown Fig. 3b, and a new series inductor L2 forms an LC-tank circuit with the original series 
capacitor C0. As a result, corresponding to the resonance of the LC-tank, a transmission zero 
is created below the passband. In addition, two shunt inductors (L1 and L3) and a series 
capacitor (C0) stop the DC and the lower frequency signals from passing through the circuit. 
Contrarily, the circuit components related to create the higher frequency response are 
derived from the original circuit in the same manner. The resultant equivalent circuit and its 
scattering characteristic are shown in Figs. 5 and 6, respectively. The length of the coupled-
lines are chosen so that the open-circuited lines in the coupled-line work as a quoter-
wavelength open-stub in a frequency range from 11 GHz to 15 GHz. Consequently, two 
stopbands are created above 11 GHz in accordance with the lines. 
This study clearly indicates that the lower and the higher frequency responses in Fig. 2 are 
produced by the combination of the concentrated constant circuit and the distributed 
constant circuit, and each response can be controlled independently by tuning 
corresponding circuit parameters. In other words, the lower and the higher cutoff 
frequencies of the passband are created by different mechanisms. Thus, the equivalent 
circuit presented in Fig. 1 gives us a great insight of a new filter topology. 
 

 
(a) 

 
(b) 

Fig. 3. An equivalent circuit, describing the lower frequency response of the UWB filter. (a) 
The circuit configured by lumped elements, which is derived from the original equivalent 
circuit presented in Fig. 1. (b) The coupled-inductor in Fig. 3a can be transformed 
equivalently into three inductors. An LC-tank creates a transmission zero below the UWB 
passband.  
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Fig. 4. Scattering characteristic of the equivalent circuit shown in Fig. 3a with circuit 
parameters listed in Table 1.  
 

 
Fig. 5. An equivalent circuit, describing the higher frequency response of the UWB filter. The 
circuit is mainly composed of distributed constant transmission lines, which work as a 
quoter-wavelength open-stub to create a stopband above the UWB passband. 
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Fig. 6. Scattering characteristic of the equivalent circuit shown in Fig. 5 with circuit 
parameters listed in Table 1.  
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3. Planar UWB bandpass filters 
 

3.1 UWB bandpass filters with tightly coupled E-shaped electrodes 
Fig. 7 shows a circuit layout of a planar-type UWB bandpass filter designed in accordance 
with the equivalent circuit presented in Fig 1. All the circuit elements, designed using 
microstrip line configuration, are fabricated on a dielectric substrate with thickness HSUB and 
relative permittivity r. The coupled-lines in Fig. 1, CL1-CL2 and CL3-CL4, are created by 
tightly coupled three transmission lines. Length and width of the lines are designated by (L1, 
W1), (L2, W2), (L3, W3), (L4, W4), (L5, W5), and (L6, W6) starting from the leftmost line. The 
spacing between the lines in the coupled-line is shown by S. The thin line with width WB is 
given to the bottom of each coupled-line to connect them together. The lines on both sides in 
the coupled-line are open-circuited at their top, while the center line is short-circuited for 
grounding. Because the shape of the coupled-line resembles to the letter "E", the coupled-
line is called an "E-shaped electrode". The input and output microstrip lines with width 
WMSL are connected to the leftmost and rightmost lines with a small offset D from the 
bottom of the electrode. By applying such an architecture, the distributed constant circuit 
presented in Fig. 5 is composed.  
Next, we need to consider how to create the concentrated constant circuit parameters in the 
actual model. If the circuit layout was develped as a precise copy of the equivalent circuit, 
the overall filter dimension would be large. For significant size reduction, the function of the 
concentrated constant circuit should be realized by utilizing the architecture of the 
distributed constant circuit. Fortunately, the series capacitance C0 is yielded by placing two 
E-shaped electrodes very closely with a small gap G. In addition, it is also expected that two 
short-circuited lines in the electrodes yield a required self-inductance L0 and a mutual-
inductance M0 by a magnetic coupling between them. Thus, the required concentrated 
circuit behaviour observed at the lower frequency can be created by fine-tuning of the filter 
layout of the distributed constant circuit. These structural parameters, summarized in Table 
2, were determined by using a full-wave EM-simulator Ansoft HFSS based on the finite 
element method. Design methodology is introduced in the latter subsection 3.4. 
Fig. 8 presents the frequency dependence of the transmission coefficient |S21| and the 
reflection coefficient |S11|. It can be read from the figure that the filter has a very wide 
passband from 3.8 GHz to 10.4 GHz (-3 dB criteria), which corresponds to the relative 
bandwidth of 93.6 %. The minimum insertion loss in the passband is about 0.16 dB at 9.5 
GHz, and ripples are less than 0.5 dB from 5.3 GHz to 10.0 GHz. Furthermore, the |S11| is 
less than -10 dB from 5.1 GHz to 10.0 GHz. In addition, this filter has attenuation poles at 1.5 
GHz and 11.3 GHz, and two reflection poles at 7.3 GHz and 9.5 GHz. The location of these 
poles is deeply related to the selectivity of the passband and the group delay of the filter. 
Fig. 9 shows a photograph of the prototype model fabricated on a Rexolite 2200 substrate 
with a relative permittivity of 2.62 and a thickness of 0.8 mm. A circuit board plotter LPKF 
Protomat C30s was used to cut the metallization on the substrate along the contour of the 
electrodes and microstrip lines, and then unnecessary metallizations were removed by hand. 
To create an input and an output ports, two SMA connectors were soldered to the microstrip 
lines. Outer dimension of the prototype model was 10 mm x 15 mm x 0.8 mm. 
 

 

 
Fig. 7. A circuit layout of the planer UWB bandpass filter with tightly coupled E-shaped 
electrodes. Structural parameters are listed in Table 2. 
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Table 2. Structural parameters of the planar UWB bandpass filter with tightly coupled E-
shaped electrodes shown in Fig. 7. Unit for dimensional parameters is in mm. 
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Fig. 8. Simulated scattering characteristic of the planar UWB bandpass filter with tightly 
coupled E-shaped electrodes shown in Fig. 7 with circuit parameters listed in Table 2.  
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WMSL are connected to the leftmost and rightmost lines with a small offset D from the 
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presented in Fig. 5 is composed.  
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actual model. If the circuit layout was develped as a precise copy of the equivalent circuit, 
the overall filter dimension would be large. For significant size reduction, the function of the 
concentrated constant circuit should be realized by utilizing the architecture of the 
distributed constant circuit. Fortunately, the series capacitance C0 is yielded by placing two 
E-shaped electrodes very closely with a small gap G. In addition, it is also expected that two 
short-circuited lines in the electrodes yield a required self-inductance L0 and a mutual-
inductance M0 by a magnetic coupling between them. Thus, the required concentrated 
circuit behaviour observed at the lower frequency can be created by fine-tuning of the filter 
layout of the distributed constant circuit. These structural parameters, summarized in Table 
2, were determined by using a full-wave EM-simulator Ansoft HFSS based on the finite 
element method. Design methodology is introduced in the latter subsection 3.4. 
Fig. 8 presents the frequency dependence of the transmission coefficient |S21| and the 
reflection coefficient |S11|. It can be read from the figure that the filter has a very wide 
passband from 3.8 GHz to 10.4 GHz (-3 dB criteria), which corresponds to the relative 
bandwidth of 93.6 %. The minimum insertion loss in the passband is about 0.16 dB at 9.5 
GHz, and ripples are less than 0.5 dB from 5.3 GHz to 10.0 GHz. Furthermore, the |S11| is 
less than -10 dB from 5.1 GHz to 10.0 GHz. In addition, this filter has attenuation poles at 1.5 
GHz and 11.3 GHz, and two reflection poles at 7.3 GHz and 9.5 GHz. The location of these 
poles is deeply related to the selectivity of the passband and the group delay of the filter. 
Fig. 9 shows a photograph of the prototype model fabricated on a Rexolite 2200 substrate 
with a relative permittivity of 2.62 and a thickness of 0.8 mm. A circuit board plotter LPKF 
Protomat C30s was used to cut the metallization on the substrate along the contour of the 
electrodes and microstrip lines, and then unnecessary metallizations were removed by hand. 
To create an input and an output ports, two SMA connectors were soldered to the microstrip 
lines. Outer dimension of the prototype model was 10 mm x 15 mm x 0.8 mm. 
 

 

 
Fig. 7. A circuit layout of the planer UWB bandpass filter with tightly coupled E-shaped 
electrodes. Structural parameters are listed in Table 2. 
 

Coupled-lines 
L1 L2 L3 L4 L5 L6 Spacing 

bw lines  
Spacing 
bw ELs* 5.0 5.5 5.0 5.0 5.5 5.0 

W1 W2 W3 W4 W5 W6 S G 
0.5 0.3 0.5 0.5 0.3 0.5 0.35 0.05 

 
WB 

I/O microstip lines Substrate 
D WMSL Z0 HSUB r 

0.5 0.5 2.0 50 ohm 0.8 2.62 
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Fig. 8. Simulated scattering characteristic of the planar UWB bandpass filter with tightly 
coupled E-shaped electrodes shown in Fig. 7 with circuit parameters listed in Table 2.  
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Fig. 9. A prototype of the planar UWB bandpass filter with tightly coupled E-shaped 
electrodes, illustrated in Fig. 7 with circuit parameters listed in Table 2. The filter is 
fabricated on a Rexolite 2200 substrate with a relative permittivity of 2.62 and a thickness of 
0.8 mm. 

 
 
 

            
 
 

 
 
 
 
 
 
 
 
                    (a)                                                                                               (b) 
Fig. 10. Measured scattering characteristics of the planar UWB bandpass filter with tightly 
coupled E-shaped electrodes. (a) The reflection coefficient |S11| (top) and the transmission 
coefficient |S21| (bottom). Unit in vertical axis is 5 dB/div. (b) Group delay. Unit is 0.5 
ns/div. 

 
Fig. 10a shows a magnitude of the scattering coefficients |S11| and |S21| of the filter. It can 
be read from the curve |S21| that the wide passband from 5.0 GHz to 11.3 GHz and deep 
attenuation poles at 2.3 GHz and 12.2 GHz are obtained. Although the passband is a little bit 
higher than the theory due to too much milling of the substrate in the pattern making 
process, the shape of the measured |S21| shows good agreement with the theory as a whole. 
The minimum insertion loss of less than 0.8 dB is attained at 10.8 GHz. In general, the 
insertion loss is caused by conductor loss, dielectric loss and radiation loss. However, the 
insertion loss of the passband is mainly caused by the wider gap than the initial design, 
leading to a weakened coupling between the E-shaped electrodes. 
Fig. 10b presents a group delay measured between SMA connectors. The result includes 
small vibrations because the network analyzer used for this measurement was quite old and 
it lacked stability. However, the real group delay can be estimated by reading the average 
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value from the measured result. The variation of the group delay is estimated around 0.2 ns 
in the passband and it gets slightly higher at up to 0.4 ns at the higher edge of the passband. 
A mild group delay is quite useful to convey the short pulse signal from the input to the 
output without serious distortion. 
For size reduction of the filter, using the higher dielectric permittivity substrate is the well-
known standard approach. As for the design examples, two filters fabricated on the 
substrate with r=5 or r=10 are designed with the structural parameters summarized in 
Tables 3. The simulated scattering characteristics for these models are shown in Fig. 11. 
Though the dielectric and conductor losses are not included in the simulation, it can be 
confirmed that these filters have a flat UWB passband with the reflection coefficient of less 
than -15 dB. In addition, compared with the conventional UWB filters engaged in multiple-
mode resonators, significant size reduction is attained. 
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Table 3. Structural parameters of the miniaturized UWB bandpass filter with tightly coupled 
E-shaped electrodes fabricated on the higher permittivity substrate. (a) Substrate with r=5 is 
used. (b) Substrate with r=10 is used. 
 
The total area of the filter body (area of the E-shaped electrodes and the gap between them) 
is  3.21 mm x 3.7 mm x 0.5 mm for r=5 model and 2.008 mm x 2.7 mm x 0.5 mm for r=10 
model, respectively.  
Contrary to the super-compactness, it should be noted that the filters fabricated on the 
higher permittivity substrate always require an extremely small gap between the electrodes 
in order to create the necessary series capacitance C0. For instance, when the substrate with 
r=10 is used, the gap width of 0.008 mm is required. However, 0.05 mm gap is the recent 
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Fig. 10a shows a magnitude of the scattering coefficients |S11| and |S21| of the filter. It can 
be read from the curve |S21| that the wide passband from 5.0 GHz to 11.3 GHz and deep 
attenuation poles at 2.3 GHz and 12.2 GHz are obtained. Although the passband is a little bit 
higher than the theory due to too much milling of the substrate in the pattern making 
process, the shape of the measured |S21| shows good agreement with the theory as a whole. 
The minimum insertion loss of less than 0.8 dB is attained at 10.8 GHz. In general, the 
insertion loss is caused by conductor loss, dielectric loss and radiation loss. However, the 
insertion loss of the passband is mainly caused by the wider gap than the initial design, 
leading to a weakened coupling between the E-shaped electrodes. 
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it lacked stability. However, the real group delay can be estimated by reading the average 
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value from the measured result. The variation of the group delay is estimated around 0.2 ns 
in the passband and it gets slightly higher at up to 0.4 ns at the higher edge of the passband. 
A mild group delay is quite useful to convey the short pulse signal from the input to the 
output without serious distortion. 
For size reduction of the filter, using the higher dielectric permittivity substrate is the well-
known standard approach. As for the design examples, two filters fabricated on the 
substrate with r=5 or r=10 are designed with the structural parameters summarized in 
Tables 3. The simulated scattering characteristics for these models are shown in Fig. 11. 
Though the dielectric and conductor losses are not included in the simulation, it can be 
confirmed that these filters have a flat UWB passband with the reflection coefficient of less 
than -15 dB. In addition, compared with the conventional UWB filters engaged in multiple-
mode resonators, significant size reduction is attained. 
 

 Coupled-lines 
L1 L2 L3 L4 L5 L6 Spacing 

bw lines  
Spacing 
bw ELs* 3.7 3.7 3.7 3.7 3.7 3.7 

W1 W2 W3 W4 W5 W6 S G 
0.3 0.3 0.3 0.3 0.3 0.3 0.35 0.01 

Input / Output microstrip lines Substrate 
 

WB 
I/O microstip lines Substrate 

D WMSL Z0 HSUB r 
0.3  0.83 50 ohm 0.5 5.0 

(a)                   * between Electrodes 
 

Coupled-lines 
L1 L2 L3 L4 L5 L6 Spacing 

bw lines  
Spacing 
bw ELs* 2.7 2.7 2.7 2.7 2.7 2.7 

W1 W2 W3 W4 W5 W6 S G 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.008 

Input / Output microstrip lines Substrate 
 

WB 
I/O microstip lines Substrate 

D WMSL Z0 HSUB r 
0.2  0.44 50 ohm 0.5 10.0 

(b)                   * between Electrodes 
Table 3. Structural parameters of the miniaturized UWB bandpass filter with tightly coupled 
E-shaped electrodes fabricated on the higher permittivity substrate. (a) Substrate with r=5 is 
used. (b) Substrate with r=10 is used. 
 
The total area of the filter body (area of the E-shaped electrodes and the gap between them) 
is  3.21 mm x 3.7 mm x 0.5 mm for r=5 model and 2.008 mm x 2.7 mm x 0.5 mm for r=10 
model, respectively.  
Contrary to the super-compactness, it should be noted that the filters fabricated on the 
higher permittivity substrate always require an extremely small gap between the electrodes 
in order to create the necessary series capacitance C0. For instance, when the substrate with 
r=10 is used, the gap width of 0.008 mm is required. However, 0.05 mm gap is the recent 
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fabrication limit for the standard PCB technology. If the narrower gap needs to be fabricated, 
the high-cost laser-based process would be indispensable for structuring the circuit. 
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Fig. 11. Simulated scattering characteristics of the miniaturized UWB bandpass filter with 
tightly coupled E-shaped electrodes. Filters are fabricated on the high permittivity substrate 
with r=5 (top) or r=10 (bottom). Structural parameters are summarized in Tables 3a and 3b, 
respectively. 

 
3.2 UWB bandpass filters with capacitor-loaded E-shaped electrodes 
The model introduced in the former subsection would be useful if the small gap between the 
E-shaped electrodes could be fabricated accurately using the conventional PCB technology. 
However, as mentioned above, when we design the smaller filter using the higher 
permittivity substrate, the gap width will be significantly narrower. 
The easier way to reduce such fabrication difficulties is to introduce a chip capacitor onto 
the gap to compensate for the insufficient gap capacitance. A circuit layout of a new planer 
UWB bandpass filter with capacitor-loaded E-shaped electrodes is shown in Fig. 12. The 
small chip capacitor with capacitance CP is loaded between the E-shaped electrodes with an 
offset P from the bottom of the electrodes. 
To begin with, the relation between the gap width G and the transmission coefficient |S21| 
is shown in Fig. 13a when the chip capacitor is not yet installed on the gap. Except for the 
value of the gap width G, structural parameters are the same as the model shown in Fig. 7. 
Apparently, when the gap becomes wider, the passband response is significantly damaged 
and reduced. To study the usefulness of the chip capacitor, let's start the filter design with 
G=0.3 mm. 
Fig. 13b presents the |S21| when the chip capacitance CP is varied from 0.0 pF (without a 
capacitor) to 2.0 pF. The capacitor is assumed to be fabricated at the bottom of the electrodes 
(P=0.0 mm), and the gap width is fixed as G=0.3 mm. In this structure, the required series 
capacitance C0 is mostly supplied by the chip capacitor CP. It is confirmed from the graph 

r=5  

r=10  

 

that the response around 3 GHz is improved drastically by choosing an appropriate 
capacitance CP. In this study, when CP is 0.5 pF, the flatter passband response is obtained.  
In addition, the stopband response at the higher frequency above the passband is also 
important. The offset of the chip capacitor P is related to the position of the transmission 
zeros in the higher frequency region, because the effective length of the third and forth lines 
of the electrodes, which work as an open-stub band elimination filter, are varied by 
changing the chip offset P. Fig 13c shows the simulated |S21| when the P is varied from 0.0 
mm to 1.5 mm. Calculation is carried out for the fixed gap width G=0.3 mm and the chip 
capacitance CP=0.5 pF. It can be read from the graph that the transmission zero obtained 
above the passband shifts slightly higher with the increase of P, and a pulse-like response 
around 13 GHz disappears from there. As a result, the insertion loss of more than 30 dB is 
attained above 11.5 GHz by choosing as P=1.5 mm. According to these theoretical 
considerations, the structural parameters of the final model are derived as listed in Table 4. 
 

 

 
Fig. 12. A circuit layout of a planer UWB bandpass filter with capacitor-loaded E-shaped 
electrodes. Structural parameters are listed in Table 4. 
 
As shown in Fig. 14, a prototype model with structural parameters listed in Table 4, is 
fabricated to confirm the theoretical predictions. As the chip capacitor, a high frequency 
multi-layered ceramic capacitor VK105 from TAIYO YUDEN was used and soldered 
between the electrodes with the offset P=1.5 mm. 
For comparison, two types of filters are demonstrated; one is the filter before installing the 
chip capacitor (corresponding to the top graph in Fig. 15a), and the other is the filter after 
installing the chip capacitor (corresponding to the bottom graph in Fig. 15a). As predicted 
by the simulation in Fig.13a, the measured transmission coefficient |S21| is badly damaged 
due to the shortage of the series capacitance. However, by supplying the additional 
capacitance with CP=0.5 pF, an extremely wide and flat passband is created from 3.1 GHz to 
11.4 GHz, corresponding to the fractional bandwidth of 114 %. The return loss of more than 
10 dB is attained from 3.7 GHz to 11.0 GHz. Furthermore, as shown in Fig. 15b, the 
measured group delay of the filter is quite mild, and the in-band group delay variation is 
less than 0.2 ns. Thus, the filter response is improved quite easily and drastically by 
supplying the small chip capacitor onto the gap.  
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fabrication limit for the standard PCB technology. If the narrower gap needs to be fabricated, 
the high-cost laser-based process would be indispensable for structuring the circuit. 
 

0 2 4 6 8 10 12 14

0

-20

-40

0

-20

-40

Frequency (GHz)

Sc
at

te
rin

g 
Pa

ra
m

et
er

s (
dB

)

 |S21|
 |S11|

-60

-60

 
Fig. 11. Simulated scattering characteristics of the miniaturized UWB bandpass filter with 
tightly coupled E-shaped electrodes. Filters are fabricated on the high permittivity substrate 
with r=5 (top) or r=10 (bottom). Structural parameters are summarized in Tables 3a and 3b, 
respectively. 
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Fig. 12. A circuit layout of a planer UWB bandpass filter with capacitor-loaded E-shaped 
electrodes. Structural parameters are listed in Table 4. 
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Fig. 13. Calculated transmission coefficients |S21| of the planer UWB bandpass filter with 
capacitor-loaded E-shaped electrodes shown in Fig. 12. Design starts with the initial 
parameters listed in Table 2. (a) The effect of the gap width G when the chip capacitor is not 
installed. (b) The effect of the chip capacitor CP, when G=0.3 mm and P=0.0 mm are 
assummed. (c) Tuning of the higher frequency response by changing the chip offset P. The 
parameters G=0.3 mm and CP=0.5 pF are assummed. 
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Table 4. Structural parameters of the planer UWB bandpass filter with capacitor-loaded E-
shaped electrodes shown in Fig. 12. Unit for dimensional parameters is in mm. 
 

 

 
Fig. 14 A prototype of the UWB bandpass filter with capacitor-loaded E-shaped electrodes, 
shown in Fig. 12 with circuit parameters listed in Table 4. The filter is fabricated on a 
Rexolite 2200 substrate with a relative permittivity of 2.62 and a thickness of 0.8 mm. A 0.5 
pF chip capacitor is loaded between the electrodes. 
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Fig. 15. Measured scattering characteristics of the UWB bandpass filter with capacitor-
loaded E-shaped electrodes. (a) The reflection coefficient |S11| and the transmission 
coefficient |S21| of the filters without a chip capacitor (top half of the graph) and with a 0.5 
pF chip capacitor (bottom half of the graph). Basic structural parameters are listed in Table 5. 
(b) The group delay between SMA connectors. Unit is 1 ns/div. 

 
3.3 Asymmetric UWB bandpass filters with improved out-of-passband response 
The UWB bandpass filters with tightly-coupled or capacitor-loaded E-shaped electrodes 
were both attractive in respects to the compactness, low-cost fabrication, and mass-
productivity. In addition, the superior passband selectivity was realized by creating the 
transmission zeros just below and above the passband. However, the FCC specification also 
requires a high rejection level in the stopband. In order to improve the stopband response, 
an asymmetric UWB bandpass filter with capacitor-loaded E-shaped electrodes was newly 
developed. This technology is introduced in this subsection. 
As mentioned above, the transmission zeros above the passband are created by the quarter-
wavelength open-stubs in the electrodes. This means that the stopband response can be 
improved by tuning the length of the stubs so that the transmission zeros are located at 
regular intervals in the stopband region. This fine-tuning process can be done simply by 
using an optimizer installed in the commercial EM simulators, or by changing the length of 
the stubs manually. 
In the actual design, the fine-tuning process, started with the symmetric UWB bandpass 
filter with capacitor-loaded E-shaped electrodes presented in Fig. 12. Since the lines in the 
electrodes couple to each other, this process will be time-consuming and tedious if the 
optimization is done manually. 
Fig. 16 shows the circuit layout of the optimized asymmetric bandpass filter, the structural 
parameters of which are summarized in Table 5. For comparison, the simulated scattering 
characteristics are shown in Fig. 17, together with the original symmetric filter shown in Fig. 
12 with the structural parameters given in Table 4. The optimized asymmetric bandpass 
filter has the wide stopband from 11.5 GHz to 18.5 GHz with the rejection level of more than 
10 dB, while the original flat and wide passband response is maintained. 
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Fig. 16. A circuit layout of the asymmetric UWB bandpass filter with capacitor-loaded  E-
shaped electrodes. Structural parameters are listed in Table 6 and FEM-simulated scattering 
characteristics are presented in Fig. 17. 
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Table 5. Structural parameters of the asymmetric UWB bandpass filter with capacitor-loaded 
E-shaped electrodes shown in Fig. 16. Unit for dimensional parameters is in mm. 
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(a)                                                                            (b) 

Fig. 17. FEM-simulated scattering characteristics. (a) The symmetric UWB bandpass filter 
with capacitor-loaded E-shaped electrodes (original model). (b) The asymmetric UWB 
bandpass filter with capacitor-loaded E-shaped electrodes (optimized model). 
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Fig. 15. Measured scattering characteristics of the UWB bandpass filter with capacitor-
loaded E-shaped electrodes. (a) The reflection coefficient |S11| and the transmission 
coefficient |S21| of the filters without a chip capacitor (top half of the graph) and with a 0.5 
pF chip capacitor (bottom half of the graph). Basic structural parameters are listed in Table 5. 
(b) The group delay between SMA connectors. Unit is 1 ns/div. 
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Fig. 16. A circuit layout of the asymmetric UWB bandpass filter with capacitor-loaded  E-
shaped electrodes. Structural parameters are listed in Table 6 and FEM-simulated scattering 
characteristics are presented in Fig. 17. 
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(a)                                                                            (b) 

Fig. 17. FEM-simulated scattering characteristics. (a) The symmetric UWB bandpass filter 
with capacitor-loaded E-shaped electrodes (original model). (b) The asymmetric UWB 
bandpass filter with capacitor-loaded E-shaped electrodes (optimized model). 
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3.4 Design procedure of UWB bandpass filters 
Different from other UWB bandpass filters proposed so far, the couplings between  the filter 
components play an important role in this filter to obtain a superior UWB response in a 
limited filter dimension. For example, the filter uses the electric coupling between the 
electrodes, the electric coupling between the thin lines of the electrodes, and the magnetic 
coupling between the short-circuited stubs of the electrodes. However, this makes it difficult 
to use the conventional filter theory for this kind of filter design. Instead, the filter can be 
designed easily in accordance with a simple design procedure as follows; 
 

1) The length of the open-stubs in each E-shaped electrodes (L1, L3, L4, and L6) needs to be 
chosen as a quarter-wavelength so as to obtain some transmission zeros above the 
UWB passband. This process is usually done under L1=L3=L4=L6. The higher cutoff 
frequency is roughly determined by this. 

2) The length of the short-stubs in each electrode (L2 and L5) needs to be chosen so as to 
obtain a transmission zero below the UWB passband. The lower cutoff frequency is 
roughly given by this step.  

3) The coupling between the E-shaped electrodes should be tuned by changing the gap 
width between the electrodes, G, so as to create a flat UWB passband. It should be 
noted that the larger gap can easily damege the response at the lower edge of the 
passband.  

4) If a chip capacitor with an appropriate capacitance is loaded between the gap, the 
fabrication difficulty will be reduced significantly. 

5) Fine-tuning of other structural parameters are needed to obtain the better filter 
response. The center frequency of the UWB passband can be adjusted in some extent 
by the width of the line WB at the bottom of the E-shaped electrode. The in-band 
ripples in the transmission coefficient can be reduced in this process.  

6) The higher stopband response can be improved slightly by giving an appropriate offset 
D to the input and output microstrip lines connecting to the electrodes. 

 
By this, an excellent UWB passband will be attained. To create the better stopband response, 
fine-tuning of the open-/short-stubs in the electrodes is quite useful as demonstrated in the 
former discussion. 

 
7) To create the better stopband, the line length in the electrodes should be tuned 

independently by using an optimizer installed in the commercial EM simulators or by 
changing the length manually.   

 
According to these instructions, all the filters presented in this chapter were designed. 

 
4. Conclusions 
 

In this chapter, three types of compact UWB bandpass filters with plural transmission zeros 
below and above the passband are introduced together with the useful design procedure. 
Compared with other conventional filters, the proposed filter can be made drastically small 
in size with the help of a tiny chip capacitor. In addition, the circuit pattern of the filter is 
given only at the top of the substrate and a perfect ground plane is remained without any 

 

defections. This will be a great advantage when the filter is fabricated on a double-layered 
substrate. Furthermore, the microstrip-line-based filter patterns can be printed out together 
with other circuit petterns at the same time using the common PCB process. Thus, the 
proposed filters have tremendous attractive features in the engineering of the latest UWB 
technology, in respects to the super-compactness, easy fabrication, excellent compatibility to 
other circuits, low-cost and mass productivity. 
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1. Introduction    
 

The broadband wireless access (BWA) is an important issue in current developments of the 
modern wireless communication system. To meet this trend, the bandpass filters with relatively 
wide bandwidth are frequently required in the RF front ends. In microwave communication 
systems, the bandpass filter is an essential component, which is usually used in both 
receivers and transmitters. Thus, the quality of bandpass filers is extremely important. 
Planar filters are currently a popular structure because they can be fabricated using printed 
circuit technology and are suitable for commercial applications due to their small size and 
lower fabrication cost (D.M. Pozar, 1998). Therefore, how to design a bandpass filter at low 
cost and with high performance is currently of great interest. Microstrip bandpass filters can 
be easily mounted on a dielectric substrate and can provide a more flexible design of the 
circuit layout. The dual-mode resonators filter have been known for years. The compact 
high performance microwave bandpass filters are highly desirable in the wireless 
communications systems. Consequently, the dual-mode filters have been used widely for 
the system because of their advantages such as small size, light weight, low loss and high 
selectivity. Many authors (Hsieh & Chang, 2001, 2003), (Konpang, 2003) and (Chen et al., 
2005) have proposed the wide-band bandpass filters using dual-mode ring resonators with 
tuning stubs but the configurations still occupy a large circuit area, which is not suitable for 
wireless communication systems where the miniaturization is an important factor. 
Therefore, it is desirable to develop new types of dual-mode microstrip resonators not only 
for offering alternative designs, but also for miniaturizing filters. On the other hand, the 
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spurious are required to meet the out-of-band requirements. The microstrip open-loop 
resonators have a wide stopband resulting from the dispersion effect and the slow-wave 
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In this book, a dual-mode wide-band bandpass filter using the microstrip loop resonators 
with tuning stubs is proposed. Basic concepts and design equations for microstrip lines 
introduced in section 2. The bandpass filter is based on the bandstop filter employing direct-
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connected feed lines on the orthogonal of the microstrip loop resonators. The introduction of 
two tuning open stubs connecting opposite to the ports widens the passband and sharpens 
the stopbands. Then, a dual-mode can be used to improve the narrow stopbands for lower 
side band and higher sideband. The design descriptions dual-mode wide-band bandpass 
filter are discussed in section 3. 

 
2. Transmission lines 
 

Basic concepts and design equations for microstrip lines, dual-mode wide-band  bandpass 
filter using the microstrip loop resonator with tuning stubs are briefly described. 

 
2.1 Microstrip lines 
2.1.1 Microstrip structure 
The general structure of a microstrip is illustrated in Figure 1. A conducting strip (microstrip 
line) with a width w  and a thickness t  is on the top of a dielectric substrate that has a 
relative dielectric constant  r and a thickness h , and the bottom of the substrate is a ground 
(conducting) plane. 
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Fig. 1. General microstrip structure 
 
2.1.2 Waves in microstrips 
The fields in the microstrip extend within two media-air above and dielectric below so that 
the structure is inhomogeneous. Due to this inhomogeneous nature, the microstrip does not 
support a pure TEM wave. This is because that a pure TEM wave has only transverse 
components, and its propagation velocity depends only on the material properties, namely 
the permittivity ε and the permeability  . However, with the presence of the two guided-
wave media (the dielectric substrate and the air), the waves in a microstrip line will have no 
vanished longitudinal components of electric and magnetic fields, and their propagation 
velocities will depend not only on the material properties, but also on the physical 
dimensions of the microstrip. 

 
2.1.3 Quasi-TEM approximation 
When the longitudinal components of the fields for the dominant mode of a microstrip line 
remain very much smaller than the transverse components, they may be neglected. In this 

 

case, the dominant mode then behaves like a TEM mode, and the TEM transmission line 
theory is applicable for the microstrip line as well. This is called the quasi-TEM 
approximation and it is valid over most of the operating frequency ranges of microstrip. 

 
2.1.4 Effective dielectric constant and characteristic impedance  
In the quasi-TEM approximation, a homogeneous dielectric material with an effective 
dielectric permittivity replaces the inhomogeneous dielectric-air media of microstrip. 
Transmission characteristics of microstrips are described by two parameters, namely the 
effective dielectric constant  re  and characteristic impedance cZ , which may then be 
obtained by quasistatic analysis. In quasi-static analysis, the fundamental mode of wave 
propagation in a microstrip is assumed to be pure TEM. The above two parameters of 
microstrips are then determined from the values of two capacitances as follows 
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in which dC is the capacitance per unit length with the dielectric substrate present, aC is the 
capacitance per unit length with the dielectric substrate replaced by air, and c  is the 
velocity of electromagnetic waves in free space   8( 3.0 10 / ).c m s  
For very thin conductors (i.e., t → 0), the closed-form expressions that provide an accuracy 
better than one percent are given as follows (Hong & Lancaster, 2001). 
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Accurate expression for the effective dielectric constant is 
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The fields in the microstrip extend within two media-air above and dielectric below so that 
the structure is inhomogeneous. Due to this inhomogeneous nature, the microstrip does not 
support a pure TEM wave. This is because that a pure TEM wave has only transverse 
components, and its propagation velocity depends only on the material properties, namely 
the permittivity ε and the permeability  . However, with the presence of the two guided-
wave media (the dielectric substrate and the air), the waves in a microstrip line will have no 
vanished longitudinal components of electric and magnetic fields, and their propagation 
velocities will depend not only on the material properties, but also on the physical 
dimensions of the microstrip. 

 
2.1.3 Quasi-TEM approximation 
When the longitudinal components of the fields for the dominant mode of a microstrip line 
remain very much smaller than the transverse components, they may be neglected. In this 

 

case, the dominant mode then behaves like a TEM mode, and the TEM transmission line 
theory is applicable for the microstrip line as well. This is called the quasi-TEM 
approximation and it is valid over most of the operating frequency ranges of microstrip. 

 
2.1.4 Effective dielectric constant and characteristic impedance  
In the quasi-TEM approximation, a homogeneous dielectric material with an effective 
dielectric permittivity replaces the inhomogeneous dielectric-air media of microstrip. 
Transmission characteristics of microstrips are described by two parameters, namely the 
effective dielectric constant  re  and characteristic impedance cZ , which may then be 
obtained by quasistatic analysis. In quasi-static analysis, the fundamental mode of wave 
propagation in a microstrip is assumed to be pure TEM. The above two parameters of 
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capacitance per unit length with the dielectric substrate replaced by air, and c  is the 
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For very thin conductors (i.e., t → 0), the closed-form expressions that provide an accuracy 
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The accuracy of this model is better than 0.2% for  r ≤ 128 and 0.01 ≤ u ≤ 100. 
The more accurate expression for the characteristic impedance is 
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The accuracy for c reZ is better than 0.01% for u ≤ 1 and 0.03% for u ≤ 1000. 

 
2.1.5 Guided wavelength, propagation constant, phase velocity, and electrical length 
Once the effective dielectric constant of a microstrip is determined, the guided wavelength 
of the quasi-TEM mode of microstrip is given by 
 




 0
g

re

                                                                 (6a) 

 
where 0  is the free space wavelength at operation frequency f. More conveniently, where 
the frequency is given in gigahertz (GHz), the guided wavelength can be evaluated directly 
in millimeters as follows: 
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The associated propagation constant (β) and phase velocity (vp) can be determined by 
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where c is the velocity of light   8( 3.0 10 / )c m s in free space. 
The electrical length (θ) for a given physical length (l) of the microstrip is defined by 
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Therefore, θ = π/2 when l = λg/4, and θ = π when l = λg/2. These so-called 
quarterwavelength and half-wavelength microstrip lines are important for design of 
microstrip filters. 

 
2.1.6 Synthesis of w/h 
Approximate expressions for w/h in terms of Zc and r are available. 
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These expressions also provide accuracy better than one percent. If more accurate values are 
needed, an iterative or optimization process based on the more accurate analysis models 
described previously can be employed. 

 
2.1.7 Effect of strip thickness 
So far we have not considered the effect of conducting strip thickness t (as referring to 
Figure 1). The thickness t is usually very small when the microstrip line is realized by 
conducting thin films; therefore, its effect may quite often be neglected. Nevertheless, its 
effect on the characteristic impedance and effective dielectric constant may be included. 
For w/h ≤ 1: 
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These expressions also provide accuracy better than one percent. If more accurate values are 
needed, an iterative or optimization process based on the more accurate analysis models 
described previously can be employed. 

 
2.1.7 Effect of strip thickness 
So far we have not considered the effect of conducting strip thickness t (as referring to 
Figure 1). The thickness t is usually very small when the microstrip line is realized by 
conducting thin films; therefore, its effect may quite often be neglected. Nevertheless, its 
effect on the characteristic impedance and effective dielectric constant may be included. 
For w/h ≤ 1: 

8 ( )( ) ln 0.25
( )/2

e
c

ere

w tZ t
w t h h


 

    
  

                                          (12a) 

For w/h ≥ 1: 



Passive	Microwave	Components	and	Antennas346

 

1( ) ( )( ) 1.393 0.667 ln 1.444e e
c

re

w t w tZ t
h h





       

  
                            (12b) 

where 

 

 

1.25 41 ln / 0.5
( )

1.25 21 ln / 0.5

e

w t w w h
h h tw t

h w t h w h
h h t

 





        
       

                                  (13a) 

 
1 /( )

4.6 /
r

re re
t ht
w h

  
                                                   (13b) 

 
In the above expressions, re  is the effective dielectric constant for t = 0. It can be observed 
that the effect of strip thickness on both the characteristic impedance and effective dielectric 
constant is insignificant for small values of t/h. However, the effect of strip thickness is 
significant for conductor loss of the microstrip line. 

 
2.1.8 Dispersion in microstrip 
Generally speaking, there is dispersion in microstrips; namely, its phase velocity is not a 
constant but depends on frequency. It follows that its effective dielectric constant re  is a 
function of frequency and can in general be defined as the frequencydependent effective 
dielectric constant ( )re f . The previous expressions for re are obtained based on the quasi-
TEM or quasistatic approximation, and therefore are rigorous only with DC. At low 
microwave frequencies, these expressions provide a good approximation. To take into 
account the effect of dispersion, the formula of ( )re f is given as follows (Hong & Lancaster, 
2001). 
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where c is the velocity of light in free space, and whenever the product m0mc is greater than 
2.32, the parameter m is chosen equal to 2.32. The dispersion model shows that the ( )re f  
increases with frequency, and ( )re f → r as f → ∞. The accuracy is estimated to be within 
0.6% for 0.1 ≤ w/h ≤10, 1 ≤ r ≤ 128 and for any value of h/λ0.  
The effect of dispersion on the characteristic impedance may be estimated by 
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where Zc is the quasi-static value of characteristic impedance obtained earlier. 

 
2.2 Microstrip discontinuities 
Microstrip discontinuities commonly encountered in the layout of practical filters include  
junctions, bends and open stubs. Generally speaking, the effects of discontinuities can be 
more accurately modeled and taken into account in the filter designs with full-wave 
electromagnetic (EM) simulations. 

 
2.2.1 Junction 
The junction is used when we wish to split a signal into another paths. The asymmetrical 
microstrip line T junction is indicated in Figure 2.  
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Fig. 2. Asymmetric microstrip line T junction and Model 
The equations for a symmetric T junction to model the asymmetric junction. The equations 
are  
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where Zc is the quasi-static value of characteristic impedance obtained earlier. 
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Fig. 2. Asymmetric microstrip line T junction and Model 
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2.2.2 Bends 
Right-angle bend and mitered bend of microstrips may be modeled by and equivalent T-
network, as shown in Figure 3. (Kupta et al., 1996) have given closed-form expressions for 
evaluation of capacitance and inductance: 
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for the microstrip mitered bend, and as 
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Fig. 3. Right-angle bend, mitered bend and model 
 
2.2.3 Open stub 
According to the transmission line theory, the input admittance of an open circuited 
transmission line having a characteristic admittance 1/c cY Z and propagation constant 

2 / g    is give by 
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Fig. 3. Right-angle bend, mitered bend and model 
 
2.2.3 Open stub 
According to the transmission line theory, the input admittance of an open circuited 
transmission line having a characteristic admittance 1/c cY Z and propagation constant 

2 / g    is give by 
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Where pv is the phase velocity of propagation in the stub. It is now clearer that such a open 
circuited stub is equivalent to a shunt capacitance /c pC Y l v , as indicated in Figure 4. 
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Fig. 4. Open circuit stub and Model 
 
At the open end of a microstrip line with a width of w , the fields do not stop abruptly but 
extend slightly further due to the effect of the fringing field. This effect can be modeled 
either with an equivalent shunt capacitance pC or with an equivalent length of transmission 
line  
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Where c is the light velocity in free space. A closed-form expression for /openl h  is given by 
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Fig. 5. (a) Microstrip open-end discontinuity (b) equivalent capacitance representation, and 
(c) equivalent line length representation 
 
3. Dual-mode wide-band bandpass filter design 
 

The bandpass filter is based on the bandstop filter employing direct-connected feed lines on the 
orthogonal of the microstrip loop resonators. The introduction of two tuning open stubs 
connecting opposite to the ports widens the passband and sharpens the stopbands. Then, a 
dual-mode can be used to improve the narrow stopbands for lower side band and higher 
sideband. 

 
3.1 Bandstop characteristics 
3.1.1 Bandstop filter (Type A) 
The first bandpass filter is based on the bandstop filter employing direct-connected feed 
lines on the orthogonal of the microstrip loop resonator (Konpang et al., (2007). The 
microstrip loop resonator with direct-connected feed lines on the orthogonal depicted in Fig. 
6 is a bandstop configuration. The resonator consists of four identical branches with 
attached to an outer corner of the square loop. The bandstop filter is designed at 
fundamental resonant frequency 0f = 2.45 GHz and fabricated on a RT/Duroid substrate 
having a thickness h = 1.27 mm with relative dielectric constant r = 6.15. The filter was 
designed and simulated by IE3D program. The dimensions of the loop are fl = 8 mm, s = 
0.715 mm, 1w = 1.85 mm, 2w = 0.75 mm, 3w = 1.35 mm and a = 9.3 mm. 
The equivalent microstrip loop circuit as  shown in Fig. 7 is divided into input and output 
ports forming a shunt circuit denoted by the upper and lower parts, respectively. The 
capacitance 1TjB is the T-junction effect between the feed line and the microstrip loop 
resonator (Hsieh & Chang, 2003). The capacitance 2TjB  is the junction effect between the 
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Where pv is the phase velocity of propagation in the stub. It is now clearer that such a open 
circuited stub is equivalent to a shunt capacitance /c pC Y l v , as indicated in Figure 4. 
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Fig. 5. (a) Microstrip open-end discontinuity (b) equivalent capacitance representation, and 
(c) equivalent line length representation 
 
3. Dual-mode wide-band bandpass filter design 
 

The bandpass filter is based on the bandstop filter employing direct-connected feed lines on the 
orthogonal of the microstrip loop resonators. The introduction of two tuning open stubs 
connecting opposite to the ports widens the passband and sharpens the stopbands. Then, a 
dual-mode can be used to improve the narrow stopbands for lower side band and higher 
sideband. 

 
3.1 Bandstop characteristics 
3.1.1 Bandstop filter (Type A) 
The first bandpass filter is based on the bandstop filter employing direct-connected feed 
lines on the orthogonal of the microstrip loop resonator (Konpang et al., (2007). The 
microstrip loop resonator with direct-connected feed lines on the orthogonal depicted in Fig. 
6 is a bandstop configuration. The resonator consists of four identical branches with 
attached to an outer corner of the square loop. The bandstop filter is designed at 
fundamental resonant frequency 0f = 2.45 GHz and fabricated on a RT/Duroid substrate 
having a thickness h = 1.27 mm with relative dielectric constant r = 6.15. The filter was 
designed and simulated by IE3D program. The dimensions of the loop are fl = 8 mm, s = 
0.715 mm, 1w = 1.85 mm, 2w = 0.75 mm, 3w = 1.35 mm and a = 9.3 mm. 
The equivalent microstrip loop circuit as  shown in Fig. 7 is divided into input and output 
ports forming a shunt circuit denoted by the upper and lower parts, respectively. The 
capacitance 1TjB is the T-junction effect between the feed line and the microstrip loop 
resonator (Hsieh & Chang, 2003). The capacitance 2TjB  is the junction effect between the 
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loop resonator with each branch. The analysis of the characteristic of the microstrip loop 
resonators is performed by IE3D program. Fig.8 presents the simulation results of the 
microstrip loop using direct-connect orthogonal feed lines, the frequency response exhibits 
bandstop behaviours. 
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Fig. 6. Microstrip loop resonator using direct-connected orthogonal feeders (Type A) 
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Fig. 7. Equivalent circuit of the microstrip loop resonator using direct-connected orthogonal 
feed lines 

 

      
 

Fig. 8. Simulation results of the microstrip loop resonator using direct-connected orthogonal 
feed lines  

 
3.1.2 Bandstop filter (Type B) 
The second bandpass filter is based on the bandstop filter employing direct-connected feed 
lines on the orthogonal of the microstrip loop resonator (J. Konpang, 2008). The microstrip 
loop resonator with direct-connected feed lines on the orthogonal depicted in Fig.9 is a 
bandstop configuration. The resonator consists of four identical branches with a small 
square patch attached to an inner corner of the square loop.  
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Fig. 9. Microstrip loop resonator using direct-connected orthogonal feeders (Type B) 
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loop resonator with each branch. The analysis of the characteristic of the microstrip loop 
resonators is performed by IE3D program. Fig.8 presents the simulation results of the 
microstrip loop using direct-connect orthogonal feed lines, the frequency response exhibits 
bandstop behaviours. 
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Fig. 6. Microstrip loop resonator using direct-connected orthogonal feeders (Type A) 
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Fig. 8. Simulation results of the microstrip loop resonator using direct-connected orthogonal 
feed lines  

 
3.1.2 Bandstop filter (Type B) 
The second bandpass filter is based on the bandstop filter employing direct-connected feed 
lines on the orthogonal of the microstrip loop resonator (J. Konpang, 2008). The microstrip 
loop resonator with direct-connected feed lines on the orthogonal depicted in Fig.9 is a 
bandstop configuration. The resonator consists of four identical branches with a small 
square patch attached to an inner corner of the square loop.  
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Fig. 9. Microstrip loop resonator using direct-connected orthogonal feeders (Type B) 
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The bandstop filters is designed at fundamental resonant frequency 0f = 2.45 GHz and 
fabricated on a RT/Duroid substrate having a thickness h = 1.27 mm with relative dielectric 
constant r = 6.15. The filter was designed and simulated by IE3D program. The dimensions 
of the loop are fl = 8 mm, 1w = 1.85 mm, 2w = 0.75 mm, 4w = 6.8 mm, 5w = 4.4 mm, g = 0.4 
mm and b = 11.5 mm.  
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Fig. 10. Equivalent circuit of the microstrip loop resonator using direct-connected 
orthogonal feed lines  

             

 
Fig. 11. Simulation results of the microstrip loop resonator using direct-connected 
orthogonal feed lines  
 
The equivalent microstrip loop circuit is shown in Fig.10 is divided into input and output 
ports forming a shunt circuit denoted by the upper and lower parts, respectively. The 
capacitance 1TjB is the T-junction effect between the feed line and the microstrip loop 
resonator (Hsieh & Chang, 2003). The capacitance 2TjB  is the junction effect between the 
loop resonator with each branch. The analysis of the characteristic of the microstrip loop 

 

resonators is performed by IE3D program. Fig.11 presents the simulation results of the 
microstrip loop using direct-connect orthogonal feed lines. The frequency response exhibits 
bandstop behaviours. 

 
3.2 Two tuning stubs for a single-mode bandpass filter 
3.2.1 Single-mode bandpass filter (Type A) 
Based on bandstop filter, The first resonator is modified by adding two tuning stubs 
connecting opposite to the ports. The resonator (Type A) with tuning stubs is shown in  
Fig. 12. The length of tuning opened-stub is t gl  /4. 
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Fig. 12. Structure of two tuning stubs for single-mode (Type A) 
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Fig. 13. Equivalent circuit of a microstrip loop resonator with  tuning stubs 
 
The equivalent circuit of resonator with tuning stubs is shown in Fig. 13. tY  is the 
admittance reflecting into the stubs tY can be expressed by 
 



A	Dual-Mode	Wide-Band	Bandpass	Filter	Using	the		
Microstrip	Loop	Resonator	with	Tuning	Stubs 355

 

The bandstop filters is designed at fundamental resonant frequency 0f = 2.45 GHz and 
fabricated on a RT/Duroid substrate having a thickness h = 1.27 mm with relative dielectric 
constant r = 6.15. The filter was designed and simulated by IE3D program. The dimensions 
of the loop are fl = 8 mm, 1w = 1.85 mm, 2w = 0.75 mm, 4w = 6.8 mm, 5w = 4.4 mm, g = 0.4 
mm and b = 11.5 mm.  
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Fig. 10. Equivalent circuit of the microstrip loop resonator using direct-connected 
orthogonal feed lines  

             

 
Fig. 11. Simulation results of the microstrip loop resonator using direct-connected 
orthogonal feed lines  
 
The equivalent microstrip loop circuit is shown in Fig.10 is divided into input and output 
ports forming a shunt circuit denoted by the upper and lower parts, respectively. The 
capacitance 1TjB is the T-junction effect between the feed line and the microstrip loop 
resonator (Hsieh & Chang, 2003). The capacitance 2TjB  is the junction effect between the 
loop resonator with each branch. The analysis of the characteristic of the microstrip loop 

 

resonators is performed by IE3D program. Fig.11 presents the simulation results of the 
microstrip loop using direct-connect orthogonal feed lines. The frequency response exhibits 
bandstop behaviours. 

 
3.2 Two tuning stubs for a single-mode bandpass filter 
3.2.1 Single-mode bandpass filter (Type A) 
Based on bandstop filter, The first resonator is modified by adding two tuning stubs 
connecting opposite to the ports. The resonator (Type A) with tuning stubs is shown in  
Fig. 12. The length of tuning opened-stub is t gl  /4. 
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Fig. 12. Structure of two tuning stubs for single-mode (Type A) 
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Fig. 13. Equivalent circuit of a microstrip loop resonator with  tuning stubs 
 
The equivalent circuit of resonator with tuning stubs is shown in Fig. 13. tY  is the 
admittance reflecting into the stubs tY can be expressed by 
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3tanh( )t o open TY y lt l jB                                            (39) 
 

where oy  is the characteristic admittance of the  stub,   is the complex propagation 
constant, openl  is the equivalent open effect length and 3TjB  is the capacitance of the T-
junction between the microstrip loop with  stubs tl . 
 

     
Fig. 14. Photograph of a single-mode bandpass filter (Type A) 
 

      
Fig. 15. Measurement for single-mode bandpass filter 
 
The implemented of single-mode resonators filter is pictured in Fig. 14. The measurement 
results of the microstrip loop with tuning stubs of tl = 16.25 mm, 6 0.4 mmw  . The 
frequency response of the filter is portrayed in Fig. 15. The introduction of two tuning stubs 
connecting opposite to the ports widens the passband and sharpens the stopbands. The 

 

single-mode filter exhibits the 3-dB fractional bandwidth of the filter is 37%, the insertion 
loss better than 0.26 dB and return loss greater than 12.6 dB in the passband. 
In fact, this approach can be interpreted as using two stopbands induced by two tuning 
stubs in conjunction with the wide passband. In some cases, an undesired passband below 
the main passband may require a high passband section to be employed in conjunction with 
this proposing approach. 

 
3.2.2 Single-mode bandpass filter (Type B) 
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Fig. 16. Structure of two tuning stubs for single-mode (Type B) 

fl

fl

l

l

Port 2

Port 1
1TjB

l

ll l l

l

l

lll

2TJB

2TJB

2TJB

2TJB 2TJB

l ltY

tY

 
Fig. 17. Equivalent circuit of a microstrip loop resonator with tuning stubs  
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where oy  is the characteristic admittance of the  stub,   is the complex propagation 
constant, openl  is the equivalent open effect length and 3TjB  is the capacitance of the T-
junction between the microstrip loop with  stubs tl . 
 

     
Fig. 14. Photograph of a single-mode bandpass filter (Type A) 
 

      
Fig. 15. Measurement for single-mode bandpass filter 
 
The implemented of single-mode resonators filter is pictured in Fig. 14. The measurement 
results of the microstrip loop with tuning stubs of tl = 16.25 mm, 6 0.4 mmw  . The 
frequency response of the filter is portrayed in Fig. 15. The introduction of two tuning stubs 
connecting opposite to the ports widens the passband and sharpens the stopbands. The 

 

single-mode filter exhibits the 3-dB fractional bandwidth of the filter is 37%, the insertion 
loss better than 0.26 dB and return loss greater than 12.6 dB in the passband. 
In fact, this approach can be interpreted as using two stopbands induced by two tuning 
stubs in conjunction with the wide passband. In some cases, an undesired passband below 
the main passband may require a high passband section to be employed in conjunction with 
this proposing approach. 
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Fig. 16. Structure of two tuning stubs for single-mode (Type B) 
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Fig. 17. Equivalent circuit of a microstrip loop resonator with tuning stubs  
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Fig. 18. Photograph of a single-mode bandpass filter  

 

 
Fig. 19. Measurement for single-mode bandpass filter 
 
Based on bandstop filter. The second resonator is modified by adding two tuning stubs 
connecting opposite to the ports. The resonator (Type B) with tuning stubs is shown in Fig 
16. The length of tuning opened-stub is t gl  /4. The equivalent circuit of resonator with 
tuning stubs is shown in Fig 17.  
The implemented of single-mode resonator filter is pictured in Fig. 18. The measurement 
results of the microstrip loop with tuning stubs of tl = 15.35 mm, 6 0.4 mmw  . The 
frequency response of the filter is portrayed in Fig. 19. The introduction of two tuning stubs 
connecting opposite to the ports widens the passband and sharpens the stopbands. The 

 

single-mode filter exhibits the 3-dB fractional bandwidth of the filter is 36%, the insertion 
loss better than 0.19 dB and return loss greater than 17 dB in the passband. 

 
3.3 Dual-mode bandpass filter 
3.3.1 Dual-mode bandpass filter (Type A) 
By observing the frequency response in Fig. 15, the two stopbands for lower sideband and 
higher sideband of the filter propose a narrow bandstop. Based on a dual-mode can be used 
to improve the narrow stopbands. 
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Fig. 20. Structure of dual-mode bandpass filter (Type A) 
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Fig. 21. Equivalent circuit of a dual-mode bandpass filter 
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Fig. 18. Photograph of a single-mode bandpass filter  

 

 
Fig. 19. Measurement for single-mode bandpass filter 
 
Based on bandstop filter. The second resonator is modified by adding two tuning stubs 
connecting opposite to the ports. The resonator (Type B) with tuning stubs is shown in Fig 
16. The length of tuning opened-stub is t gl  /4. The equivalent circuit of resonator with 
tuning stubs is shown in Fig 17.  
The implemented of single-mode resonator filter is pictured in Fig. 18. The measurement 
results of the microstrip loop with tuning stubs of tl = 15.35 mm, 6 0.4 mmw  . The 
frequency response of the filter is portrayed in Fig. 19. The introduction of two tuning stubs 
connecting opposite to the ports widens the passband and sharpens the stopbands. The 

 

single-mode filter exhibits the 3-dB fractional bandwidth of the filter is 36%, the insertion 
loss better than 0.19 dB and return loss greater than 17 dB in the passband. 

 
3.3 Dual-mode bandpass filter 
3.3.1 Dual-mode bandpass filter (Type A) 
By observing the frequency response in Fig. 15, the two stopbands for lower sideband and 
higher sideband of the filter propose a narrow bandstop. Based on a dual-mode can be used 
to improve the narrow stopbands. 
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Fig. 20. Structure of dual-mode bandpass filter (Type A) 
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Fig. 21. Equivalent circuit of a dual-mode bandpass filter 
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Fig. 22. Photograph of a dual-mode bandpass filter  
 

          
Fig. 23. Measurement of the dual-mode bandpass filter 
 
A square perturbation stub inner corner the loop resonator in Fig. 20. The square stub 
perturbs the fields of the loop resonator so that the resonator can excite a dual-mode around 
the stopbands in order to improve the narrow stopbands. By increasing the size of the 
pertubation stub, the stopband bandwidth between two modes is increaseded. The length of 
the pertubation stub is pw  1 mm.  

 

 
Fig. 24. Measurement group delay of the dual-mode bandpass filter  
 

         
Fig. 25. Measurement wide-band of the dual-mode bandpass filter  
 
Fig.21 delineates the equivalent circuit of the dual-mode bandpass filter (Type A). The 
asymetric step capacitance pC  can be calculated by 
 

(0.012 0.0039 )p p rC w pF                                                (40) 
 
The implemented of dual-mode resonators filter (Type A) is pictured in Fig. 22. The 
frequency response of the filter is portrayed in Fig. 23. The 3-dB fractional bandwidth of the 
filter is 36%, the insertion loss is better than 0.34 dB and the return loss is greater than 17 dB 
in the passband. The group delay of the dual-mode filter can be calculated by 
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Fig. 22. Photograph of a dual-mode bandpass filter  
 

          
Fig. 23. Measurement of the dual-mode bandpass filter 
 
A square perturbation stub inner corner the loop resonator in Fig. 20. The square stub 
perturbs the fields of the loop resonator so that the resonator can excite a dual-mode around 
the stopbands in order to improve the narrow stopbands. By increasing the size of the 
pertubation stub, the stopband bandwidth between two modes is increaseded. The length of 
the pertubation stub is pw  1 mm.  

 

 
Fig. 24. Measurement group delay of the dual-mode bandpass filter  
 

         
Fig. 25. Measurement wide-band of the dual-mode bandpass filter  
 
Fig.21 delineates the equivalent circuit of the dual-mode bandpass filter (Type A). The 
asymetric step capacitance pC  can be calculated by 
 

(0.012 0.0039 )p p rC w pF                                                (40) 
 
The implemented of dual-mode resonators filter (Type A) is pictured in Fig. 22. The 
frequency response of the filter is portrayed in Fig. 23. The 3-dB fractional bandwidth of the 
filter is 36%, the insertion loss is better than 0.34 dB and the return loss is greater than 17 dB 
in the passband. The group delay of the dual-mode filter can be calculated by 
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21S



 


                                                                (41) 

where 21S is the insertion-loss phase and  is the frequency in radians per second. Fig. 24 
shows the group delay of the filter. Within the passband, the group delay is below 2 ns. 
The measurement of wide-band response is shown in Fig. 25. Unlike the conventional 
structure of the wide-band filters using dual-mode ring resonators with tuning stubs, the 
filter exhibits a wide stopband due to four identical branches at the outer corner of the 
square loop and proposes the first spurious resonance frequency of the dispersion effect. 

 
3.3.1 Dual-mode bandpass filter (Type B) 
By observing the frequency response in Fig. 19, the two stopbands for lower sideband and 
higher sideband of the filter propose a narrow bandstop. Based on a dual-mode can be used 
to improve the narrow stopbands.  
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Fig. 26. Structure of dual-mode bandpass filter (Type B) 
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Fig. 27. Equivalent circuit of a dual-mode bandpass filter 

 

         
Fig. 28. Photograph of a dual-mode bandpass filter  
 
A square perturbation stub outward corner the loop resonator in Fig. 26. The square stub 
perturbs the fields of the loop resonator so that the resonator can excite a dual-mode around 
the stopbands in order to improve the narrow stopbands. By increasing the size of the 
pertubation stub, the stopband bandwidth between two modes is increaseded. The length of 
the pertubation stub are dw = 0.7 mm and dl = 0.7 mm. Fig.27 delineates the equivalent 
circuit of the dual-mode bandpass filter. dY  is the admittance reflecting into the pertubation 
stub. dY can be expressed by 
 

3tanh( )d o d open TY y l l jB                                             (42) 
 

where oy  is the characteristic admittance of the  stub,   is the complex propagation 
constant, openl  is the equivalent open effect length and 3TjB  is the capacitance of the junction 
between the microstrip loop with  pertubation stub dl . 
 

 
Fig. 29. Measurement of the dual-mode bandpass filter 
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where 21S is the insertion-loss phase and  is the frequency in radians per second. Fig. 24 
shows the group delay of the filter. Within the passband, the group delay is below 2 ns. 
The measurement of wide-band response is shown in Fig. 25. Unlike the conventional 
structure of the wide-band filters using dual-mode ring resonators with tuning stubs, the 
filter exhibits a wide stopband due to four identical branches at the outer corner of the 
square loop and proposes the first spurious resonance frequency of the dispersion effect. 

 
3.3.1 Dual-mode bandpass filter (Type B) 
By observing the frequency response in Fig. 19, the two stopbands for lower sideband and 
higher sideband of the filter propose a narrow bandstop. Based on a dual-mode can be used 
to improve the narrow stopbands.  
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Fig. 26. Structure of dual-mode bandpass filter (Type B) 
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Fig. 27. Equivalent circuit of a dual-mode bandpass filter 

 

         
Fig. 28. Photograph of a dual-mode bandpass filter  
 
A square perturbation stub outward corner the loop resonator in Fig. 26. The square stub 
perturbs the fields of the loop resonator so that the resonator can excite a dual-mode around 
the stopbands in order to improve the narrow stopbands. By increasing the size of the 
pertubation stub, the stopband bandwidth between two modes is increaseded. The length of 
the pertubation stub are dw = 0.7 mm and dl = 0.7 mm. Fig.27 delineates the equivalent 
circuit of the dual-mode bandpass filter. dY  is the admittance reflecting into the pertubation 
stub. dY can be expressed by 
 

3tanh( )d o d open TY y l l jB                                             (42) 
 

where oy  is the characteristic admittance of the  stub,   is the complex propagation 
constant, openl  is the equivalent open effect length and 3TjB  is the capacitance of the junction 
between the microstrip loop with  pertubation stub dl . 
 

 
Fig. 29. Measurement of the dual-mode bandpass filter 
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Fig. 30. Measurement group delay of the dual-mode bandpass filter  

 
Fig. 31. Measurement wide-band of the dual-mode bandpass filter  
 
The implemented of dual-mode resonators filter is pictured in Fig. 28. The frequency 
response of the filter is portrayed in Fig. 29. The 3-dB fractional bandwidth of the filter is 
36%, the insertion loss is better than 0.15 dB and the return loss is greater than 15 dB in the 
passband. Fig. 30 shows the group delay of the filter. Within the passband, the group delay 
is below 2 ns. The measurement of wide-band response is shown in Fig. 31. The filter have a 
wide stopband resulting from the dispersion effect and the slow-wave effect. 

 
4. Conclusions 
 

In this book, A dual-mode wide-band bandpass filter using the microstrip loop resonators 
with tuning stubs is proposed here. 

 
4.1 Conclusion 
The dual-mode bandpass filter is based on the bandstop filter employing direct-connected feed 
lines on the orthogonal of the microstrip loop resonators. The introduction of two tuning 
open stubs connecting opposite to the ports widens the passband and sharpens the 
stopbands. Then, a dual-mode can be used to improve the narrow stopbands for lower side 

 

band and higher sideband. The filters are designed 2.45 GHz. The 3-dB fractional bandwith  
of the filter are more than 36%. The group delay of the filter within the passband are below 2 
ns. The filters can suppress unwanted passband to below -10 dB.  
The first resonator (Type A) consists of four identical branches with attached to an outer 
corner of the square loop with outer tuning stubs. The filters proposes 0.34 dB insertion loss 
and return loss greater than 17 dB. 
The second resonator (Type B) consists of four identical branches with a small square patch 
attached to an inner corner of the square loop with outer tuning stubs.The filter proposes 
0.15 dB insertion loss and return loss greater than 15 dB.  
The both filters (Type A) and (Type B) have a wide stopband resulting from the dispersion 
effect and the slow-wave effect. 

 
4.2 Problem and suggestion for furure work 
There are some problems. The filters can suppress unwanted passband to below -10 dB. On 
the other hand, the modern wireless communication systems require the bandpass filters 
having effective out-of-band spurious rejection and good in-band performance. This 
problem can be overcome by bandstop filter. Microstrip bandstop filter using shunt open 
stubs and spurlines are presented (Tu & Chang 2005). Basically, by cascading more identical 
open-stub and spurelines filter, a deeper rejection and a wider rejection bandwidth can be 
achieved at the expense of increasing circuit size and insertion loss. 
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1. Introduction   
 

One of the trends of modern telecommunication systems development is use of high-tunable 
passive components, such as tunable resonators, phase shifters, etc. These components are 
the key elements of smart antennas, phased-array antennas, tunable oscillators, filters and so 
on. Many ways are known to design tunable microwave system: 

- (H): tuning of ferrite material permeability by magnetic field; 
- (E): tuning of ferroelectric material permittivity by electric field; 
- (E): tuning of semiconductor material conductivity by electric field; 
- (Ф): optical impact tuning of semiconductor material conductivity under light beam Ф; 
- : tuning by the mechanical reconfiguration of resonant (or transmission) part of 

microwave subsystem. 
Components with magnetic and electric tuning, such as (H), (E) (Campbell & Brown, 
2000; Ellinger et al., 2001; Lucyszyn & Robertson, 1992) and also (E) (Rao et al., 1999; 
Deleniv et al., 2003; Kim et al., 2005) have frequency limitation of about 30-40 GHz due to 
the increased loss at higher frequencies. Optical tuning that exploits conductivity change 
(Ф) (Lee et al., 1999; Ling et al., 2005) under the light beam Ф also introduces considerable 
loss at the millimeter waves. Therefore, usual tunable components that control material’s 
intrinsic properties (H), (E), or (E) have fundamental limitations at millimeter waves. 
The main reason is that microwaves interact with “active” material (ferrite, semiconductor, 
or ferroelectric) which is a part of microwave line, and transmitted energy is partially 
absorbed in this material. 
On the contrary, the mechanical system of control is not a part of microwave propagation 
route so it does not contribute to the microwave loss. One but important disadvantage of 
mechanical control is a relatively low tuning speed. 
Recent achievements in the piezoelectric actuator and MEMS technologies open an 
opportunity to combine advantages of mechanical and electrical tuning techniques. 
However, for such applications the tuning system should be highly sensitive to rather small 
displacement of device’s components. The key question is how to achieve such high 
sensitivity of the system characteristics to small displacement of device’s parts. This could 
be achieved if parts displacement provides strong perturbation of the electromagnetic field 
distribution. For that a variable dielectric discontinuity (the air gap) is created on the way of 

17
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the electric field lines. This air gap is placed between the dielectric parts or the dielectric and 
an electrode. An alteration of the air gap dimension leads to substantial transformation in 
electromagnetic field distribution and changes such components characteristics as resonant 
frequency, phase of propagating wave and so on.  
This transformation could be described in terms of medium’s effective dielectric permittivity 
(eff). Effective dielectric permittivity of inhomogeneous medium is dielectric permittivity, 
which brings numerically same macro parameters to the system of the same geometrical 
configuration. Effective permittivity is convenient parameter to describe devices with TEM 

wave propagating, where propagation constant is proportional to eff . But it can be used 

to describe other devices as well. For example, effective permittivity of partially loaded 
waveguide can be stated as such permittivity of fully loaded waveguide, which gives 
numerically the same propagation constant as in partially loaded waveguide.  

 
2. Tunable effective dielectric constant 
 

The simplest example of a tunable effective dielectric constant is a waveguide partially filled 
with dielectric, Fig.  1. The air gap between dielectric material and broad wall of waveguide 
dramatically reduces measured value of dielectric permittivity, and it is the main 
component of measurement uncertainty. This fact is well known for waveguide technique of 
dielectric permittivity measurement. However, this phenomenon is applicable for tunable 
devices design as well (Jeong et al, 2002). 
 

 
Fig.  1. Partially filled waveguide 
 
Effective permittivity for the basic mode of rectangular waveguide can be found as: 

 2
2

2

  
 eff

a
k

, 

where  is the propagation constant, k is the wave number in free space, and a is the width of 
waveguide. 
The results of effective permittivity simulation are presented in Fig. 2. As one can see, there 
is a strong influence of air gap onto effective parameters, especially for high- materials. The 
main reason of such high sensitivity is the location of dielectric discontinuity. The air gap is 
located across electrical field of waveguide’s basic mode and acts as strong perturbation of 
electromagnetic field, which value depends on air gap’s size .  
One of possible uses of effective permittivity transformation is tuning of phase shifters. The 
nature of the phase shift can be explained with Fig.  3. Wavelength in dielectric filled part of 

 

waveguide is shortened proportionally to eff . Because of partial loading of waveguide, 

there is the nonzero component Ez of electric field in the direction of propagation. In 
combination with the component Ey, which is orthogonal to media boundary, it gives 
resultant vector E, which crosses media boundary at certain slope. Refraction at the 
dielectric media boundary changes slope of resultant vector E. So, traveling wave makes its 
path of two ways: one inside of dielectric, and another one in the air. Because of refraction, 
the ratio of the way in dielectric and air respectively changes as air gap changes. Simply 
speaking, the control over the traveling wave phase shift is obtained by the varying part of 
the way, which wave travels outside of dielectric. 

 
Fig. 2. Effective parameters of partially loaded waveguide: a) effective permittivity; b) 
effective loss;  is the air gap, b is the waveguide height 
 
This idea was verified experimentally (Jeong et al., 2002). Phase shifter was made inside of 
rectangular waveguide section. It can be made either in symmetric or asymmetric fashion 
(the last is shown in Fig.  4). Controlled element consists of dielectric slab supported by the 
metal plate. This plate is rigidly attached to the piezoelectric actuator. Under applied control 
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voltage the air gap  is controlled via actuators variable extension. Parameters of used 
dielectric materials are listed in Table I. 

 
Fig.  3. Phase shift nature in partially loaded waveguide 
 

Material  tan  
@ 10 GHz 

tan  
@ 40 GHz 

Al2O3 11.6 0.710–4 410–4 
(Mg,Ca)TiO3 21 210–4 810–4 

BaTi4O9 37 310–4 10–3 
BLT 85 210–3  —  

Table I. Parameters of used dielectric materials 

 
Fig.  4. Waveguide phase shifter experimentally studied design 
 
Fig.  5 illustrates measured control curves. They have almost linear character and promising 
values. Fig.  6 demonstrates measured S-parameters of the phase shifter. It is expected that 
increase of operation frequency can make this design competitive with solid state devices. 
 

 

 
Fig.  5. Measured control curves @10.5 GHz 

 
Fig.  6. Measured S-parameters of the device. Dielectric plate of 1mm height and 10 mm 
length made of material with  = 21 

 
3. Tunable dielectric resonators 
 

Electromechanical control of high quality dielectric resonator frequency is known for a long 
time. One of the examples is two cylindrical dielectric resonators with the H01 mode 
separated by the air slot (), constituting a binary dielectric resonator, Fig. 7, a (Wakino et 
al., 1987). Electric field components in the binary dielectric resonator are located in its basic 
plane. In contrast, a split dielectric resonator (Poplavko et al., 2001), also of H01 type, has a 
slot located athwart to the electric field components for the lowest resonant mode (Fig. 7, b). 
This split dielectric resonator shows much larger tunability than binary dielectric resonator, 
as it is shown in Fig. 7, c.  
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Fig. 7. dielectric resonator mechanical tuning at 10 GHz: (a) ordinary manner; (b) proposed 
manner; (c) characteristics comparison 
 
One example of split dielectric resonator testing is shown in Fig. 8. No change in a quality 
factor Q is observed during air slot alteration. Conformable split dielectric resonators are 
used in the high-Q tunable filter (about 20%) in a waveguide near the central frequency of 
10 GHz (Poplavko et al., 2001).  
 

 
Fig. 8. Resonant frequency f0 and Q-factor of split dielectric resonator vs. slot 
 
Tunability of the split dielectric resonator can be explained as the alteration in the split 
dielectric resonator’s effective permittivity (eff), Fig. 9. 
 

 

 
Fig. 9. Effective permittivity versus normalized value of air gap between two parts of disk 
dielectric resonator shown in Fig. 1b. Permittivity of dielectric material is equal to 80; D is 
dielectric resonator diameter while h is dielectric resonator thickness. 
 
In the considered case, the value of eff decreases about 2 times; correspondingly, split 
dielectric resonator resonant frequency increases up to 30%. Tunability slightly rises with 
the ratio of h / 2R where R is split dielectric resonator radius, and h is its thickness. 
An advantage of such method of frequency control is high Q-factor preservation. The 

unloaded quality factor can be expressed as 1

0 tan  Q T , where T is the energy filling 
factor, which depends only on dielectric constant and domain size (tan δ is the loss tangent 
of dielectric material). Due to electromagnetic energy accumulation in a slot the factor T 
shows a trend to decrease, Fig. 10. As a result, intrinsic Q-factor of the split dielectric 
resonator can even rise with resonant frequency increase. 
 

 
Fig. 10. Energy filling factor versus normalized value of air gap between two parts of 
cylindrical dielectric resonator. Dielectric constant of material is 80 
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This frequency control method could be applied to split dielectric resonator of different 
shapes, including rectangular, ring or sphere. Rectangular and spherical split dielectric 
resonator are shown in Fig. 11, and their effective permittivity dependences are shown in 
Fig. 12. 
 

 
Fig. 11. Rectangular and spherical split dielectric resonator 
 

 
Fig. 12. Effective permittivity of rectangular and spherical split dielectric resonators 

 
4. Electromechanically tunable microstrip phase shifter 
 

Principal designs of piezo-driven phase shifter based on the microstrip line are shown in 
Fig. 13. Experiments and calculations show that their phase shift is strongly dependent on 
design architecture. 
Only one of designs (shown in Fig. 13, a) was published previously (Yun & Chang, 2002).  
 

 

 
Fig. 13. Mechanically tuned microstrip phase shifters. 
 
However, it is obvious that other designs shown in Fig. 13, b, c, d shows higher effect 
because dielectric discontinuity is created in the plane perpendicular to electrical field of the 
microstrip line. The effectiveness was verified and proved experimentally. The best result is 
obtained with the new idea of “detached” upper electrode, Fig. 13, c, d that is electrode 
disconnected from substrate and attached to the moveable dielectric plate. Close to these 
cases phase shift would be obtained if the bottom electrode would be disconnected. 
Simulation in Fig. 14 confirms that stronger perturbation of electromagnetic field 
distribution results in higher differential phase shift. 
 

 
Fig. 14. Comparison of known (a) and new proposed devices (b, c, d). Phase shift 
(standardized on wavelength) is shown as function of tunable air gap 
 
This effect also could be explained in terms of effective permittivity change. As one can see 
in Fig. 15, designs with detachable electrode exhibit larger change in effective dielectric 
constant, which in turn is observed as larger phase shift. 
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Only one of designs (shown in Fig. 13, a) was published previously (Yun & Chang, 2002).  
 

 

 
Fig. 13. Mechanically tuned microstrip phase shifters. 
 
However, it is obvious that other designs shown in Fig. 13, b, c, d shows higher effect 
because dielectric discontinuity is created in the plane perpendicular to electrical field of the 
microstrip line. The effectiveness was verified and proved experimentally. The best result is 
obtained with the new idea of “detached” upper electrode, Fig. 13, c, d that is electrode 
disconnected from substrate and attached to the moveable dielectric plate. Close to these 
cases phase shift would be obtained if the bottom electrode would be disconnected. 
Simulation in Fig. 14 confirms that stronger perturbation of electromagnetic field 
distribution results in higher differential phase shift. 
 

 
Fig. 14. Comparison of known (a) and new proposed devices (b, c, d). Phase shift 
(standardized on wavelength) is shown as function of tunable air gap 
 
This effect also could be explained in terms of effective permittivity change. As one can see 
in Fig. 15, designs with detachable electrode exhibit larger change in effective dielectric 
constant, which in turn is observed as larger phase shift. 
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Fig. 15. Comparison of effective dielectric permittivity eff in known (a) and new proposed 
devices (b, c, d) 
 
In other words, propagation constant at a given frequency f can be estimated as 

2
  eff

f
c

 where c is the light velocity. So the main task of device analysis is to 

determine effective permittivity for prescribed geometrical configuration. This problem is 
solved numerically using finite element method. 

 
5. Two resonators impedance-step filter controlled from bottom  
 

Principal design and characteristics of a band-transmitting filter (that can be used as a phase 
shifter) is shown in Fig. 16 together with filter’s characteristics. Experimental result was 
obtained with the network analyzer. Filter is arranged on the right-angled alumina substrate 
where two impedance steps resonators are deposited (the length of resonator is 22 mm, the 
ratio between high and low impedance parts ~10, substrate thickness 0,65 mm, substrate 
dielectric constant  = 9,2). 
With the purpose of tuning, the substrate, located under the filter, imitates a “tunable 
dielectric”. Namely, the part of ground electrode (just under the coupling part of filter) is 
removed and substituted by the piezoelectric actuator, which is closely adjacent to the 
substrate, Fig. 17. 
 

 

 
Fig. 16. Two-resonator tunable filter design and characterization. 
 

 
Fig. 17. The concept of filter tuning: side view of moving ground electrode under the 
substrate.  
 
Actuator’s upper electrode is simultaneously a ground electrode of the substrate. Due to the 
actuator, the thickness of the narrow air gap () is electrically controlled. Such a “tunable 
substrate” can be described as dielectric in which effective permittivity is controlled. The 
scope of the eff change depends on the substrate  and relationship /h where h is substrate 
thickness. In our experiments the effective permittivity of the layered dielectric “alumina – 
air” decreases from eff  7 till eff  3 while the range of a gap change was from  ~ 10m till 
 ~ 100m under the voltage of about 300 V.  
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Fig. 18. Filter characteristics for two positions of dielectric plate: central resonant frequency 
shifts of about 10% while filter attenuation remains less than 1 dB. 
 
Calculation and tuning of studied structures was made by the method of the FEM 
simulation. The results of calculation show good agreement with the experiment. 
Any tunable band-pass filter can be used as a phase shifter but only at the frequency range 
of its bandwidth. In a given experiment this bandwidth looks rather narrow, and controlling 
voltage seems too big for many applications. That is why another design and different way 
of filter controlling is proposed below. 
Experimental prototype of studied “tunable filter – phase shifter” is shown on photograph. 
 

 
Fig. 19. Photo of experimental prototype. 

 
6. Electromechanically tunable coplanar line 
 

Electromagnetic filed of microwave transmission lines deposited onto substrate is mainly 
confined in the substrate right under electrodes and in the inter-electrode space to certain 
degree. Because of that the dielectric body is moved up and down above the line’s surface, 
as it is shown in Fig. 20, a, makes small perturbation of electromagnetic field distribution. To 
improve device’s controllability it is necessary to arrange tighter dependence of 
electromagnetic field on moving dielectric body position. For that it is proposed to situate a 

 

signal strip of coplanar waveguide on moving dielectric body and let them lift together 
(Prokopenko et al., 2007), Fig. 20, b.  
 

 
Fig. 20. Coplanar line based phase shifters with signal line: а – on the substrate, b – on the 
moving dielectric body. 1 – substrate, 2 – ground electrodes, 3 – signal line, 4 – moving 
dielectric body 
 
Fig. 21 shows simulations of near 50  coplanar lines with dielectric permittivity of both 
substrate and movable dielectric body =12 for presented in Fig. 20 designs. Here and after 
relative phase shift is calculated for the device of length equal to wavelength in vacuum. 
Qualitative conclusion is that under other same conditions the device with detaching 
electrode exhibits greater relative effective permittivity change, and thus its relative phase 
shift more than 1.5 times exceeds one from counterpart.  
Obviously, strong perturbation of electromagnetic filed improves device’s controllability. 
But quantitatively it depends on a number of design factors, such as line geometry, 
impedance and ratio of the substrate’s and movable dielectric permittivity. Generally low 
impedance lines tend to exhibit higher controllability. This can be achieved not only by use 
of high-permittivity materials, but with proper layout as well.  
 

 
Fig. 21. Dependencies of effective permittivity of the coplanar line based phase shifters 
 
To prove presented ideas, one scaled up experiment was performed. Experimental setup 
consists of coplanar dielectric ( = 4.3) substrate in the aluminium fixture. The signal line is 
soldered to the bonding pads at the sides of the substrate (Fig. 22, a), whereas being glued to 
the moveable dielectric, which in turn is attached to micrometer screw (see the photo in Fig. 
22, b). 
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   (a)    (b) 
Fig. 22. Experimental setup: (a) – schematic, (b) – photo. 1 – connector; 2 – ground 
electrodes; 3 – movable electrode; 4 – movable dielectric; 5 – low- support; 6 – substrate 
 
Fig. 23 and Fig. 24 present results of experimental investigation of the proposed phase 
shifters. 

 
Fig. 23. Simulation and measurement of phase (а) and magnitude (b) of transmission 
coefficient S21 for the coplanar line based phase shifter with moving signal electrode 
 
Fig. 25 presents simulation and measurement of control curve for both discussed designs. 
There is a good agreement between simulation and measurement result. 

 
7. Conclusion 
 

Main mechanisms of piezoelectric control by the eff of some devices based on dielectric 
layers are discussed. It is supposed that the most effective way is to use a composition 
“microwave dielectric – air gap”, controlled by the fast actuator. At that, a minimal loss is 
inserted in tunable component. 

 

 
Fig. 24. Simulation and measurement of phase (а) and magnitude (b) of reflection coefficient 
S11 for the coplanar line based phase shifter with moving signal electrode 
 

 
Fig. 25. Coplanar line controlled with teflon slab. f = 5 GHz, Substrate: 40 × 30 × 1.6 mm, = 
4,3, Movable dielectric: 30 × 20 × 1 mm,  = 2.08  Signal line width is 3 mm 
  
Using high quality microwave dielectrics, it is possible to realize low loss filters and phase 
shifters as in the microwaves so as in the millimeter waves. Proposed structures are studied 
as in the rectangular waveguide, so in some microstrip designs. 
Proposed way of control allows to increase device’s controllability while maintain low loss. 
Simulations are proved by the experiment. With scaling down and move to the higher 
frequencies, the amount of required displacements could be reduced to tens micrometers, 
thus allowing an application of small size and fast piezo-actuators or MEMS. 
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1. Introduction     
 

Microwave and RF filters play an important role in various electronic systems, including 
cellular radio, satellite communications and radar. Filters are used in these systems in order 
to discriminate between wanted and unwanted signal frequencies. High performance filters 
are desirable for good signal reception and therefore for a better system performance. The 
demands for high performance filters are mainly due to the stringent frequency spectrum 
requirements following the emerging of new applications for modern communication 
systems. High performance filters are filters with low insertion loss, high frequency 
selectivity, phase linearity and potentially no harmonic response. Following the 
advancement of modern technologies, design considerations have been extended to achieve 
compact size and light-weight, making the filter design a more challenging task. Although 
enormous amount of literature on various filter theories is available, new filters are 
continually developed and reported in major journal and conference publications, to suit 
severe design specifications.  
In general, microwave filters are divided into two broad classes, they are distributed type 
and lumped-element type. At microwave frequencies the use of distributed circuit elements 
in implementing passive microwave devices is widespread. They differ from lumped 
circuits as one or more dimensions are a significant fraction of the operating wavelength. 
Design formulae are available in many texts. Distributed filters can take the form of planar 
structures or waveguide cavity and they are preferable for high Q filter design. However, 
the latter has the advantage of low or no spurious harmonic responses.    
In this chapter, we will give a new design perspective for a potentially high performance 
filter namely a dual-mode microstrip ring resonator with composite-right/left-handed 
(CRLH) line, for suppression of first harmonic. In section 2, we will first describe the 
terminologies of Left-Handed (LH) and Right-Handed (RH) transmission lines and show 
how their wave propagation properties are different using their transmission line models. In 
Section 3, we will give an overview of ring resonator’s research, how ring resonator can be 
used in a single mode or a dual-mode resonator design.  
In section 4, we will discuss the principle of operation of a composite-right/left-handed line 
ring resonator, and explain how harmonic supprssion can be achieved. 
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In sections 5, we will present the implementation of CRLH ring resonator. We will give the 
formulation use in the design and show how the left-handed line is incorporated into a ring 
resonator. 
In section 6, we will take the circuit-modeling approach to analyse the CRLH ring resonator 
in greater details. This serves as initial design guidelines to quickly determine the filter 
layout dimensions, given a filter specification. The final design can then be simulated using 
commercial electromagnetic simulator. Some measurement results will be presented. 
In section 7 and 8, we express other design considerations for the CRLH ring resonator and 
give suggestions for future developments.    

 
2. Left and Right Hand Transmission Lines 
 

The term left-handed transmission line is relatively new although such lines have long been 
known. The term comes from a speculative paper (Veselago, 1968), which considered the 
electromagnetic properties of a material with negative permittivity and permeability. 
Among other interesting properties, such a material will have a negative refractive index. 
However, it was many years later that experimentalists (Shelby et al, 2001) demonstrated 
such a material. These materials were called left-handed metamaterials.  
Consider a uniform plane wave in a right-handed rectangular Cartesian coordinate system. 
The direction of the Poynting vector is always given by the direction of motion of a right-
handed cork screw as it is rotated from the electric field vector to the magnetic field vector. 

Assuming the fields to vary as ( )r •k-tωje


, where ω is the angular frequency (radians/s), t is 
time, k


 is the wave vector, r


 is the position vector, and 1-=j . Maxwell’s curl equations 

can be written in the SI units as 
 

Hωμ=E×k


 

E-


ωε=H×k  

(1) 
 

(2) 
where E


 and H


represent the electric and magnetic field vectors and ε and μ  are the 

permittivity and permeability of the medium considered to be isotropic. 
These equations show that the wave vector, k


 is perpendicular to the electric and magnetic 

field vectors. If both ε and μ  are positive, the direction of k


 is given by the direction of 

H×E


, i.e., the Poynting vector. The direction of the wave vector is therefore given by the 
direction of motion of a right-handed cork screw as it is rotated from the electric field vector 
to the magnetic field vector. Hence, such a medium is called right-handed. Most materials 
occurring in nature are right-handed. On the other hand, if both ε and μ  are negative the 

direction of k


 is given by the direction of - H×E


, i.e., opposite to the direction of the 
Poynting vector. The direction of the wave vector is therefore given by the direction of 
motion of a left-handed cork screw as it is rotated from the electric field vector to the 
magnetic field vector. Hence, such a medium is called left-handed. The Poynting vector is 
associated with the direction of energy flow, while the wave vector represents the direction 
of motion of the wave fronts. The former therefore represents the direction of group velocity 
while the latter represents the direction of phase velocity. Hence the phase and group 

 

velocities are in the same direction in a right-handed material and in opposite directions in a 
left-handed material. Waves with opposite directions of phase and group velocities have 
been known for a long time and have been used in backward wave oscillators.  These waves 
travel in periodic structures and are called slow waves (Beck, 1958) because their phase 
velocities are less than the phase velocity of light in the medium in which these periodic 
structures are embedded.  
It is a common practice in electrical engineering to model wave propagation by transmission 
line theory which can represent both slow and fast waves. Thus it is expected that a left-
handed material can be represented by a transmission line. Fig.1 shows the transmission line 
model represented by a distributed series impedance, Z  Ohms/m and a distributed shunt 
admittance, Y  Siemens/m.  

 
Fig. 1. Transmission line model for an infinitesimal length zΔ  
 
For a lossless transmission line the characteristic impedance, 0Z and the phase constant, β  
are given by 

YZ=0Z  

ZY=βj  

(3) 
 

(4) 
Consider now the common transmission line of Fig.2(a), in which the series impedance is an 
inductance, L Henrys/m and the shunt admittance is a capacitance, C Farads/m .   

      (a)          (b)  
Fig. 2. (a) Model of right-handed line, (b) Model of left-handed line  
 
Noting that Lωj=Z and Cωj=Y , 

CL=0Z  (5) 
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LCω=β   
(6) 

The phase velocity is LC/1=β/ω  and the group velocity is LC/1=βd/ωd . Both have 
the same sign and hence are in the same direction. Thus this type of line can represent a 
right-handed material and is called a right-handed line. 
Now consider the transmission line of Fig.2(b), in which the series impedance is a 
capacitance, C Farads/m and the shunt admittance is an inductance, L Henrys/m . Noting 
that Cωj/1=Z and Lωj/1=Y , 

CL=0Z  

]LCω/[1=β  

(7) 
 

(8) 

The phase velocity is LC2ω=β/ω  and the group velocity is LCdd 2/   .  
They are of opposite signs and are therefore in the opposite directions. Hence this type of 
line can represent a left-handed material and is called a left-handed line. 
Two points are to be noted. Firstly, the phase velocity is low at low frequencies when the 
wave can be regarded as a slow wave. At very high frequencies both phase and group 
velocities can be arbitrarily large which just indicates that the model cannot be right at high 
frequencies. The second and most important point for this chapter is that the phase of a 
right-handed line, proportional to β increases with frequency (in this case linearly). On the 
other hand, the phase of a left-handed line decreases with frequency (in this case inversely). 
Although the exact form of variation of β  with frequency may not be the same as in the 
transmission lines considered, the nature of the phase variation is always correct, because 

βd/ωd is positive for the right-handed line and negative for the left-handed line. 
One must now be careful about the word composite in the context of this chapter. For the 
transmission line, the series impedance may be a series combination of an inductance and 
capacitance and the shunt admittance can be a parallel combination of an inductance and 
capacitance. This has the characteristic of a band pass filter. For a certain range of 
frequencies, the phase has the characteristic of a right-handed line, i.e., it increases with 
frequency. For another range of frequencies, the phase has the characteristic of a left-handed 
line, i.e., it decreases with frequency. Such lines showing both types of behaviour have been 
termed composite-right/left-handed lines (Lai et al, 2004). The composite- right/left-handed 
line considered in this chapter is a combination of a right-handed line and a left-handed line.   

 
3. Ring Resonators – Single and Dual mode 
 

The microstrip ring resonator was first introduced for measuring dispersion in microstrip 
lines (Wolff & Knoppik, 1971). However, because of its compact nature, and simplicity of 
operation, it has been widely used as a resonator in bandpass RF filters. Ring resonators of 
various shapes – rectangular, square, circular, meander – as well as different types of 
coupling have been reported. Fig.3 shows a circular microstrip ring resonator. 
 

 

 
Fig. 3. A single mode microstrip ring resonator with simple microstrip line feeds  
 
The basic principle of operation is that at the resonant frequency, a standing wave exists in 
the ring. For this to happen, the total phase shift around the ring must be an integer multiple 
of π2 . If the mean length of the resonator is  , the condition is  
 

πN2=β  (9) 
where N is an integer and β is the phase constant. 
The resonant frequencies are obtained from (9) as 
 

/pNv=f  (10) 

where, LC/1=pv  is the phase velocity of the microstrip line. 

For a band pass filter of order n and a symmetric response about the centre frequency, one 
requires n such resonators each resonant at the centre frequency. The desired frequency 
response is obtained by the choice of coupling between the resonators. These resonators are 
called single mode ring resonators, because there is a single resonance at the fundamental 
frequency. One can on the other hand have two closely spaced resonances near the 
fundamental. Such ring resonators are called dual mode and were first reported by Wolff 
(Wolff, 1972). A single dual mode resonator with two close resonant frequencies, 1f and 

2f is equivalent to two coupled single mode resonators of resonance frequency 0f and a 
coupling coefficient  
 

021 )/fff(k   (11) 

 

2f1f=0f  (12) 

 
 
If one uses dual mode ring resonators, a bandpass filter of order n will require n/2 dual 
mode resonators as compared to n single mode resonators. This results in a far more 
compact filter. 
A dual mode resonator can be obtained from a single mode resonator design by various 
ways, such as by having unequal length arms between the feeds, a perturbation in the form 
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If one uses dual mode ring resonators, a bandpass filter of order n will require n/2 dual 
mode resonators as compared to n single mode resonators. This results in a far more 
compact filter. 
A dual mode resonator can be obtained from a single mode resonator design by various 
ways, such as by having unequal length arms between the feeds, a perturbation in the form 
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of a notch or patch in one of the arms or by unequal characteristic impedance of the two 
arms. These are shown in Fig.4. 

 

            
                 (a)                             (b)                                  (c)                                  (d)      
Fig. 4. Dual mode microstrip line ring resonators: (a) unequal length arms, (b) patch in one 
arm, (c) notch in one arm, and (d) different characteristic impedances of the arms. 
 
From filter design (Chebyshev, Elliptic etc.) one knows the centre frequency, 0f  as well as 
the various coupling coefficients. On can then consider replacing a pair of single mode 
resonator by first calculating 1f and 2f using (11) and (12) and the known values of 0f and 
the coupling coefficient, k. The mean length of the single mode ring resonator is already 
known from (10) for the given 0f . Thus one needs to determine the perturbation etc. to 
obtain the dual mode resonant frequencies 1f and 2f . Very often the design is obtained by 
trial and error simulation. However, circuit methods can often provide a good initial design 
which can then be refined by simulation. Cicuit methods have been extensively discussed by 
Chang and Hsieh (Chang & Hsieh, 2004).  

 
4. Harmonic Suppression in Bandpass Filters and the Use of Right/Left- 
handed lines   
 

Unfortunately, many bandpass filters have passbands at the harmonics. This is easy to see in 
the context of ring resonator filters. Equation (10) shows that the ring resonates at the 
harmonics. Thus if the coupling between the resonators is constant with frequency, the filter 
will also have passbands at the harmonics. In practice, the couplings are not constant, but 
whatever they are, it is expected that the filter will have poor return loss at the harmonics. 
This is also true of bandpass filters employing dual mode ring resonators. In some 
applications low attenuation at the harmonics is undesirable. 
Several papers report the reduction of harmonic response of ring resonators. One technique 
(Carroll & Chang, 1994, Karacaoglu et al, 1996, Chang & Hsieh, 2004) is to incorporate a low 
pass filter in the ring. This filter is built from stepped impedance lines. In Carroll and 
Chang’s resonator, the first harmonic (N=2) was suppressed but with additional loss at the 
fundamental. In the resonator of Karacaoglu et al, the suppression is 9 dB at the first 
harmonic and about 6 dB at the second harmonic. 
A left-handed line can be incorporated as part of the ring to suppress the first harmonic. As 
the resonator consists of a right-handed line and a left-handed line, it has been called a 
composite-right/left-handed line ring resonator (Allen et al, 2006). The principle of 
operation is completely different from the low pass filter technique and is illustrated in 
Fig.5. 

 

 
Fig. 5. Phase shifts in the ring resonator. Dashed line: Right-handed line. Dotted line: Left-
handed line. Solid line: Total phase shift in the ring  
 
At the resonant frequency, 0f  the phase shift of the right -handed line is Rφ and the phase 

shift of the left-handed line is Lφ and π2=Lφ+Rφ  as required by ring resonance at the 

fundamental. According to (6) and (8), the phase shifts vary with frequency as Rφ0f
f

 for 

the right-handed line and as Lφf
0f for the left-handed line. The variation of the phase shifts 

as well as their sum with the normalized frequency 0f/f  are shown in Fig.5. It is seen that 
the sum of the phase shifts (solid line) is not π4 at the first harmonic (N=2) as required by 
ring resonance. This is because the phase of the left-handed line decreases with frequency. 
Hence the first harmonic is suppressed. However the ring resonance condition can be 
satisfied at higher frequencies, because the phase shift of the right-handed line increases 
linearly with frequency while the phase shift of the left-handed line reduces slowly as it is 
inversely proportional to frequency. However for the suppression of the first harmonic, the 
precise form of the phase variation of the left-handed line is not important. 

 
5. Implementation of Composite-Right/Left-handed ring resonator   
 

5.1 Left-handed line as an iterative network 
Unfortunately, transmission lines with series capacitance are not available. Slow wave 
structures can be used as left-handed lines only within a range of frequencies. It appears that 
left-handed metamaterials made with slow wave structures have little to do with filters (Lai 
et al, 2004). In any case, ring resonators incorporating slow wave structures have not been 
reported – this may be the subject of future research. Thus a practical way to implement the 
left-handed line considered here is to use iterative networks made up of lumped series 
capacitances and lumped shunt inductances. The theory of such networks using the image 
impedance method is well known (Matthaei et al, 1980). We will consider symmetric 
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of a notch or patch in one of the arms or by unequal characteristic impedance of the two 
arms. These are shown in Fig.4. 
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Fig. 4. Dual mode microstrip line ring resonators: (a) unequal length arms, (b) patch in one 
arm, (c) notch in one arm, and (d) different characteristic impedances of the arms. 
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networks for which the two image impedances are equal and are called characteristic 
impedance. Two types of networks using π  and T sections are shown in Fig.6. 

 

 
(a) - section  

 
(b) T – section  

Fig. 6. Left-handed lines represented by iterative networks : (a) π - section, (b) T - section 
Boxes represent the unit cell of the infinite iterative network 
 
The unit cell (enclosed in the boxes of Fig.6) is a high pass filter. Propagation through a cell 
is given by  
 

)Γ-exp(1V=2V  
βj+α=Γ  

and in the passband, ( )2/LC2ω-1=βcos  

(13) 
 
 

(14) 
 
For N cells, the phase shift is βN . The cut-off occurs at 1-=βcos . The cut-off frequency 
obtained from (14) is 
 

LCπ
1

cf =  
 

(15) 

 
From (14) , it can be shown that 
 

f
cf1-sin 2=β  

 
(16) 

 

The variation of β against the normalized frequency cf/f is shown in Fig.7. The phase shift 
decreases with frequency which is the characteristic of a left-handed line.  
The characteristic impedances, π0Z and T0Z are given by  
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The characteristic impedances are imaginary below cut-off and vary widely in the passband. 

 
Fig. 7. Variation of the phase, β  of a unit cell with frequency 

 
5.2 Incorporating the left-handed line in a ring resonator 
The first design is reported by Allen et al (Allen et al, 2006). The schematic diagram of the 
resonator is shown in Fig.8.  

 
Fig. 8. Ring resonator of Allen et al (From Su & Haldar, 2007, © 2007 IEEE)   
 
The upper part of the resonator is formed by a right-handed (microstrip) line quarter wave 
long at the centre frequency and of characteristic impedance 50Ω . For this characteristic 



Dual	Mode	Microstrip	Ring	Resonator	with	Composite-Right/Left-handed	Line 391

 

networks for which the two image impedances are equal and are called characteristic 
impedance. Two types of networks using π  and T sections are shown in Fig.6. 

 

 
(a) - section  

 
(b) T – section  

Fig. 6. Left-handed lines represented by iterative networks : (a) π - section, (b) T - section 
Boxes represent the unit cell of the infinite iterative network 
 
The unit cell (enclosed in the boxes of Fig.6) is a high pass filter. Propagation through a cell 
is given by  
 

)Γ-exp(1V=2V  
βj+α=Γ  

and in the passband, ( )2/LC2ω-1=βcos  

(13) 
 
 

(14) 
 
For N cells, the phase shift is βN . The cut-off occurs at 1-=βcos . The cut-off frequency 
obtained from (14) is 
 

LCπ
1

cf =  
 

(15) 

 
From (14) , it can be shown that 
 

f
cf1-sin 2=β  

 
(16) 

 

The variation of β against the normalized frequency cf/f is shown in Fig.7. The phase shift 
decreases with frequency which is the characteristic of a left-handed line.  
The characteristic impedances, π0Z and T0Z are given by  
 

2/1

2f

2
cf1

C
L

π0Z















  

 
(17) 

and 
2/1

2f

2
cf1

C
L

T0Z 












  

 
(18) 

 
The characteristic impedances are imaginary below cut-off and vary widely in the passband. 

 
Fig. 7. Variation of the phase, β  of a unit cell with frequency 

 
5.2 Incorporating the left-handed line in a ring resonator 
The first design is reported by Allen et al (Allen et al, 2006). The schematic diagram of the 
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impedance, the width of the microstrip line is W = 1.2 mm for the microstrip substrate of 
dielectric constant 10.2 and thickness 50 mil. The lower part of the ring is formed by a 
combination of the microstrip line and the left-handed line. The microstrip line has a total 
length of 12.3 mm. The left-handed line is formed by two T section unit cells (see Fig.6) with 
C = 7 pF, L = 8.7 nH. The gap between the input and output lines and the ring resonator is 
0.2 mm. The design frequency is 0.88 GHz. The dual mode is said to occur due to the 
unequal values of the characteristic impedance of the T-section and the 50 Ω characteristic 
impedance of the microstrip line. 
cf is calculated to be 0.456 GHz. The total phase shift of the lower part of the ring, (the 

composite-right/left-handed line) is given by  

 f/cf
1sin2Nc/3103.12effεfπ2φ -    

(19) 
where effε is the effective dielectric constant of the microstrip line. 

Table 1 shows the phase shift calculated for the upper and lower parts of the resonator and 
the total phase shift in the ring at the fundamental and  harmonics. None of the total phase 
shifts are integer multiples of π2 . Clearly, (19) can not be employed for resonator design.  

Frequency Phase shift in 
upper arm  
(radians) 

Phase shift in lower arm  
eqn. (5)  
(radians) 

Total phase shift around the 
ring  
(radians) 

f (= 0.88GHz) π5.0  π864.0  π364.1  

2f π  π675.0  π675.1  

3f π5.1  π733.0  π233.2  

Table 1. Phase shifts along the ring (From Su & Haldar, 2007, © 2007 IEEE)   
 
Fig.9 shows the simulated variation of  the magnitude of 21S with frequency. There is a 
peak occuring close to the cut-off frequency. 

 

Fig. 9. Variation of the magnitude of 21S with frequency for the resonator of Fig.8 (From Su 
& Haldar, 2007, © 2007 IEEE)   

 

It has been verified by simulation (Su & Haldar, 2007) that an increase in the mismatch of 
the characteristic impedance of the lines increases the frequency difference of the dual mode 
and appears to increase the insertion loss between the fundamental and the second 
harmonic (N=3). 
Fig. 10 shows a variation of the resonator. A lower resonant frequency was used to get 
higher value capacitors to reduce the lower cut-off frequency. The value of the inductor was 
unchanged. To reduce the number of discrete components, the inductors were replaced by 
short circuited lines. The length of the line,   is given by 

βtan0Z=L0ω  (20) 
where 0ω is the resonant frequency, 0Z and β  are the characteristic impedance and 
propagation constant of the microstrip line implementing the inductor. A large value of 0Z  
is preferred to keep the line length short to avoid resonance of the line till about the third 
harmonic.  
Fig.11 shows the simulated variation of the magnitude of 21S with frequency. It is 
interesting to note that harmonics upto the second harmonic (N=3) have been suppressed. 
The composite ring resonator can suppress several harmonics if the phase shift in the ring at 
the fundamental is produced mainly by the left-handed line. 

 
Fig. 10. Redesigned resonator at lower frequency (From Su et al, 2008, © 2008 IEEE)   

 
Fig. 11. Variation of the magnitude of 21S with frequency for the resonator of Fig.10 (From 
Su et al, 2008, © 2008 IEEE)     
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6. Filter design using circuit modelling and simulation of composite-right/left-
handed line ring resonators 
 

Table 1 in section 5.2 shows that although the principle of operation is valid, the infinitely 
extended iterative T- sections theory cannot model the resonator operation well. The size of 
the resonator limits the number of T and π sections.  Many of the reported designs appear 
to have been carried out by simulation and multi-resonator filters are rarely reported. 
Circuit models (Chang, 2004) can provide an initial design, which can be refined by 
simulation.  
The authors’ intention is to reduce the number of lumped elements. Hence a π -section is 
used. Fig.12(a) shows the ring resonator with a π -section. The corresponding microstrip 
version is shown in Fig.12(b). The inductors are implemented with short-circuited 
transmission lines. Thus the circuit uses only one discrete element. 
 

 
Fig. 12. (a) Circuit model of a ring resonator incorporating a π -section with weak coupling 
to RF input and output (b) Microstrip layout (From Fong et al, 2009) 
 
Consider the microstrip transmission line of length  , characteristic admittance 0Y  and 
propagation constant β , in parallel with the π -section. The Y-parameter of the 
transmission line considered as a 2-port network is given by  
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For the two networks in parallel, the overall Y-matrix is given by the sum of the Y matrices 
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The resonant frequencies are obtained by setting the determinant of (23) to zero. From the 
resulting quadratic equation, one can show that the resonant frequencies, 1ω and 2ω  
satisfy the equations 
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These equations allow one to design dual mode resonators required by a filter design. For 
example consider the design of a fourth order Chebyshev filter with a centre frequency, 0f  
of 0.6 GHz, 10 % fractional bandwidth and a passband ripple of 0.5 dB. This would require 
four single mode resonators with resonant frequency 0f with coupling coefficients between 
resonators 1 and 2 and between 3 and 4, 07.034K12K  . Resonators 1 and 2 can be 
replaced by a single dual mode resonator and resonators 3 and 4 can be replaced by an 
identical dual mode resonator. One now has to design a dual mode resonator with the 
required coupling coefficient and then couple two such resonators for the required coupling 
coefficient of 23K 0.06. Finally one designs the load and source coupling to get the 
required external quality factor.  
The resonant frequencies of the dual modes are calculated from (11) and (12) using the 
values of 0f  and 12K . Then choosing a standard value of 10 pF for the capacitor, C, the 
required value of L is calculated from (24) to be 12.9 nH and 4.4 nH. The smaller value is 
chosen as both lumped inductors and short-circuited transmission lines have higher self-
resonant frequencies for lower inductance values. Using (20), this value is implemented by a 
short-circuited transmission line of characteristic impedance 50 Ω and length 9.8 mm (width 
is 1.2 mm). The characteristic impedance of the right-handed transmission line is chosen as 
28Ω . RT/Duroid 6010.2 from Rogers Corporation is chosen as the substrate. The width of 
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the line is calculated to be 3.2 mm. After determining the effective dielectric constant, the 
length  of the line is then calculated from (24) to be 61.5 mm. 
To check the circuit model against simulated results (SONNET, 2008) weak coupling to 
input and output are used to obtain sharp resonance peaks. For the circuit model of 
Fig.12(a), this coupling is produced by the small coupling capacitor, C1 = 0.05 pF. For the 
microstrip implementations of Fig.12(b) the weak coupling is provided by the gaps. To 
obtain the response of the circuit, the Y-matrix of the resonator is converted to Z-matrix, 
added to the Z-matrix of the coupling capacitors and then reconverted to Y-matrix. 21S for  
reference impedance of 50Ω ( S 50/10Y  ) is calculated from this Y-matrix using  
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Fig.13. compares the variation of the magnitude of 21S  with frequency for the circuit model 
and simulations of Fig.12 (b) (1) and (2). 

 
Fig. 13. Comparison of circuit model and simulation. Solid line: circuit model. Dashed line: 
Fig.12(b)(1). Dotted line: Fig12(b)(2) (From Fong et al, 2009) 
 
Good agreement is obtained between the circuit model and the simulation of Fig.12 (b) (1). 
The difference with the simulation of Fig.12(b) (2) is ascribed to capacitive coupling between 
the short circuited lines. To offset this, the inductances of the lines have to be increased by 
increasing their lengths. Good agreement is obtained when the lengths are increased to 10.8 
mm. 
For the Chebyshev filter, the required external quality factor, 7.16extQ  . The coupling is 
obtained by tapping one of short-circuited lines at the source end and at the load end. The 
resistance in parallel with the inductance is obtained from 
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The calculated value of R is 276.3 Ω . An inductor tap transforms the resistance R to 50 Ω  
load/source impedance. The approximate formula (for high quality factor) is  
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where, TL is the inductance value at the tap. 
The tap position is then given by 
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where the lengths  and T  are measured from the short circuit. 
Equation (29) is approximate because inductance of a short-circuited line does not vary 
linearly with length (see equation 20). However, this is adequate because the circuit model 
establishes an initial design, which is fine tuned by simulation. The gap between two 
resonators is adjusted to get the filter. Fig. 14 shows a picture of the 4-pole Chebyshev filter. 
Fig. 15 and 16 show measured and simulated results for the filter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14 A picture of the 4-pole Chebyshev filter. 

 
Fig. 15. Variation of magnitudes of 21S and 11S with frequency. Measured: Solid lines. 
Simulated (with losses): Dashed lines (From Fong et al, 2009) 
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Fig. 15. Variation of magnitudes of 21S and 11S with frequency. Measured: Solid lines. 
Simulated (with losses): Dashed lines (From Fong et al, 2009) 

 



Passive	Microwave	Components	and	Antennas398

 

 
Fig. 16. Wideband frequency response showing harmonic reduction. Measured: Solid line. 
Simulated: Dashed line (From Fong et al, 2009) 

 
7. Other considerations for composite-right/left-handed line ring resonators  
 

7.1 Practical considerations for lumped capacitors 
The reader might have noticed that the centre frequency of the filter designed is quite low. 
This is a very conservative design to avoid the self resonances of the lumped capacitor. 
However, it is possible to design for higher frequencies by using the circuit model of the 
capacitor. Such a circuit model is shown in Fig. 17. 

 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 17. Capacitor model: (a) Equivalent Circuit (b) Variation of reactance with frequence 
(ignoring R) showing the series and parallel resonant frequencies. (From Su et al, 2008, © 
2008 IEEE)     
 
The model parameters can be obtained by measuring the variation of the S-parameters with 
frequency and then adjusting the element values of the model to get best agreement with the 
calculated and measured results. For example, for the 10 pF capacitor considered here, C1 = 
4.22 pF, C2 = 5.78 pF, R = 0.06Ω  and L1 = 0.42 nH. The capacitor behaves as a capacitor 
below the series resonant frequency. So it appears that resonator design using lumped 
capacitors is limited to frequencies below the series resonant frequency.  
Lumped inductors are rarely as good as lumped capacitors both in terms of self resonance 
and quality factor. Thus when lumped inductors are used, the maximum frequency of 

 

 

operation may be limited further. Fortunately, they can be replaced by short-circuited 
transmission lines, but one needs to be careful about the effect resonance of the line on 
harmonic suppression. 

 
7.2 Tunable composite-right/left-handed line ring resonators 
Tunable resonators have been reported by Allen et al (Allen et al, 2007). A typical design is 
shown in Fig.18. As in their earlier work (Allen et al, 2006), two T sections are used with the 
two capacitors of each section are replaced by varactor diodes. The dc bias is provided 
through high characteristic impedance lines with shunt radial stubs. 
 

 
Fig. 18. Tunable resonator (a) Layout (b) Variation of insertion loss with frequency for 
different bias voltages (From Allen et al, 2007 © 2007 IEEE)     
 
From Fig.18(b), one can see that the centre frequency of the resonator can be shifted by using 
varactor diodes. 
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Fig. 16. Wideband frequency response showing harmonic reduction. Measured: Solid line. 
Simulated: Dashed line (From Fong et al, 2009) 
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8. Conclusion and future developments 
 

Starting with the explanation of right/left-handed lines, the authors have described recent  
developments in Dual Mode Microstrip Ring Resonator with Composite-Right/Left-handed 
Lines. The authors have discussed a circuit technique for the analysis and design. It is 
shown that a large number of T or π sections may not be needed – the authors describe a 
resonator with only one π section requiring just one capacitor. However such a section has 
DC short circuits at both ends of the capacitor. Hence the section is not suitable for 
designing tunable filters in which dc biased varactor diodes replace capacitors. The design 
of filters using ring resonators with composite-right/left-handed lines has been explained 
and demonstrated. 
 
What are the future developments?  
Possible developments are as follow: 

(1) Can one design compact higher order filters? 
(2) Can one use lumped capacitors and inductors near their resonant frequencies to 

design ring resonators with Composite-Right/Left-handed Lines? It may be 
possible to use the parallel resonance of a capacitor.  

(3) Can one use slow wave structures to replace lumped capacitors for ring resonator 
with Composite-Right/Left-handed Lines. 

(4) Can one design ring resonators with composite-Right/Left-handed Lines using 
coplanar transmission lines? 
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1. Introduction      
 

A new branch in microwave engineering arose just few years ago with the emergence of 
metamaterials in 2000 (Smith et al., 2000). The implementation of the first artificial medium 
with negative effective dielectric permittivity and magnetic permeability opened the door to 
the experimental study of a new kind of media: left-handed media. The possibility of the 
artificial implementation of such media allowed the corroboration of many of their 
electromagnetic properties, predicted years before by Viktor Veselago (Veselago, 1968). 
Since the year 2000, the interest stirred up by these new materials has given rise to 
numerous works in a wide range of scientific branches. The possibilities that metamaterials 
offer to create artificial media with controllable characteristics has permitted the creation of 
a growing number of completely new applications. Undoubtedly, the most innovative and 
spectacular application of such artificial media is their use in the implementation of cloaking 
structures to achieve invisibility, which can be accomplished thanks to the engineering of 
the refraction index of the different layers of the cloaking shield (Schurig et al., 2006). Within 
the vast number of new applications of metamaterials, one of the most productive ones is 
the implementation of microwave devices by means of artificial transmission lines. The 
following sections will deal with one of the approaches devoted to this purpose: the 
resonant-type approach. Different subwavelength resonators employed in the design of 
metamaterial transmission lines based on the resonant-type approach will be studied. The 
equivalent circuit models of different kinds of metamaterial transmission lines, as well as 
the parameter extraction methods employed as design and corroboration tools will be also 
presented. In closing, a selection of application examples of resonant-type metamaterial 
transmission lines in the design of microwave devices will be presented.  
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2. Sub-wavelength resonators   
 

The implementation of the first effective medium with left handed properties (Smith et al., 
2000) was possible thanks to the employment of small metallic resonators known as split-
ring resonators (SRRs). These resonators had been previously presented (Pendry et al., 1999) 
as the first non-magnetic resonator capable of exhibiting negative values of the magnetic 
permeability around its resonance frequency. This was one of the characteristics which 
made the SRR suitable for the synthesis of such a medium; the second one was its small 
electrical size. At the resonance frequency, the SRR perimeter is smaller than half the 
wavelength of the exciting wave. These small dimensions allow the use of SRRs in the 
implementation of effective media, which requires small unit cell sizes (smaller than the 
wavelength). By this means, the incident radiation does not detect the internal configuration 
of the medium, but the effective properties of the whole medium.  
The split-ring resonator is formed by two concentric metallic open rings (see Fig.1). The 
resonator can be excited by an axial (z direction in the figure) time-varying external 
magnetic field, which induces currents in the rings. The splits present in the rings force the 
current to flow as displacement current between them. The current loop is thus closed 
through the distributed capacitance that appears between the inner and the outer ring.  
 

          
Fig. 1. Scheme of the split-ring resonator (SRR) (a) and the complementary split-ring 
resonator (CSRR) (b) and their equivalent circuit models. Metallic parts are depicted in grey, 
whereas etched parts are depicted in white.  
 
The resonator can be modelled as is shown in Fig. 1(a) (Baena et al., 2005). C0/2 is the 
capacitance related with each of the two SRR halves, whereas Ls is the resonator self-
inductance. C0 can be obtained as C0=2rCpul, where Cpul represents the per unit length 
capacitance between de rings forming the resonator. As for Ls, it can be approximated to the 
inductance of a single ring with the average radius of the resonator and the width of the 
rings, c. Taking into account the circuit model of the resonator, its resonance frequency can 
be calculated as: 
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As long as the inductance and the capacitance of the resonator can be increased (within the 
technology limits), the resonance frequency of the SRR can be decreased, reducing its 
electrical size.   
The application of the Babinet principle to the structure of the SRR leads to its 
complementary counterpart: the complementary split-ring resonator (CSRR) (Falcone et al., 

 

2004), depicted in Fig. 2(b). In the CSRR the rings are etched on a metallic surface and its 
electric and magnetic properties are interchanged with respect to the SRR: the CSRR can be 
excited by an axial time-varying electric field and exhibits negative values of the dielectric 
permittivity. The equivalent circuit model of the CSRR is shown in Fig. 2(b). The resonance 
frequency of the CSRR is almost the same of the frequency of a SRR with the same 
dimensions.  
Both resonators, the SRR and the CSRR can be employed in the synthesis of effective media 
(Smith et al., 2000; Shurig et al., 2008) and metasurfaces (Falcone et al., 2004), as well as, of 
course, artificial transmission lines (Martín et al. 2003; Falcone et al., 2004). Next sections 
will deal with the implementation of metamaterial transmission lines based on the resonant-
type approach, as well as their application to microwave device design.  
 

      
Fig. 2. SRR-based resonators and their circuit models. (a) Non-bianisotropic SRR. (b) Spiral 
resonator. Metallic parts are depicted in black. 

 
Taking SRRs and CSRRs as starting points, numerous resonators have been proposed. The 
new resonators are obtained by modifying the topology of the original ones in order to 
decrease their electrical size or obtain certain symmetry properties. Figures 2, 3 and 4 show 
several examples of different resonators obtained following different strategies. In Fig. 2, 
two different resonators can be found and two more could be obtained as their 
complementary structures. The first one is known as non-bianisotropic split-ring resonator.  
It has the same electrical size as the SRR, but it has been designed to avoid the cross-
polarisation (bianisotropic) effects that the original SRR exhibits (Baena et al, 2005). The 
electrical size can be reduced enhancing either the capacitance or the inductance of the 
resonator. This is achieved in the spiral resonator (Fig. 2(b)) thanks to the increase of the 
total capacitance of the resonator in such a way that the resonance frequency is half the one 
of the SRR. 
 

   
Fig. 3. SRR-based compact resonators. (a) Spiral resonator with 8 loops. (b) Broadside-
coupled split-ring resonator (BC-SRR). (c) Two-layer multi spiral resonator (TL-MSR). (d) 
Broad-side coupled spiral resonator with four turns (BC SR (4)). 
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There are other strategies devoted to the miniaturisation of the resonators. One of them is 
the addition or enlargement of the metallic strips in order to increase the inductance of the 
whole structure. One example of the application of this strategy is the spiral shown in Fig. 
3(a) (Alici et al., 2007; Bilotti et al., 2007). On the other hand, the capacitance can be 
enhanced designing the resonator so that their strips are broad-side coupled (see broad-side 
coupled SRR in Fig. 3(b)) (Marqués et al., 2003). This strategy requires the use of two metal 
layers on which lay the different parts of the resonator. By this means the strips are broad-
side instead of edge-side coupled and the capacitance is enhanced, especially if thin 
substrates are employed. Both strategies are combined in the examples shown in Fig. 3(c) 
and (d) (Aznar et al., 2008b). In these two resonators the strips are elongated connecting the 
two metal layers by means of vias, increasing the inductance of the resonator. Additionally, 
the capacitance is enhanced thanks to the broadside coupling. Following these strategies, the 
electrical size of the resonators can be drastically reduced.    
 

  
Fig. 4. (a) Open split-ring resonator (OSRR) and its equivalent circuit model. (b) Open 
complementary split-ring resonator (OCSRR) and its equivalent circuit model. 
 
A different kind of SRR-based structures are open resonators. Figure 4 shows the layouts 
and equivalent circuit models of the open SRR (Martel et al., 2004) and the open 
complementary SRR (Vélez et al., 2009a). As can be seen in the layout, the OSRR is based on 
the SRR and is obtained by truncating the rings forming the resonator and elongating them 
outwards. The OCSRR can be obtained as the complementary particle of the OSRR, in a 
similar way as the CSRR is obtained from the SRR. The resonators shown in Fig. 4 can be 
implemented either in microstrip or in coplanar technology (Durán-Sindreu et al., 2009). The 
equivalent circuit models of the resonators are also shown in Fig. 4. The equivalent circuit 
model of the OSRR is a series LC resonator (Martel et al., 2004). The inductance Ls can be 
obtained as the inductance of a ring with the average radius of the resonator and the same 
width, c, of the rings forming the OSRR. The capacitance C0 is the distributed edge 
capacitance that appears between the two concentric rings. In a similar way, the OCSRR can 
be modelled by means of a parallel LC resonant tank (Vélez et al., 2009), where the 
inductance L0 is the inductance of the metallic strip between the slot hooks and the 
capacitance is that of a disk with radius r0-c/2 surrounded by a metallic plane separated by 
a distance c.  
The small size of all these resonant particles makes them suitable for the implementation of 
microwave devices based on resonant-type metamaterial transmission lines with small 
dimensions and even new functionalities. This will be illustrated in the following sections. 
 

 

3 Resonant-type Metamaterial Transmission Lines  
 

The previously presented resonators can be employed in many different applications and, as 
has already been pointed out, one of them is the implementation of metamaterial 
transmission lines. Soon after the implementation of the first negative refraction index 
medium (Smith et al., 2000), the same concepts were applied to the synthesis of planar one 
dimensional media, giving rise to the first left-handed transmission lines (Eleftheriades et 
al., 2002; Caloz & Itoh, 2002). This first approach devoted to the implementation of 
metamaterial transmission lines consisted on periodically loading a conventional 
transmission line with series capacitive and shunt-connected inductive elements. Some 
examples of such lines can be found in Fig. 5 together with the equivalent circuit model of 
the unit cell. The loading elements are modelled by CL and LL, whereas LR and CR represent 
the line elements. 
 

 
Fig. 5. Examples of CRLH transmission lines based on the LC-loaded transmission line 
approach and their equivalent circuit model. (a) Conventional coplanar waveguide 
transmission line loaded with capacitive gaps and metallic connections to the ground 
planes. (b) Conventional microstrip transmission line loaded with capacitive gaps and vias. 
(c) Conventional microstrip transmission line loaded with interdigital capacitors and shunt 
connected inductive stubs. (d) Equivalent circuit model for the LC-loaded transmission line 
unit cell. 
In such a medium, we can express the dispersion relation of such lines as: 
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where Zs and Zp are the series and shunt impedance of the circuit model, respectively. This 
expression gives rise to the generic dispersion diagram shown in Fig. 6 (a) (regions 
corresponding with positive group velocity have been chosen). Two transmission bands can 
be identified: the first one corresponds to the left-handed propagation region, in which the 
propagation constant is negative, whereas in the second one the propagation is right-
handed. Moreover, the effective dielectric permittivity and magnetic permeability can be 
obtained from the values of the series impedance and the shunt admittance, respectively, 
revealing the frequency dependence of the sign of eff and eff that gives rise to the different 
right and left-handed bands (Marqués et al., 2008). At those frequencies in which the 
propagation is dominated by the loading elements, the propagation is left-handed (<0 
region), whereas the parasitic line elements give rise to the right-handed transmission band 
(>0 region). This composite behaviour gives the name composite right/left-handed (CRLH) 
to these transmission lines. Both transmission bands are usually separated by an 
intermediate frequency gap in which transmission is forbidden (See Fig. 6(a)). However, it is 
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possible to force both limits of the gap (G1 and G2) to coincide (G1=G2=0) in order to 
make it disappear (Caloz & Itoh, 2005). In this case, known as balanced case, a continuous 
transition between the left- and the right-handed transmission bands is obtained giving rise 
to a wide band exhibiting backward and forward propagation at different frequencies (Fig. 
6(b)). 

 
Fig. 6. Dispersion diagrams of a CRLH transmission line (a) for the unbalanced case (b) for 
the balanced case. 
 
A second approach devoted to the implementation of composite right/left-handed 
transmission lines was proposed by some of the authors soon after the works presenting the 
LC-loaded transmission line: the resonant-type approach (Martín et al., 2003). In this 
approach, subwavelength resonators like the ones presented in the previous section are 
used to (in combination with other elements) load conventional transmission lines and 
obtain CRLH artificial lines.  
 

                    

                      
Fig. 7. Layouts and frequency responses of two resonant-type metamaterial transmission 
line unit cells. Metallic parts are depicted in black for the top and in gray for the bottom 
layer of the substrate. (a) SRR-based CRLH transmission line implemented in coplanar 
technology. (b) CSRR-based CRLH transmission line implemented in microstrip technology. 
(c) Frequency response of the structure shown in (a). (d) Frequency response of the structure 
shown in (b). 

 

This approach allows the use of both, metallic and complementary resonators in coplanar 
and microstrip technology (see Fig. 7). Thanks to the small size of the loading resonators, the 
resulting transmission lines are compact and can be employed in the design of microwave 
devices with reduced dimensions employing commercial substrates. The location of SRRs on 
the bottom layer of a coplanar waveguide allows the excitation of the resonators by the 
magnetic field and provides negative values of the magnetic permeability. In order to obtain 
left-handed propagation, negative dielectric permittivity is also required, what is obtained 
by means of metallic junctions between the line and the ground planes (see Fig. 7 (a)) 
(Martín et al., 2003). It is also possible to use SRRs to load a microstrip transmission line 
locating them on the top layer of the substrate, close to the signal strip. By this means, the 
SRRs are excited by the magnetic field and, if they are combined with vias, provide a left-
handed transmission band in a certain frequency range in the vicinity of the resonance 
frequency of the rings. Of course, the effect of the parasitic line elements provides a second 
transmission band with right-handed characteristics; in other words: resonant-type 
metamaterial transmission lines do also exhibit a composite behaviour.  This allows the 
design of balanced transmission lines, which are interesting for broadband applications (Gil 
et al., 2007a). 
 

       

          
Fig. 8. Schemes of two resonant-type metamaterial transmission lines and their equivalent 
circuit models. Metallic parts are depicted in black for the bottom and in gray for the top 
layer of the substrate. (a) SRR-based transmission unit cell. (b) Equivalent circuit model for 
the structure shown in (a). (c) Modified circuit model for the structure shown in (a). (d) 
CSRR-based unit cell. (e) Equivalent circuit model for the structure shown in (d). (f) 
Modified circuit model for the structure shown in (d). 
 
Other resonators can be employed as well in the design of this kind of metamaterial 
transmission lines, as is the case of CSRRs. In this case, the most usual configuration is the 
one in which the resonators are etched on the ground plane of a microstrip transmission line 
and combined with capacitive gaps etched on the signal strip (see Fig. 7(b)) (Falcone et al., 
2004), although other configurations are possible (Gil et al., 2008a). The response of both 
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structures (SRR- and CSRR-based) (performed with the ADS Momentum commercial 
simulation software), which are very similar, can be observed in Fig. 7. They both exhibit a 
left-handed transmission band preceded by a transmission zero, which represents the main 
difference with respect to the LC-loaded transmission line approach given that in that case 
the transmission zero is found at the origin. The right-handed band appearing above the 
left-handed one is not shown in the graphs. In Fig. 7 the electromagnetic simulations of the 
structures are compared with the responses given by their equivalent circuit models, which 
can be found in Fig. 8. As can be seen, the models perfectly describe the behaviour of the 
structures at the frequency range of interest. 
For the SRR-based unit cell (Fig. 8(a)) the circuit model is the one shown in Fig. 8 (b). The 
resonators are modelled by the resonant tanks formed by Ls and Cs, which are coupled to the 
line by means of the mutual inductance M. The line parameters are L and C, whereas Lp 
represents the metallic strips. This model is the improvement of a previously existing one 
(Martín et al, 2003) and the parameters have a more realistic physical meaning and provide 
a better description of the behaviour of the structure (Aznar et al., 2008a). Nevertheless, 
both, the former and the new proposed model can be transformed into the circuit shown in 
Fig. 8(c) which, as is shown in Fig. 7, reproduces the response of the structure in a very 
proper way.  The transformation equations are the following ones: 
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and they allow the calculation of the parameters of the circuit (c) in terms of the parameters 
of the circuit (b). The inversion of these equations provides the opposite transformation. 
Circuit (c), much simpler, is usually the one used to study the behaviour of the structure and 
perform parameter extractions. 
Regarding the CSRR-based structure (Fig. 8(d)), a new and improved circuit model has also 
been recently proposed. It is the circuit shown in Fig. 8(e), which provides a more accurate 
description of the behaviour of the structure and is able to explain certain discrepancies that 
the previous one, which is shown in Fig. 8(f), presented. In the circuit (e), the resonator is 
modelled by the resonant tank formed by Lc and Cc , the line parameters are L and CL and 
the gap is modelled by the -structure formed by Cs and Cf, which take into account the 

 

series and the fringing capacitances due to the presence of the capacitive gap.  The circuit (f) 
is perfectly able to reproduce the behaviour of the structure, as can be corroborated in Fig. 
7(b), where its response is compared with the electromagnetic simulation of the structure. 
Nevertheless, circuit (e) can be transformed into circuit (f), by means of the following 
equations: 
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so that the circuit (f), much simpler can substitute circuit (e) for a more straightforward 
work. Circuit (f), in which C was formerly interpreted merely as the coupling capacitance 
between the line and the resonator and Cg was the gap capacitance, didn’t predict neither 
the important change that C experiences nor the change on the position of the transmission 
zero (given by expression (10)) that occurs when the capacitive gap is eliminated. However, 
expressions (7) to (9) predict perfectly this behaviour (Aznar et al, 2008c). 
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As has already been pointed out, circuits shown in Fig. 8(c) and (f) are able to reproduce the 
response of the structures (a) and (d). This is illustrated in Fig. 7, where the full wave 
simulations of both structures are compared with the responses of their equivalent circuit 
models. The values of the circuit elements employed to obtain the compared responses have 
been obtained applying a parameter extraction method suitable for each of the structures. 
The parameter extraction method consists on the imposition of several conditions obtained 
either from a simulated or a measured response of one of the structures in order to obtain 
the necessary conditions to obtain the values of all the parameters of the circuit. In both 
structures, the model is formed by five circuit elements, so the number of impositions must 
also be five. The first of the parameter extraction methods was the corresponding to the 
CSRR-based structure (Bonache et al., 2006b), whereas the method for the SRR-based 
structure was proposed later (Aznar et al., 2008d). The main differences between both 
methods are due to the fact that they are based on a T- and a -model, respectively. In both 
methods, two structures are employed: the first one contains all elements and, in the second 
one, the capacitive gap (or the metallic strips in the case of the SRR-based unit cell) is 
eliminated (see Fig. 9). This allows the determination of the five circuit elements in both 
cases. In the example shown in Fig. 9 the extraction is carried out from the measurement of 
the fabricated structure and losses have been taken into account by means of R. Its value has 
been adjusted by tuning until matching of the insertion loss level is achieved. 
In the first of the methods, corresponding with the CSRR-based structure modelled by a T-
circuit model, the imposed conditions are the transmission zero frequency (given by 
expression (13)), the frequency at which the phase is 90º and the resonance frequency of the 
resonator. The two first frequencies can be directly identified from the representation of the 
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structures (SRR- and CSRR-based) (performed with the ADS Momentum commercial 
simulation software), which are very similar, can be observed in Fig. 7. They both exhibit a 
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resonators are modelled by the resonant tanks formed by Ls and Cs, which are coupled to the 
line by means of the mutual inductance M. The line parameters are L and C, whereas Lp 
represents the metallic strips. This model is the improvement of a previously existing one 
(Martín et al, 2003) and the parameters have a more realistic physical meaning and provide 
a better description of the behaviour of the structure (Aznar et al., 2008a). Nevertheless, 
both, the former and the new proposed model can be transformed into the circuit shown in 
Fig. 8(c) which, as is shown in Fig. 7, reproduces the response of the structure in a very 
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and they allow the calculation of the parameters of the circuit (c) in terms of the parameters 
of the circuit (b). The inversion of these equations provides the opposite transformation. 
Circuit (c), much simpler, is usually the one used to study the behaviour of the structure and 
perform parameter extractions. 
Regarding the CSRR-based structure (Fig. 8(d)), a new and improved circuit model has also 
been recently proposed. It is the circuit shown in Fig. 8(e), which provides a more accurate 
description of the behaviour of the structure and is able to explain certain discrepancies that 
the previous one, which is shown in Fig. 8(f), presented. In the circuit (e), the resonator is 
modelled by the resonant tank formed by Lc and Cc , the line parameters are L and CL and 
the gap is modelled by the -structure formed by Cs and Cf, which take into account the 

 

series and the fringing capacitances due to the presence of the capacitive gap.  The circuit (f) 
is perfectly able to reproduce the behaviour of the structure, as can be corroborated in Fig. 
7(b), where its response is compared with the electromagnetic simulation of the structure. 
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also be five. The first of the parameter extraction methods was the corresponding to the 
CSRR-based structure (Bonache et al., 2006b), whereas the method for the SRR-based 
structure was proposed later (Aznar et al., 2008d). The main differences between both 
methods are due to the fact that they are based on a T- and a -model, respectively. In both 
methods, two structures are employed: the first one contains all elements and, in the second 
one, the capacitive gap (or the metallic strips in the case of the SRR-based unit cell) is 
eliminated (see Fig. 9). This allows the determination of the five circuit elements in both 
cases. In the example shown in Fig. 9 the extraction is carried out from the measurement of 
the fabricated structure and losses have been taken into account by means of R. Its value has 
been adjusted by tuning until matching of the insertion loss level is achieved. 
In the first of the methods, corresponding with the CSRR-based structure modelled by a T-
circuit model, the imposed conditions are the transmission zero frequency (given by 
expression (13)), the frequency at which the phase is 90º and the resonance frequency of the 
resonator. The two first frequencies can be directly identified from the representation of the 
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S21 parameter (from the magnitude and the phase), whereas the third one can be identified 
from the representation of the S11 parameter in the Smith Chart (see Fig.10). 
 

     
Fig. 9. (a) Layouts and circuit models of the structures employed in the parameter extraction 
method for the CSRR-based unit cell. (b) Frequency responses of the measurement, the 
electromagnetic simulation and the electric simulation employing the extracted parameters. 

 
The resonance frequency of the CSRR has a particularity: at that frequency, the parallel 
branch opens and the input impedance is formed just by the impedance of the output port 
and the series branch impedance. This means that the real part of this impedance is the 
output port impedance (usually 50 ohm) and the imaginary part is given by the series 
branch impedance which consists of an inductance in the case of the structure without gap 
and an inductance and a capacitance in the case with gap.  
 

    
Fig. 10. Representation of the S11 parameter for the identification of the CSRR resonance 
frequency (a) for the complete (LH) structure (b) for the structure without gap (<0). 
Measurement and electric simulation. 
 
The resonance frequency can be found at the point where the S11 curve meets the unit 
resistance circle in the Smith Chart. Given that the reactance of the input impedance at this 
point can be read from the chart, the calculation of the series branch elements can be easily 
carried out from the curves of both structures. In the case of the complete structure, at the 
resonance frequency the series branch is capacitive, whereas in the structure without gap it 
is inductive (see Fig. 10). By this means, we obtain three of the five necessary conditions, 
that is, the resonance frequency of the rings, which is 0= 1/(LcCc)1/2, and the values of the 

 

reactance for both structures, which allow us to obtain the values L and Cg. As has been 
previously mentioned, the two other necessary conditions will be the transmission zero 
frequency and the 90º-phase frequency, at which the series and shunt impedances of the 
circuit have opposite signs (Zs=-Zp) (Bonache et al., 2006b). Once the parameters have been 
extracted, the electric simulation presents a very good fitting with the original curve 
(simulation or measurement), as figures 7, 9 and 10 corroborate. 
In the case of the SRR-based structures, the parameter extraction method is very similar, but 
with the corresponding modifications for a -circuit. As in the previous case, two different 
structures can be employed: a complete structure and a second one without metallic strips 
connecting the line with the ground planes. The 90º-phase and the transmission zero 
frequencies are imposed as well. However, the expression for the transmission zero 
frequency is in this case the following:  
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which is the frequency at which the series branch opens. One more useful frequency is that 
at which the series impedance nulls. When that happens, the input impedance is formed just 
by the impedance of the output port and the shunt impedance. This will correspond with 
the point in the Smith Chart in which the S11 curve crosses the unit conductance circle and 
the subsceptance of the input impedance can be directly read from the Smith Chart. This 
subsceptance corresponds with the shunt admitance of the structure, which is formed by an 
inductance and a capacitance in the case of the complete structure and only a capacitance in 
the structure without metallic strips. This allows the determination of the frequency at 
which the series impedance nulls, ws, which can be obtained as: 
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as well as the determination of the elements of the shunt impedance, L’p and C. As occurred 
in the previous one, this parameter extraction method provides a very good fitting between 
the electrical response given by the extracted parameters and the original curve. 
Similar parameter extraction methods have been recently applied to structures based on 
open split-ring resonators (OSRRs) and open complementary split-ring resonators (OCSRRs) 
(Fig. 11 (a) and (d), respectively). The followed strategy is very similar to the previous ones 
and it is even simpler, given that the equivalent circuit models consist in just three elements 
(see Fig. 11 (c) and (f)). In order to provide a good description of the structure, in both cases 
a small but not negligible phase shift must be taken into account at both sides of the 
resonator ( Fig. 11 (b) and (e)). Taking this into account, the resulting equivalent circuit 
models are the ones shown in Fig. 11 (c) and (f). For the parameter extraction of the OSRR 
circuit, the imposed conditions are the following ones. As in the previous case, the 
frequency at which the series impedance nulls is found in the Smith Chart as the point in 
which the curve crosses the unit conductance circle, what occurs at: 
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as well as the determination of the elements of the shunt impedance, L’p and C. As occurred 
in the previous one, this parameter extraction method provides a very good fitting between 
the electrical response given by the extracted parameters and the original curve. 
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This gives us also the value of the shunt capacitance, which can be obtained from the value 
of the susceptance of the input impedance at that frequency. In addition, the reflection zero 
frequency, at which the characteristic impedance of the structure is matched to the ports 
(usually 50 , is also identified and imposed, being the expression of the characteristic 
impedance:    
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and from it, the third of the parameters of the circuit can be obtained. The method employed 
for open complementary split-ring resonators is very similar. One of the imposed 
frequencies is the one at which the shunt impedance opens: 
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Fig. 11. (a) Layout of an OSRR implemented in coplanar waveguide technology. (b) 
Equivalent circuit model taking into account the phase shifting lines. (c) Simplified 
equivalent circuit model. (d) Layout of an OCSRR implemented in coplanar waveguide 
technology. (e) Equivalent circuit model taking into account the phase shifting lines. (f) 
Simplified equivalent circuit model. 
 
This frequency can be found as the point where the S11 curve crosses the unit resistance 
circle in the Smith Chart and the value of the corresponding reactance of the input 
impedance gives us also the value of the series inductance, L. Furthermore, the characteristic 
impedance of the structure is forced to be matched to the ports at the reflection zero 
frequency, giving rise to the following expression: 
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With these three conditions, all parameters of the equivalent circuit model can be 
determined. For both structures, the frequency response of the circuit model properly fits 
the electromagnetic simulation of the structure (see Fig. 12). 
 

      
Fig. 12.  Electromagnetic and electric simulations of the structures shown in Fig.11 (a) and 
(d). The electric parameters have been obtained by means of the described parameter 
extraction method. (a) Simulations of the OSRR structure. (b) Simulations of the OCSRR 
structure. 
 
OSRR and OCSRR structures can be cascaded to implement composite right/left-handed 
transmission lines with controllable characteristics for their use in the design of microwave 
devices (Durán-Sindreu et al., 2009). 
These results prove the validity of the proposed circuit models, as well as the diverse 
developed parameter extraction methods, which are an important tool in the design of this 
kind of artificial transmission lines. 

 
4. Applications  
 

Metamaterial transmission lines have two main characteristics which make them very 
interesting for the design of microwave devices. One of them is their small size, which 
allows device miniaturisation. The second one is the controllability of their electrical 
characteristics, that is, the characteristic (or Bloch) impedance Z0 and the electrical length, l. 
Such controllability is higher than in conventional transmission lines, where these 
magnitudes strongly depend on the line dimensions, determining the size of the final device 
requiring specific values of the line characteristics. Artificial transmission lines, however, 
offer the possibility of tailoring these properties to some extent (Gil et al., 2006), allowing the 
design of very competitive devices, even with new functionalities.  
Simple examples of microwave devices including transmission lines with specific values are 
power dividers. They can be implemented by means of resonant-type metamaterial 
transmission lines and an important size reduction can be achieved (Gil et al., 2007b, Aznar 
et al., 2009b). Figure 13 shows one example of power dividers implemented by means of 
metamaterial impedance inverters, in which the impedance and the electrical length have 
been tailored to exhibit the required values at the design frequency (f0=1.5 GHz). Figure 
13(a) compares the layouts of two power dividers implemented in microstrip technology. 
The first one employs two resonant-type metamaterial transmission lines based on CSRRs as 
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of the susceptance of the input impedance at that frequency. In addition, the reflection zero 
frequency, at which the characteristic impedance of the structure is matched to the ports 
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and from it, the third of the parameters of the circuit can be obtained. The method employed 
for open complementary split-ring resonators is very similar. One of the imposed 
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determined. For both structures, the frequency response of the circuit model properly fits 
the electromagnetic simulation of the structure (see Fig. 12). 
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allows device miniaturisation. The second one is the controllability of their electrical 
characteristics, that is, the characteristic (or Bloch) impedance Z0 and the electrical length, l. 
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magnitudes strongly depend on the line dimensions, determining the size of the final device 
requiring specific values of the line characteristics. Artificial transmission lines, however, 
offer the possibility of tailoring these properties to some extent (Gil et al., 2006), allowing the 
design of very competitive devices, even with new functionalities.  
Simple examples of microwave devices including transmission lines with specific values are 
power dividers. They can be implemented by means of resonant-type metamaterial 
transmission lines and an important size reduction can be achieved (Gil et al., 2007b, Aznar 
et al., 2009b). Figure 13 shows one example of power dividers implemented by means of 
metamaterial impedance inverters, in which the impedance and the electrical length have 
been tailored to exhibit the required values at the design frequency (f0=1.5 GHz). Figure 
13(a) compares the layouts of two power dividers implemented in microstrip technology. 
The first one employs two resonant-type metamaterial transmission lines based on CSRRs as 
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impedance inverters with Z0=70.71 and l=90º. In the second one, the inverters are 
conventional transmission lines. 
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Fig. 13.  (a) Comparison between the layouts of a conventional and a “metadivider” formed 
by two impedance inverters. (b) Frequency response of the power dividers shown in (a). (c) 
Photograph of the fabricated device. The device has been implemented employing a 
commercial substrate with thickness h=1.27mm and r=10.2. The dimensions of the 
metamaterial inverters are: inverter length l=12.5mm, gap width g=0.16mm, CSRR external 
radius rext= 4.76mm, ring with c=0.5mm. 
 
The metamaterial inverters have approximately half the length of the conventional ones so, 
thanks to their use, a 50% of size reduction can be achieved. Taking into account the 
frequency response of both devices (Fig. 13(b)), it can be seen that they exhibit similar loss 
levels (close to the ideal value, -3dB) at the design frequency, although the bandwidth of the 
metamaterial divider is narrower. This kind of dividers is, therefore, suitable for narrow 
band applications in which the size reduction is an important aspect. Other resonators and 
kinds of metamaterial transmission lines can be employed to implement similar power 
dividers (Aznar et al., 2009b, Gil et al., 2008b).  
This kind of transmission lines can also be applied for bandwidth enhancement purposes 
(Sisó et al., 2007). Figure 14 shows a rat-race hybrid employing four metamaterial inverters. 
Three of them are right-handed inverters (l=+90º), whereas a left-handed inverter with l=-
90º substitutes for the 270º inverter present in conventional hybrids.  
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Fig. 14.  (a) Layout of a rat-race hybrid coupler implemented by means of metamaterial 
transmission lines. The device has been implemented employing a commercial substrate 
with thickness h=635m and r=10.2. The relevant dimensions of the metamaterial inverters 
are, for the +90º inverters: stub length l=11.50mm, CSRR external radius rext=3.14mm, ring 
width c=0.34mm; for the -90º inverter l=10.2mm, gap separation g=0.37mm, gap width 
w=2.57, external resonator radius rext=5.1mm, ring width c=0.44mm. (b) Comparison 
between the sizes of a conventional and a metamaterial coupler. (c) S-parameters for the 
metamaterial coupler. (b) S-parameters for the conventional coupler. (e) Comparison of the 
phase balance of the -port for the conventional and the metamaterial coupler. (f) 
Comparison of the phase balance of the -port for the conventional and the metamaterial 
coupler.  
 
As a result, the total size of the device is about 3 times smaller than a conventional one (see 
comparison in Fig. 14 (b)). Power splitting, isolation and matching of the metamaterial 
hybrid are similar to the ones of a conventional one (Fig. 14 (c) and (d)). Nevertheless, as can 
be seen in Fig. 14 (e) and (f), the phase balance presents a broader bandwidth than a 
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impedance inverters with Z0=70.71 and l=90º. In the second one, the inverters are 
conventional transmission lines. 
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Fig. 13.  (a) Comparison between the layouts of a conventional and a “metadivider” formed 
by two impedance inverters. (b) Frequency response of the power dividers shown in (a). (c) 
Photograph of the fabricated device. The device has been implemented employing a 
commercial substrate with thickness h=1.27mm and r=10.2. The dimensions of the 
metamaterial inverters are: inverter length l=12.5mm, gap width g=0.16mm, CSRR external 
radius rext= 4.76mm, ring with c=0.5mm. 
 
The metamaterial inverters have approximately half the length of the conventional ones so, 
thanks to their use, a 50% of size reduction can be achieved. Taking into account the 
frequency response of both devices (Fig. 13(b)), it can be seen that they exhibit similar loss 
levels (close to the ideal value, -3dB) at the design frequency, although the bandwidth of the 
metamaterial divider is narrower. This kind of dividers is, therefore, suitable for narrow 
band applications in which the size reduction is an important aspect. Other resonators and 
kinds of metamaterial transmission lines can be employed to implement similar power 
dividers (Aznar et al., 2009b, Gil et al., 2008b).  
This kind of transmission lines can also be applied for bandwidth enhancement purposes 
(Sisó et al., 2007). Figure 14 shows a rat-race hybrid employing four metamaterial inverters. 
Three of them are right-handed inverters (l=+90º), whereas a left-handed inverter with l=-
90º substitutes for the 270º inverter present in conventional hybrids.  
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Fig. 14.  (a) Layout of a rat-race hybrid coupler implemented by means of metamaterial 
transmission lines. The device has been implemented employing a commercial substrate 
with thickness h=635m and r=10.2. The relevant dimensions of the metamaterial inverters 
are, for the +90º inverters: stub length l=11.50mm, CSRR external radius rext=3.14mm, ring 
width c=0.34mm; for the -90º inverter l=10.2mm, gap separation g=0.37mm, gap width 
w=2.57, external resonator radius rext=5.1mm, ring width c=0.44mm. (b) Comparison 
between the sizes of a conventional and a metamaterial coupler. (c) S-parameters for the 
metamaterial coupler. (b) S-parameters for the conventional coupler. (e) Comparison of the 
phase balance of the -port for the conventional and the metamaterial coupler. (f) 
Comparison of the phase balance of the -port for the conventional and the metamaterial 
coupler.  
 
As a result, the total size of the device is about 3 times smaller than a conventional one (see 
comparison in Fig. 14 (b)). Power splitting, isolation and matching of the metamaterial 
hybrid are similar to the ones of a conventional one (Fig. 14 (c) and (d)). Nevertheless, as can 
be seen in Fig. 14 (e) and (f), the phase balance presents a broader bandwidth than a 
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conventional device. The dispersion diagram has been controlled to make the phase 
difference between the corresponding lines keep almost constant over a wider range. By 
these means, not only the size is minimized, but also the bandwidth of the device is 
improved. 
As has been previously mentioned, the controllability of the line characteristics of 
metamaterial transmission lines opens the door to new application and functionalities (Sisó 
et al., 2009). Nowadays, there is an increasing interest in devices exhibiting multi-band 
operation. However, conventional transmission lines do not offer the possibility of 
designing such components working at arbitrary chosen frequencies. The manipulation of 
the dispersion diagram of metamaterial transmission lines allows the design of multi-band 
devices in which the operation frequencies can be chosen within certain margins. This can 
be achieved thanks to the composite behaviour of such transmission lines, given that the 
different operation frequencies can be chosen at the different transmission bands that these 
lines exhibit (Bonache et al., 2008; Sisó et al., 2008b).  
If we consider the CSRR-based transmission line (Fig. 8(d)) and its equivalent circuit model 
(Fig. 8(f)), we can express the dispersion relation and the characteristic impedance of the 
structure as: 
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Impedance inverters are widely employed in microwave devices, so we will consider the 
design of a dual-band impedance inverter. It involves the imposition of the required phase 
(1=-90º, 2=+90º) and impedance (Z1, Z2) values at the two frequencies of interest (f1, f2). The 
elements of the circuit model can be expressed in terms of these values. Given that the 
imposition of the phase and impedance represent four conditions, one more condition must 
be imposed in order to univocally determine the five parameters of the circuit model (Fig. 
8(f)). This additional imposition can be, for example, the balance condition. In this case, the 
circuit elements can be expressed as: 
 

2
1

2
2

2211 )(2







ZZL  (19) 

)(2 122121

2
1

2
2




ZZ
Cg 


  (20) 

21
2
1

2
2

1221

)(
)(2




ZZ
ZZC




  (21) 

21
2
1

2
2

1221

)( ZZ
ZZCc 





  (22) 

2
122121

21
2
1

2
22211

)(
))((




ZZ
ZZZZCg 


  (23) 

 

 

It can be observed that all parameters, except C, are positive as long as 2>1. The 
capacitance C, however, can be negative if Z2<Z1, or even infinity if Z2=Z1 (as most 
applications require). From this, it can be concluded that, employing the considered 
structure, the synthesis of impedance inverters with the same impedance value at two 
operating frequencies requires the use of non-balanced structures (Bonache et al., 2008).  
An application example a of dual-band impedance inverter designed by means of CSRRs 
can be seen in Fig. 15 (Sisó et al., 2008a). The device has been designed to work at the mobile 
GSM bands (f1=0.9GHz and f2=1.8GHz). At these frequencies, the CSRR-based impedance 
inverter exhibits the required values of impedance (Z0=35.35) and phase (l1=-90º at f1 and 
l2=+90º at f2). Figure 15 (b) shows these two magnitudes, whereas Fig. 15 (c) shows the 
performance of the whole power divider. It can be seen that both, the inverter and the 
divider behave as expected at the design frequencies. The use of a metamaterial 
transmission line as impedance inverter allows the reduction of the final device size as well 
as the dual-band operation. The design of devices working at more than two bands is under 
study. Several generalized models for multiband operation have been proposed 
(Eleftheriades, 2007; Sisó et al., 2008c) and implementations by means of the CL-loaded 
approach have been already carried out (Papanastasiou et al., 2008). 
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Fig. 15. (a) Layout of a dual-band power divider based on CSRRs. (b) Representation of the 
phase and the impedance of the inverter used in the implementation of the power divider 
shown in (a). (c) Simulated and measured frequency response of the power divider. The 
device has been implemented employing a commercial substrate with thickness h=635m 
and r=10.2. The metamaterial inverter dimensions are: marked active area A= 17.7mm x 
15.8mm, resonator external radius rext=7.9mm, ring width c=0.5mm, line width w=1.0mm, 
gap separation g=0.27mm. 
 
The fact that resonant-type metamaterial transmission lines exhibit a frequency selective 
behaviour suggests their application in filter design. This group has developed during the 
last years a wide work in this field, designing several kinds of filters based on 
subwavelength resonators (Gil et al., 2008b). The different responses that these structures 
provide allow the design of several kinds of filters, like low pass, high pass and band pass 
filters. Broadband filters, for example, can be designed making use of balanced transmission 
lines, whereas non balanced lines can be used for narrow band pass filter design. Hybrid 
structures, for example, can be used for both, narrow and broadband filters. The hybrid 
approach is based on the structure combining complementary resonators and capacitive 
gaps and includes shunt connected inductive stubs (see Fig.16a), which contribute to obtain 
inductive shunt impedance and provide more design flexibility. The addition of the stubs 
also creates an additional transmission zero above the left handed transmission band, which 



Electrically	small	resonators	for	metamaterial	and	microwave	circuit	design 419

 

conventional device. The dispersion diagram has been controlled to make the phase 
difference between the corresponding lines keep almost constant over a wider range. By 
these means, not only the size is minimized, but also the bandwidth of the device is 
improved. 
As has been previously mentioned, the controllability of the line characteristics of 
metamaterial transmission lines opens the door to new application and functionalities (Sisó 
et al., 2009). Nowadays, there is an increasing interest in devices exhibiting multi-band 
operation. However, conventional transmission lines do not offer the possibility of 
designing such components working at arbitrary chosen frequencies. The manipulation of 
the dispersion diagram of metamaterial transmission lines allows the design of multi-band 
devices in which the operation frequencies can be chosen within certain margins. This can 
be achieved thanks to the composite behaviour of such transmission lines, given that the 
different operation frequencies can be chosen at the different transmission bands that these 
lines exhibit (Bonache et al., 2008; Sisó et al., 2008b).  
If we consider the CSRR-based transmission line (Fig. 8(d)) and its equivalent circuit model 
(Fig. 8(f)), we can express the dispersion relation and the characteristic impedance of the 
structure as: 
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Impedance inverters are widely employed in microwave devices, so we will consider the 
design of a dual-band impedance inverter. It involves the imposition of the required phase 
(1=-90º, 2=+90º) and impedance (Z1, Z2) values at the two frequencies of interest (f1, f2). The 
elements of the circuit model can be expressed in terms of these values. Given that the 
imposition of the phase and impedance represent four conditions, one more condition must 
be imposed in order to univocally determine the five parameters of the circuit model (Fig. 
8(f)). This additional imposition can be, for example, the balance condition. In this case, the 
circuit elements can be expressed as: 
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It can be observed that all parameters, except C, are positive as long as 2>1. The 
capacitance C, however, can be negative if Z2<Z1, or even infinity if Z2=Z1 (as most 
applications require). From this, it can be concluded that, employing the considered 
structure, the synthesis of impedance inverters with the same impedance value at two 
operating frequencies requires the use of non-balanced structures (Bonache et al., 2008).  
An application example a of dual-band impedance inverter designed by means of CSRRs 
can be seen in Fig. 15 (Sisó et al., 2008a). The device has been designed to work at the mobile 
GSM bands (f1=0.9GHz and f2=1.8GHz). At these frequencies, the CSRR-based impedance 
inverter exhibits the required values of impedance (Z0=35.35) and phase (l1=-90º at f1 and 
l2=+90º at f2). Figure 15 (b) shows these two magnitudes, whereas Fig. 15 (c) shows the 
performance of the whole power divider. It can be seen that both, the inverter and the 
divider behave as expected at the design frequencies. The use of a metamaterial 
transmission line as impedance inverter allows the reduction of the final device size as well 
as the dual-band operation. The design of devices working at more than two bands is under 
study. Several generalized models for multiband operation have been proposed 
(Eleftheriades, 2007; Sisó et al., 2008c) and implementations by means of the CL-loaded 
approach have been already carried out (Papanastasiou et al., 2008). 
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Fig. 15. (a) Layout of a dual-band power divider based on CSRRs. (b) Representation of the 
phase and the impedance of the inverter used in the implementation of the power divider 
shown in (a). (c) Simulated and measured frequency response of the power divider. The 
device has been implemented employing a commercial substrate with thickness h=635m 
and r=10.2. The metamaterial inverter dimensions are: marked active area A= 17.7mm x 
15.8mm, resonator external radius rext=7.9mm, ring width c=0.5mm, line width w=1.0mm, 
gap separation g=0.27mm. 
 
The fact that resonant-type metamaterial transmission lines exhibit a frequency selective 
behaviour suggests their application in filter design. This group has developed during the 
last years a wide work in this field, designing several kinds of filters based on 
subwavelength resonators (Gil et al., 2008b). The different responses that these structures 
provide allow the design of several kinds of filters, like low pass, high pass and band pass 
filters. Broadband filters, for example, can be designed making use of balanced transmission 
lines, whereas non balanced lines can be used for narrow band pass filter design. Hybrid 
structures, for example, can be used for both, narrow and broadband filters. The hybrid 
approach is based on the structure combining complementary resonators and capacitive 
gaps and includes shunt connected inductive stubs (see Fig.16a), which contribute to obtain 
inductive shunt impedance and provide more design flexibility. The addition of the stubs 
also creates an additional transmission zero above the left handed transmission band, which 
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can be used in the design of filters with important frequency selectivity and very symmetric 
responses.  

      

    

 
Fig. 16. (a) Band pass filter network with impedance inverters and LC resonant tanks as 
shunt resonators (b) Layout of a Chebyshev filter based on a hybrid structure and relevant 
dimensions. The device has been implemented employing a commercial substrate with 
thickness h=1.27mm and r=10.2. (c) Electrically simulated and measured frequency 
response of the filter shown in (b). (d) Electrical circuit model of the hybrid unit cell.  
 
The hybrid structure allows, for example, the design of band pass filters under standard 
(Chebyshev, for example) approximations with controllable bandwidth and compact 
dimensions (Bonache et al., 2006a). The design flexibility of these structures allows to control 
the position of the transmission zeros, the filter bandwidth, the ripple, etc so that a complete 
design methodology can be applied. The model shown in Fig. 16(a) can be applied to this 
structure as a basis for standard moderate and narrow band-pass filter design. When 
designing Chebyshev filters, the element values of the low pass filter prototype, gi can be 
determined by the order and ripple level. Additionally, the bandwidth of each resonator (i) 
is set by the filter fractional bandwidth.  These parameters, together with the filter central 
frequency and the position of the transmission zero allow the determination of all necessary 
circuit parameters. Each of the unit cells forming the filter is designed to, on the whole, 
exhibit characteristic impedance equal to the reference impedance of the ports (Z0=50) and 
phase =90º at the considered central frequency of the pass band. By this means, one unique 
unit cell acts as a resonator and exhibits the required phase without needing the addition of 

 

different stages acting as inverters and resonators, what involves a considerable size 
reduction. Furthermore, the series and shunt impedances have to be set to Zs=-jZ0 and 
Zp=jZ0, respectively, at f0. The 3dB bandwidth:  
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are also imposed to determine all required elements. The bandwidth for a parallel resonant 
tank can be expressed in terms of its capacitance Ceq and inductance Leq as: 
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These parameters can be related with the low pass prototype element values by the 
expressions 
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what allows us to obtain the following expression for the resonator bandwidth: 
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The two 3dB frequencies can be chosen to be equidistant to the central frequency, f0. 
Considering that the series impedance is roughly constant within the pass band, the two 
3dB frequencies can be considered to be those at which the shunt impedance is Z0/2 and 
infinity, respectively, whereas it is Z0 at f0. These conditions can be expressed as: 
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Fig. 16. (a) Band pass filter network with impedance inverters and LC resonant tanks as 
shunt resonators (b) Layout of a Chebyshev filter based on a hybrid structure and relevant 
dimensions. The device has been implemented employing a commercial substrate with 
thickness h=1.27mm and r=10.2. (c) Electrically simulated and measured frequency 
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designing Chebyshev filters, the element values of the low pass filter prototype, gi can be 
determined by the order and ripple level. Additionally, the bandwidth of each resonator (i) 
is set by the filter fractional bandwidth.  These parameters, together with the filter central 
frequency and the position of the transmission zero allow the determination of all necessary 
circuit parameters. Each of the unit cells forming the filter is designed to, on the whole, 
exhibit characteristic impedance equal to the reference impedance of the ports (Z0=50) and 
phase =90º at the considered central frequency of the pass band. By this means, one unique 
unit cell acts as a resonator and exhibits the required phase without needing the addition of 

 

different stages acting as inverters and resonators, what involves a considerable size 
reduction. Furthermore, the series and shunt impedances have to be set to Zs=-jZ0 and 
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what, together with expression (25) leads us to the values of the shunt impedance elements. 
Finally, if the series inductance is neglected, the series capacitance can be expressed as: 
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This methodology has given rise to very competitive filters. Figure 16 shows the layout and 
frequency response of an order-3 band pass filter designed following this strategy. As can be 
seen, very symmetric and selective responses can be obtained and the resulting devices are 
very compact. The layout of the device shown in Fig. 16a has a length of 0.4,  being the 
signal wavelength at the central filter frequency.  
Purely resonant and hybrid structures can be balanced to implement broadband filters 
(Selga et al., 2009; Gil et al., 2007c; Gil et al., 2007d). With such lines, broad responses are 
obtained as a result of forcing the frequency band gap that usually separates the left- and the 
right-handed transmission bands to disappear. As Fig. 17 shows, high pass and band pass 
filters can be implemented by means of balanced transmission lines. Purely resonant 
structures (Fig. 17(a)) exhibit a transmission zero below the pass band, which provides a 
sharp cut-off. Additionally, the rejection level can be improved increasing the number of 
unit cells. Figure 17(b) shows the frequency response of a high pass filter formed by 3 unit 
cells like the one shown in Fig. 17(a) in which the achieved rejection level is 40dB at the stop 
band (Selga et al., 2009). In such kind of filters, the upper limit of the band is not controlled. 
However, if it is necessary, additional resonators can be included in the design in order to 
reject the signal at the desired frequency or even to create attenuation poles within the 
transmission band (Gil et al., 2007d).  
Hybrid structures, on the other hand, exhibit a pass band response and there is no need to 
include additional resonators. Figure 17(c) and (d) show the layout and performance of an 
UWB band pass filter based on hybrid unit cells including CSRRs. The filter was designed to 
satisfy quite restrictive specifications, like -80dB rejection level at 2GHz, or a total size 
smaller than 1cm2. The resulting device was formed by four identical unit cells implemented 
on a thin (0.127mm thickness) substrate with r=10.2 and satisfied all imposed specifications, 
including the size limitation (Gil et al., 2007c). In Fig. 17(c), the dashed rectangle marks 1cm2 
area. As can be seen in Fig. 17(d), the filter is very selective, exhibits low insertion loss level 
at the pass band and a wide rejection band above the transmission band.  
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Fig. 17. (a) Layout of the balanced unit cell employed in the design of the high pass filter 
implemented in commercial substrate with r=11 and thickness h=1.27mm. External radious 
of the resonators rext=4.17mm, ring width c=0.37mm, line width w=0.30mm, interdigital gap 
separation g=0.16mm. (b) Frequency response of high pass filter implemented by means of 3 
unit cells like the one shown in (a). (c) Layout of a UWB band pass filter based on a balanced 
hybrid structure. Relevant dimensions are: line width w=0.126 mm, external radius of the 
resonator rext=1.68mm, ring width c=0.32mm and ring separation d=0.19 mm, inductor 
width is wl=0.10mm and the gap distance g=0.4 mm (d) Simulated and measured frequency 
response of the filter shown in (c). 
 
Other resonators can be employed to implement different kinds of filters, as is the case of 
OCSRRs. As has been previously mentioned, OCSRRs can be implemented in microstrip or 
coplanar technology. Figure 18 shows two examples of filters designed using these 
resonators. The filter in Fig. 18(a) is simply a low pass filter formed by 5 identical unit cells 
implemented with OCSRRs in microstrip technology (Aznar et al., 2009a). The design does 
not follow any standard approximation and a spurious band is present close to the cut-off 
frequency. In order to eliminate the first spurious band, a second stage formed by four unit 
cells is added to the low pass filter (Fig. 18(b)). As a result, the stop band is spurious free 
over a wider frequency range. Figure 18(c) includes the measured frequency responses of 
the two fabricated prototypes. As can be seen, a very sharp cut-off is obtained, as well as an 
important rejection level in the stop band, whereas insertion losses are very low in the pass 
band. Their frequency responses have been compared with the simulated response of a 
0.5dB ripple elliptic filter with similar specifications, which must be an order 7 filter. 
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what, together with expression (25) leads us to the values of the shunt impedance elements. 
Finally, if the series inductance is neglected, the series capacitance can be expressed as: 
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This methodology has given rise to very competitive filters. Figure 16 shows the layout and 
frequency response of an order-3 band pass filter designed following this strategy. As can be 
seen, very symmetric and selective responses can be obtained and the resulting devices are 
very compact. The layout of the device shown in Fig. 16a has a length of 0.4,  being the 
signal wavelength at the central filter frequency.  
Purely resonant and hybrid structures can be balanced to implement broadband filters 
(Selga et al., 2009; Gil et al., 2007c; Gil et al., 2007d). With such lines, broad responses are 
obtained as a result of forcing the frequency band gap that usually separates the left- and the 
right-handed transmission bands to disappear. As Fig. 17 shows, high pass and band pass 
filters can be implemented by means of balanced transmission lines. Purely resonant 
structures (Fig. 17(a)) exhibit a transmission zero below the pass band, which provides a 
sharp cut-off. Additionally, the rejection level can be improved increasing the number of 
unit cells. Figure 17(b) shows the frequency response of a high pass filter formed by 3 unit 
cells like the one shown in Fig. 17(a) in which the achieved rejection level is 40dB at the stop 
band (Selga et al., 2009). In such kind of filters, the upper limit of the band is not controlled. 
However, if it is necessary, additional resonators can be included in the design in order to 
reject the signal at the desired frequency or even to create attenuation poles within the 
transmission band (Gil et al., 2007d).  
Hybrid structures, on the other hand, exhibit a pass band response and there is no need to 
include additional resonators. Figure 17(c) and (d) show the layout and performance of an 
UWB band pass filter based on hybrid unit cells including CSRRs. The filter was designed to 
satisfy quite restrictive specifications, like -80dB rejection level at 2GHz, or a total size 
smaller than 1cm2. The resulting device was formed by four identical unit cells implemented 
on a thin (0.127mm thickness) substrate with r=10.2 and satisfied all imposed specifications, 
including the size limitation (Gil et al., 2007c). In Fig. 17(c), the dashed rectangle marks 1cm2 
area. As can be seen in Fig. 17(d), the filter is very selective, exhibits low insertion loss level 
at the pass band and a wide rejection band above the transmission band.  
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Fig. 17. (a) Layout of the balanced unit cell employed in the design of the high pass filter 
implemented in commercial substrate with r=11 and thickness h=1.27mm. External radious 
of the resonators rext=4.17mm, ring width c=0.37mm, line width w=0.30mm, interdigital gap 
separation g=0.16mm. (b) Frequency response of high pass filter implemented by means of 3 
unit cells like the one shown in (a). (c) Layout of a UWB band pass filter based on a balanced 
hybrid structure. Relevant dimensions are: line width w=0.126 mm, external radius of the 
resonator rext=1.68mm, ring width c=0.32mm and ring separation d=0.19 mm, inductor 
width is wl=0.10mm and the gap distance g=0.4 mm (d) Simulated and measured frequency 
response of the filter shown in (c). 
 
Other resonators can be employed to implement different kinds of filters, as is the case of 
OCSRRs. As has been previously mentioned, OCSRRs can be implemented in microstrip or 
coplanar technology. Figure 18 shows two examples of filters designed using these 
resonators. The filter in Fig. 18(a) is simply a low pass filter formed by 5 identical unit cells 
implemented with OCSRRs in microstrip technology (Aznar et al., 2009a). The design does 
not follow any standard approximation and a spurious band is present close to the cut-off 
frequency. In order to eliminate the first spurious band, a second stage formed by four unit 
cells is added to the low pass filter (Fig. 18(b)). As a result, the stop band is spurious free 
over a wider frequency range. Figure 18(c) includes the measured frequency responses of 
the two fabricated prototypes. As can be seen, a very sharp cut-off is obtained, as well as an 
important rejection level in the stop band, whereas insertion losses are very low in the pass 
band. Their frequency responses have been compared with the simulated response of a 
0.5dB ripple elliptic filter with similar specifications, which must be an order 7 filter. 
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Fig. 18. (a) Layout of a microstrip low pass filter implemented with OCSRRs. The device was 
implemented in commercial substrate with r=11 and h=1.27mm, the width of the gaps 
forming the OCSRRs is c=0.2mm, whereas d=2.46mm and rext=3.5mm. (b) Layout of a low 
pass filter including 4 OCSRRs for spurious with c=0.2mm, d=1.83mm, rext=2.9mm. (c) 
Measured responses of the filters (a) and (b) compared with the simulation of a 7-order 
elliptic filter. 
 
Chebyshev filters can also be implemented by means of OCSRRs applying a similar 
methodology as the employed in the design of the filter shown in Fig. 16 (Vélez et al., 2009). 
This technique has been applied to the design of an order 5 filter with 0.1dB ripple, 
fractional bandwidth FBW=80% and central frequency f0=5GHz. The resulting device can be 
observed in Fig. 19. Each section has been designed to satisfy the requirements to obtain the 
desired filter performance. This requires the implementation of the central unit cell by 
means of two resonators given that a smaller shunt inductance is required. 
 

   
Fig. 19. (a) Layout of Chebyshev band pass filter based on OCSRRs implemented in coplanar 
waveguide technology. The device has been implemented in commercial substrate with 
r=10.2 and 635m thickness and c=0.22mm, d=0.15mm, rext=1.45mm, w=0.38mm, 
h=0.17mm.(b) Measured and simulated frequency response of the filter shown in (a).  
 
The total length of the final device is 27mm, what corresponds to 0.9 times the wavelength 
of the signal at the central filter frequency. As can be seen, the filter exhibits good values of 
the insertion and return losses within the pass band. These two filters are some of the 

 

application examples of OCSRRs for the implementation of microwave devices, which can 
be designed in coplanar and microstrip technologies.  

 
5. Conclusion  
 

In this chapter, different kinds of resonant-type metamaterial transmission lines based on 
subwavelength resonators have been presented and studied. There are several types of 
resonators which allow their use in the implementation of this kind of artificial transmission 
lines and their small size is exploited in order to achieve device miniaturisation. Besides 
their small size, metamaterial transmission lines allow the control of their electrical 
characteristics, opening the door to very competitive and innovative application 
possibilities. Among these applications, some microwave devices based on resonant-type 
metamaterial transmission lines have been shown. Power dividers, hybrid couplers and 
filters are some of the components which can be implemented by means of these 
transmission lines. The designed devices have compact dimensions and good performances, 
which are comparable to those of conventional devices. In some cases, there are some 
restrictions, like bandwidth, making such devices only suitable for narrow band 
applications. However, in other cases, the performance of conventional devices is even 
beaten by metamaterial devices. The manipulation of the dispersion diagram (also known as 
“dispersion engineering”) is one of the tools that allows the improvement of certain 
performances or even to achieve new functionalities, like is the case of multi-band 
operation. Contrary to what occurs with conventional transmission lines, the use of 
metamaterial lines allows to choose arbitrary frequencies in multi-band applications. The 
manipulation and design of resonant-type metamaterial transmission lines requires 
equivalent circuit models providing a good description of the structures. These models have 
been presented, together with the parameter extraction methods that provide the circuit 
model parameters from the frequency response of the structure. These parameter extraction 
methods, besides being a very useful design tool, allow the corroboration of the proposed 
circuits as correct models for the corresponding structures. Work is in progress in the design 
of new devices based on the presented or new structures. New and more efficient design 
tools are being developed, as well as devices with new functionalities are being studied. 
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Fig. 18. (a) Layout of a microstrip low pass filter implemented with OCSRRs. The device was 
implemented in commercial substrate with r=11 and h=1.27mm, the width of the gaps 
forming the OCSRRs is c=0.2mm, whereas d=2.46mm and rext=3.5mm. (b) Layout of a low 
pass filter including 4 OCSRRs for spurious with c=0.2mm, d=1.83mm, rext=2.9mm. (c) 
Measured responses of the filters (a) and (b) compared with the simulation of a 7-order 
elliptic filter. 
 
Chebyshev filters can also be implemented by means of OCSRRs applying a similar 
methodology as the employed in the design of the filter shown in Fig. 16 (Vélez et al., 2009). 
This technique has been applied to the design of an order 5 filter with 0.1dB ripple, 
fractional bandwidth FBW=80% and central frequency f0=5GHz. The resulting device can be 
observed in Fig. 19. Each section has been designed to satisfy the requirements to obtain the 
desired filter performance. This requires the implementation of the central unit cell by 
means of two resonators given that a smaller shunt inductance is required. 
 

   
Fig. 19. (a) Layout of Chebyshev band pass filter based on OCSRRs implemented in coplanar 
waveguide technology. The device has been implemented in commercial substrate with 
r=10.2 and 635m thickness and c=0.22mm, d=0.15mm, rext=1.45mm, w=0.38mm, 
h=0.17mm.(b) Measured and simulated frequency response of the filter shown in (a).  
 
The total length of the final device is 27mm, what corresponds to 0.9 times the wavelength 
of the signal at the central filter frequency. As can be seen, the filter exhibits good values of 
the insertion and return losses within the pass band. These two filters are some of the 

 

application examples of OCSRRs for the implementation of microwave devices, which can 
be designed in coplanar and microstrip technologies.  

 
5. Conclusion  
 

In this chapter, different kinds of resonant-type metamaterial transmission lines based on 
subwavelength resonators have been presented and studied. There are several types of 
resonators which allow their use in the implementation of this kind of artificial transmission 
lines and their small size is exploited in order to achieve device miniaturisation. Besides 
their small size, metamaterial transmission lines allow the control of their electrical 
characteristics, opening the door to very competitive and innovative application 
possibilities. Among these applications, some microwave devices based on resonant-type 
metamaterial transmission lines have been shown. Power dividers, hybrid couplers and 
filters are some of the components which can be implemented by means of these 
transmission lines. The designed devices have compact dimensions and good performances, 
which are comparable to those of conventional devices. In some cases, there are some 
restrictions, like bandwidth, making such devices only suitable for narrow band 
applications. However, in other cases, the performance of conventional devices is even 
beaten by metamaterial devices. The manipulation of the dispersion diagram (also known as 
“dispersion engineering”) is one of the tools that allows the improvement of certain 
performances or even to achieve new functionalities, like is the case of multi-band 
operation. Contrary to what occurs with conventional transmission lines, the use of 
metamaterial lines allows to choose arbitrary frequencies in multi-band applications. The 
manipulation and design of resonant-type metamaterial transmission lines requires 
equivalent circuit models providing a good description of the structures. These models have 
been presented, together with the parameter extraction methods that provide the circuit 
model parameters from the frequency response of the structure. These parameter extraction 
methods, besides being a very useful design tool, allow the corroboration of the proposed 
circuits as correct models for the corresponding structures. Work is in progress in the design 
of new devices based on the presented or new structures. New and more efficient design 
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1. Introduction 
 

Since the origin of physics, scientists were concerned with the interaction of electromagnetic 
waves with matter. The electromagnetic properties of a material are commonly described by 
the electric permittivity epsilon ( and the magnetic permeability (µ). Soon it occurred that 
these dielectric parameters would have to be complex quantities to account for propagation 
losses and phenomena such as birefringence showed that they would have to be considered 
tensors in order to describe anisotropic behaviour.  
Recently, the invention of artificial materials, which consist of periodically arranged, 
resonant, metallic sub-wavelength elements, led to a new class of materials offering a 
custom tailored dielectric response in certain frequency bands of interest. Today, many 
applications benefit from the unique electromagnetic properties that such artificial materials, 
also called metamaterials (MTM), offer. Especially planar metamaterials, which are easily 
facilitated into existing microwave circuitry, are of high practical interest, e.g. for high 
performance filters, antennas, and other microwave devices (Caloz & Itoh, 2005, 
Eleftheriades & Balmain, 2005, Marques et al., 2008). Aside from the device performance, 
miniaturization is a key issue in the design of metamaterial resonators, as a high integration 
density is a mandatory prerequisite to compete in mass-markets such as wireless 
communications.  
In this book chapter, we will review some recently proposed planar metamaterial resonator 
concepts, illuminating their strengths and weaknesses in comparison to existing approaches, 
e.g. the ones discussed in (Marques et al., 2008). We will focus on structures integrated on 
coplanar waveguides (CPW) as this technology offers some distinct design advantages 
compared to conventional microstrip lines, e.g. the easy realization of shunts and the 
possibility of mounting active and passive lumped components (Simons, 2001, Wolff, 2006). 
The remainder of this chapter is structured as follows. We will start with a short 
introduction to metamaterials and discuss some of the most prominent applications. After 
this general section, we will focus on CPW based metamaterial filter concepts.  
The first concept which falls under this category is the complementary split ring resonator 
(CSRR) with and without bandwidth modifying slots, as introduced in (Ibraheem & Koch, 
2007). These resonators provide a distinct stopband characteristic, which can be adjusted by 
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modifying the slot lengths, offering great design flexibility. However, the stopband response 
suffers from a spurious rejection band close to the main resonance, which has its origin in 
the differing electrical lengths of the inner and the outer resonator arm. This issue leads us 
to the complementary u-shaped split resonator (CUSR) (Al-Naib & Koch, 2008a), which 
cancels the spurious resonance by equalizing the electrical length of both resonator arms. 
Furthermore we will show that by combining a CSRR and a split ring resonator with strip 
lines in series, compact bandpass filters can be obtained, which could be very useful, e.g. in 
front end filter designs (Al-Naib et al., 2008). 
Apart from the CSRR based structures, we will also discuss circular multiple turn 
complementary spiral resonators (CSRs) (Al-Naib & Koch, 2008b), which enable extremely 
small electrical footprint filters as each turn elongates the effective resonator length, thus 
lowering the resonance frequency.  

 
1.1 The basics of Metamaterials 
To better understand what sets metamaterials apart from ordinary media, Fig. 1 illustrates a 
schematic with µ and epsilon on the x- and the y-axis, respectively.  
 

 
Fig. 1. Material classification. 
 
Four regimes can be identified: The best known is the one where both  and µ assume values 
larger than one. Most materials encountered in nature fall inside this upper right quadrant 
and are also referred to as right-handed media (RHM) or double positive material (DPS). 
Exceptions are ferrites, which are found in the upper left quadrant. In these materials µ 
becomes negative (MNG) while epsilon remains at positive values. The inverse scenario, 
where epsilon is negative (ENG) while µ remains positive is found in plasmas, which are 
grouped in the lower right corner of Fig. 1. The untapped lower-left corner contains left-
handed materials, not yet discovered in nature. 

 

Metamaterials can access all above mentioned regimes, at least in a limited spectral region, 
enabling new exciting applications such as superlenses or cloaking devices but also 
improving existing ones such as filter or antenna structures. The basic idea behind 
metamaterials lies in the combination of electric and/or magnetic resonances in such a way 
that  and µ take the desired values in a certain frequency band. To illustrate this approach, 
we will now discuss a negative and a negative µ metamaterial and then combine both to 
obtain a left-handed medium.  

 
1.1.1 ENG Metamaterials 
Practically, ENG metamaterials consists of thin metallic wires. In the late nineties of the last 
century, concepts similar to the one shown in Fig. 2a have been explored (Pendry et al., 
1996). Pendry et al. showed that its behaviour can be explained by the plasma resonance 
inside the metallic rods (Pendry et al., 1996, Pendry et al., 1998). As illustrated in Fig. 2b, 
epsilon starts with negative values in the lower frequency range (and hence, only 
evanescent modes are allowed to propagate) and then transits to positive values in the 
higher frequency region, through the plasma frequency (fpe). ENG structures with 
plasmonic response have been suggested for the realization of sub-wavelength antennas 
with enhanced radiation properties and waveguide miniaturization (Engheta & Ziolkowski, 
2006, Erentok & Ziolkowski, 2005, Gay-Balmaz et al., 2002, Hrabar et al., 2005). 
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(b) 
Fig. 2. Wire medium with an applied electric field along the axes of the wires (a) and its 
effective electric permittivity value (b). 

 
1.1.2 MNG Metamaterials 
Aside from his work on metallic wire media, Pendry also proposed a novel type of 
magnetically excited resonator, the so called Split Ring Resonator (SRR), as shown in Fig. 3a 
(Pendry et al., 1999). The resonator consists of a pair of concentric rings, with slits etched in 
two opposing sides. By adequately exciting the SRR with a time varying magnetic field in 
the axial direction, a strongly resonant magnetic response can be observed as depicted in 
Fig. 3b.   
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Fig. 2. Wire medium with an applied electric field along the axes of the wires (a) and its 
effective electric permittivity value (b). 

 
1.1.2 MNG Metamaterials 
Aside from his work on metallic wire media, Pendry also proposed a novel type of 
magnetically excited resonator, the so called Split Ring Resonator (SRR), as shown in Fig. 3a 
(Pendry et al., 1999). The resonator consists of a pair of concentric rings, with slits etched in 
two opposing sides. By adequately exciting the SRR with a time varying magnetic field in 
the axial direction, a strongly resonant magnetic response can be observed as depicted in 
Fig. 3b.   
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Fig. 3. SRRs medium with magnetic field along their axis (a) and its analytical calculation of 
the effective magnetic permeability value (b). 

 
1.1.3 LHM Metamaterial 
In 2000, Smith et al. combined both the metallic wire ENG and the split ring resonator MNG 
media and were the first to experimentally observe a LHM (Shelby et al., 2001, Smith et al., 
2000). Fig. 4a depicts a schematic of the prominent structure employed for these initial 
experiments. Fig. 4b shows the effective real part of ε and µ for the wire array and SRRs, 
respectively. fpe and fpm are the electric and magnetic plasma frequency while frm is the 
magnetic resonance frequency of the SRRs. The shaded area marks the resulting bandwidth 
between frm and fpe for which a left handed behaviour with a negative effective refractive 
index is obtained. 
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Fig. 4. (a) Schematic of the LHM, resulting from the combination of an array of SRR particles 
with an array of thin wires (b) real part of effective permittivity (dotted) and permeability 
(solid) versus frequency. 
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1.2 Applications for metamaterials 

In this section, we will briefly review the most prominent of the manifold suggested 
applications for metamaterials, in each case giving a short explanation of the benefit 
metamaterials can offer. 

1. Superlens - Pendry proposed that a slab of LHM can be used as a lens which is free 
from all aberrations observed in a lens made with positive refractive index 
(Pendry, 2000). However, it was shown that very small deviations of the material 
parameters from the ideal conditions could lead to the excitation of resonances that 
cause deterioration of the performance of the lens. Nevertheless, scientists have 
been working to overcome different difficulties to improve the resolution 
(Ramakrishna & Grzegorczyk, 2008). 

2. Cloaking - Another natural application for metamaterials is the development of 
gradient index media (Smith et al., 2005) because the value of the permittivity and 
permeability can be engineered at any point within the structure by adjusting the 
scattering properties of each unit cell (Driscoll et al., 2006, Greegor et al., 2005). By 
implementing complex gradients independently in the permittivity and 
permeability tensor components, it has been shown that an entirely new class of 
materials can be realized by the process of transformation optics (Leonhardt, 2006, 
Pendry & Smith, 2006). A recent example utilized metamaterials to form an 
“invisibility cloak” that was demonstrated to render an object invisible to a narrow 
band of microwave frequencies (Schurig et al., 2006). 

3. Scattering reduction - metamaterials can be used for the reduction of 
electromagnetic wave scattering (Lagarkov & Kisel, 2001, Pacheco et al., 2002, Alu 
& Engheta, 2005). Recently a theoretical analysis based on Mie scattering was 
presented in (Alu et al., 2005) which indicated that metal, coated with 
metamaterials, has a drastically reduced scattering coefficient. 

4. Novel microwave components - metamaterials can be employed as sub-
wavelength resonators and zero phase delay lines. The advantage over that of 
RHM materials is the very small dimension of the resonator (Eleftheriades et al., 
2004, Engheta, 2002). Moreover, low metamaterials can be employed to build 
high-gain antennas (Feresidis et al., 2005, Wang et al., 2006). Furthermore, compact 
antennas are realizable utilizing artificial magnetic conductors. 

In the remainder of this chapter we will focus on planar metamaterials for planar 
microwave devices. The two main concepts for such metamaterials will be discussed in the 
following section. 

 
2. Planar Microwave Metamaterials – A Brief Review 
 

In order to bring metamaterial technology to microwave components, compatibility with 
planar circuit technology is mandatory. Two approaches have been introduced to meet this 
challenge: The first one employs a transmission line with integrated capacitive and 
inductive elements while the second one relies on planar metamaterial resonators loaded to 
a coplanar waveguide.  
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Fig. 3. SRRs medium with magnetic field along their axis (a) and its analytical calculation of 
the effective magnetic permeability value (b). 
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Fig. 4. (a) Schematic of the LHM, resulting from the combination of an array of SRR particles 
with an array of thin wires (b) real part of effective permittivity (dotted) and permeability 
(solid) versus frequency. 
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& Engheta, 2005). Recently a theoretical analysis based on Mie scattering was 
presented in (Alu et al., 2005) which indicated that metal, coated with 
metamaterials, has a drastically reduced scattering coefficient. 
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wavelength resonators and zero phase delay lines. The advantage over that of 
RHM materials is the very small dimension of the resonator (Eleftheriades et al., 
2004, Engheta, 2002). Moreover, low metamaterials can be employed to build 
high-gain antennas (Feresidis et al., 2005, Wang et al., 2006). Furthermore, compact 
antennas are realizable utilizing artificial magnetic conductors. 

In the remainder of this chapter we will focus on planar metamaterials for planar 
microwave devices. The two main concepts for such metamaterials will be discussed in the 
following section. 

 
2. Planar Microwave Metamaterials – A Brief Review 
 

In order to bring metamaterial technology to microwave components, compatibility with 
planar circuit technology is mandatory. Two approaches have been introduced to meet this 
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a coplanar waveguide.  
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2.1 Transmission Line approach 
A transmission line, loaded with reactive elements, such as capacitors and inductors, can be 
designed to exhibit capacitive effective series impedance while the effective shunt 
impedance remains inductive. The main advantage of such concept is its compatibility with 
conventional planar circuits. Fig. 5a illustrates the transmission line model of a TL-based 
metamaterials and Fig. 5b shows one of the proposed implementations (Caloz & Itoh, 2002).  
Several applications of TL-based metamaterials have been proposed and experimentally 
validated. For more information, the inclined reader is referred to (Caloz et al., 2002, Iyer & 
Eleftheriades, 2002, Oliner, 2002). 
 

 

 
Fig. 5. Transmission line model for a TL-based metamaterials (a) and the proposed 
implementation (b). 

 
2.2 CPW Approach 
Coplanar waveguide technology offers a variety of advantages over the conventionally 
employed microstrip line. Among the benefits is the easy facilitation of shunts as well as the 
series surface mounting of active and passive devices. Furthermore, due to the absence of a 
ground plane a single metallization layer suffices which leads to reduced fabrication costs 
compared to microstrip technology. 
Magnetic resonator structures, such as the SRR, can be employed as metamaterials if the 
exciting H-field is normal to the plane containing the resonator. In this operation mode, the 
induced currents will lead to the desired resonance of the magnetic permeability. Fig. 6 
depicts the electric (E-) field and magnetic (H-) field in a CPW line. In the vicinity of the 
gaps lies an area where the H-field is normal to the CPW plane. Integrating magnetic 
resonators in this location should yield an efficient excitation, enabling a planar 
metamaterial structure. In the following we will discuss different implementations of this 
basic concept. 
 

 

 
 

Fig. 6. The transverse electric- (a) and magnetic- (b) field in CPW. 
 
A first implementation of a single metallization layer, CPW-based planar design introduced 
the SRRs directly on the slots of the CPW as depicted in the inset of Fig. 7a (Falcone et al., 
2004). The gaps of the CPW are broadened to provide enough space to hold the SRRs. The 
SRRs are excited magnetically because the magnetic field is confined to the gaps. Fig. 7b 
shows the numerically obtained transmission parameters. The transmission depicts 
bandstop behaviour due to the magnetic resonance. Unfortunately, with regards to the 
return loss, the performance is quite poor because the structure is highly mismatched since 
the CPW line impedance is the ratio between the central conductor width and the air gap 
separation. Therefore, having the SRRs inside the slots of CPW puts tight restrictions to the 
line impedance.  
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Fig. 7. Single metallized CPW with SRRs inside the slots (a) and its S-parameters (b). 
 
To overcome the mismatch problem, another approach has been proposed. Here, the SRRs 
are placed on the bottom side of the dielectric layer as shown in Fig. 8a (Martin et al., 2003a). 
In this case, the CPW can be designed to have almost the same impedance as if no SRRs 
were present. Four unit cells are needed to achieve good behaviour as shown in Fig. 8b. 
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return loss, the performance is quite poor because the structure is highly mismatched since 
the CPW line impedance is the ratio between the central conductor width and the air gap 
separation. Therefore, having the SRRs inside the slots of CPW puts tight restrictions to the 
line impedance.  
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Fig. 7. Single metallized CPW with SRRs inside the slots (a) and its S-parameters (b). 
 
To overcome the mismatch problem, another approach has been proposed. Here, the SRRs 
are placed on the bottom side of the dielectric layer as shown in Fig. 8a (Martin et al., 2003a). 
In this case, the CPW can be designed to have almost the same impedance as if no SRRs 
were present. Four unit cells are needed to achieve good behaviour as shown in Fig. 8b. 
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However, the advantage of having a single metal layer is no longer maintained, reducing 
the applicability of this concept. 
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Fig. 8.  CPW with backside loaded SRRs (a) with its transmission characteristic (b). 

 
3. Planar Microwave Metamaterials – Recent Advances 
 

This section reviews novel planar metamaterial resonator concepts which have recently been 
proposed. The first concept is the complementary split ring resonator (CSRR). Unlike the 
structures introduced in sec. 3.1, which consist of two metal layers, the CSRRs have been 
integrated into the CPW layer to maintain the advantages single layered structures offer. 
However, the stopband response suffers from a spurious rejection band close to the main 
resonance. To resolve this issue, the complementary u-shaped split resonator (CUSR) 
discussed in section 3.2, which cancels the spurious resonance, has been introduced. Apart 
from the CSRR based structures, circular multiple turn complementary spiral resonators 
(CSRs) are discussed in section 3.4, which feature an extremely small electrical footprint as 
each turn elongates the effective resonator length. Finally, combining a CSRR and an SRR 
with strip lines in series leads to compact bandpass filters introduced in section 3.5. Such 
devices could be very useful, e.g. in front-end filter designs. 

 
3.1 The Novel CSRR/CPW 
As neither of the designs discussed in section 2.2 could satisfy the demand for an impedance 
matched, single layered, planar metamaterial, a new concept had to be developed. At the 
core of this concept stands the integration of complementary SRRs (CSRRs) into a CPW 
making use of the Babinet principle which leads to the structures shown in Fig. 9a & 9b. For 
clarity’s sake, we will limit the discussion in this work to a single CSRR pair. However, 
cascading of the CSRRs is possible, resulting in even better performance. At the edges of the 
structure we added the CPW tapers to exclude measurement errors due to soldering 
connectors to the devices. The taper function was verified through simulation and 
experiment to provide maximum matching between the two sides of the CPW. A standard 
mask/photoetching technique is used to fabricate the structures using an FR-4 substrate 
(dielectric constant r = 4, loss tangent tan= 0.02, thickness h = 0.5 mm). With a single pair 

 

of CSRRs we obtain a considerably higher suppression than reported in (Martin et al., 
2003a). 

 
 

   
 

 (a)      (b)    (c) 
Fig. 9. (a) 3D layout of CPW/CSRR structure (b) top-view of the fabricated structure (c) 
schematic of CSRR with its dimensions. 

 
First, a simulation of a single unit cell with periodic boundary conditions in propagation 
direction is performed using the Eigenmode solver of CST Microwave studio (CST). The 
dimensions of the unit cell are illustrated in the inset of Fig. 9c. An external radius of r = 3.6 
mm, a width of c = 0.27 mm, a separation of d = 0.43 mm, and a length of the “metallic 
bridge” g = 0.43 mm are chosen so that the structures operate in the C-band. Calculating the 
dispersion by varying the phase shift in propagation direction between 0 and 180 reveals a 
photonic band gap between 4.2 GHz and 5.6 GHz (c.f. Fig. 10a). This bandgap is produced 
by the complementary rings which exhibit an effective negative dielectric permittivity. 
Hence, a stopband behaviour in the transmission magnitude with a centre frequency around 
4.9 GHz is expected.  
We use Ansoft HFSS software (HFSS) (a 3D full-wave solver based on the finite element 
method with adaptive iterative meshing) to simulate the transmission through the 
structures with a very high mesh resolution by specifying the maximum change in the S-
parameters between two successive iterations to be 0.3%. Furthermore, a fine discrete sweep 
with a 0.02 GHz step size for the band between 4.5-5.5 GHz is performed, where sharp 
spectral transients are expected. The simulated magnitude response (dotted line) for the 
insertion loss is shown Fig. 10b. The insertion loss for the CSRR structure shows the 
expected stopband behaviour close to 5 GHz. Between 4.6 GHz and 5.5 GHz, an attenuation 
higher than 10 dB is achieved, which is in good agreement with the dispersion analysis.  
An HP E8361A vector network analyzer (VNA) with a microstrip test fixture (Wiltron 3680) 
is employed to identify the S-parameters of the fabricated structure in the frequency band 
between 2 and 10 GHz. A thru-short-line (TRL) kit was used to calibrate the system. For the 
whole band of interest, the return loss is better than 28 dB. The measurements of the 
fabricated structure are shown in Fig. 10b (solid line). A good agreement between the 
measured S-parameters and the simulated HFSS results, confirming the dispersion analysis 
carried out with CST MWS. The small shifts in the resonance frequency can be ascribed to 
inhomogeneities in the ring dimensions.  
Beneath the low-frequency limit of the artificial band gap, the structure exhibits excellent 
matching without any significant insertion loss. In the upper passband a good performance 
up to 7 GHz is achieved, but for higher frequencies (shaded area in Fig. 10) a spurious 
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However, the advantage of having a single metal layer is no longer maintained, reducing 
the applicability of this concept. 
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Fig. 8.  CPW with backside loaded SRRs (a) with its transmission characteristic (b). 
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each turn elongates the effective resonator length. Finally, combining a CSRR and an SRR 
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devices could be very useful, e.g. in front-end filter designs. 
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core of this concept stands the integration of complementary SRRs (CSRRs) into a CPW 
making use of the Babinet principle which leads to the structures shown in Fig. 9a & 9b. For 
clarity’s sake, we will limit the discussion in this work to a single CSRR pair. However, 
cascading of the CSRRs is possible, resulting in even better performance. At the edges of the 
structure we added the CPW tapers to exclude measurement errors due to soldering 
connectors to the devices. The taper function was verified through simulation and 
experiment to provide maximum matching between the two sides of the CPW. A standard 
mask/photoetching technique is used to fabricate the structures using an FR-4 substrate 
(dielectric constant r = 4, loss tangent tan= 0.02, thickness h = 0.5 mm). With a single pair 

 

of CSRRs we obtain a considerably higher suppression than reported in (Martin et al., 
2003a). 
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Fig. 9. (a) 3D layout of CPW/CSRR structure (b) top-view of the fabricated structure (c) 
schematic of CSRR with its dimensions. 

 
First, a simulation of a single unit cell with periodic boundary conditions in propagation 
direction is performed using the Eigenmode solver of CST Microwave studio (CST). The 
dimensions of the unit cell are illustrated in the inset of Fig. 9c. An external radius of r = 3.6 
mm, a width of c = 0.27 mm, a separation of d = 0.43 mm, and a length of the “metallic 
bridge” g = 0.43 mm are chosen so that the structures operate in the C-band. Calculating the 
dispersion by varying the phase shift in propagation direction between 0 and 180 reveals a 
photonic band gap between 4.2 GHz and 5.6 GHz (c.f. Fig. 10a). This bandgap is produced 
by the complementary rings which exhibit an effective negative dielectric permittivity. 
Hence, a stopband behaviour in the transmission magnitude with a centre frequency around 
4.9 GHz is expected.  
We use Ansoft HFSS software (HFSS) (a 3D full-wave solver based on the finite element 
method with adaptive iterative meshing) to simulate the transmission through the 
structures with a very high mesh resolution by specifying the maximum change in the S-
parameters between two successive iterations to be 0.3%. Furthermore, a fine discrete sweep 
with a 0.02 GHz step size for the band between 4.5-5.5 GHz is performed, where sharp 
spectral transients are expected. The simulated magnitude response (dotted line) for the 
insertion loss is shown Fig. 10b. The insertion loss for the CSRR structure shows the 
expected stopband behaviour close to 5 GHz. Between 4.6 GHz and 5.5 GHz, an attenuation 
higher than 10 dB is achieved, which is in good agreement with the dispersion analysis.  
An HP E8361A vector network analyzer (VNA) with a microstrip test fixture (Wiltron 3680) 
is employed to identify the S-parameters of the fabricated structure in the frequency band 
between 2 and 10 GHz. A thru-short-line (TRL) kit was used to calibrate the system. For the 
whole band of interest, the return loss is better than 28 dB. The measurements of the 
fabricated structure are shown in Fig. 10b (solid line). A good agreement between the 
measured S-parameters and the simulated HFSS results, confirming the dispersion analysis 
carried out with CST MWS. The small shifts in the resonance frequency can be ascribed to 
inhomogeneities in the ring dimensions.  
Beneath the low-frequency limit of the artificial band gap, the structure exhibits excellent 
matching without any significant insertion loss. In the upper passband a good performance 
up to 7 GHz is achieved, but for higher frequencies (shaded area in Fig. 10) a spurious 
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resonance leads to an undesired dip in the transmission response at 9.1 THz. The origin of 
this dip and countermeasures to remove it are discussed in the following section. 
Another remarkable aspect about the CSRR is the high rejection level in the forbidden band 
of nearly 30 dB, which is at least twice as high as the suppression of the SRR-based 
structures introduced in (Martin et al., 2003a). Thus, CSRRs provide an effective way to 
eliminate frequency parasitics in CPW structures. By cascading multiple CSRR unit cells 
even higher suppression levels can be achieved. 
  

 

 
Fig. 10. (a) Dispersion analysis (b) simulated and measured insertion loss. 

 
3.2 U-shaped resonators – Overcoming the spurious resonance 
In the last section, we discussed the CPW-integrated CSRRs for use as a single metallization 
layer, high rejection stop band filter. Yet, the insertion loss of the CPW-CSRR suffers from a 
strong spurious stopband located on the high frequency side very close to the actual 
stopband. This spurious resonance results from a phenomenon called differentiating 
resonances (Ibraheem et al., 2008). At the core of this problem lies the slight difference in the 
length of the inner and the outer resonator arms. Thus, we proposed complementary u-
shaped split resonator (CUSR) which is depicted in Fig. 11a (Al-Naib & Koch, 2008a). Here, 
the physical length of the u-shaped outer and inner rectangular resonator is identical. Thus, 
the spurious resonance present in case of the CSRR filters should disappear, resulting in a 
flat and low-loss passband response. 
To provide a benchmark for the CUSR resonator performance we compare its properties to 
the ones of a CSRR. Figs. 11b & 11c illustrate the layout of the CSRR and CUSR cells 
integrated on a tapered CPW transmission line. The top layer contains the resonators, which 
are fabricated in a wet etching process. The lattice constant is 9.6 mm, the centre conductor 
width 9.15 mm and the slot width 0.45 mm. After the taper, the dimensions of the centre 
conductor and the slot width are 1 mm and 0.14 mm, respectively. The resulting 
characteristic impedance for the host line is Z0 = 50 Ohm. The CPW taper, which eliminates 
errors due to soldered connectors, was optimized for maximum matching between the two 
sides of the CPW. All structures are fabricated on an FR-4 substrate (dielectric constant r = 
4, loss tangent tan= 0.02, thickness h = 0.5 mm, and double sided copper clad of 35m) 
using an in-house standard mask/photoetching technique.  
In a next step we determined the S-parameters of the resonators within the frequency band 
of 1 to 12 GHz using an HP E8361A vector network analyzer (VNA) with a microstrip test 

 

fixture (Wiltron 3680). As already explained in the previous section, a thru-short-line (TRL) 
calibration was performed for the CPW. The return loss was found to be better than 31 dB 
for the whole band of interest. Fig. 11a depicts the dimensions of the CUSR employed in this 
study. We have chosen an external radius of r = 3.6 mm, a separation of c = 0.4 mm, a width 
of d = 0.4 mm, and a metallic strip g = 0.4 mm for operation in the C-band. Figs. 11b & 11c 
show the fabricated structures for both CPW/CSRR & CPW/CUSR. In case of the CUSR, the 
resonator arm length for both u-shaped arms is identical in this design.  
 

   
(a) (b) (c) 

Fig. 11. (a) Schematic of CUSR with its dimensions and layout of CPW/CSRR structure (b) 
and CPW/CUSR (c). 

 
Fig. 12. Simulated (a) and measured (b) return loss for CPW-CSRR and CPW-CUSR 
structures. Simulated (c) and measured (d) insertion loss for CPW-CSRR and CPW-CUSR 
structures.  
 
To simulate the transmission frequency response of the structures we use a commercially 
available 3D full-wave solver based on the finite element method (HFSS). Fig. 12 shows the 
simulated and measured magnitudes of the return and insertion losses of both CSRR 
(dashed line) and CUSR (solid line) structures. The primary stopband where the real part of 
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resonance leads to an undesired dip in the transmission response at 9.1 THz. The origin of 
this dip and countermeasures to remove it are discussed in the following section. 
Another remarkable aspect about the CSRR is the high rejection level in the forbidden band 
of nearly 30 dB, which is at least twice as high as the suppression of the SRR-based 
structures introduced in (Martin et al., 2003a). Thus, CSRRs provide an effective way to 
eliminate frequency parasitics in CPW structures. By cascading multiple CSRR unit cells 
even higher suppression levels can be achieved. 
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4, loss tangent tan= 0.02, thickness h = 0.5 mm, and double sided copper clad of 35m) 
using an in-house standard mask/photoetching technique.  
In a next step we determined the S-parameters of the resonators within the frequency band 
of 1 to 12 GHz using an HP E8361A vector network analyzer (VNA) with a microstrip test 

 

fixture (Wiltron 3680). As already explained in the previous section, a thru-short-line (TRL) 
calibration was performed for the CPW. The return loss was found to be better than 31 dB 
for the whole band of interest. Fig. 11a depicts the dimensions of the CUSR employed in this 
study. We have chosen an external radius of r = 3.6 mm, a separation of c = 0.4 mm, a width 
of d = 0.4 mm, and a metallic strip g = 0.4 mm for operation in the C-band. Figs. 11b & 11c 
show the fabricated structures for both CPW/CSRR & CPW/CUSR. In case of the CUSR, the 
resonator arm length for both u-shaped arms is identical in this design.  
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Fig. 11. (a) Schematic of CUSR with its dimensions and layout of CPW/CSRR structure (b) 
and CPW/CUSR (c). 

 
Fig. 12. Simulated (a) and measured (b) return loss for CPW-CSRR and CPW-CUSR 
structures. Simulated (c) and measured (d) insertion loss for CPW-CSRR and CPW-CUSR 
structures.  
 
To simulate the transmission frequency response of the structures we use a commercially 
available 3D full-wave solver based on the finite element method (HFSS). Fig. 12 shows the 
simulated and measured magnitudes of the return and insertion losses of both CSRR 
(dashed line) and CUSR (solid line) structures. The primary stopband where the real part of 
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the electric permittivity is expected to be negative is clearly pronounced in both cases. The 
simulated and measured return loss is shown in Figs. 12a and 12b. In case of the CSRR, the 
upper passband still has a considerable attenuation due to the spurious resonance induced 
by the differing length of the inner and the outer resonator as aforementioned in the 
previous section. In this upper passband the return loss of the CUSR is approximately 8 dB 
lower than that of the CSRR, offering a drastically improved stopband filter performance.  
Figs. 12c and 12d depict the simulated and measured insertion loss. The stopbands are 
centred at approximately 4.6 GHz and 5.1 GHz for CUSR and CSRR, respectively. Although, 
both structures feature very high rejection levels and sharp transition edges, the previously 
mentioned spurious extended stopband centred around 8.8 GHz limits the applicability of 
the CSRR resonators. The measured data for the return and insertion losses agree well with 
the simulated results. The small discrepancies can be attributed to geometrical 
inhomogeneities introduced by the wet etching process. Please note that in addition to the 
improved filter performance the resonance frequency of the CUSRs is 10% less compared to 
the CSRRs, enabling a higher degree of miniaturization. For a thorough parametric study of 
the geometrical dimensions with regards to the resonance behaviour of the structures, the 
inclined reader is referred to (Al-Naib & Koch, 2008a). 

 
3.3 Bandwidth modifying slots 
We will now take a short excurse to an interesting alteration of the resonator geometry: It 
has been shown, e.g. in (Ibraheem & Koch, 2007), that slots inserted in the vicinity of a 
resonator can modify its bandwidth, enabling a simple method of custom tailoring filters to 
specific applications. To investigate this aspect for the CSRR and CUSR structures we 
fabricated structures as depicted in Fig. 13 with slots of 0.8 mm width and differing lengths 
close to the metamaterial resonators. The slot length sl varies from 0 to 3.6 mm in increments 
of 0.6 mm. Fig. 13b shows the bandwidth over the sl parameter. A continuous increase of the 
bandwidth with the length of the slots is observed for both structures. It is worth 
mentioning that the structures are still in the sub-wavelength range despite the presence of 
the slots. To conclude, slots in the vicinity of CSRRs or CUSRs allow easy custom tailoring of 
the filter bandwidth without the need for a time consuming redesign of the resonator itself. 
 

 
 

 

               (a) (b)                        (c) 
Fig. 13. (a) CPW-CSRR with nearby slots (b) bandwidth of the stop band filter vs. the slot 
length for CPW-CSRR and CPW-CSCR structures (c) CPW-CUSR with nearby slots. 

 
3.4 Spiral CSRR/CPW 
Many applications throughout microwave technology demand for a high degree of 
miniaturization. In order to meet this challenge, we will use this section to study the concept 

 

of spiral resonators in conjunction with the previously discussed CPW integrated CSRRs 
and demonstrate the high miniaturization potential which arises from this combination. The 
spiral resonator was proposed to further reduce the size of the SRRs (Baena et al., 2004). We 
utilize the complementary split rectangle resonators (CSCR) and the Complementary Spiral 
Resonator (CSR) with multi turns to obtain single layer bandstop filters with a high degree 
of miniaturization. 
The structures of interest are depicted in Fig. 14. It shows the layout of the tapered CPW 
incorporating a unit cell of CSRRs, CSCRs, and CSRs, respectively. The resonators are 
symmetrically etched into the top layer. The lattice constant a is 8 mm. The FR-4 substrate is 
employed for all the structures (dielectric constant r = 4, loss tangent tan= 0.02, and 
thickness h = 0.5 mm). They have an external radius of r = 3.6 mm, a separation of c = 0.2 
mm, a width of d = 0.2 mm, and a metallic strip g = 0.2 mm (c.f. Fig. 9c). 
To simulate the transmission frequency response, we use the commercial software package 
Ansoft HFSS (HFSS). Fig. 15 shows the simulated magnitude response for a CSRR, a CSCR 
and the new spiral CSRR. For all structures, there is a strong main stopband centred at 4.08 
GHz, 3.36 GHz, and 1.38 GHz for the CSRR, CSCR, and the spiral CSRR, respectively. Please 
note that the resonance frequency of the spiral CSRR is only one-third compared to the 
resonance frequency of the CSRRs, revealing the high potential for miniaturization. 
Measurements, which are in good agreement with the simulations, are shown in Fig. 15b & 
15d.  

 

   
  (a)   (b)                  (c) 

Fig. 14. Layout of the CPW/CSRR (a), CPW/CSCR (b) and CPW/CSR structures (c). 
 
In order to achieve even higher degrees of miniaturization more turns can be added to the 
spiral resonators as shown in the insets of Fig. 16. We investigate two, four, six, and eight 
turn spiral resonators. However, increasing the number of turns not only reduces the 
resonance frequency (increasing the miniaturization) but also lowers the separation of the 
main stopband from the next higher frequency resonance. Fig. 16a depicts the dependence 
of the resonance frequency (Fig. 16a, left scale), the corresponding electrical size in terms of 
guided wavelength (Fig. 16a, right scale) and the frequency ratio of the second to the first 
resonance (Fig. 16b) on the number of spiral turns. Saturation in the change of the resonance 
frequency with increasing number of turns is revealed. This effect can be explained by the 
saturation of the resonator inductance and capacitance and has already been observed in 
(Bilotti et al., 2007). However, a very small electrical size of g/50 is achieved with an eight 
turn spiral resonator. The ratio between the fist and the second resonance, shown in Fig. 
16b, decreases with the number of turns and also saturates at a value of approximately 2.2 
for eight turns. Thus, in contrast to the CSRR structures discussed in the previous sections, 
the second resonance does not impact the excellent filter performance. 
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centred at approximately 4.6 GHz and 5.1 GHz for CUSR and CSRR, respectively. Although, 
both structures feature very high rejection levels and sharp transition edges, the previously 
mentioned spurious extended stopband centred around 8.8 GHz limits the applicability of 
the CSRR resonators. The measured data for the return and insertion losses agree well with 
the simulated results. The small discrepancies can be attributed to geometrical 
inhomogeneities introduced by the wet etching process. Please note that in addition to the 
improved filter performance the resonance frequency of the CUSRs is 10% less compared to 
the CSRRs, enabling a higher degree of miniaturization. For a thorough parametric study of 
the geometrical dimensions with regards to the resonance behaviour of the structures, the 
inclined reader is referred to (Al-Naib & Koch, 2008a). 
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the filter bandwidth without the need for a time consuming redesign of the resonator itself. 
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incorporating a unit cell of CSRRs, CSCRs, and CSRs, respectively. The resonators are 
symmetrically etched into the top layer. The lattice constant a is 8 mm. The FR-4 substrate is 
employed for all the structures (dielectric constant r = 4, loss tangent tan= 0.02, and 
thickness h = 0.5 mm). They have an external radius of r = 3.6 mm, a separation of c = 0.2 
mm, a width of d = 0.2 mm, and a metallic strip g = 0.2 mm (c.f. Fig. 9c). 
To simulate the transmission frequency response, we use the commercial software package 
Ansoft HFSS (HFSS). Fig. 15 shows the simulated magnitude response for a CSRR, a CSCR 
and the new spiral CSRR. For all structures, there is a strong main stopband centred at 4.08 
GHz, 3.36 GHz, and 1.38 GHz for the CSRR, CSCR, and the spiral CSRR, respectively. Please 
note that the resonance frequency of the spiral CSRR is only one-third compared to the 
resonance frequency of the CSRRs, revealing the high potential for miniaturization. 
Measurements, which are in good agreement with the simulations, are shown in Fig. 15b & 
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Fig. 14. Layout of the CPW/CSRR (a), CPW/CSCR (b) and CPW/CSR structures (c). 
 
In order to achieve even higher degrees of miniaturization more turns can be added to the 
spiral resonators as shown in the insets of Fig. 16. We investigate two, four, six, and eight 
turn spiral resonators. However, increasing the number of turns not only reduces the 
resonance frequency (increasing the miniaturization) but also lowers the separation of the 
main stopband from the next higher frequency resonance. Fig. 16a depicts the dependence 
of the resonance frequency (Fig. 16a, left scale), the corresponding electrical size in terms of 
guided wavelength (Fig. 16a, right scale) and the frequency ratio of the second to the first 
resonance (Fig. 16b) on the number of spiral turns. Saturation in the change of the resonance 
frequency with increasing number of turns is revealed. This effect can be explained by the 
saturation of the resonator inductance and capacitance and has already been observed in 
(Bilotti et al., 2007). However, a very small electrical size of g/50 is achieved with an eight 
turn spiral resonator. The ratio between the fist and the second resonance, shown in Fig. 
16b, decreases with the number of turns and also saturates at a value of approximately 2.2 
for eight turns. Thus, in contrast to the CSRR structures discussed in the previous sections, 
the second resonance does not impact the excellent filter performance. 
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Fig. 15. Simulated (a) and measured (b) return loss for the CPW/CSRR (circular), 
CPW/CSCR (rectangular), and CPW/CSR (spiral) structures. Simulated (c) and measured 
(d) insertion loss for the CPW/CSRR (circular), CPW/CSCR (rectangular), and CPW/CSR 
(spiral) structures. 

  
Fig. 16. (a) Resonance frequency versus number of spiral turns (b) ratio of the second to first 
resonance frequencies. 

 
3.5 Bandpass Filter with CSRR/CPW 
So far, we have presented how CSRRs can be employed to miniaturize conventional 
bandstop filters tremendously. Although bandstop filters are very important as mentioned 
earlier, many modern microwave applications, such as automotive radar and wireless 

 

communication systems, rely on bandpass filters (BPFs). Moreover, transceiver modules are 
based on bandpass filters to separate uplink from downlink. In order to succeed in the field 
of wireless applications, miniaturization of these versatile devices is mandatory to achieve a 
high integration density in the overall system.  
Martin et al. proposed a left-handed materials which consists of CPW loaded with SRRs 
from the backside of a substrate, in combination with periodically aligned strip lines (SLs) 
on the upside, connecting the central conductor to the ground planes (Martin et al., 2003b). 
The frequency response of such structure exhibits low insertion losses and a sharp cutoff at 
the lower band edge. However, the attenuation level above the passband is usually not as 
high as required for practical filter applications. A workaround for this problem is to 
increase the number of unit cells to achieve the desired attenuation at the upper transition 
band edge. Unfortunately, this increase directly leads to a higher insertion loss at the centre 
frequency as well, so that a trade-off has to be found.  
This section presents a BPF based on combining conventional SRRs with CSRRs resonators. 
It exhibits low insertion loss, sharp cut-off and high stopband attenuation. CSRRs feature 
low pass characteristics compared to SRRs which exhibit high pass behavior. Combining 
both SRRs and CSRRs allows a very flexible design of BPFs. The lower and higher band 
edges are defined by the resonance frequency of the SRR and CSRR, respectively. 
Fig. 17a depicts one of the fabricated structures where CSRR cascaded with SRR. The 
dimensions of the SRRs are chosen such that the device operates in the C-Band around 4 
GHz. Figs. 17b & 17c shows the dimensions of both SRRs and CSRRs which have the same 
width of c = 0.42 mm, a separation of d = 0.38 mm and a gap of g = 0.36 mm. The outer 
radius r is 3.2 mm and 3.6 mm for the SRRs and CSRRs, respectively. A commercial low cost 
FR-4 substrate (dielectric constant εr = 4, loss tangent tanδ = 0.02, thickness h = 0.5 mm) is 
used to fabricate the structures. 

   
(a) (b) (c) 

Fig. 17. (a) SRR/SL-CSRR loaded the CPW fabricated structure. Schematic of CSRR (b) and 
SRR (c) with relevant dimensions. 

 
Three selected structures have been chosen for simulations and measurements. They include 
a unit cell of each, SRR/SL and CSRR as well as a combination of both. A commercially 
available 3D full-wave solver (HFSS) based on the finite element method is employed to 
calculate the S-parameters. Accompanying measurements were performed using a vector 
network analyzer (HP E8361A) with a microstrip test fixture (Wiltron 3680). The simulated 
phase for the three structures is given in Fig. 18. Examining the phase responses of the 
single elements and the overall structure shows the optimization options in terms of 
impedance matching. The phase response of the SRR/SL is mainly capacitive for the lower 
stopband. At the resonance frequency, a phase flip occurs, after which the SRR/SLs behave 
mainly inductive. The CSRR exhibits a gradually decreasing phase response over the whole 
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frequency band of interest. The behavior of the CSRR changes from inductive to capacitive 
at the centre frequency which helps to compensate for the high inductive reactance of the 
SRR/SL after their phase flip resulting in lower insertion loss in the passband. 
Figs. 19 & 20 shows simulated and measured return (S11) and insertion (S21) losses, 
respectively. The simulations qualitatively agree very well with the measurements. 
Simulation and measurement graphs reveal only small quantitative discrepancies, which 
can be attributed to manufacturing inaccuracies. At the centre frequency, the measured and 
simulated return loss for the combined SRR/SL-CSRR is 18.9 and 17.6 dB, respectively. The 
simulated and measured insertion loss at the centre frequency of fc = 4 GHz is 2.7 dB and 3.4 
dB, respectively. The out-of-band rejection is higher than 19 dB in the simulation and 17 dB 
in the measurement. Keeping in mind, that the whole structure has a geometrical outline of 
only 0.29 λg by 0.29 λg (with λg as guided wavelength) and is based on standard FR-4 
substrate material, the performance is superior to previously demonstrated devices which 
employ cascaded SRR cells.  
Another investigation has been performed with a more expensive microwave substrate 
(Rogers RO3003, dielectric constant εr= 3, tanδ = 0.0013, thickness h= 0.127 mm). The 
simulation predicts a reduction of insertion loss by 60% (1.6 dB) and an out-of-band 
rejection enhancement of 4 dB. In order to obtain the same centre frequency of the FR-4 
sample, the radius of the split rings was reduced to 2.8 mm to compensate for the difference 
in substrate thickness and the dielectric constant. Experimentally, we found a reduction in 
the insertion loss at the centre frequency of 55% (1.5 dB), which is close to the predicted 
value. The demonstrated design allows very narrow passbands usually only available for 
filters constructed in more expensive technologies, e.g. based on high-temperature 
superconductor thin films. 
 

 
Fig. 18. Simulated and measured transmission phase for SRR/SL (a), CSRR (b) and both 
structures (c). 

 

 
Fig. 19. Simulated and measured return loss for the SRR/SL (a), CSRR (b) and both 
structures (c). 
 

 
Fig. 20. Simulated and measured insertion loss for the SRR/SL (a), CSRR (b) and both 
structures (c). 

 
Moreover, we analyzed the dependence of the insertion loss on the bandwidth ratio (for FR-
4 and RO3003 substrates) in Fig. 21. The outer radius of the SRRs was swept from 3.0 mm to 
3.6 mm and 2.6 mm to 3.2 mm in steps of 0.1 mm for the FR-4 and the RO3003, respectively. 
The resonance frequency of the SRRs is proportional to the inverse square root of the outer 
radius (Marques et al., 2002). Thus, the resonance frequency is decreased with an increase in 
the radius of the SRRs. This leads to a widening of the bandwidth of the overall structure. 
The bandwidth ratio is defined as the relation of the bandwidth over the centre frequency so 
that the bandwidth ratio is increased as well. As long as the centre frequency of the 
bandpass filter lies within the passband of both resonators, the influence of the insertion loss 
on the bandwidth ratio stays very small. While when the centre frequency of the bandpass 
filter lies in the transition region, reducing the bandwidth ratio a little further drastically 
increases the losses. For the current case, the losses remain low for bandwidth ratios of 
down to 10%. Hence, custom tailored filter designs can be achieved by varying only a single 
dimension of the structure, namely the outer radius of the SRRs. Additional SRR or CSRR 
cells could be added to improve the performance in case the required bandwidth ratio is 
below 10%. Moreover, multiple turn rectangular spiral resonators and its complementary 
could be employed to achieve a significant further miniaturization. 
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Fig. 21. Simulated S21 magnitude at the centre frequency versus the bandwidth ratio for a 
sweep of the outer radius of the SRR. 

 
4. Conclusion 
 

In conclusion we have discussed recent advances in the field of planar metamaterials. 
Especially, recently proposed planar metamaterial resonators for high performance, small 
footprint filters integrated in coplanar waveguide technology were considered. The 
following list, illuminating briefly the characteristic strengths and weaknesses of the 
previously discussed concepts, shall serve both as summary and reference to the inclined 
reader.  
 
Complementary split ring resonator (CSRR) with slots 
(Section 3.1, see also (Ibraheem & Koch, 2007)) 
 

 Stopband filter 
 High stopband rejection 
 Low passband losses 
 Rather small outline dimensions 
 Slots allow custom-tailoring of the filter bandwidth 
- Spurious resonance in the higher passband due to difference in inner and 

outer resonator arm length 
 

U-shaped split resonator (CUSR) 
(Section 3.2, see also (Al-Naib & Koch, 2008a)) 
 

 Stopband filter 
 High stopband rejection 
 Low passband losses 
 Rather small outline dimensions 
 No spurious resonance in the higher passband due to equal resonator arm 

lengths 

 

Combined CSRR/SRR with strip lines in series 
(Section 3.5, see also (Al-Naib et al., 2008)) 
 

 Bandpass filter 
 Low passband losses 
 High stopband rejection 
 Moderate outline dimensions 
 Well suited for frontend designs 

 
Circular multiple turn complementary spiral resonators (CSRs) 
(Section 3.4, see also (Al-Naib & Koch, 2008b)) 
 

 Stopband filter 
 Extremely compact size 
 Low passband losses 
 High stopband rejection 
 Well suited for frequency selective surface designs with small resonator 

spacings  
– Spurious resonance due to differing resonator arm lengths. 
 But: still a good separation between spurious resonance and main 

resonance is achieved 
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1. Introduction     
 

Composite transmission lines are one of the main developments in the increasingly popular 
field of electromagnetic metamaterials, artificial electromagnetic structures with both 
negative electric permittivity and magnetic permeability (Caloz & Itoh, 2005). These 
structures present a backward wave or left-handed (LH) propagation instead of the 
conventional right-handed one. The first experimental microwave structures that presented 
this behavior were the result of combining thin wires and split-ring resonators (Shelby et al, 
2001). Soon it was evident that narrow bandwidth operation and high losses were inherent 
to the resonant nature of this kind of metamaterials. In order to overcome the previous 
problems,  some authors proposed the so-called metamaterial transmission lines or left-
handed transmission lines LH TL (Sanada et al, 2004). The LH TL concept has been extended 
and generalized to the concept of composite right/left handed (CRLH) structures where 
mixed contributions of LH and RH cells occur in practice. More specifically, the CRLH 
transmission lines have become a very commonly used solution to obtain metamaterial 
properties with low losses and broader bandwidth. Then, below a certain frequency, a 
CRLH transmission line behaves as a left-handed transmission line while over higher 
frequencies it is basically a conventional right handed line. As a consequence of this 
combined behaviour, the phase response is not linear with respect to the frequency. 
From the circuit application point of view, the two main characteristics of the CRLH 
transmission lines consist on obtaining miniaturized and/or dual band circuits. Then, it can 
be mentioned that dual band hybrid couplers (Lin et al, 2004), branch-line couplers (Keung 
& Cheng, 2004), dual-performance rat-race couplers (Castro-Galan et al, 2009) and enhanced 
rat-race couplers (Okabe, Caloz & Itoh 2004). The most critical aspect in the design of 
combiners, filters or diplexers with conventional CRLH transmission lines is the losses 
associated to them. 
For the case of diplexers, using of the so called dual composite right left handed (D-CRLH) 
cells may overcome some of the previously stated problems. The D-CRLH transmission 
lines are the dual part of the CRLH transmission lines and were first proposed in (Caloz, 
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2006). Thus, this type of line presents a RH performance at low frequencies while LH at 
higher frequencies. From its equivalent circuit point of view, the D-CRLH section changes 
an equivalent bandpass of the CRLH section by a bandstop section. This is particularly 
useful in the design of diplexers. The design of a diplexer based on CRLH lines has shown 
drawbacks coming from the losses at the pass bands. A diplexer can be based either on 
allowing some frequency pass-bands or on rejecting the frequency stop-bands. The use of D-
CRLH transmission lines can help to overcome the previous problems by working with the 
complementary rejection frequency bands. The design of microwave diplexers based on 
using of D-CRLH lines is presented in this chapter. 
In addition, in order to avoid losses, the use of dual frequency active filters is also proposed. 
This dual-frequency performance can be achieved by making use of conventional CRLH 
transmission lines. The inclusion of this type of lines as feedback sections in a first order 
recursive topology can be used to generate a filtering response with two arbitrary pass 
bands. Additionally, dual-band couplers are also required. These may be implemented by 
means of CRLH structures or by shunted stub branch line structures. This second structure 
produces a strong rejection level at the central stop band what improves the overall 
response of the dual frequency active filter. Theoretical analysis and design procedures are 
verified by means of manufacturing and measurement of a prototype. 
Then, passive diplexers based on D-CRLH lines and dual frequency active filters based on 
conventional CRLH transmission lines are presented in this chapter.  

 
2. Dual Composite Right-Left Handed transmission line theory 
 

The D-CRLH structure, shown in Fig. 1, behaves as the complementary structure of the 
conventional CRLH cell. This unit cell has a series parallel LC tank circuit and a shunt series 
LC tank. The D-CRLH indeed exhibits its left-handed band at high frequencies and its right-
handed band at low frequencies and is of stop-band nature. 

 
Fig. 1. Schematic of the D-CRLH Transmission Line 
 
The equations running the performance of the D-CRLH balanced line are given in (1)-(3). If 
the resonance frequencies of the shunt LC tank and the series LC tank were wsh and wse a 
balanced condition could be achieved by satisfying (1) 

 

 sesh  0  (1) 

 
Once the D-CRLH line is balanced, if a right and left cut-off frequencies are defined, then it 
can be written that  
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The stop-band frequencies can be computed from the local impedance by placing two 
cutting-off frequencies, one in the left-handed part and other at the right-handed one. These 
cutting-off frequencies are given by the following equation 
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where the sign + is for the left handed high-pass cutoff and the sign - is for the right handed 
low-pass cutoff. It must be noted that ωCL > ωCR.  
Fig. 2 (taken from (González-Posadas et al, 2008)) shows the performance of a dual-CRLH 
line, both in amplitude and phase with the band-stop at 970 MHz. It can be seen that the 
structure presents a rejection bandwidth instead of a passing one (as it would be for the 
conventional CRLH case).  
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Fig. 2. D-CRLH Phase (left) and amplitude (right) response. The parameter are LR=6 nH, 
CR=4.452 pF, LL=11.13 nH, CL=2.4 pF. 

 
3. Passive diplexer design 
 

In this section the principles for the diplexer design based on D-CRLH lines will be 
presented. A generalization for a multistage diplexer design will be also given. Finally, some 
experimental results will be shown to prove the validity of the proposed design strategy.  

 
3.1 Design principles 
The realization of diplexers with CRLH lines has not shown a great development till now. 
Different topologies to build CRLH diplexers have been used. In all these cases the CRLH 
transmission line was used to allow the desired frequency band and reject the non-desired 
one. In this way, all the problems associated with the sensitivity and losses of the CRLH 
transmission lines were present. Then, (Bonache et al, 2005) used  split-ring-resonators for a 
classical diplexer topology; (Horii, Caloz & Itoh, 2005) proposed a vertical topology to 
achieve a very compact diplexer at a price of large losses and a frequency shift; finally, 
(Wong, Balmain & Eleftheriades, 2006) proposed an original and non-compact planar 
topology for diplexer design.  
The dual performance of the so called D-CRLH transmission lines allows a different design 
strategy for diplexers. The strategy is based on rejecting the non-desired frequency bands 
instead of allowing the desired ones. In this way, the diplexer design will be based on 
working with D-CRLH transmission lines tuned at the frequency that is not allowed. Thus, 
the band-stop performance of a D-CRLH line is used to design a diplexer. Then, for a 
diplexer separating the frequencies f1 and f2 (being f1< f2), the first D-CRLH line, according 
to Fig. 3, has a stop-band at f1 and a pass band at f2; however, the second D-CRLH line 
presents a stop-band at f2 and a pass band at f1. From the left and right handed performance 
of the corresponding D-CRLH lines, it can be seen that the first D-CRLH line is left-handed 
at the higher passing frequency (f2) while the second D-CRLH line is right-handed at the 
lower passing frequency (f1), just the opposite as it would be for the conventional CRLH 
transmission line. In this way, any of these D-CRLH lines will be used in any of the branches 
of the proposed diplexer.  
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Fig. 3. Proposed D-CRLH diplexer structure 
 
The design frequency has been chosen as the non-desired frequency (f1 for the band 
allowing f2 pass, say port 2 in the Fig. 3, and f2 for the band allowing f1 pass, say port 3 in Fig. 
3). Let us introduce a factor k(N) , being N the number of cells of the D-CRLH transmission 
line, as the one that defines the ratio between the band stop frequency and the cutting-off 
frequencies of the D-CRLH lines. This factor depends on the number of cells in the D-CRLH 
line and on the frequency separation and will define two cutting-off frequencies: towards its 
right corresponding to the left-handed performance and towards its left corresponding to its 
right-handed performance. Without loss of generality, let us assume that the number of cells 
is 1 for the following design procedure.  
First, choice of the band-stop frequencies for the two balanced D-CRLH structures. These 
frequencies are chosen in a way that the corresponding central frequency is the one allowing 
the other frequency pass 
 1221 ;;   higherlower  (6) 

 
Secondly, define the right-handed cutting-off frequency of the D-CRLH section centred at ω2 
and the left-handed cutting-off frequency of the D-CRLH section centered at ω1. Then, for 
the D-CRLH that allows passing the low frequencies the phase must be positive, that is 
right-handed, and left-handed for the line that allows passing the high frequency 
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The values for the right and left cutting off frequencies are, then, given as  
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If the ratio between the higher and lower frequency is called R, a graphical representation 
between the value R and the factor k(N) can be obtained. This ratio is given in Fig. 4. 



Passive	Diplexers	and	Active	Filters	based	on	Metamaterial	Particles 455

 

100 600 1100 1600 2000
Frequency (MHz)

Phase

-200

-100

0

100

200

1400 MHz
62.76 Deg

400.3 MHz
-21.25 Deg

Ang (Deg)
D-CRLH

 
100 600 1100 1600 2000

Frequency (MHz)

Response

-80

-60

-40

-20

0

400 MHz
-0.01877 dB

1400 MHz
-0.9326 dB

970 MHz
-72.91 dB

Response(DB)
D-CRLH

 
Fig. 2. D-CRLH Phase (left) and amplitude (right) response. The parameter are LR=6 nH, 
CR=4.452 pF, LL=11.13 nH, CL=2.4 pF. 
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Fig. 4. K factor as a function of the ratio R between the higher and lower frequency 
 
Once the value of the k factor and of the frequency ratio R, has been determined, the values 
for each branch left-handed and right-handed capacitors can be found out as follows. Thus 
for the branch rejecting the lowest frequency and allowing the highest one (port 2 in Fig. 3), 
the values for the components are given as  
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And for the branch rejecting the highest frequency and allowing the lowest one (port 3 in 
Fig. 3), the values for the components are given as  
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3.2 Multistage diplexer 
For the general case where the number of cells is N (larger than 1), the values of the 
components are given by the following expressions  
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A discussion on the number of sections and on the D-CRLH performance can be done now. 
In (Caloz, 2006) the D-CRLH performance was proven for a 10-cell transmission line 
structure. If the number of cells is reduced the left-handed performance still maintains as it 
has been shown in (Herraiz et al, 2007). The only dependence on the number of cells to be 
implemented comes from the fact that the transient response between the low frequency 
right-handed region and the high-frequency left-handed one is more abrupt when the 

 

number of cells is larger. However, from the diplexer design point of view a trade-off 
between the desired losses and the rejection factor at the non desired frequency in the 
corresponding branch must be considered. In this way, for most single designs low orders (1 
or 2) for the identical D-CRLH sections are enough to achieve the desired performance.  
Next section will show the design of a particular one-stage or multistage diplexer.  

 
3.3 Experimental results 
Since one of the most important features is its miniaturization, the presented design 
procedure will be applied to the low microwave frequency band, to separate frequencies 
working at TETRA-GSM bands (380 MHz and 960 MHz). As the working frequencies are far 
enough, initially a one stage design will be taken into account. The schematic of the 
proposed diplexer is shown in Fig. 5. (AWR ®). For this diplexer, the value for the factor 
k(N) is 2.01. The conventional transmission lines allow joining the two branches and 
soldering the SMA connectors and, at the same time they are optimized to achieve the 
lowest return losses. The proposed circuit has been implemented on an Arlon600 substrate 
with a relative permittivity of 6, height of 0.6mm. 

 
Fig. 5. Schematic of the one stage diplexer for separating TETRA and GSM frequencies. 
 
The simulated transmission parameters (in dB) of any of the two branches are shown in Fig. 
6. It can be seen that the upper part in the schematic of Fig. 5 corresponds to the s31 
parameter in the transmission parameter of Fig. 6 since it rejects the 960 MHz band and 
allows the 380 MHz band.  In the same way, the lower part corresponds to the s21 parameter. 
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the values for the components are given as  

  
  2

0

1
12

0

1
1

0
1

0
1 ;;;

Z
LC

Z
LC

Nk
ZLNkZL R

R
L

L
lower

L
lower

R 








 (9) 

 
And for the branch rejecting the highest frequency and allowing the lowest one (port 3 in 
Fig. 3), the values for the components are given as  
 

  
  2

0

2
22

0

2
2

0
2

0
2 ;;;

Z
LC

Z
LC

Nk
ZLNkZL R

R
L

L
higher

L
higher

R 








 (10) 

 
3.2 Multistage diplexer 
For the general case where the number of cells is N (larger than 1), the values of the 
components are given by the following expressions  
 

 NCC
N
C

CNLL
N
L

L LNL
R

NRLNL
R

NR  2,1,2,1
2,1

,2,12,1,2,1
2,1

,2,1 ;;;  (11) 

 
A discussion on the number of sections and on the D-CRLH performance can be done now. 
In (Caloz, 2006) the D-CRLH performance was proven for a 10-cell transmission line 
structure. If the number of cells is reduced the left-handed performance still maintains as it 
has been shown in (Herraiz et al, 2007). The only dependence on the number of cells to be 
implemented comes from the fact that the transient response between the low frequency 
right-handed region and the high-frequency left-handed one is more abrupt when the 

 

number of cells is larger. However, from the diplexer design point of view a trade-off 
between the desired losses and the rejection factor at the non desired frequency in the 
corresponding branch must be considered. In this way, for most single designs low orders (1 
or 2) for the identical D-CRLH sections are enough to achieve the desired performance.  
Next section will show the design of a particular one-stage or multistage diplexer.  

 
3.3 Experimental results 
Since one of the most important features is its miniaturization, the presented design 
procedure will be applied to the low microwave frequency band, to separate frequencies 
working at TETRA-GSM bands (380 MHz and 960 MHz). As the working frequencies are far 
enough, initially a one stage design will be taken into account. The schematic of the 
proposed diplexer is shown in Fig. 5. (AWR ®). For this diplexer, the value for the factor 
k(N) is 2.01. The conventional transmission lines allow joining the two branches and 
soldering the SMA connectors and, at the same time they are optimized to achieve the 
lowest return losses. The proposed circuit has been implemented on an Arlon600 substrate 
with a relative permittivity of 6, height of 0.6mm. 

 
Fig. 5. Schematic of the one stage diplexer for separating TETRA and GSM frequencies. 
 
The simulated transmission parameters (in dB) of any of the two branches are shown in Fig. 
6. It can be seen that the upper part in the schematic of Fig. 5 corresponds to the s31 
parameter in the transmission parameter of Fig. 6 since it rejects the 960 MHz band and 
allows the 380 MHz band.  In the same way, the lower part corresponds to the s21 parameter. 



Passive	Microwave	Components	and	Antennas458

 

 
Fig. 6. Transmission parameters of any of the two diplexer branches 
 
For the case presented before it can be seen that the simulated losses in the desired 
bandwidths (around 0.2 dB at any frequency) and the rejection parameter at the non desired 
frequency (lower than 40 dB) are enough for a good performance of the diplexer. If the 
diplexer frequencies were closer or a steeper slope would be needed a larger number of 
sections would be required. Fig. 7 shows a comparison between the transmission parameters 
(s31 and s21) for a diplexer made with one D-CRLH cell (as in the previous case) and other 
diplexer made with four D-CRLH cells. It can be seen that the main difference is the slope of 
the rejection bandwidth. For the proposed example it can be seen that the number of 
sections can be done as low as possible, then the number of sections will be equal to 1. 

 
Fig. 7. Comparison between the transmission parameter for the previous one-D-CRLH-cell 
structure and a four-D-CRLH-cell structure. 

 

 
Fig. 8. Photo of the proposed one-cell D-CRLH diplexer.  
 
Finally, a prototype has been manufactured and measured. Fig. 8 shows a photo of the 
manufactured prototype. Fig. 9 shows the transmission and reflection measurement of the 
manufactured one-cell diplexer. The measurements show an excellent agreement with 
simulation. In addition, the insertion losses are lower than 0.4 dB at both frequency bands. 
The return losses are lower than -22 dB at each frequency band and at any diplexer port. 
Lastly the isolation between the two output ports is nearly 40 dB at both working 
frequencies. In addition, the compactness of the circuit is quite good and miniaturization has 
achieved for a diplexer circuit working in the UHF frequency bands.   

 
Fig. 9. Measurements of the transmission and reflection parameter for the one-cell D-CRLH 
diplexer. 
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4. Principles of active filters based on metamaterial cells. 
 

One way of reducing the filtering losses is by means of active filters. The most usual 
microwave active filters can be classified into four main groups: filters based on negative 
resistance elements (Chang et Itoh, 1990), based on active inductors (Lucyszyn & Robertson, 
1994), transversal, and recursive filters (Rauscher, 1985). In opposition to the first types, 
based on lumped elements, the two last ones are distributed filters, and therefore more 
adequate for high-frequency applications. The frequency selective response is generated by 
means of a combination of signal components that propagate along several electrical 
sections with different amplitudes and phase delays. The single difference between both 
schemes is that the transversal type only needs feed-forward branches, whereas the 
recursive one also includes feedback. This last approach is chosen as it is usually easier to 
design and produces more compact structures (the number of junction elements that occupy 
a large part of the total layout area, is in general smaller) (Rauscher, 1985). Of course, 
potential instability issues related to the feedback must be addressed (Billonet, Jarry & 
Guillon, 1995), but this is true for every microwave network that contains active elements, as 
they always show parasitic feedback. 
The filtering characteristic of a first order recursive filter is generated by combination of the 
main path signal component with a properly weighted and delayed sample of the output of 
the network, which constitutes the feedback. The key of this process is therefore the phase 
response of the feedback section that must have certain value at the center frequency of the 
pass band. Thus, it can be implemented by means of a transmission line section. The 
objective is to extend the operation of recursive active filters to dual pass band frequency 
responses. In order to produce a dual-band response, the phase condition should be fulfilled 
at two different, controllable frequencies, and for this reason conventional transmission lines 
are not suitable. In fact, the solution proposed makes use of composite right/left-handed 
(CRLH) transmission lines (García-Pérez et al, 2009). 

 
4.1 Theoretical design 
Theoretical concepts of microwave active recursive filters derive from low frequency and 
discrete-time filtering techniques. An example of a first-order digital filter and its equivalent 
microwave recursive filter is shown in Fig. 10. In that figure x(t) and y(t) denote the time-
dependent input and output signals respectively, a0 and b1 are gain weights, and τ 
represents a time delay. The frequency transfer function is given as  
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The transfer function H(f) describes a periodic band-pass filter response. The center 
frequency of each band, f0, is characterized by the total phase response of the loop Φloop 
being a multiple of 2π 
 ,122 0   nfnfloop  (13) 

where n denotes any integer number. Therefore, for those frequency values f0, the signal 
coming from the feedback branch is combined in phase with the input signal, resulting in 
maximum gain values. 

 

 
Fig. 10. Flow graph of a first order digital filter and equivalent microwave recursive active 
filter. 
 
Although recursive filters of any order are possible, the most common cases are first-order 
topologies because of their simplicity. Of course, in order to fulfill stricter requirements of 
bandwidth or in-band ripple, higher order structures may be needed. However, the study 
presented here will be restricted to the simpler first order networks. The scheme presented 
in the left part of Fig. 10 can be transformed into a microwave filter circuit just by replacing 
all its parts with microwave components resulting in the right part of Fig. 10. For example, 
the time delay τ is implemented by means of a transmission line section while the weight 
coefficient a0 corresponds to an amplifier. Also, the signals have been combined at the 
input/output ports by using branch-line couplers as combiners/dividers. Their power ratios 
can be absorbed into the term b1. 
In this context, the band-pass center frequencies from (13) are the values f0 for which the 
loop phase condition is satisfied, 
 
 2010010  n)(fΦ)(fΦ)(fΦ)(fΦΦ CLDAloop  (14) 

 
where ФA(f0), ФD1(f0), ФL(f0) and ФC1(f0) denote the phase responses of the amplifier, the 
power divider, the transmission line section and the power combiner respectively, all of 
them obtained at the band-pass frequency f0, being n an integer number. Therefore, in the 
same way as the previous case, each operating frequency f0 can be seen as the frequency at 
which the signal from the feedback transmission line is combined constructively (i.e.: with 
null relative phase shift) with the input power signal. This condition can be ensured by 
enforcing the loop phase to be multiple of 2π. 
If the combiners were implemented with 3 dB combiners or power dividers then, if the filter 
gain function |s21,F(f0)| were represented in front of the amplifier gain |s21,A(f0)|, two 
distinct operation zones could be observed (sub index F denotes filter while sub index A 
denotes amplifier). The first one corresponds to |s21,A(f0)| under 6 dB, where |s21,F(f0)| 
grows up with |s21,A(f0)|; in the second one |s21,A(f0)| is over 6 dB and |s21,F(f0)| decreases 
with it. There exists a value of the amplifier gain below which the circuit is unconditionally 
stable. That is |s11,F(f0)|<0 dB, at every frequency and for every combination of phases in the 
loop. This value corresponds to |s21,A(f0)|=3.5 dB when using 3 dB branch line couplers, but 
may take other values if different power combiners are used. From this value up to 
|s21,A(f0)|=6 dB the filter behaves as potentially unstable. For higher values (|s21,A(f0)|>6 dB) 
the circuit has been analytically demonstrated to be unconditionally unstable (Billonet, Jarry 
& Guillon, 1995) and (García-Pérez et al, 2009).  
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4.2 Requirements for dual band operation 
Some important conditions must be addressed in order to design dual-band recursive filters. 
Firstly, the phase equation (14) must be simultaneously satisfied at both filtering 
frequencies. Since the phase delays introduced by the amplifier (ФA) and the power 
combiners (ФD1, ФC1) are fixed once those components are chosen, the only design variable 
is the phase delay of the feedback transmission line (ФL). For conventional single-band 
filters only one condition is imposed at the design frequency and, therefore, it can be 
fulfilled by choosing the correct length of transmission line. However, for dual-band 
responses two different conditions should be established and, in general, the linear phase 
delay exhibited by conventional transmission lines is not enough to simultaneously meet 
both of them. The inclusion of CRLH transmission lines as feedback lines is proposed, since 
their non-linear behavior provides more degrees of freedom. The second condition is that 
power combiners working simultaneously at both design frequencies are indispensable. 
They have a double purpose: obtain a good input/output match at the operating 
frequencies and isolate the input port with respect to the power coming from the feedback 
line avoiding stability problems, which are critical when working with feedback topologies. 
The phase response exhibited by the whole CRLH transmission line at frequency f can be 
expressed as 
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where ΦRH denotes the phase response of each transmission line section, N is the number of 
left handed T-cells, and LL and CL denotes the values of the lumped inductors and 
capacitors. 
Usually, the phase delay given by a power combiner takes a fixed value at its operating 
frequencies, so (14) can be reduced to an expression only dependent with the phases of the 
transmission line section (ΦL) and the amplifier (ΦA). Since the phase delay of a branch line 
coupler is ΦC1=ΦD1=π rad, the phase condition in (14) when using branch line couplers can 
be expressed as 
 21 ,,2)()( fffnff AL    (16) 
 
where n can take any integer value, and f1 and f2 are the two desired band-pass frequencies. 
By substituting ΦL(f) with the phase of a CRLH transmission line from (16), a system of two 
simultaneous equations is established. Its solutions (lengths of transmission line sections, 
number and values of lumped elements) constitute the design parameters used for the 
prototypes in next section. 
Concerning the branch-line couplers two possible solutions could be available: dual 
frequency branch line couplers with CRLH lines (Lin et al, 2004) or dual frequency branch 
line couplers with parallel stubs fulfilling the branch line design equations (Cheng & Wong, 
2004).  The CRLH line-based solution has an important drawback with respect to the stub-
loaded branch line. Apart from its complexity and the parasitic effects of the lumped 
elements, the CRLH line-based solution does not show transmission zeros at the 
intermediate band between the pass bands resulting in an overall spurious bands in the 
active filter (this will be shown in the next subsection of experimental results). For that 
reason this solution is discarded.  

 

The second alternative shows a transmission zero located at the frequency halfway between 
the pass bands, for which the stubs behave as short circuits. As a result, rejection can be 
highly increased at the inner stop band. This is especially important if condition (14) is 
verified at the two pass bands for non-consecutive multiples of 2π, since spurious pass 
bands are also generated between them, in the stop band. The filtering characteristic of the 
branch line can be used to eliminate or at least mitigate these undesired transmission spikes. 
For that reason, this will be solution chosen.  

 
4.3 Experimental results 
In order to test the feasibility of the dual band recursive active filters described in the 
previous sections two prototypes have been designed and built: one with a CRLH branch 
line (that will be finally discarded) and other with parallel stubs branch line coupler. 

 
4.3.1 Active filter with CRLH branch coupler 
The first active filter has its pass bands centered at f1=0.9GHz and f2=1.6GHz, uses branch 
line couplers implemented with CRLH transmission lines as combiners. In order to reduce 
the total size of each combiner, a new modification has been introduced in their design that 
consists of placing two Schiffman lines sections at each horizontal branch of the hybrid, 
close to the left-handed sections. Each Schiffman section is a pair of coupled transmission 
lines which can be designed to be equivalent to a conventional transmission line, but 
needing less space. The result is a significant reduction of one of the two dimensions of each 
power combiner, and therefore of the whole circuit footprint. The active stage will be 
composed of the monolithic amplifier ERA-5+ of Mini-Circuits®. It is necessary to add an 
attenuator in series to maintain the gain under 6dB, in order to avoid instabilities. 
 

 

 

Fig. 11. Left part, phase response of the active filter showing the desired bands and the 
spurious ones. Right part, photo of the prototype with CRLH lines and Schiffman lines. 
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verified at the two pass bands for non-consecutive multiples of 2π, since spurious pass 
bands are also generated between them, in the stop band. The filtering characteristic of the 
branch line can be used to eliminate or at least mitigate these undesired transmission spikes. 
For that reason, this will be solution chosen.  

 
4.3 Experimental results 
In order to test the feasibility of the dual band recursive active filters described in the 
previous sections two prototypes have been designed and built: one with a CRLH branch 
line (that will be finally discarded) and other with parallel stubs branch line coupler. 

 
4.3.1 Active filter with CRLH branch coupler 
The first active filter has its pass bands centered at f1=0.9GHz and f2=1.6GHz, uses branch 
line couplers implemented with CRLH transmission lines as combiners. In order to reduce 
the total size of each combiner, a new modification has been introduced in their design that 
consists of placing two Schiffman lines sections at each horizontal branch of the hybrid, 
close to the left-handed sections. Each Schiffman section is a pair of coupled transmission 
lines which can be designed to be equivalent to a conventional transmission line, but 
needing less space. The result is a significant reduction of one of the two dimensions of each 
power combiner, and therefore of the whole circuit footprint. The active stage will be 
composed of the monolithic amplifier ERA-5+ of Mini-Circuits®. It is necessary to add an 
attenuator in series to maintain the gain under 6dB, in order to avoid instabilities. 
 

 

 

Fig. 11. Left part, phase response of the active filter showing the desired bands and the 
spurious ones. Right part, photo of the prototype with CRLH lines and Schiffman lines. 
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From Fig. 11 it can be seen that although the feedback CRLH line has been designed as 
electrically short as possible, the contributions in phase of the branch line coupler makes 
unavoidably the loop to be a section electrically long. This makes the phase condition to be 
fulfilled at undesired intermediate frequencies. The effect is the appearance of spurious pass 
bands as can be seen in Fig. 11. These undesired spurs at intermediate frequencies, between 
both desired pass bands, at 1175MHz and 1370MHz, are caused by the feedback loop phase 
response, that takes values near to a multiple of 2π rad. Then, the signal coming from the 
feedback line is constructively added at the input. These spurs, which appear out of the 
frequencies at which the hybrids are designed, are mitigated by the own transfer function of 
the hybrids, but are difficult to eliminate since the hybrid does not present a rejection band. 
For that reason this topology is discarded as a suitable one to achieve dual-band active 
filters. 

 
4.3.2 Active filter with shunted stubs CRLH branch coupler 
Another prototype has been designed and built with its pass bands centered at f1=0.8 GHz 
and f2=1.7 GHz. The shunted stubs branch line couplers present a more compact layout with 
very high rejection level between the pass bands. With regard to the active stage a single-
stage distributed amplifier has been used to achieve a flat gain response over both band-
pass frequencies. A resistive network has also been included to avoid instability problems. 
All these elements can be seen in Fig. 12. 

 
Fig. 12. Photo of the prototype with shunted stubs branch line coupler 
 
The feedback CRLH transmission line has been designed to fulfill two conditions: first, its 
phase response must satisfy (14) and, second, the equivalent characteristic impedance must 
be 50 Ω. Once again, although the feedback line has been designed as electrically short as 
possible, the complete phase loop including all the components delays is electrically long, 
and spurious bands appear unavoidably. Thus, two spike-shaped spurious pass bands 
appear at the inner stop band, corresponding to the non-desired solutions. Although non-
desired solutions appear, they are cancelled out due to the high signal rejection introduced 
by the couplers in both the main path and the feedback loop. As stated before, this rejection 
is produced by the zero of the transmission and coupling coefficients associated with the 
branch-line port stubs. The amplitude response of the shunted branch line coupler can be 
seen in Fig. 13 where a strong rejection band appears between the two desired bands.  
Due to this rejection band the two spikes closer to the pass bands are highly attenuated and 
have a reduced effect, with a transmission level of -8 dB at 1025 MHz and -6 dB at 1470 
MHz. This can be seen in the overall response of the active filter that is shown in Fig. 14. The 

 

upper part shows the phase response where the desired and spurious frequencies have been 
marked. It can be seen that two desired bands at 800 MHz and at 1700 MHz appear. 
However, three other spurious bands appear at 1025 MHz, 1175 MHz and 1470 MHz. 

 
Fig. 13. Amplitude response of the shunted stubs branch line coupler.  
 
The overall filter amplitude response is seen in the bottom part of Fig. 14. Due to the 
rejection of the branch line coupler the spurious band at 1175 MHz is completely rejected at 
levels lower than -30 dB. The other two spurious bands at 1025 MHz and 1470 MHz are also 
rejected presenting transmission levels lower than -6 dB. For that reason this topology for 
dual band active filters can be considered as suitable and will not be discarded as the 
previous one. 

 
Fig. 14. Upper part, phase and amplitude response of the active filter showing the desired 
bands and the spurious ones (from García-Pérez et al, 2009). 
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5. Conclusion 
 

This chapter is devoted to obtaining filtering and diplexing structures with losses as low as 
possible. First dual composite right/left handed cells have been proposed to reduce the 
losses; secondly active structures have been proposed to achieve dual band active filters.  
The first part of the chapter is devoted to D-CRLH transmission lines as a good solution for 
the design of circuits that are alternatively used for rejecting or allowing different frequency 
bands. Then, a D-CRLH diplexer-circuit based on D-CRLH transmission lines has been 
proposed. A general design procedure for implementing arbitrary-frequency compact 
diplexers has been proposed. As the D-CRLH transmission lines de not present a frequency 
periodic performance, the proposed diplexer can be designed for every given frequency 
ratio f2/f1.  
The second part of the chapter is devoted to the design of dual band active filters. A 
theoretical study describing the principles of this type of filters is developed through the 
text. Since the proposed scheme uses feedback sections, stability matters have to be taken 
into account. In this way, it may be necessary to limit the amplifier gain by adding 
attenuators in the active stage. Another important issue is the appearance of undesired 
spurious peaks at frequencies in the inner band. In order to mitigate their effect, branch-line 
couplers with shunted stubs are used to provide dual band operation and strong rejection 
between the pass-bands.  
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1. Introduction     
 

Metamaterials can be broadly defined as electromagnetic structures engineered to achieve 
exotic or unusual properties (Caloz & Itoh, 2004; Eleftheriades & Balmain, 2005; Engheta & 
Ziolkowski, 2006; Marqués et al., 2007). Recently these features have been used in 
microwave and antenna engineering to develop devices with extraordinary properties. For 
example, microwave devices with extraordinary characteristics such as miniaturization or 
operation over multiple frequency bands have been developed (Caloz & Itoh, 2004; 
Eleftheriades & Balmain, 2005; Marqués et al., 2007). The effort in the antenna field has been 
put on the use of metamaterials for travelling-wave antennas and as substrates and 
superstrates to enhance the performance of the original antennas (Caloz & Itoh, 2004; 
Eleftheriades & Balmain, 2005; Engheta & Ziolkowski, 2006). One of the main applications of 
metamaterial structures in microwave engineering is the development of artificial Left-
Handed (LH) Transmission Lines (TLs) (Caloz & Itoh, 2004; Eleftheriades & Balmain, 2005). 
These TLs are termed as LH because their behaviour is the dual of the conventional or 
Right-Handed (RH) ones. In the LH TLs, the electric field, magnetic field and propagation 
vectors form a LH triplet, allowing the propagation of backward-waves, contrary to the 
conventional case. If we consider a TL as the concatenation of infinite unit cells, the 
equivalent circuit model of a LH unit cell is a series capacitance and a shunt inductance 
which is the dual of a RH unit cell (a series inductance and a shunt capacitance) (Caloz & 
Itoh, 2004). 
During the last years, wireless systems have achieved a great popularity and penetration in 
society. Cellular systems, positioning systems (GPS, Galileo), personal area networks 
(Bluetooth) and wireless local area networks (WiFi) are good examples. This fact has made 
that user terminals designed for two or more of these services are very common nowadays. 
From the antenna engineering point of view, the radiating elements for these terminals 
require challenging features. The first one is multifrequency, which means that the antennas 
must work at two or more arbitrary bands simultaneously. Another challenging feature is 
multifunctionality because in some cases different characteristics, such as polarization or 
radiation pattern, are required at each working band. Moreover, all these antennas must be 
small to integrate them into compact handheld devices attractive for the users. Furthermore, 
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the use of cheap technologies is crucial for mass production. All these requirements cannot 
be easily achieved with conventional approaches. For that reason, novel technologies such 
as those based on metamaterial structures are being proposed to fulfil all of these 
requirements. 
The proposed approach is called metamaterial-loaded printed antennas. It is based on 
conventional printed antennas loaded with a small number of metamaterial particles. 
Although metamaterial structures are ideally formed by an infinite number of unit cells, a 
small number of unit cells can be used to achieve devices with enhanced performance for 
practical purposes. For example, microwave devices such as filters or couplers have been 
developed with a small number of metamaterial cells (Caloz & Itoh, 2004; Eleftheriades & 
Balmain, 2005; Marqués et al., 2007). Furthermore, the use of a small number of particles 
does not increase the complexity and size of the antennas, providing easy design and 
manufacturing processes and allowing the antennas fit into modern devices. Finally, it is 
important to note that printed antennas have low profile, light weight, low cost and they are 
easy to integrate with circuitry and as elements of antenna arrays (Garg et al., 2001; James & 
Hall, 1989). 
In this Chapter two kind of metamaterial-loaded printed antennas are presented. In Section 
2 metamaterial-loaded printed dipoles are reviewed (Herraiz-Martínez et al., 2009). Basic 
theory and several examples are explained, showing the validity of this approach to develop 
multifrequency printed dipoles. Section 3 is devoted to microstrip patch antennas filled with 
LH structures (Herraiz-Martínez et al., 2008). A simple TL model of these antennas is used 
to demonstrate their multifrequency and multifunction features. Two different patch 
antennas filled with LH structures are studied, manufactured and measured, demonstrating 
the validity of the approach. Finally, the Chapter is concluded in Section 4. 

 
2. Metamaterial-loaded Printed Dipoles 
 

2.1 LC-loaded Printed Dipoles 
The first experiment to show the validity of the metamaterial-loaded printed antennas 
consists of loading a simple printed wire antenna with LC parallel tanks. These cells have 
been chosen because most of the elemental metamaterial magnetic cells, such us Split Ring 
Resonators (SRRs) or spiral resonators, can be modelled as LC parallel tanks, as it was 
proposed in (Baena et al., 2005). 
The reference antenna is an antipodal dipole printed on both sides of a dielectric substrate 
with height h (Fig. 1). Each half of the antipodal dipole is printed on one side of the 
substrate. The parameters of the dipole are the length L and the width W of each half. This 
configuration has been chosen because it avoids the use of a balun to feed the antenna. This 
is possible because the printed dipole is fed through a paired strips transmission line 
(Wadell, 1991) with a SMA connector soldered to the end of the line. The outer conductor of 
the SMA connector is soldered to one strip of the feeding line while the inner conductor is 
soldered to the other strip of the feeding line.  The dimensions of the feeding line are the 
length Lf and the width Wf. 
As an example, a dipole with L = 42.05 mm, W = 2.50 mm, Lf = 27.50 mm and Wf  = 1.00 mm 
is considered. The substrate is the low-cost FR-4 (εr = 4.5, tan δ = 0.015 and h = 0.50 mm). 
These dimensions are chosen to obtain the resonant frequency of the fundamental mode (n = 
+1) at 1.5 GHz. When working at this mode, the current on the dipole has the λ/2 sinusoidal 

 

distribution, with minima at the edges of the dipole (open-circuit conditions) and maximum 
at the centre of the dipole (Fig. 2(a)). This current distribution provides the conventional 
dipolar-like radiation pattern (Fig. 2(b)). 
 

 
Fig. 1. Sketch of an antipodal printed dipole. (a) Top view. (b) Side view. 
 

 
Fig. 2. Fundamental mode of an antipodal printed dipole. (a) Current distribution. (b) 
Radiation pattern. 
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2. Metamaterial-loaded Printed Dipoles 
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Resonators (SRRs) or spiral resonators, can be modelled as LC parallel tanks, as it was 
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As an example, a dipole with L = 42.05 mm, W = 2.50 mm, Lf = 27.50 mm and Wf  = 1.00 mm 
is considered. The substrate is the low-cost FR-4 (εr = 4.5, tan δ = 0.015 and h = 0.50 mm). 
These dimensions are chosen to obtain the resonant frequency of the fundamental mode (n = 
+1) at 1.5 GHz. When working at this mode, the current on the dipole has the λ/2 sinusoidal 

 

distribution, with minima at the edges of the dipole (open-circuit conditions) and maximum 
at the centre of the dipole (Fig. 2(a)). This current distribution provides the conventional 
dipolar-like radiation pattern (Fig. 2(b)). 
 

 
Fig. 1. Sketch of an antipodal printed dipole. (a) Top view. (b) Side view. 
 

 
Fig. 2. Fundamental mode of an antipodal printed dipole. (a) Current distribution. (b) 
Radiation pattern. 
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To show the validity of the proposed approach, the reference printed dipole is loaded with 
one LC parallel tank per half, as it is shown in Fig. 3. The values of the LC components are L 
= 10 nH and C = 0.47 pF. These tanks are placed at a distance d = 35.00 mm from the centre 
of the dipole. The self-resonant frequency of the LC parallel tanks is computed as 
 

LC
fLC 2

1
  (1) 

According to this expression the self-resonant frequency of the LC parallel tanks is 2.3 GHz. 
The proposed LC loaded dipole has been simulated and manufactured. This dipole presents 
an unusual dual-frequency performance (1.4 GHz and 1.9 GHz), as it is shown in Fig. 4. The 
first resonance is very close to the fundamental one of the conventional dipole. On the other 
hand, the second resonance is devoted to the LC parallel tanks, but it has been shifted down 
towards lower frequencies. It has been observed that when the ratio between the 
fundamental frequency of the dipole and the self-resonant frequencies of the LC tanks is 
larger than in this case, the frequency shift of the second resonance is considerably reduced. 
This is an important feature, because dual-frequency printed dipoles with arbitrary working 
frequencies can be designed. 
 

 
Fig. 3. Sketch of a LC-loaded antipodal printed dipole. (a) Top view. (b) Side view. 
 
The currents on the dipole have a half-wavelength sinusoidal distribution (Fig. 5). At the 
first frequency they are similar to the unloaded dipole (Fig. 2(a)). On the other hand, the LC 
tanks impose a hard boundary condition (open-circuit) at the second frequency. This 
produces that there is almost no current between the tanks and the dipole edges. In this 
case, the minima are located at the tanks and the maximum is maintained at the feeding 
point. Both half-wavelength sinusoidal currents provide a dipolar-like radiation pattern 
(Fig. 6). 

 

 
Fig. 4. Measured and simulated reflection coefficient of the LC-loaded dipole. The measured 
reflection coefficient of the unloaded dipole is also plotted. 
 

 
Fig. 5. Simulated currents on the LC-loaded printed dipole. (a) 1.4 GHz. (b) 1.9 GHz. 
 

 
Fig. 6. Radiation patterns of the LC-loaded printed dipole. (a) 1.4 GHz. (b) 1.9 GHz. 
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2.2 Dual-frequency Metamaterial-loaded Printed Dipoles 
The next step consists of loading the antipodal printed dipole with printed metamaterial 
particles in order to achieve a dual-frequency performance. One metamaterial particle or a 
set of them are coupled to each half of the dipole. In the example of Fig. 7, four SRRs are 
printed on the opposite side of each dipole half. This configuration has been chosen because 
it provides a proper matching within a wide range of ratios between the working 
frequencies. The SRRs parameters, according to Fig. 7(b), are the external radius R, the 
width of the strips WSRR and the gap between strips g. The SRRs are placed at a distance c 
from the dipole centre. The separation between the centers of the SRRs is s. Moreover, other 
magnetic metamaterial particles can be used to obtain the desired multifrequency 
performance (spiral resonators, Omega particles …). Regardless of the particular 
configuration, the metamaterial particles must be located in a way such the magnetic field 
generated by the currents on the dipole has an important component in the direction 
perpendicular to the plane of the particles. This is similar to the case of TLs loaded with 
metamaterial particles (Marqués et al., 2007). 
 

 
Fig. 7. Sketch of a metamaterial-loaded printed dipole antenna: (a) Top and side views of the 
antenna with its design parameters. (b) Split Ring Resonator parameters. 
 
A prototype of the proposed SRRs-loaded dipole antenna has been designed. The 
dimensions of the dipole are kept unchanged: L = 42.05 mm, W = 2.50 mm, Lf  = 27.5 mm 
and Wf = 1.00 mm. The low-cost FR-4 substrate (h = 0.50 mm, εr = 4.50 and tan δ = 0.015) has 
been used. The prototype is loaded with a set of four SRRs per half, placed at a distance c 
=24.20 mm and the separation s is 8.40 mm. The parameters of the SRRs are the radius R = 
4.00 mm, the width WSRR = 0.40 mm and the gap between rings g = 0.20 mm. The theoretical 
resonant frequency of the unloaded antipodal dipole with these dimensions is 1.5 GHz, as 
showed in the previous Subsection. According to (Baena et al., 2005) the resonant frequency 
of the SRRs is 2.55 GHz. 
The proposed configuration provides the desired dual-frequency performance. The first 
frequency (f1) is close to the fundamental frequency of the dipole (n = +1 mode) while the 
additional frequency (fSRR) occurs in the vicinity of the SRRs self-resonant frequency. Fig. 8 
(obtained with Momentum) shows the current distributions on the proposed dipole at the 

 

two working frequencies. At f1 (Fig. 8(a)) the current distribution is similar to the one 
obtained in the conventional λ/2 dipole (Fig. 2(a)). It can be appreciated that the effect of the 
SRRs at this frequency is negligible and nearly no current passes along them. This implies 
that the expected radiation pattern at this frequency is also similar to the reference dipole. In 
fact, the only modification in the antenna performance is a very slight frequency shift in the 
resonant frequency towards lower frequencies due to the capacitive parasitic effect of the 
SRRs. On the other hand, the working principle at fSRR is somewhat different since the 
resonant frequency is imposed by the SRRs. At this frequency the SRRs are resonating, as 
can be seen in Fig. 8(b), where the currents through the SRRs are maximum. In this case, the 
SRRs are not radiating but imposing a hard boundary condition (an open circuit) where they 
are placed. In this way, the currents in the dipole are nearly zero from this position to the 
end of the overall dipole. Thus, the effect of the SRRs is similar to the one obtained with the 
LC parallel tanks in the previous Subsection. This means that the radiating element is 
formed by the current distribution on the dipole between the SRRs arrangements. It should 
be noted that this radiating element is a dipole with a length shorter than λ/2 sustaining a 
current between the edges where the SRRs are placed. Thus, it is expected that the proposed 
structure gives a dipolar-like radiation pattern at fSRR. This is an important feature because 
the proposed dipoles not only present the desired dual-frequency performance but they 
keep the dipolar-like radiation pattern at both working frequencies. 
 

 
Fig. 8. (a) Currents on the SRRs-loaded dipole at f1. (b) Currents on the SRRs-loaded dipole 
at fSRR. 
 
The proposed dual-frequency dipole and the conventional unloaded dipole have been 
manufactured (Fig. 9(a)). The measured reflection coefficients of both prototypes are shown 
in Fig 9(b). The reference dipole working frequency is 1.48 GHz, while the proposed SRRs-
loaded dipole has the desired dual-frequency performance. The first resonance appears at f1 
= 1.32 GHz. The second working frequency (fSRR) is 2.83 GHz. This frequency is shifted 
towards higher frequencies due to the overall coupling effects and the tolerances of the 
substrate and the manufacturing process. The bandwidth at the lower band is around 15% 
at the -10 dB level for both dipoles. On the other hand, the bandwidth at the additional band 
(at the -10 dB level) for the proposed dipole is much lower (1.27%). This is due to the high Q 
factor of the SRRs, what implies a much smaller bandwidth in the resonance imposed by 
them. 
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Fig. 9. (a) Picture of the manufactured prototypes: SRRs-loaded antipodal dipole (top) and 
conventional antipodal dipole (bottom). (b) Measured reflection coefficient of both antennas. 
 
Fig. 10 shows the measured radiation patterns of the proposed dual-frequency dipole at 
both working frequencies (1.32 GHz and 2.83GHz). Both of them are dipolar and similar to 
the conventional dipole. A ripple can be noticed especially at the YZ plane because of the 
presence of a metallic plate, part of the positioner, behind the antenna. The measured gain of 
the reference dipole is 1.99 dB while the gain of the dual-frequency prototype is 1.81 dB at f1 
and 0.67 dB at fSRR. 
 

 
Fig. 10. Measured radiation patterns of the proposed SRR-loaded dipole. (a) f1 = 1.32 GHz 
(b) fSRR = 2.83 GHz. 

 
2.3 Multifrequency Metamaterial-loaded Printed Dipoles 
The approach to obtain multifrequency printed dipoles (printed dipoles with three or more 
working frequencies) consists of exciting two or more additional resonances. These 
additional resonances are obtained with different pairs of metamaterial particles. At least a 
pair of metamaterial particles must resonate at each desired additional frequency. As an 
example, a triple-frequency printed dipole is proposed below. 

 

According to Fig. 11, let us consider the case in which R2 = R1 + 0.4 mm. In this case, the 
resonant frequencies of the top and bottom pairs of SRRs are separated 0.22 GHz and a 
triple-frequency antenna can be obtained. 
 

 
Fig. 11. Sketch of the proposed triple-frequency printed dipole loaded with SRRs. 
 
Fig. 12 shows the simulated (CST Microwave Studio) reflection coefficient of the proposed 
triple-frequency antenna. The three working frequencies can be easily identified. The |s11| 
parameters of the dipoles loaded with both SRRs with R = R1 and R = R2 are also plotted. 
These plots show that the three resonances of the triple-frequency antenna are due to the 
fundamental frequency of the dipole and the self-resonant frequencies of the SRRs with 
different dimensions. 
 

 
Fig. 12. |s11| parameter of the triple-frequency printed dipole antenna. The same 
information for the cases in which all the SRRs have the same dimensions is also plotted. 
 
The simulated currents on the antenna at the three working frequencies are shown in Fig. 
13. The distributions are similar to the one presented by the dual-frequency dipole (Fig. 8). 
The SRRs are not resonating at the first working frequency (f1) and the currents on the 
dipole are similar to the unloaded dipole (Fig. 2(a)). The SRRs with R2 are resonating at the 
second working frequency (f2). Most of the current on the dipole is between the SRRs and 
there is almost no current between the SRRs and the edges of the dipole. At the third 
working frequency (f3) the distribution is similar to the previous one (f2) but the SRRs with 
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R1 are resonating instead of R2–SRRs. It is important to note that the radiation pattern is 
dipolar at the three working frequencies. 
 

 
Fig. 13. Currents on the triple-frequency printed dipole loaded with SRRs. (a) f1 

(fundamental frequency of the unloaded dipole). (b) f2 (resonant frequency of the SRRs with 
R2). (c) f3 (resonant frequency of the SRRs with R1). 

 
3. Microstrip Patch Antennas Filled with LH Structures 
 

3.1 Simplified Transmission Line Model 
A conventional microstrip patch antenna can be modelled as a RH TL. In this case, the 
resonant condition is given by the following equation: 
 

nL n   (2) 
where L is the equivalent TL length and n is the resonant index. As the TL has a RH 
behavior, the propagation constant β is always positive and linear with frequency. This 
means that all the modes have positive indices (n = +1, +2, +3, ...), all the resonant 
frequencies are harmonics of the fundamental one (fn = n f+1) and all the modes have n λ/2 
electric field distribution, which means that all the modes different to the fundamental one 
have multiple lobes in the radiattion pattern. These characteristics make conventional patch 
antennas not suitable for multifrequency systems. The first reason is that arbitrary 
frequencies cannot be achieved because once the fundamental frequency is fixed, the other 

 

frequencies are always multiples of the fundamental one. The second reason is that 
radiation patterns with multiple lobes are not interesting for most of applications, since that 
implies a loss of directivity. 
 

 
Fig. 14. Microstrip patch filled with LH structures. (a) Sketch of the antenna. (b) Equivalent 
TL model. 
 
The proposed multifrequency patch antennas are based on a square microstrip patch filled 
with LH structures (Fig. 14(a)). For simplicity we can consider propagation along one main 
direction. In this case, the simplest equivalent antenna TL model is composed of a LH 
section between two RH sections (Fig. 14(b)). 
The propagation constant is positive and linear with frequency in the RH sections while it is 
negative and proportional to 1/f in the LH sections. Then, in this case the resonant condition 
can be written as: 
 

2
1

RH LH
n n n n

n

kL d k f d n
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          (3) 

where k1 and k2 are positive constants; d and ℓ are the equivalent lengths of the RH and LH 
sections, respectively. In this case, it is possible to obtain modes with negative, zero or 
positive indices, contrary to the conventional case. Specifically, for a LH section composed 
of M unit cells, n takes values: 
 

1, 2, , 1,0, 1, 2,n M M          (4) 
In particular if M ≥ 2, two interesting modes are achieved below the mode equivalent to the 
fundamental one of the conventional patch antenna: 
The first one is the n = –1 mode when the condition βℓ = –π is satisfied. This mode has a half-
wavelength electric field distribution similar to the fundamental mode of a conventional 
patch antenna. Thus, a patch-like radiation pattern is achieved at this mode. 
The second one is the n = 0 mode when the condition βℓ = 0 is achieved. This mode has a 
uniform electric field distribution in amplitude and phase inside the patch antenna, which 
gives a monopolar radiation pattern (null at broadside). This type of radiation pattern 
cannot be achieved with conventional patches and only is present in short-circuited patch 
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In particular if M ≥ 2, two interesting modes are achieved below the mode equivalent to the 
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The first one is the n = –1 mode when the condition βℓ = –π is satisfied. This mode has a half-
wavelength electric field distribution similar to the fundamental mode of a conventional 
patch antenna. Thus, a patch-like radiation pattern is achieved at this mode. 
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cannot be achieved with conventional patches and only is present in short-circuited patch 
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antennas (González-Posadas et al., 2006). The possibility of using this mode provides a 
degree of multifunctionality due to the fact that radiation pattern diversity can be achieved 
with these antennas. 
Moreover, the conventional (RH) modes (n ≥ +1) are also present in the proposed antennas. 
It is important to note that the resonant frequencies are not forced to follow a harmonic ratio 
in this case. This is possible thanks to the non-linear behaviour introduced by the LH 
section. 
In conclusion, two interesting kinds of multifrequency patch antennas can be developed 
with this approach. The first one is a dual-band patch antenna with patch-like radiation 
pattern at both bands by using the n = ±1 modes simultaneously. Moreover, when the n = 0 
mode is also excited, a triple-frequency and dual-mode patch antenna is obtained. Examples 
of both antennas are presented below. 

 
3.2 Triple-frequency and Dual-mode Microstrip Patch Antenna 
The proposed antenna is shown in Fig. 15(a) where the patch dimensions (L x W) are 42 mm 
x 42 mm. The substrate is polypropylene (PP) with εr = 2.2 and h = 10 mm. The LH structure 
is implemented by using mushroom-type cells. These cells are based on microstrip patches 
grounded with vias and separation gaps between the cells. The vias provides the shunt 
inductances and the gaps the series capacitances of the LH section (Sanada et al., 2004). In 
particular, in this antenna the LH structure is based on a 2 x 1 mushroom-type cell array 
configuration and the dimensions of the mushrooms (Lm x Wm) are 10.6 mm x 17.8 mm. The 
diameter of the vias (d) is 0.7 mm, the gap between the two mushrooms (g1) is 0.40 mm and 
the separation gap between the microstrip patch and the LH structure (g2) is 0.20 mm. The 
antenna is fed through a coaxial probe placed 14 mm away from the centre. The dimensions 
of the ground plane are 80 mm x 80 mm. These dimensions were chosen to obtain the 
resonant frequencies at 1 GHz (GSM-900 band) for the n = –1 mode, 1.5 GHz (positioning 
systems) for the n = 0 mode and 2.2 GHz (UMTS) for the n = +1 mode. 
 

 
Fig. 15. Triple-frequency and dual-mode antenna based on a microstrip patch filled with LH 
cells. (a) Sketch of the antenna. (b) Electrical length (β L) and eigenfrequencies (EIGs) of the 
resonant modes of the proposed antenna (solid red line). The same information for the 
conventional patch antenna is also plotted in the dashed line. 

 

Fig. 15(b) shows the electrical length of the proposed antenna versus frequency and the 
eigenfrequencies of the modes obtained through full-wave simulation. The same 
information for the conventional square patch antenna is also plotted. The electrical lengths 
have been computed by interpolating the discrete values of the eigenfrequencies. The linear 
ratio between the electrical length and frequency for the conventional patch antenna can be 
appreciated. On the other hand, the patch partially filled with the mushroom structures has 
the same relation for the modes with positive indices, but it has a LH behaviour at lower 
frequencies. This LH relation has been computed with the eigenfrequencies method 
(Herraiz-Martínez et al., 2007). The chart shows that for the index n = +1, the working 
frequency is very close to the fundamental frequency of the conventional patch (but not 
equal due to the residual LH effect of the metamaterial structure). As a first approximation 
for general design, the patch length is chosen to obtain the n = +1 frequency as the 
fundamental mode of the patch without mushrooms. On the other hand, the frequencies of 
the lower modes (n ≤ 0) strongly depend on the mushroom structure selection. Large 
mushrooms lead to higher separation between the working frequencies and thus, higher 
slope in the LH region, while smaller mushrooms provide closer resonances and smaller 
slopes in the LH region of the electrical length chart. Then, the higher frequency (n = +1 
mode) will mainly depend on the patch length (L), while the resonant frequencies of the 
other modes can be fixed by choosing the adequate mushroom parameters (basically Lm, Wm 
and the gaps, because the effect of the vias diameter d can be neglected). A detailed 
parametric study has been carried out in (Herraiz-Martínez et al., 2008). 
 

 
Fig. 16. Electric field distributions of the proposed antenna: (a) n = –1 mode (f–1 = 1.06 GHz), 
(b) n = 0 mode (f0 = 1.45 GHz), (c)  n = +1 mode (f+1 = 2.16 GHz) 
 
The electric field distributions (CST Microwave Studio) for the modes with n = –1, n = 0 and 
n = +1 indices are shown in Fig. 16. The electric field distributions for the n = ±1 modes have 
half-wavelength electrical length (maximum in amplitude and 180º phase shift at the edges 
and null at the centre of the patch), similarly to the fundamental mode of a conventional 
patch antenna. A local 180º phase shift is observed inside the mushroom structure at f–1, but 
this singularity does not affect the radiation behavior, as it will be shown in the radiation 
pattern of the experimental results. On the other hand, there is no local phase shift at f+1. 
Lastly, the electric field distribution is almost uniform in phase and amplitude at f0, as was 
predicted. 
 



Multifrequency	and	Multifunction	Metamaterial-loaded	Printed	Antennas 481

 

antennas (González-Posadas et al., 2006). The possibility of using this mode provides a 
degree of multifunctionality due to the fact that radiation pattern diversity can be achieved 
with these antennas. 
Moreover, the conventional (RH) modes (n ≥ +1) are also present in the proposed antennas. 
It is important to note that the resonant frequencies are not forced to follow a harmonic ratio 
in this case. This is possible thanks to the non-linear behaviour introduced by the LH 
section. 
In conclusion, two interesting kinds of multifrequency patch antennas can be developed 
with this approach. The first one is a dual-band patch antenna with patch-like radiation 
pattern at both bands by using the n = ±1 modes simultaneously. Moreover, when the n = 0 
mode is also excited, a triple-frequency and dual-mode patch antenna is obtained. Examples 
of both antennas are presented below. 

 
3.2 Triple-frequency and Dual-mode Microstrip Patch Antenna 
The proposed antenna is shown in Fig. 15(a) where the patch dimensions (L x W) are 42 mm 
x 42 mm. The substrate is polypropylene (PP) with εr = 2.2 and h = 10 mm. The LH structure 
is implemented by using mushroom-type cells. These cells are based on microstrip patches 
grounded with vias and separation gaps between the cells. The vias provides the shunt 
inductances and the gaps the series capacitances of the LH section (Sanada et al., 2004). In 
particular, in this antenna the LH structure is based on a 2 x 1 mushroom-type cell array 
configuration and the dimensions of the mushrooms (Lm x Wm) are 10.6 mm x 17.8 mm. The 
diameter of the vias (d) is 0.7 mm, the gap between the two mushrooms (g1) is 0.40 mm and 
the separation gap between the microstrip patch and the LH structure (g2) is 0.20 mm. The 
antenna is fed through a coaxial probe placed 14 mm away from the centre. The dimensions 
of the ground plane are 80 mm x 80 mm. These dimensions were chosen to obtain the 
resonant frequencies at 1 GHz (GSM-900 band) for the n = –1 mode, 1.5 GHz (positioning 
systems) for the n = 0 mode and 2.2 GHz (UMTS) for the n = +1 mode. 
 

 
Fig. 15. Triple-frequency and dual-mode antenna based on a microstrip patch filled with LH 
cells. (a) Sketch of the antenna. (b) Electrical length (β L) and eigenfrequencies (EIGs) of the 
resonant modes of the proposed antenna (solid red line). The same information for the 
conventional patch antenna is also plotted in the dashed line. 

 

Fig. 15(b) shows the electrical length of the proposed antenna versus frequency and the 
eigenfrequencies of the modes obtained through full-wave simulation. The same 
information for the conventional square patch antenna is also plotted. The electrical lengths 
have been computed by interpolating the discrete values of the eigenfrequencies. The linear 
ratio between the electrical length and frequency for the conventional patch antenna can be 
appreciated. On the other hand, the patch partially filled with the mushroom structures has 
the same relation for the modes with positive indices, but it has a LH behaviour at lower 
frequencies. This LH relation has been computed with the eigenfrequencies method 
(Herraiz-Martínez et al., 2007). The chart shows that for the index n = +1, the working 
frequency is very close to the fundamental frequency of the conventional patch (but not 
equal due to the residual LH effect of the metamaterial structure). As a first approximation 
for general design, the patch length is chosen to obtain the n = +1 frequency as the 
fundamental mode of the patch without mushrooms. On the other hand, the frequencies of 
the lower modes (n ≤ 0) strongly depend on the mushroom structure selection. Large 
mushrooms lead to higher separation between the working frequencies and thus, higher 
slope in the LH region, while smaller mushrooms provide closer resonances and smaller 
slopes in the LH region of the electrical length chart. Then, the higher frequency (n = +1 
mode) will mainly depend on the patch length (L), while the resonant frequencies of the 
other modes can be fixed by choosing the adequate mushroom parameters (basically Lm, Wm 
and the gaps, because the effect of the vias diameter d can be neglected). A detailed 
parametric study has been carried out in (Herraiz-Martínez et al., 2008). 
 

 
Fig. 16. Electric field distributions of the proposed antenna: (a) n = –1 mode (f–1 = 1.06 GHz), 
(b) n = 0 mode (f0 = 1.45 GHz), (c)  n = +1 mode (f+1 = 2.16 GHz) 
 
The electric field distributions (CST Microwave Studio) for the modes with n = –1, n = 0 and 
n = +1 indices are shown in Fig. 16. The electric field distributions for the n = ±1 modes have 
half-wavelength electrical length (maximum in amplitude and 180º phase shift at the edges 
and null at the centre of the patch), similarly to the fundamental mode of a conventional 
patch antenna. A local 180º phase shift is observed inside the mushroom structure at f–1, but 
this singularity does not affect the radiation behavior, as it will be shown in the radiation 
pattern of the experimental results. On the other hand, there is no local phase shift at f+1. 
Lastly, the electric field distribution is almost uniform in phase and amplitude at f0, as was 
predicted. 
 



Passive	Microwave	Components	and	Antennas482

 

 
Fig. 17. (a) Picture of the triple-frequency and dual-mode patch antenna. (b) Simulated and 
measured reflection coefficient of the proposed antenna. 
 
A prototype of this patch antenna has been manufactured (Fig. 17(a)). Fig. 17(b) shows the 
measured reflection coefficient. The return losses are –12.62 dB at f–1= 1.06 GHz, –12.01 dB at 
f0 = 1.45 GHz and –9.59 dB at f+1 = 2.16 GHz. The ratio between the resonant frequencies of 
the first and second modes is 1.37 and the ratio between the two dipolar modes is 2.04. The 
ratio between these modes can be arbitrarily chosen and depends on the patch and 
mushrooms dimensions, as explained before. The patch length is λ0/6.74 at f–1, λ0/4.92 at f0 

and λ0/3.31 at f+1. It can be seen that a multifrequency antenna with different radiation 
modes has been obtained. Moreover, the length is strongly reduced with respect to the 
conventional λ/2 patch antennas at the additional frequencies. 
 

 
Fig. 18. Measured radiation patterns of the triple-frequency and dual-mode patch antenna. 
(a) n = –1 mode (1.06 GHz). (b) n = 0 mode (1.45 GHz). (c) n = +1 mode (2.16 GHz). 
 
Finally, Fig. 18 shows the measured radiation patterns of the E-plane (x-z plane) and H-
plane (y-z plane) and their corresponding cross-polar components. For the n = –1 mode (1.06 
GHz) a patch-like radiation pattern can be seen in Fig. 18(a). The radiation pattern of the n = 
0 mode (1.45 GHz) is monopolar as it can be seen in Fig. 18(b). A null in the broadside 
direction is appreciated. The depth of this null is 16 dB for the E-plane radiation pattern and 

 

15 dB for the H-plane pattern. Two comments must be made concerning the n = 0 mode. 
First, the maximum of the radiation pattern that would be in the endfire direction is 
somewhat reduced due to the effect of the finite ground plane. Secondly, the n = 0 mode is 
excited in a weaker way than the n = 0 mode in a short circuited patch antenna (González-
Posadas et al., 2006). This can be seen because of the higher level of the cross-polar 
component with respect to the short-circuited patch. The broadside radiation pattern is also 
achieved for the n = +1 mode (2.16 GHz, Fig. 18(c)). The measured gain of the antenna is –3 
dB at f–1, 1 dB at f0 and 6.5 dB at f+1. The gain of the additional modes (n = –1, 0) is reduced 
with respect to conventional patches because the electrical length of the patch antenna is 
also smaller due to the miniaturization achieved. 

 
3.3 Dual-frequency Microstrip Patch Antenna 
The proposed antenna is designed to work with similar radiation characteristics at 1.8 GHz 
(DCS band) and 2.2 GHz (UMTS band). Then, the first working frequency is obtained for the 
n = −1 mode while the second one is obtained for the n = +1 mode. Therefore, a patch-like 
radiation pattern is achieved at the two frequencies. The monopolar mode (n = 0) is not to be 
excited in this case. It has been seen that when the vias are aligned with respect to the probe, 
the ratio between the different working frequencies is higher and the n = 0 mode is excited. 
On the other hand, when the vias are not located in line with the probe, the frequency ratio 
between the patch-like modes (n = ±1) is reduced and the monopolar mode (n = 0) is weakly 
excited. For that reason, the number of cells in the y-direction has been doubled (resulting in 
a 2 x 2 LH structure instead of a 2 x 1) so the vias are not aligned with the feeding probe. 
 

 
Fig. 19. Dual-frequency antenna based on a microstrip patch filled with LH cells. (a) Sketch 
of the antenna. (b) Electrical length (β L) and eigenfrequencies (EIGs) of the resonant modes 
of the proposed antenna (solid red line). The same information for the conventional patch 
antenna is also plotted in the dashed line. 
 
Thus, the proposed design is shown in Fig. 19(a). It consists of a 48.2 mm square patch (W = 
48.2 mm) partially filled with a 2 x 2 mushroom arrangement. The substrate is 
Polypropylene (PP) with εr = 2.2 and h = 8 mm.  The mushrooms are squares of Wm = 6.8 
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mm, the vias diameter (d) is 0.70 mm and the separation gaps (g) are 0.2 mm. The patch is 
fed through a coaxial probe placed at 21 mm from the centre. 
The modes of the proposed patch and its electrical length computed as in the previous case 
(Section 3.2) are plotted in Fig. 19(b). Once again, the antenna has a LH behavior at low 
frequencies and the conventional effect at higher frequencies. In this case, the slope in the 
LH region is lower than in the previous antenna (Fig. 15(b)) to produce the desired 
reduction in the frequency ratio between the patch-like modes. 
 

 
Fig. 20. Electric field distributions for the proposed antenna: (a) n = –1 mode (f−1 = 1.81 
GHz), (b) n = +1 mode (f+1 = 2.20 GHz) 
 
Fig. 20 shows the electric field distributions (CST Microwave Studio) at the two working 
modes (n = ±1). Similar half-wavelength electric fields distributions are obtained at the two 
frequencies. 
 

 
Fig. 21. (a) Picture of the dual-frequency patch antenna. (b) Simulated and measured 
reflection coefficient of the proposed antenna. 
 

 

Fig. 21(a) shows a picture of the dual-frequency antenna. The simulated and measured 
return losses are shown in Fig. 21(b). The measured return losses are −9.83 dB at f−1 = 1.81 
GHz and −22.03 dB at f+1 = 2.20 GHz. The ratio between these two frequencies is 1.21, which 
is very difficult to achieve to achieve with another single-layer approach. In addition, a 
reduction factor in comparison with the conventional patch antenna has also been achieved 
for the n = −1 mode. In this case the patch length is λ0/3.44 at f−1 and λ0/2.83 at f+1. 
 

 
Fig. 22. Measured radiation patterns of the dual-frequency patch antenna. (a) n = −1 mode 
(1.81 GHz). (b) n = +1 mode (2.20 GHz). 
 
The measured radiation patterns are shown in Fig. 22. The desired patch-like radiation 
pattern is obtained at both working frequencies. The XPOL component in the broadside 
direction is approximately −20 dB at both working frequencies. The measured gain of the 
antenna is 4.5 dB at the first working frequency and 6.8 dB at the second one. 

 
4. Conclusion 
 

Nowadays there is a huge demand on antennas with challenging requirements such us 
multifrequency, multifunctionality, miniaturization and low cost. All of these features 
cannot be achieved with conventional approaches. For that reason, novel approaches based 
on new technologies such us metamaterial structures are being developed. One of these 
approaches is the one presented in this Chapter: metamaterial-loaded printed antennas. In 
the present Chapter, it has been demonstrated the validity of this approach to develop 
antennas with such features. In particular, two kind of metamaterial-loaded antennas have 
been proposed. The first one is metamaterial-loaded printed dipoles and the second one is 
microstrip patch antennas filled with LH structures. 
Regarding the first kind of antennas, three steps have been followed: initially the dipoles 
have been loaded with LC parallel tanks achieving dual-frequency performance. After that, 
the same characteristic has been achieved by loading the dipoles with metamaterial 
particles. Finally, metamaterials with different resonant frequencies have been used to 
achieve more than two working frequencies simultaneously. Several prototypes have been 
designed and manufactured showing good results. 
For the microstrip patch antenna filled with LH structures, a simplified TL model has been 
presented to explain their multifrequency and multifunction behaviour. Moreover, two 
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practical implementations have been proposed: a triple-frequency and dual-mode patch 
antenna and a dual-frequency patch antenna with reduced ratio between the working 
frequencies. All the results have been validated experimentally. 

 
5. References 
 

Baena, J. D.; Bonache, J.; Martín, F.; Marqués, R.; Falcone, F.; Lopetegui, T.; G. Laso, M. A.; 
García, J., Gil, I. & Sorolla, M. (2005). Equivalent circuit models for split ring 
resonators and complementary split ring resonators coupled to planar transmission 
lines. IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 
(April 2005), pp. 1451-1461, ISSN: 0018-9480 

Caloz, C. & Itoh, T. (2004). Electromagnetic Metamaterials: Transmission Line Theory and 
Microwave Applications, Wiley-IEEE Press, ISBN: 0-471-669-857, New York 

Eleftheriades, G. V. & Balmain, K. G. (2005). Negative-Refraction Metamaterials: 
fundamental principles and applications, Wiley-IEEE Press, ISBN: 0-471-601-462, 
New York 

Engheta, N. & Ziolkowski, R. W. (2006). Metamaterials: Physics and Engineering 
Explorations, Wiley-IEEE Press, ISBN: 0-471-761-028, New York 

Garg, R.; Bhartia, P.; Bahl, I.. & Ittipiboon, A. (2001). Microstrip Antenna Design Handbook, 
Artech House, ISBN: 0-89006-513-6, Norwood 

González-Posadas, V.; Segovia-Vargas, D.; Rajo-Iglesias, E.; Vázquez-Roy, J. L. & Martín-
Pascual, C. (2006). Approximate Analysis of Short Circuited Ring Patch Antenna 
Working at TM01 Mode. IEEE Transactions on Antennas and Propagation, Vol. 54, 
No. 6, (June 2006), pp. 1875-1879, ISSN: 0018-926X 

Herraiz-Martínez, F. J.; González-Posadas, V.; Iñigo-Villacorta, F. & Segovia-Vargas, D. 
(2007). Low-cost Approach based on an Eigenfrequency Method to obtain the 
Dispersion Diagram in CRLH Structures. IEEE Microwave and Wireless 
Components Letters, Vol. 17, No.1, (January 2007), pp. 13-15, ISSN: 1531-1309 

Herraiz-Martínez, F. J.; García-Muñoz, L. E.; González-Posadas, V. & Segovia-Vargas, D. 
(2008). Multi-frequency and dual mode patch antennas partially filled with Left-
Handed structures. IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 
Part 2, (August 2008), pp. 2527-2539, ISSN: 0018-926X 

Herraiz-Martínez, F. J.; García-Muñoz, L. E.; González-Overjero, D.; González-Posadas V. & 
Segovia-Vargas, D. (2009). Dual-frequency printed dipole loaded with Split Ring 
Resonators. IEEE Antennas and Wireless Propagation Letters, Vol. 8, (2009), pp. 
137-140, ISSN: 1536-1225 

James, J. R. & Hall, P. S. (1989). Handbook of Microstrip Antennas, Peter Peregrinus, ISBN: 
0-86341-150-9, London 

Marqués, R.; Martín, F. & Sorolla, M. (2007). Metamaterials with Negative Parameters, John 
Wiley & Sons, ISBN: 978-0-471-74582-2, Hoboken, NJ  

Sanada, A.; Caloz, C. & Itoh, T. (2004). Planar Distributed Structures with Negative 
Refractive Index. IEEE Transactions on Microwave Theroy and Techniques, Vol. 52, 
No. 4, (April 2004), pp. 1252-1263, ISSN: 0018-9480 

Wadell, B.C. (1991). Transmission Line Design Handbook, Artech House, ISBN: 0-89006-436-
9, Norwood, MA 



Wideband	planar	plate	monopole	antenna 487

Wideband	planar	plate	monopole	antenna

H.	R.	Hassani	and	S.	M.	Mazinani

x 
 

Wideband planar plate  
monopole antenna 

 
H. R. Hassani and S. M. Mazinani 

Electrical & Electronic Eng. Dept., Shahed University 
Tehran-IRAN 

 
1. Introduction    
 

The use of a single wideband antenna which covers a wide range of frequencies is very 
desirable for many applications including wireless and high data rate communication, 
position and tracking, sensing and imaging, and radar. Planar plate monopole antenna is a 
candidate. They are interesting due to their broad impedance bandwidth, linearly polarized 
omnidirectional azumuthal radiation pattern and are very cost effective to construct. They 
are planar structure, where a thin planar metal element can be used instead of the 
traditional wire element of a monopole antenna. It was first described by (Dubost & Zisler, 
1976), who observed the wide impedance characteristics of this antenna. The antenna is 
capable of covering the 2-18GHz band with good radiating properties. This antenna can be 
used in various wireless communication applications, ranging from GSM1800, PCS1900, 
DCS, WCDMA/UMTS, the 2.45/5.2/5.8 GHz ISM bands, UNII, DECT, WLANs, the 
European Hiper LAN I, II, Bluetooth technology, and wireless local loop (WLL) 3.4-3.6 GHz 
and 10 GHz and UWB (3.1–10.6GHz). 
In this chapter, important developments to the basic geometry of the planar plate monopole 
antenna are provided and discussed with respect to their impedance bandwidth, current 
distribution and their radiation patterns. Formulas that can be used to evaluate the 
frequency corresponding to the lower edge of the impedance bandwidth will also be 
provided. The basic antenna structures considered include the circular plate which yield 
very large impedance bandwidth and the rectangular (square) plate that provides a lower 
impedance bandwidth than the circular plate but its radiation pattern suffers less 
degradation over the bandwidth. Thus, most of the works reported in the literature on the 
subject of the planar plate monopole antennas are on ways of increasing the impedance 
bandwidth of the rectangular (square) monopole plate. This include: the bevelled square 
plate; the pin shorted square plate; dual fed and triple fed square elements and the 
rectangular monopole antenna loaded with small rectangular plates. Addition of slots to the 
planar monopole resulting in multiple frequency notch behaviour are also considered and 
discussed. 
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2. Planar Circular Monopole Antenna  
 

One of the earliest monopole shapes whose properties were studied in the literature is the 
circular disc monopole antenna (Agrawall et al., 1998). Fig. 1 shows a metallic circular disc 
monopole, CDM, and an elliptical disc monopole, EDM, placed above a flat ground plane 
and fed through a coaxial feed via a narrow strip. VSWR results for an optimized disk, CDM 
and EDM, of thickness 1 mm above a ground plane of size 30 × 30 cm2 are shown in Fig. 2.  
For the CDM antenna the height g = 1 mm gives the highest bandwidth ranging 1.17 to 12 
GHz for a VSWR < 2. This range corresponds to bandwidth ratio of 1:10.2. The EDM 
antenna considered has an area equal to that of the CDM for comparison purposes. Fig. 2 
also shows the VSWR of two EDM antennas with dimension a = 26 mm and b = 24 mm (with 
aspect ratio of 1.1) when fed either along the minor or the major axis. If the aspect ratio 
increases from 1.1 to 1.4, it can be shown that the bandwidth of the antenna decreases, Table 1.  
 

 
Fig. 1. Geometry of a circular and an elliptical disc planar monopole antenna.  
(Source: Agrawall et al., 1998). 
 

 
Fig. 2. VSWR of circular and elliptical disc planar monopole antenna. (Source: Agrawall et 
al., 1998). 
 

Config. a 
(mm) 

b 
(mm) 

Measured Freq. range 
for VSWR < 2 (GHz) 

Theoretical Lower  
freq. for VSWR < 2 

(GHz) 

Bandwidth 
ratio 

CDM 26 25 1.17 – 12.00 1.28 1:10.2 
EDM1 
EDM2 26 24 1.21 – 13 

1.20 – 12.50 
1.31 
1.24 

1:10.7 
1:10.4 

EDM1 
EDM2 27 23 1.38 – 11.49 

1.13 – 12.00 
1.37 
1.20 

1:8.3 
1:10.6 

EDM1 
EDM2 28 22 1.37 – 11.30 

1.08 – 11.43 
1.41 
1.17 

1:8.2 
1:10.6 

EDM1 
EDM2 29 21 1.58 – 10.45 

1.09 – 10.45 
1.46 
1.13 

1:6.6 
1:9.6 

Table 1. VSWR bandwidth of CDM and EDM. (Source: Agrawall et al., 1998).  

The frequency corresponding to the lower edge of the bandwidth of these monopole 
antennas can be determined approximately by equating the area of the planar configuration 
to that of a cylindrical wire of height l (which is same as that of planar disc height) with 
equivalent radius r given by 2πrl = πab. The length of a standard cylindrical monopole for 
real input impedance is given by (Balanis, 1982) 
 

l = 0.24 ×λ × F (1) 

Where )1/()(
r
l

r
lF  .  From the above equations, the resonant frequency is given by 

 
f = c/λ = (30×0.24) / (l+r)     GHz (2) 

 
where l and r are in centimetres. The theoretical frequencies calculated using the above 
equations for the discs considered in Table 1 shows agreement within ± 8 %. 
From Table 1 it is seen that the simple circular disc can provide a very high impedance 
bandwidth. Fig. 3 shows the simulated E- and H-plane radiation patterns of the CDM 
antenna at three different frequencies over the bandwidth. From these results it can be seen 
that as the frequency increases from 2.5 to 9.0 GHz, the direction of maxima of the conical 
beam of the E-plane pattern varies from 30o to 60o from elevation, whereas the H-plane 
pattern remains nearly omnidirectional with maximum variation in azimuth increasing 
from 4 to 7 dB. The slight distortion in the patterns might be attributed to shape of the disc 
monopole, reflections from metallic surfaces and edge diffraction. These patterns are similar 
to that of a vertical linear monopole antenna of equivalent height on a finite ground plane, 
(Balanis, 1982). 
 

 
Fig. 3. The normalized radiation pattern of the CDM antenna (a) E-plane and (b) H-plane  
 
Fig. 4 shows the distribution of current along the CDM antenna at two frequencies in the 
bandwidth. It can be seen that at the lower frequency, the current on the disc is uniform, but 
at the higher frequency, the current points in different directions. Thus, at higher frequency, 
we do not get a good omnidirectional pattern in the H-plane and the direction of the beam 
peak in the E-plane pattern varies from 30o to 60o from elevation. 
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Fig. 4. The distribution of current along the circular planar monopole antenna at (a) 2.5 GHz 
and (b) 9 GHz 

 
3. Square Planar Monopole Antenna 
 

One of the simple planar monopole (PM) antenna shapes that have received a lot of 
attentions is the square (or rectangular) plate, Fig. 5. The square element is easier to deal 
with during the optimization process. The planar element is located a distance g above a 
ground plane, and is fed by a narrow strip through a SMA connector. The bandwidth of the 
PM antenna is set mainly by the radiating element dimensions, L and to obtain the 
maximum impedance bandwidth a suitable feed gap separation, g is required.  
 

 
Fig. 5. The square planar monopole plate antenna above a square ground plane 
 
The effect that the square PM antenna dimension and its separation from ground have on 
the impedance bandwidth can be obtained through the study of the return loss results, 
(Ammann, 1999); (Ammann & Chen, 2003a). In all cases the thickness of the planar plate 
monopole is 0.5 mm copper sheet and the square ground plane considered is of side 100 mm 
and the SMA connector has a feed-probe diameter of 1.2 mm. Table 2 gives for a square 
plate planar monopole of various dimensions, L, the lower and upper frequency limits, and 
hence, the bandwidth based on 10 dB return loss. In each case the feed gap has been 
optimized for the highest bandwidth. 
As is typical for monopole antennas, the lower edge of the impedance bandwidth is 
inversely proportional to the overall length of the element. In the case of PM antenna, the 
overall length also includes the feed gap (i.e. L + g). Typically, the length of the square PM 

corresponds to about 0.21 of a free space wavelength at the lower-edge frequency; this is 
shorter than a quarter-wave monopole due to a reduced length-to-radius factor. 
 

Square Size L 
(mm) 

Frequency Limits 
(GHz) 

Bandwidth 
(MHz) 

Optimum Feed Gap 
(mm) 

60 1.16 – 2.08 920 3 
55 1.23 – 2.19 960 3 
50 1.34 – 2.35 1010 3 
45 1.44 – 2.59 1150 2.5 
40 1.59 – 2.96 1370 2.5 
35 1.86 – 3.53 1670 2.5 
30 1.98 – 4.05 2090 2.5 
25 2.38 – 5.20 2820 2.5 
20 2.68 – 6.50 3820 2.2 

Table 2. The impedance bandwidth for the square element of various dimensions, L. 
(Source: Ammann & Chen, 2003a). 
 
The lower frequency limit of a rectangular radiating element, size L×W, can be determined 
from the following simple formula:   
 







 


gWL

f l



2.7

 

 
(3) 

 
The above results shows that the impedance bandwidth is dependent on the feed gap, g and 
this gap must he optimized for maximum bandwidth. The frequency corresponding to the 
lower edge of the bandwidth is fairly independent of the feed gap, g, but the upper 
frequency is heavily dependent on it. This can be seen in Fig. 6, which shows the return loss 
for a 30 × 30 mm2 square monopole with feed gaps of 0.8, 1.6, and 2.5 mm.  
 

 
Fig. 6. The return loss of a 30 mm square monopole with feed gaps of 0.8 (dashed), 1.6  
(dot-dashed), and 2.5 mm (solid). (Source: Ammann & Chen, 2003a). 
 
Fig. 7 shows the E- and H-plane radiation patterns of the square PM antenna at various 
frequencies over the bandwidth.  
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The above results shows that the impedance bandwidth is dependent on the feed gap, g and 
this gap must he optimized for maximum bandwidth. The frequency corresponding to the 
lower edge of the bandwidth is fairly independent of the feed gap, g, but the upper 
frequency is heavily dependent on it. This can be seen in Fig. 6, which shows the return loss 
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Fig. 6. The return loss of a 30 mm square monopole with feed gaps of 0.8 (dashed), 1.6  
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Fig. 7 shows the E- and H-plane radiation patterns of the square PM antenna at various 
frequencies over the bandwidth.  
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Upon comparison of the square PM antenna with the circular PM antenna one can see that 
the circular plate provides higher impedance bandwidth but, unlike the circular PM antenna 
the patterns of the square (or rectangular) plate monopole are fairly stable with frequency. 
As such, majority of the works, reported in the literature, carried out on the PM antennas 
use the square (or rectangular) shaped plates. 
 

 
Fig. 7. The radiation pattern of the square monopole antenna at different frequencies, (a) E- 
(b) H-plane 
 
To increase the impedance bandwidth of the square PM antenna, various techniques that 
change the basic shape of the monopole plate has been reported. These techniques include: 
cutting one or both edges of the monopole plate near the ground plane, so called bevelling; 
shorting the monopole plate to the ground; exciting the monopole plate antenna at two or 
three feeding points; and loading the monopole plate at its radiating edges with small 
rectangular plates. In the following these techniques are given. 

 
4. Rectangular planar monopole antenna with bevel 
 

A significant increase in impedance bandwidth can be achieved by cutting, or bevelling, the 
edge of the square monopole near the ground plane on one or both sides of the feed probe 
(Ammann, 2001), as shown in Fig. 8. 
  

 
Fig. 8. Planar square monopole antenna with (a) asymmetrical and (b) symmetrical bevel 
 

The basic antenna structure considered here is square shaped and is of side 25 mm, and 
thickness 0.2 mm, placed above a 150 mm square ground plane and fed via an SMA 
connector. The upper and lower edge frequencies of this simple square antenna are 2.35 and 
4.95 GHz, representing an impedance bandwidth ratio of 2.1:1. One of the edges of the PM 
antenna can be cut, asymmetrically bevelled, and fine control of the impedance bandwidth 
can be achieved by varying the angle of the bevel. If the square element is bevelled by α = 
10o on one side of the feed probe, the upper edge frequency increases to 5.3 GHz. If the bevel 
is increased to α = 40o, the upper edge frequency increases to 6.0 GHz, while the lower edge 
frequency drops to 2.175 GHz. This represents an impedance bandwidth ratio of 2.75:1. If 
the planar element is symmetrically bevelled on both sides of the feed probe, the upper edge 
frequency is increased further. For a symmetrical bevel of α = 40o a significant increase in 
the upper edge frequency, 12.5 GHz, can be achieved, representing an impedance 
bandwidth ratio of 5.75:1.  Further increases in bevel do not increase the impedance 
bandwidth. The upper and lower edge frequencies for both asymmetrically and 
symmetrically bevelled PM antennas are given in Table 3.  
 

Bevel α 
(degrees) 

Bandwidth (GHz) 
Asymmetrically Bevelled 

Bandwidth (GHz) 
Symmetrically Bevelled 

0 2.35 – 4.95 2.35 – 4.95 
10 2.20 – 5.30 2.12 – 5.95 
20 2.19 – 5.75 2.11 – 6.75 
30 2.17 – 5.97 2.10 – 7.25 
40 2.17 – 6.00 2.10 – 12.50 

Table 3. The impedance bandwidth of the bevelled square PM antenna. (Source: Ammann, 2001). 
 
The radiation patterns of the asymmetric and symmetric bevelled monopole antenna are 
nearly constant with frequency over the bandwidth. The radiation patterns are quasi 
omnidirectional over the impedance bandwidth, the bevel has no noticeable effect on 
radiation patterns (less than a decibel). Fig. 9(a) shows the E-plane patterns of the symmetric 
bevelled monopole antenna at two frequencies. Fig. 9(b) shows the H-plane pattern, where 
the pattern is omnidirectional to within ±1.6 and ±2.9 dB at 2.4 and 5.8 GHz, respectively.  
 

 
Fig. 9. Radiation patterns of the symmetric bevelled square monopole with α = 40o (a)  
E-plane (b) H-plane (c) H-plane at higher frequencies. (Source: Ammann, 2001). 
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The maximum gain at 2.4 GHz is 2.7 dBi at θ = 52o but is 1.2 dBi at θ = 90o. At 5.8 GHz, the 
maximum gain is 4.6 dBi at θ = 65o, and is only 2.4 dBi at θ = 90o. The pattern of the 40o 
symmetrically bevelled element suffers some degradation at higher frequencies, Fig. 9(c). At 
these frequencies, the dimensions of this antenna are no longer small compared to a 
wavelength, and the radiation pattern exhibits some directivity. 
The increase in impedance bandwidth of the PM antenna through bevelling can be 
described through Transmission Line Modelling (TLM) (Valderas et al., 2006). The study of 
the current flow on a PM antenna reveals that it is mostly concentrated in the vertical and 
horizontal edges. Fig. 10 shows the current amplitude distribution for a simple square PM 
antenna. The horizontal current distribution is observed to be focused on the bottom edge of 
the PM antenna, near the ground, where it is greater in amplitude than the vertical 
component. Thus, this edge will hardly contribute to the radiation. As such, the structure 
could be modelled as a transmission line loaded with the radiation resistance of the antenna 
Fig. 11a. Transmission line broadband matching techniques could then be applied to the 
antenna. The relations between the geometrical parameters of the monopole and the 
transmission lines are shown in Table 4. From the TLM point of view, bevelling technique is 
equivalent to forcing the horizontal transmission line to exhibit characteristic impedance 
that is a function of the distance from the feed point. On the other hand, continuously 
tapered lines are suitable techniques to achieve broadband matching. Both of these aspects 
are joined in the TLM applied to the PM antenna. A bevel, indeed, would act as a tapered 
line since a continuously increasing height above the ground plane means that the 
characteristic impedance will also increase continuously in a tapered line fashion, Fig. 11b. 
  

 
Fig. 10. The current amplitude distribution (a) absolute, (b) horizontal and vertical 
components. (Source: Valderas et al., 2006). 
 

 
Fig. 11. Qualitative model of the (a) PM antenna (b) PM antenna with bevel based on TLM 

 

PM antenna TLM 
g Zo 

2
L  x 

Radiating edge ZL 
Table. 4. Relation between the planar monopole and transmission line parameters.  
(Source: Valderas et al., 2006). 

5. Shorted planar monopole antenna  
 

The monopole antenna with shorting post is shown in Fig. 12. The shorting post is located at 
one comer of the planar element, and could be cylindrical with about 1 mm diameter, or a 
strip with width 2 mm.  
 

 
Fig. 12. Square planar monopole plate antenna with shorting post at one corner 
 
Compared to the simple monopole antenna the feed-gap separation in the present structure 
needs to be reduced for optimum impedance bandwidth. Similar to other antennas, for a 
given planar monopole antenna, the use of shorting post has been shown to reduce the 
lower-edge frequency by introducing an extra mode, (Lee et al., 1999); (Ammann & Chen, 
2003a). The presence of the post increases the antenna bandwidth and makes it smaller in 
height. Fig. 13 shows the return loss for a 25 × 25 mm2 PM antenna with and without the 
shorting strip, which shows an impedance bandwidth of 114% and 76%, respectively. The 
asymmetry in the structure produces some distortion in the radiation pattern, particularly at 
the higher frequencies, Fig. 14. 

 

 
Fig. 13. Return loss of a 25mm square PM antenna, with (solid) and without (dash) the 
shorting post. (Source: Ammann & Chen, 2003a). 
 

 
Fig. 14. Radiation patterns of the shorted square monopole antenna (a) E-plane (b) H-plane. 
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The maximum gain at 2.4 GHz is 2.7 dBi at θ = 52o but is 1.2 dBi at θ = 90o. At 5.8 GHz, the 
maximum gain is 4.6 dBi at θ = 65o, and is only 2.4 dBi at θ = 90o. The pattern of the 40o 
symmetrically bevelled element suffers some degradation at higher frequencies, Fig. 9(c). At 
these frequencies, the dimensions of this antenna are no longer small compared to a 
wavelength, and the radiation pattern exhibits some directivity. 
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horizontal edges. Fig. 10 shows the current amplitude distribution for a simple square PM 
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the PM antenna, near the ground, where it is greater in amplitude than the vertical 
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Fig. 10. The current amplitude distribution (a) absolute, (b) horizontal and vertical 
components. (Source: Valderas et al., 2006). 
 

 
Fig. 11. Qualitative model of the (a) PM antenna (b) PM antenna with bevel based on TLM 
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Table. 4. Relation between the planar monopole and transmission line parameters.  
(Source: Valderas et al., 2006). 

5. Shorted planar monopole antenna  
 

The monopole antenna with shorting post is shown in Fig. 12. The shorting post is located at 
one comer of the planar element, and could be cylindrical with about 1 mm diameter, or a 
strip with width 2 mm.  
 

 
Fig. 12. Square planar monopole plate antenna with shorting post at one corner 
 
Compared to the simple monopole antenna the feed-gap separation in the present structure 
needs to be reduced for optimum impedance bandwidth. Similar to other antennas, for a 
given planar monopole antenna, the use of shorting post has been shown to reduce the 
lower-edge frequency by introducing an extra mode, (Lee et al., 1999); (Ammann & Chen, 
2003a). The presence of the post increases the antenna bandwidth and makes it smaller in 
height. Fig. 13 shows the return loss for a 25 × 25 mm2 PM antenna with and without the 
shorting strip, which shows an impedance bandwidth of 114% and 76%, respectively. The 
asymmetry in the structure produces some distortion in the radiation pattern, particularly at 
the higher frequencies, Fig. 14. 

 

 
Fig. 13. Return loss of a 25mm square PM antenna, with (solid) and without (dash) the 
shorting post. (Source: Ammann & Chen, 2003a). 
 

 
Fig. 14. Radiation patterns of the shorted square monopole antenna (a) E-plane (b) H-plane. 
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Fig. 15 shows the current distribution on the monopole antenna with and without the 
shorting post at one corner. It can be seen that for the simple PM antenna currents distribute 
symmetrically around the feed point. When the shorting post is added to the bottom edge, 
current distribution on the antenna becomes asymmetric and current is strong near the 
shorted edge and ground plane. Thus, the radiation from this edge is lower than the 
opposite edge. Because of this asymmetric, the radiation pattern becomes asymmetric and 
degraded in the side of shorting.  
 

 
Fig. 15. Current distribution on a square monopole plate (a) without and (b) with shorting 
post  

 
6. Shorted planar monopole antenna with bevel 
 

It was shown earlier that addition of a bevel to one side of a square planar monopole, SPM 
antenna increases the upper edge frequency significantly and increases the bandwidth of the 
antenna. Control of this upper frequency is possible by adjusting the bevel angle. The 
addition of a shorting post to one side of the planar monopole also increases the bandwidth. 
A combination of shorting post and bevel can yield an impedance bandwidth of 800 MHz to 
11 GHz, which is suitable for combinations of cellular and UWB systems (Ammann & Chen, 
2003b). Fig. 16 shows a shorted PM antenna with bevel. The antenna is constructed using 0.2 
mm thick copper sheet on a 200 mm square ground plane and fed via an SMA connector. 
The square plate dimension, L, is 60 mm, the shorting strip is 2 mm wide and the feed gap g 
is 1.2 mm. The monopole plate is bevelled on the side opposite the shorting strip. 
The VSWR for the SPM antenna and SPM with shorting strip, SHPM, and SHPM with bevel, 
SHPMB, are shown in Fig. 17.  As can be seen the shorting strip reduces the lower-edge 
frequency and the bevel raises the upper-edge frequency significantly. The plot shows the 
effect of introducing the bevel and shorting strip on the impedance bandwidth. The feed 
gaps are optimized for maximum bandwidth in each case. The 3 : 1 VSWR impedance 
bandwidths are 890–2250 MHz for the SPM antenna, 730–2500 MHz for the SHPM antenna 
and 850 MHz to >10.5 GHz for the SHPMB antenna. 
 

 
Fig. 16. The geometry of the shorted PM antenna with bevel 
 

 
Fig. 17. The VSWR for the SPM, SHPM and SHPMB antennas. (Source: Ammann & Chen, 2003b) 
 
VSWR plots over the range 0.5–10.5 GHz are shown in Fig. 18(a) for the SPM antenna with 
bevel angles of α = 0o to α = 40o. It can be seen that the VSWR variation with frequency is 
reduced by the addition of the bevel. Fig. 18(b) shows the VSWR for the SPM antenna with 
both bevel and shorting strip. It can be observed that the VSWR remains below 3: 1 over 
most of the frequency range when α = 10o and 20o. The bevel tends to increase the VSWR 
slightly at the lower frequencies but reduces the VSWR significantly at higher frequencies. 
For α = 10o, the lower and upper-edge frequencies (3: 1 VSWR) are 790 MHz and >10.5 GHz, 
respectively. The VSWR is slightly greater than 3: 1 only in the regions from 1.05–1.22 GHz 
and from 7.5–8.2 GHz. 
The radiation patterns are shown in Fig. 19. The plots indicate nearly omnidirectional 
patterns in the H plane and typical monopole patterns in the E plane cuts at the lower 
frequencies. The plots are given at 900 MHz, 2.4, and 5.8 GHz.  
 

 
Fig. 18. VSWR for the simple planar monopole with bevel (a) without and (b) with shorting 
strip. (Source: Ammann & Chen, 2003b) 
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Fig. 19. The E and H-plane radiation patterns of the SHPMB antenna. (Source: Ammann & 
Chen, 2003b) 

 
7. Monopole Antenna with a dual and triple Feeding Strip 
 

The theory of characteristic modes (Harrington & Mautz, 1971) has been used by (Antonino-
Daviu et al., 2003) to investigate the modes associated to a square PM antenna. From the 
knowledge of mode behaviour, it is shown in that paper that the performance of the antenna 
could be improved by using a double feed configuration. Such a double feed generates a 
pure and intense vertical current distribution in the whole structure and avoids horizontal 
currents, which degrade the polarization properties and the impedance bandwidth 
performance of the antenna. However, to generate the double feed, an additional microstrip 
feeding network under the ground plane of the PM antenna was used that complicates the 
total antenna configuration and increases the fabrication cost of the antenna. 
 

 
Fig. 20. Geometry of the square planar monopole antenna with (a) two-branch feeding strip 
and (b) trident-shaped feeding strip. 

Following the above work, (Wong et al., 2005) suggested a simple dual and trident-shaped 
feeding strip suitable to achieve bandwidth enhancement of a square PM antenna. The 
planar monopole with the simple feeding strip is easily fabricated using a single metal plate 
and fed using a 50 ohm SMA connector and, in addition, no external feeding network is 
required, Fig. 20.  
In Fig. 20, a 0.2 mm thick square planar monopole antenna of side length L (40 mm) 
mounted above a ground plane of size 150 mm x150 mm is shown. The feeding strips are 
uniform and set to 2 mm. By adjusting the three parameters d, t and h, increase in the 
impedance bandwidth of the planar monopole antenna can be achieved.  Parameter d 
controls the coupling between the ground plane and the lower edge of the planar monopole, 
which effectively varies the input reactance of the antenna. Thus impedance matching of the 
antenna can be fine-tuned, and optimized impedance bandwidth can be obtained for the 
antenna. The return loss for the simple planar monopole antenna with single feed, double 
branch feed and triple branch feed are shown in Fig. 21.  With the size of the square plate set 
as above, the impedance bandwidth (10 dB return loss) would have a lower edge frequency 
of less than 1.5 GHz. For the double and triple branch feed structures by selecting the 
parameters t, h and d of the feeding strip to be 15, 3.5, and 1.0 mm, respectively, the upper 
edge frequency of the impedance bandwidth, for the double feed would be around 10.2 
GHz and for the triple feed would be larger than 11.4 GHz. For the single feed PM antenna, 
to obtain the highest bandwidth, requires a feeding strip with d = 2.5 mm. It is seen that the 
triple branch feeding strip shows an impedance bandwidth of 1.276-11.448 GHz (a 
frequency ratio of 8.32), while the  two-branch feeding strip shows a bandwidth of  1.354-
10.182 GHz (a frequency ratio of 7.52) and that of the simple feeding strip is 1.455-3.286 GHz 
(a ratio of 2.26). The wide impedance bandwidth of the triple fed PM antenna makes the 
antenna suitable for application in the new broadband wireless metropolitan area network 
system using the IEEE 802.16a (2–11 GHz) standard. 
The current distribution behaviour on the planar monopole antenna for the three feeding 
structures is shown in Fig. 22. It is seen that the triple fed PM antenna provides a more 
uniform current distribution compared to a dual-feed design and a single-feed design. This 
leads to a much improved impedance bandwidth for the square planar monopole antenna. 
Radiation patterns of the triple fed planar monopole antenna are shown in Fig. 23 at three 
different frequencies of 2, 6 and 10 GHz. 
 

 
Fig. 21. The return loss of the planar monopole antennas with a trident-shaped feeding strip, 
a two-branch feeding strip and a simple feeding strip. (Source: Wong et al., 2005). 
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Fig. 19. The E and H-plane radiation patterns of the SHPMB antenna. (Source: Ammann & 
Chen, 2003b) 
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Fig. 21. The return loss of the planar monopole antennas with a trident-shaped feeding strip, 
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Fig. 22. The current distributions for the three antennas at f = 2.5 GHz. (Source: Wong et al., 
2005). 
 

 
Fig. 23. Radiation pattern of the triple fed planar monopole antenna at three different 
frequencies. (Source: Wong et al., 2005). 
 
Fig. 24 shows the antenna gain for frequencies across the impedance bandwidth. For 
frequencies up to about 6 GHz, it is seen that the antenna gain monotonically increases from 
about 4.0 to 7.0 dBi. For the higher frequency portion of the impedance bandwidth, 
however, the antenna gain varies relatively slightly in the range of 6.5–7.0dBi. 
 

 
Fig. 24. Gain of the triple fed planar monopole antenna. (Source: Wong et al., 2005). 

8. Plate loaded planar monopole antenna  
 

The planar monopole antenna structures considered so far can provide at most a bandwidth 
over the range 1.2-11.5 GHz. In PM antennas the lower limit of the bandwidth is set by the 
monopole plate dimensions. To increase the upper frequency limit even further the plate 
loading can be employed (Mazinani & Hassani, 2009a). The plate loaded planar monopole 
antenna, PLPM, and its parameters are shown in Fig. 25. The antenna is constructed using 
copper sheet of thickness 0.2 mm, and dimension L = 20 mm and W = 12 mm, placed on a 
small circular ground plane of radius 50 mm. Based on obtaining the widest bandwidth, the 
feed gap parameter, g, is set at 1mm. A 50Ω coaxial probe feeds the bottom of the antenna 
through the ground plane via a 1.2 mm connector. This PM antenna is loaded at its two 
radiating edges by small rectangular plates. The parallel plate placed on the two sides of the 
radiating element is determined by two parameters Ls and Ws.  
 

 
Fig. 25. Planar monopole antenna loaded with a pair of rectangular plate. (Source: Mazinani 
& Hassani, 2009a). 
 
Based on a return loss of 10 dB, the effect of the plate loading dimension on frequency and 
bandwidth are listed in Table 5. It is obvious that the size of the plate loading has a 
pronounce effect on the upper resonant frequency and thus on the impedance bandwidth of 
the monopole antenna. For the rectangular plate loading, with small values of Ws the return 
loss shows multiband behavior and with a good choice for Ls a wideband behavior can be 
obtained. From this Table, it is seen that for the rectangular loading plates with Ws = 6 mm 
and Ls = 12 mm the upper frequency limit is 16.7 GHz. Fig. 26 shows the return loss for the 
plate loaded PM antenna. It can be seen that the addition of the plates increases the upper 
edge frequency significantly resulting in a bandwidth of 2.9-16.7GHz. 

 

Ws (mm) Ls (mm) Bandwidth (GHz) 

4 12 2.9 – 6.2 , 8.9 – 13.5 , 14.7 – 17.5 
6 12 2.9 – 16.7 
8 12 2.9 – 15.6 
6 10 2.9 – 6.7 , 9.2 – 18.5 
6 14 2.9 – 12.5 

Table 5. Dimensions and impedance bandwidth of rectangular loading plates.  
(Source: Mazinani & Hassani, 2009a). 
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Fig. 22. The current distributions for the three antennas at f = 2.5 GHz. (Source: Wong et al., 
2005). 
 

 
Fig. 23. Radiation pattern of the triple fed planar monopole antenna at three different 
frequencies. (Source: Wong et al., 2005). 
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Fig. 26. Simulated (gray) and measured (black) return loss of plate loaded PM antenna.  
Ws = 6 mm and Ls = 12 mm. (Source: Mazinani & Hassani, 2009a). 

 
The effect of the presence of the loading plates can be seen through application of the TLM 
and the current flow on the PM antenna. In section 4, TLM was applied to a beveled PM 
antenna and through tapering the equivalent transmission line increase in the impedance 
bandwidth was obtained. Another way to increase the antenna bandwidth is to match the 
radiation impedance of the antenna to the characteristic impedance of the equivalent 
transmission line of the PM antenna which is assumed to be matched to the antenna feed. To 
do so, one can add a shunt impedance loaded stub transmission line (line with Z’s 
terminated in Z’LS) to the radiation impedance ZLo, as shown in Fig. 27(a). It is assumed that 
the monopole antenna is at a height above the ground plane that leads to being impedance 
matched to the antenna feed.  
In the same way that a rectangular planar monopole antenna can be modeled as a 
transmission line terminated with an impedance ZL, the proposed shunt transmission line 
terminated in an impedance Z'LS can be modeled as a rectangular plate. This leads to a new 
planar monopole antenna structure. The TLM model shown in Fig. 27(a) is equivalent to a 
rectangular planar monopole antenna loaded with a pair of parallel plates, placed on the 
two radiating edges of the antenna. To make the final antenna structure symmetric, one can 
divide the shunt transmission line into two equal halves, Fig 27(b). In this way, the 
equivalent plate can be attached to the radiating edge at its symmetric line. The relation 
between the geometrical parameters of the proposed antenna and its equivalent 
transmission lines are shown in Table 6. 
 

 
Fig. 27. The TLM of the halved PLPM antenna (a) PM antenna with single shunt impedance 
loaded stub transmission line and (b) equivalent two section shunt impedance loaded stub 
transmission line. (Source: Mazinani & Hassani, 2009a). 
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Table 6. Relation between the PLPM antenna and transmission line parameters 
 
Fig. 28 shows the amplitude current distribution on a simple PM and on the PLPM antenna 
at frequency of 4 GHz. It is obvious that a similar current distribution that takes place on the 
simple PM antenna also takes place on the loading plates of the PLPM antenna 
 

 
Fig. 28. Current amplitude distribution at 4 GHz (a) simple rectangular PM antenna, (b) the 
plate loaded PM antenna. (Source: Mazinani & Hassani, 2009a). 
 
The measured normalized E and H-plane radiation patterns of the proposed PLPM antenna 
at 4, 10, and 16 GHz, are shown in Fig. 29. The H-plane pattern of the antenna shows a good 
acceptable omnidirectional behavior at all frequencies.  
 

 
Fig. 29. The co-polar (solid) and cross-polar (dash) pattern of the PLMP antenna at (a)  
4 GHz, (b) 10 GHz and (c) 16 GHz. (Source: Mazinani & Hassani, 2009a). 
 
This is in contrast to the usual PM antennas where due to the asymmetry in the 
configuration of the antenna in the two orthogonal planes good omnidirectional pattern at 
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higher frequencies is not achievable. By adding the loading plates to the PM antenna, as 
shown in Fig. 28(b), the currents on the two edges of the loading plate results in constructive 
interference, resulting in a stronger radiation pattern in the direction normal to the plane of 
the loading plate. Thus, the overall radiation pattern of the antenna becomes more 
omnidirectional than the case of the simple PM antenna. The E-plane radiation pattern of 
the PLMP antenna is similar to those of the simple PM antenna. With increase in the 
frequency of operation, a dip in the main beam in the E-plane pattern is in evidence, due to 
the large electrical size of the antenna. In all cases the cross polarization level is lower than -
15dB, similar to that of a simple PM antenna. 
Fig. 30 shows the measured PLPM antenna gain variation against frequency. It is known 
that a single PM antenna has some 2 - 4.5 dB of gain. Thus, loading plate has increased the 
gain, especially at higher frequencies where gain of 7 dB is noted. 
The above PLPM antenna with its very wide impedance bandwidth can also be used as an 
internal antenna for mobile handset (Mazinani & Hassani, 2009b). Also due to its higher 
gain, such antenna is useful for superdirective arrays. 
 

 
Fig. 30. Gain of PM antenna loaded with rectangular plates. (Source: Mazinani & Hassani, 2009a). 

 
9. Planar Monopole Antenna with Band-Notch Characteristic 
 

A single planar monopole antenna can cover the 2-18 GHz frequency band with good 
performance. This frequency range has interference to the existing narrower communication 
systems frequency bands. There are a few frequency bands that are reserved for 
narrowband wireless technologies (such as WLAN, HYPERLAN/2, IEEE802.11a …), thus, 
there is a need in the wideband device to provide filtering to avoid interference from or 
causing interference to narrowband devices. However, the use of a filter will increase the 
complexity of the wide band system. Rather than using filtering electronics, it has been 
shown that by creating a slot in the interior of the radiating element, a planar monopole can 
exhibit a single or multiple narrow frequency notch bands while maintaining the wideband 
performance. The shape, size and position of the slot on the antenna surface play an 
important role in the determination of the frequency center and the bandwidth of the notch. 
Most of the works reported in the literature include U-shaped vertical slots and simple 
rectangular horizontal slots cut from the edge of the antenna. In the following sections, these 
structures are described. 

 
 

9.1 U shaped vertical slots  
A technique to create single or double band notch behavior is by creating single or multiple 
half wavelength U-shaped slots placed vertically along the surface of the monopole antenna, 
[Lee et al. 2005] and [Lee et al., 2006]. Fig. 31 shows the structure of the PM antenna with a 
combination of U and ∩-slots. Other combinations of such slots are also possible. A copper 
planar element of thickness 0.2 mm, size 20mm x 27 mm and beveling angle 12o, is vertically 
placed at spacing of 1 mm over the circular ground plane of radius 75mm and fed via a 50 
ohm SMA connector. 
 

 
Fig. 31. Geometry of the planar monopole antenna with U-slots. (Source: Lee et al., 2006). 

 
Fig. 32 shows the return loss results for the PM antenna with various U-slot shapes placed 
on the antenna. The size and position of the parameters used for slots 1 and 2 are (t1, L1, X1, 
Z1, W1) = (1, 15.6, 0, 2, 3) mm and (t2, L2, X2, Z2, W2) = (1, 24.6, 0, 25.7, 10.5) mm. Also shown 
in this Figure is return loss of the PM antenna without any slots, the reference antenna. Fig. 
32(b) shows the planar antenna with single ∩-shaped slot, where creation of one notch band 
at 2.96 GHz is noticeable, and Fig. 32(c) shows the return loss for a U-shaped slot that makes 
a notch band at 4.77 GHz. The bandwidth of the notches can be controlled by adjusting W1 
and W2.  
 

 
Fig. 32. The return loss of the PM antenna (a) without slot, (b) with ∩-slot, (c) with U-slot 
and (d) combination of ∩ and U-slots. - - - - simulated,   -------- Measured. (Source: Lee et al., 
2006). 
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higher frequencies is not achievable. By adding the loading plates to the PM antenna, as 
shown in Fig. 28(b), the currents on the two edges of the loading plate results in constructive 
interference, resulting in a stronger radiation pattern in the direction normal to the plane of 
the loading plate. Thus, the overall radiation pattern of the antenna becomes more 
omnidirectional than the case of the simple PM antenna. The E-plane radiation pattern of 
the PLMP antenna is similar to those of the simple PM antenna. With increase in the 
frequency of operation, a dip in the main beam in the E-plane pattern is in evidence, due to 
the large electrical size of the antenna. In all cases the cross polarization level is lower than -
15dB, similar to that of a simple PM antenna. 
Fig. 30 shows the measured PLPM antenna gain variation against frequency. It is known 
that a single PM antenna has some 2 - 4.5 dB of gain. Thus, loading plate has increased the 
gain, especially at higher frequencies where gain of 7 dB is noted. 
The above PLPM antenna with its very wide impedance bandwidth can also be used as an 
internal antenna for mobile handset (Mazinani & Hassani, 2009b). Also due to its higher 
gain, such antenna is useful for superdirective arrays. 
 

 
Fig. 30. Gain of PM antenna loaded with rectangular plates. (Source: Mazinani & Hassani, 2009a). 
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A technique to create single or double band notch behavior is by creating single or multiple 
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combination of U and ∩-slots. Other combinations of such slots are also possible. A copper 
planar element of thickness 0.2 mm, size 20mm x 27 mm and beveling angle 12o, is vertically 
placed at spacing of 1 mm over the circular ground plane of radius 75mm and fed via a 50 
ohm SMA connector. 
 

 
Fig. 31. Geometry of the planar monopole antenna with U-slots. (Source: Lee et al., 2006). 

 
Fig. 32 shows the return loss results for the PM antenna with various U-slot shapes placed 
on the antenna. The size and position of the parameters used for slots 1 and 2 are (t1, L1, X1, 
Z1, W1) = (1, 15.6, 0, 2, 3) mm and (t2, L2, X2, Z2, W2) = (1, 24.6, 0, 25.7, 10.5) mm. Also shown 
in this Figure is return loss of the PM antenna without any slots, the reference antenna. Fig. 
32(b) shows the planar antenna with single ∩-shaped slot, where creation of one notch band 
at 2.96 GHz is noticeable, and Fig. 32(c) shows the return loss for a U-shaped slot that makes 
a notch band at 4.77 GHz. The bandwidth of the notches can be controlled by adjusting W1 
and W2.  
 

 
Fig. 32. The return loss of the PM antenna (a) without slot, (b) with ∩-slot, (c) with U-slot 
and (d) combination of ∩ and U-slots. - - - - simulated,   -------- Measured. (Source: Lee et al., 
2006). 
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Combining these two U and ∩-shaped slots, Fig. 32(d), the return loss results show two 
notches at the same frequencies as those of Fig. 32(b) and (c), i.e. when the two slots are 
placed beside each other results shows little mutual coupling between the two.  
The centre frequency of the notch bands for either the U-slot or the ∩-slot can be accurately 
predicted from the following formula: 
 

n
notch L

cf
4

  (4) 

 
Where c is the speed of light and Ln is the half length of a U or ∩-slot, Fig. 31. 
By varying the slot position and the distance between the slot arms one can control the 
notch bandwidth and its centre frequency. 
For the structure of Fig. 32(d), the normalized surface current distribution at three different 
frequencies, passband 2.4GHz, at lower notch centre frequency 2.96GHz, and at upper notch 
centre frequency 4.81GHz are shown in Fig. 33. One can see that at the passband, Fig. 33(a), 
there are more current distributions near the feeding point. At the lower notch centre 
frequency, Fig. 33(b), the current is concentrated around the bottom edge of the ∩-shaped 
slot and is oppositely directed between the interior and exterior of the slot. Thus, the 
antenna operates in a transmission-line-like mode, which transforms the nearly high 
impedance (open circuit) at the top of the slot to nearly zero impedance (short circuit) at the 
antenna feeding. This zero impedance at the feeding point leads to the desired high 
attenuation and impedance mismatching near the notch frequency. Fig. 33(c) shows that at 
the upper notch frequency, current is concentrated around the top edge of the U-shaped slot 
and is oppositely directed between the interior and exterior of the slot. As in previous case, 
the antenna operates in a transmission-line-like mode, which transforms the nearly zero 
impedance at the top of the slot to nearly high impedance at the antenna feeding, leading to 
the desired high attenuation near the notch frequency. 
 

 
Fig. 33. Current distribution on the PM antenna with slots. At (a) passband, 2.4 GHz, (b) at 
Lower notch frequency, 2.96 GHz and (c) at higher notch frequency 4.81GHz.  
(Source: Lee et al., 2006). 

 
Fig. 34. Conceptual equivalent-circuit model for antenna with  U and ∩-shaped slots. At (a) 
passband (b) first notch frequency, (c) second notch frequency. (Source: Lee et al., 2006).     

 
Fig. 34 shows the conceptual equivalent-circuit model for the antenna, that includes a series 
stub, a shunt stub, and antenna resistance Ra. At passband the stubs are non operational and 
radiation takes place. The stubs are a short-circuit stub with L1 = 15.6 mm and an open-
circuit stub with L2=24.6 mm. When L2 is equal to λ/4 in Fig. 34(b), at 2.96 GHz, the input 
impedance at the feeding point is zero (short circuit). Also, when L1 is equal to λ/4 in Fig. 
34(c), at 4.78 GHz, the input impedance at the feeding point is high (open circuit) due to the 
quarter-wave transformer. In these two cases, destructive interference for the excited surface 
currents in the antenna will occur, which causes the antenna to be non responsive at those 
frequencies. 

 
9.2. Simple horizontal slots  
Simple horizontal slots cut from the edges of the wideband monopole planar antenna can 
also create notch bands (Rahmati & Hassani, 2009). Such slots cut from the edges of the 
monopole antenna are easier to create as compared to U-slots cut from the centre of the 
antenna. Fig. 35 shows the antenna structure where a copper planar element of thickness, 0.2 
mm, size 22mm  25 mm and beveling angle of 17(or hb=4mm), is mounted 0.5 mm over the 
circular ground plane of radius 40mm. Through placement of single horizontal slot, a single 
and a double pair of horizontal symmetrical slots placed on the edges of the monopole 
antenna single and double tunable notch characteristics can be obtained.  
 

 
Fig. 35. Geometry of the planar monopole antenna with simple horizontal cuts.  
(Source: Rahmati & Hassani, 2009). 
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Combining these two U and ∩-shaped slots, Fig. 32(d), the return loss results show two 
notches at the same frequencies as those of Fig. 32(b) and (c), i.e. when the two slots are 
placed beside each other results shows little mutual coupling between the two.  
The centre frequency of the notch bands for either the U-slot or the ∩-slot can be accurately 
predicted from the following formula: 
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antenna feeding. This zero impedance at the feeding point leads to the desired high 
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and is oppositely directed between the interior and exterior of the slot. As in previous case, 
the antenna operates in a transmission-line-like mode, which transforms the nearly zero 
impedance at the top of the slot to nearly high impedance at the antenna feeding, leading to 
the desired high attenuation near the notch frequency. 
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Lower notch frequency, 2.96 GHz and (c) at higher notch frequency 4.81GHz.  
(Source: Lee et al., 2006). 

 
Fig. 34. Conceptual equivalent-circuit model for antenna with  U and ∩-shaped slots. At (a) 
passband (b) first notch frequency, (c) second notch frequency. (Source: Lee et al., 2006).     

 
Fig. 34 shows the conceptual equivalent-circuit model for the antenna, that includes a series 
stub, a shunt stub, and antenna resistance Ra. At passband the stubs are non operational and 
radiation takes place. The stubs are a short-circuit stub with L1 = 15.6 mm and an open-
circuit stub with L2=24.6 mm. When L2 is equal to λ/4 in Fig. 34(b), at 2.96 GHz, the input 
impedance at the feeding point is zero (short circuit). Also, when L1 is equal to λ/4 in Fig. 
34(c), at 4.78 GHz, the input impedance at the feeding point is high (open circuit) due to the 
quarter-wave transformer. In these two cases, destructive interference for the excited surface 
currents in the antenna will occur, which causes the antenna to be non responsive at those 
frequencies. 

 
9.2. Simple horizontal slots  
Simple horizontal slots cut from the edges of the wideband monopole planar antenna can 
also create notch bands (Rahmati & Hassani, 2009). Such slots cut from the edges of the 
monopole antenna are easier to create as compared to U-slots cut from the centre of the 
antenna. Fig. 35 shows the antenna structure where a copper planar element of thickness, 0.2 
mm, size 22mm  25 mm and beveling angle of 17(or hb=4mm), is mounted 0.5 mm over the 
circular ground plane of radius 40mm. Through placement of single horizontal slot, a single 
and a double pair of horizontal symmetrical slots placed on the edges of the monopole 
antenna single and double tunable notch characteristics can be obtained.  
 

 
Fig. 35. Geometry of the planar monopole antenna with simple horizontal cuts.  
(Source: Rahmati & Hassani, 2009). 
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The effect that a single horizontal slot cut from one edge of a monopole antenna has on the 
antenna are shown in Fig. 36. There are three parameters, Ls, Ws and h that affect the notch 
band. Fig. 36(a) shows the return loss of the antenna for various position of the slot, h. The 
results show that when h is varied from 11mm to 20mm the notch bandwidth decreases 
from 20% to 4%, the return loss of the notch at centre frequency decreases and only a small 
shift in the notch centre frequency takes place. Fig. 36(b) shows the return loss as slot length, 
Ls, is varied. The results show that with an increase in Ls, the notch centre frequency 
decreases with an improved notch behavior.  Although not shown, results on variation of 
slot width, Ws, shows that as Ws is increased, the notched bandwidth increases from 9% to 
20% and only a small shift in notch centre frequency takes place. From these results, the 
centre frequency of the notch can be obtained through the following approximate formula: 
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where c is the speed of light. It can be seen that the notch frequency is controlled mostly by 
the slot length Ls. 
 

 
Fig. 36. Return loss of a single slot for various slot (a) Position, h (Ls = 11mm, Ws = 0.5mm) 
and (b) Length, Ls (h = 20 mm, Ws = 0.5 mm). (Source: Rahmati & Hassani, 2009). 
 
The antenna structure with only a slot at one edge may not produce a symmetric radiation 
pattern. Thus, the case of a pair of symmetrical slots cut from the sides of the antenna is 
considered. Fig. 37(a) shows the return loss of the antenna for various position of the slot, h. 
From this result it is seen that the pair of symmetrical slots results in a wider notch 
bandwidth as compared to that of single slot. When h is varied from 11mm to 20mm the 
notch bandwidth reduces from 55% to 12% and a very small shift in notch centre frequency 
takes place. The single pair of symmetrical slots can be modeled as two resonances 
connected in series to the initial monopole antenna. Slots of equal length result in equal 
resonant frequency and higher notch bandwidth. 
The effect of various slot length, Ls, is shown in Fig. 37(b). It is seen that the length of the slot 
determines the centre frequency of the notched band. As Ls is increased the notch centre 
frequency shifts toward the lower frequency with an increase in return loss level. Results on 
variation of Ws, similar to the previous single slot case, shows that as Ws is varied from 
0.3mm to 1mm, the notch bandwidth increases from 9% to 20% and only a small shift in 

notch centre frequency takes place. From the results of Fig. 37 it is seen that the centre 
frequency of the notch is more dependent on the length and position of the slot while the 
slot position also affects the bandwidth of the notch. From these results one can state that for 
slot position h <16mm the centre frequency of the notch can be obtained through the 
following approximate formula: 
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while for h>16mm, the effect of slot position becomes less, thus the formula in equation (5) 
would be more suitable. 
 

 
Fig. 37. Return loss of a single pair of symmetric slots for various slot (a) height, h. (Ls = 11 
mm, Ws = 0.5 mm) and (b) length, Ls. (h = 16 mm, Ws = 0.5 mm). (Source: Rahmati & 
Hassani, 2009). 

 
Fig. 38 shows the normalized surface current distribution over the planar monopole antenna 
for the single and for a pair of slots at various frequencies. In Fig. 38(a) and (c), where the 
antenna operates at pass band frequencies 3.5 and 13GHz, there are more current 
distributions near the feeding point(i.e. slot does not resonate and has little effect). At notch 
frequency, 5.7 GHz, as shown in Fig. 38(b), current is concentrated around the edge of the 
slot while there is almost no current at the feeding point. The high concentration of current 
around the slot can be represented as a short circuited stub. The edge loaded slot monopole 
antenna can then be modeled as a short circuited stub in series with the unloaded monopole 
radiation resistance, R, Fig. 38(d, e). For the case of single pair of symmetric slots, there 
would be two short circuited stubs connected in series with R. At notch frequency, the slot is 
almost λ/4 and thus transforms short circuit at the slot to open circuit at the antenna feeding 
point. This leads to the desired high attenuation and impedance mismatching around the 
notch frequency. 
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The effect that a single horizontal slot cut from one edge of a monopole antenna has on the 
antenna are shown in Fig. 36. There are three parameters, Ls, Ws and h that affect the notch 
band. Fig. 36(a) shows the return loss of the antenna for various position of the slot, h. The 
results show that when h is varied from 11mm to 20mm the notch bandwidth decreases 
from 20% to 4%, the return loss of the notch at centre frequency decreases and only a small 
shift in the notch centre frequency takes place. Fig. 36(b) shows the return loss as slot length, 
Ls, is varied. The results show that with an increase in Ls, the notch centre frequency 
decreases with an improved notch behavior.  Although not shown, results on variation of 
slot width, Ws, shows that as Ws is increased, the notched bandwidth increases from 9% to 
20% and only a small shift in notch centre frequency takes place. From these results, the 
centre frequency of the notch can be obtained through the following approximate formula: 
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where c is the speed of light. It can be seen that the notch frequency is controlled mostly by 
the slot length Ls. 
 

 
Fig. 36. Return loss of a single slot for various slot (a) Position, h (Ls = 11mm, Ws = 0.5mm) 
and (b) Length, Ls (h = 20 mm, Ws = 0.5 mm). (Source: Rahmati & Hassani, 2009). 
 
The antenna structure with only a slot at one edge may not produce a symmetric radiation 
pattern. Thus, the case of a pair of symmetrical slots cut from the sides of the antenna is 
considered. Fig. 37(a) shows the return loss of the antenna for various position of the slot, h. 
From this result it is seen that the pair of symmetrical slots results in a wider notch 
bandwidth as compared to that of single slot. When h is varied from 11mm to 20mm the 
notch bandwidth reduces from 55% to 12% and a very small shift in notch centre frequency 
takes place. The single pair of symmetrical slots can be modeled as two resonances 
connected in series to the initial monopole antenna. Slots of equal length result in equal 
resonant frequency and higher notch bandwidth. 
The effect of various slot length, Ls, is shown in Fig. 37(b). It is seen that the length of the slot 
determines the centre frequency of the notched band. As Ls is increased the notch centre 
frequency shifts toward the lower frequency with an increase in return loss level. Results on 
variation of Ws, similar to the previous single slot case, shows that as Ws is varied from 
0.3mm to 1mm, the notch bandwidth increases from 9% to 20% and only a small shift in 

notch centre frequency takes place. From the results of Fig. 37 it is seen that the centre 
frequency of the notch is more dependent on the length and position of the slot while the 
slot position also affects the bandwidth of the notch. From these results one can state that for 
slot position h <16mm the centre frequency of the notch can be obtained through the 
following approximate formula: 
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while for h>16mm, the effect of slot position becomes less, thus the formula in equation (5) 
would be more suitable. 
 

 
Fig. 37. Return loss of a single pair of symmetric slots for various slot (a) height, h. (Ls = 11 
mm, Ws = 0.5 mm) and (b) length, Ls. (h = 16 mm, Ws = 0.5 mm). (Source: Rahmati & 
Hassani, 2009). 

 
Fig. 38 shows the normalized surface current distribution over the planar monopole antenna 
for the single and for a pair of slots at various frequencies. In Fig. 38(a) and (c), where the 
antenna operates at pass band frequencies 3.5 and 13GHz, there are more current 
distributions near the feeding point(i.e. slot does not resonate and has little effect). At notch 
frequency, 5.7 GHz, as shown in Fig. 38(b), current is concentrated around the edge of the 
slot while there is almost no current at the feeding point. The high concentration of current 
around the slot can be represented as a short circuited stub. The edge loaded slot monopole 
antenna can then be modeled as a short circuited stub in series with the unloaded monopole 
radiation resistance, R, Fig. 38(d, e). For the case of single pair of symmetric slots, there 
would be two short circuited stubs connected in series with R. At notch frequency, the slot is 
almost λ/4 and thus transforms short circuit at the slot to open circuit at the antenna feeding 
point. This leads to the desired high attenuation and impedance mismatching around the 
notch frequency. 
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Fig. 38. Surface current of antenna with a pair of slots, at the (a) pass band 3.5 GHz, (b) notch 
frequency 5.7 GHz, (c) pass band 13 GHz. The equivalent-circuit model for slot loaded 
planar monopole antenna at (d), pass band frequency (e) notch frequency. (Source: Rahmati 
& Hassani, 2009). 
 
To create multiple notch bands multiple horizontal slots placed on top of each other are 
required. Here, the case of the planar monopole antenna with two pairs of horizontal 
symmetrical slots is presented. The presence of the second pair of slots creates an extra 
resonance (notch), whose centre frequency is dependent on the parameters of this pair of 
slots.  In the cases studied the dimensions of the upper pair of slots are kept fixed while 
those of the lower pair of slots are varied. 
 Fig. 39(a) shows the return loss results for various lengths of the lower pair of slots, Ls2.  It 
is seen that increasing Ls2 towards Ls1 the centre frequency of the second resonance 
approaches that of the first, thus increasing the bandwidth of the notch.  
Fig. 39(b) shows the return loss for various heights of the lower pair of slots. From Fig. 35, 
beveling height, hb is 4mm, thus, h2=3mm is for a slot which is placed in the beveling region 
of the monopole antenna. As the length of this slot in such a region is small, the upper centre 
frequency would be quite high. As the slot is moved up from this region (i.e. h2 >4mm) 
there is not much change in upper centre frequency while its return loss level reduces. 
Similar to the two previous cases, as the width of the slot, Ws2, is increased the bandwidth 
of the upper resonance increases while its centre frequency changes slightly.  
 

 
Fig. 39. Return loss of two pairs of symmetrical slots for various lower pair of slots (a) 
lengths Ls2,  (h1= 20 mm, Ls1= 11 mm, h2 = 8 mm, Ws = 0.5 mm) and (b) heights  h2, (h1 = 20 
mm, Ls1 = 11 mm, Ls2 = 5 mm, Ws = 0.5 mm). (Source: Rahmati & Hassani, 2009). 
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Fig. 38. Surface current of antenna with a pair of slots, at the (a) pass band 3.5 GHz, (b) notch 
frequency 5.7 GHz, (c) pass band 13 GHz. The equivalent-circuit model for slot loaded 
planar monopole antenna at (d), pass band frequency (e) notch frequency. (Source: Rahmati 
& Hassani, 2009). 
 
To create multiple notch bands multiple horizontal slots placed on top of each other are 
required. Here, the case of the planar monopole antenna with two pairs of horizontal 
symmetrical slots is presented. The presence of the second pair of slots creates an extra 
resonance (notch), whose centre frequency is dependent on the parameters of this pair of 
slots.  In the cases studied the dimensions of the upper pair of slots are kept fixed while 
those of the lower pair of slots are varied. 
 Fig. 39(a) shows the return loss results for various lengths of the lower pair of slots, Ls2.  It 
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Fig. 39. Return loss of two pairs of symmetrical slots for various lower pair of slots (a) 
lengths Ls2,  (h1= 20 mm, Ls1= 11 mm, h2 = 8 mm, Ws = 0.5 mm) and (b) heights  h2, (h1 = 20 
mm, Ls1 = 11 mm, Ls2 = 5 mm, Ws = 0.5 mm). (Source: Rahmati & Hassani, 2009). 
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1. Introduction     
 

The original idea of the collinear principle in the antenna design comes from Franklin 
(Franklin, 1925). He faced the problem of resonant long wire antennas. In principle, the 
standing wave current distribution on the long straight wire produces n radiation lobes of 
the same level, depending on the number n of half-wave antenna sections. Employing non-
radiating quarter-wave stubs Franklin converted the original out-phase current distribution 
into an in-phased distribution of currents on collinear segments (represented by solid red 
arrows in Fig. 1), thus producing only one major radiation beam. A key advantage of such 
arrangement is represented by the high gain of the antenna with the properties of series 
antenna array, whereas the simplicity of the single feeding point is maintained. All antenna 
structures based on this principle are known as collinear arrays (CoA). The latter are 
composed of in-phase fed radiating elements that lie in the straight line. Their radiation is 
typically broadside and perpendicular to the axis of collinear elements. Since Franklin’s 
times many collinear antenna structures have been proposed. The principle representatives 
of the CoA are described later on. 
  

 
 

Fig. 1. Sketch of vector current distributed on original Franklin collinear wire dipole. Only 
collinear segments provide in-phase current distribution and contribute to radiation. 
 
The first coaxial collinear (CoCo) antenna was proposed in 1972 (Balsley & Ecklund, 1972). It 
is constructed of series of half-wavelengths of the coaxial cable connected together by an 
electrically interchanging of the inner-and outer-conductors at each junction, see Fig. 2. 
From the physical point of view, the resulting antenna takes form of a one single long 
section of exible coaxial line. Nevertheless, from the electrical point of view, it is composed 
of a number of collinear half-wave dipoles fed in phase. Although the principle of operation 
of the CoCo antenna is based on the Franklin’s idea, the concept of radiating coaxial is far 
more complex. Due to the Ampere’s circuital law, the currents in the inner line conductor 
and on the inside surface of the outer line conductor must be equal and opposite. Referring 
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to Fig. 2, it is obvious that one feeder feeds two coaxial lines only. Consequently, there can 
be no current over the outer cable conductor. This current represents the antenna radiating 
current. In fact, the generator excites two antennas (one starting with the outer line 
conductor, whereas the other with the inner line conductor). Therefore, both of these two 
antennas are fed 180° out of phase. Consequently, there will be a non-zero total current 
along the coaxial-line sections, i.e., a radiating current. A frequently presented variation of 
the described CoCo antenna is the monopole concept over the ground plane. Further 
electromagnetically coupled coaxial dipole array antenna has been proposed as a 
modification of the CoCo (Miyashita et al., 1999). 
 

 
Fig. 2. Coaxial collinear (CoCo) antenna with a sketch of vector current distribution 
 
Franklin-type microstrip line antenna (Nishimura et al, 1979) was probably one of the rst 
microstrip line type antennas based on the collinear principle. The antenna conguration 
and the current distribution on the radiating microstrip line are depicted in Fig. 3a. The 
operational principle is based on a presumption that, in general, a non-radiating microstrip 
line can be manufactured and used in order to radiate by means of the suitable bending of 
the strip conductor. The aforementioned bending perturbs transmission characteristics of 
the microstrip line periodically; thereby it operates as a linear array antenna. The presented 
shape of the microstrip turns out to be very effective, because even the phasing stubs 
contribute to the radiation. The microstrip is designed for 50 Ω. The end of the microstrip 
line is terminated by an open-circuit. When the lengths of the straight section and the 
bending section (see Fig. 3a) are set at the level of about one-half of guide wavelength, 
the eventual current distribution can be represented by the arrow. As a result, the direction 
of the radiation is broadside of the array and the polarization is parallel to the straight 
section.  
 

     
 

Fig. 3. Franklin-type microstrip line antenna a) and Microstrip-Franklin antenna b) with a 
vector current distribution 
 
Another microstrip antenna derived from the Franklin’s collinear idea was the Microstrip-
Franklin antenna (Solbach, 1982). The layout of the structure is shown in Fig. 3b). Unlike the 

 

CoCo antenna, the principle of the operation is more similar to the Franklin’s folded wire. 
Solbach started with the endeavour to suppress the radiation of the half-wavelength 
connecting lines situated between the patch radiators in microstrip array. In comparison 
with Franklin, he proposed two 100 Ω quarter-wave phasing stubs, producing a 180° phase 
shift between the terminals of the microstrip transmission lines. The stubs were designed 
symmetrically in order to maintain the parasitic discontinuity effects at the junction of stub 
and microstrip patch on the low levels. The currents on the phasing stubs are mutually 
opposite in direction so that the radiation produced by the stubs is cancelled. Nevertheless, 
the electrical fringe elds of the terminating microstrip lines superimpose the phase in the 
slot between the lines. The resulting electric eld in the slot was revealed as a prevailing 
source of radiation in the arrangement; see Fig. 3b). Such phasing stub can be described as a 
slot radiator embedded into the microstrip line and employing the radiators in question. It is 
possible to design the antenna array with a low spurious radiation and also a low surface 
wave excitation.  
One of the latest structures with applied omnidirectional principle to the microstrip 
structure is represented by the Omnidirectional Planar Microstrip Antenna (OMA) (Bancroft 
and Bateman, 2004). The geometry of the OMA is presented in Fig. 4. The antenna consists 
of top and bottom traces. The top layer traces range from wide to narrow, while 
complementing the narrow to wide traces on the bottom layer. The antenna is fed with a 
probe at the junction of the rst narrow line and the next wide section connection. The 
principle of operation is similar to the CoCo antenna, since all wide half-wavelength parts of 
the antenna radiate. The radiation is omnidirectional, because the odd and even half-
wavelength wide section radiate in opposite directions. The impedance matching is 
achieved by variations of the value of W2. 
 

 
 

Fig. 4. Omnidirectional microstrip line antenna with a sketch of vector current distribution 
 
Another collinear type antenna is represented by an arrangement of folded slot analogues to 
the wire type, e.g. (Chen et al., 2007).  
The next chapters are going to deal with the development and efficient analysis of a novel 
arrangement of collinear antenna in the microstrip technology providing hemispherical 
pattern called Collinear Microstrip Patch Antenna (CoMPA) (Polívka & Holub, 2005). 
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Another collinear type antenna is represented by an arrangement of folded slot analogues to 
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As it is going to be demonstrated, the latter  can also be modularly extended in area 
for higher gain (Polívka & Holub, 2006). 

 
2. Development of Collinear Microstrip Patch Antennas 
 

This section is based on the explanation presented for the first time in papers (Polívka & 
Holub, 2005) and (Polívka & Holub, 2006). It describes the operational principle of a novel 
type of collinear antenna array, designed and realized in the microstrip patch antenna 
technology. The operational principle is explained via surface current distribution on the 
patch in the way analogical to the case of Franklin wire CoA. The performance of the 
antenna principle is verified on the realized prototypes for 869 MHz RFID and 2.4 GHz ISM 
bands, which are employed in the real applications. 

 
2.1 Principle of CoMPA operation 
Firstly, let us explain the meaning of the following three expressions frequently used in the 
microstrip patch antenna technology: radiator, patch and motif. The term ‘radiator’ stand 
for a complete radiating element that includes the ground plane. ‘Patch‘ is a conductive part 
of a radiator that is situated  in the height h above the ground plane. The term ‘motif‘ is used 
for  a particular geometrical shape of the patch.  
The principle of the operation of CoMPA is based on the application of geometrical 
‘perturbation elements‘, i.e. slots and notches introduced in the patch that, itself, operates on 
higher order modes. In our case, the antenna resonates dominantly on the TM0X mode, 
where X determines the number of current half-wavelengths in the resonant longitudinal 
dimension of the patch (in figures indicated on the y-axis). The impact of the perturbation 
elements can be explained as the way how to eliminate the radiation from even out-phase 
electric current distribution, which is forced to flow round these elements. This approach is 
analogous to the application of λ/4 curved sections in the Franklin wire antenna.  
From the point of view of the radiation pattern calculation, the slots (and notches) can be 
put together with outer radiation edges that are considered as a radiation source in case that  
the equivalent method of magnetic currents is used. The E-field distribution along the 
external perpendicular edges is nearly constant. On the contrary the E-field distribution 
along the inner slots reaches its maximum in the center, but shows degressive trend in its 
value as long as it approaches the slot edges, which corresponds to the currents flowing 
around. A detailed analysis of the E-field distribution along the edges of the CoMPA 
represents the objective of Chapter 3. Vector surface current distributions on the CoMPAs, 
operating on the mode TM03 and TM05 are demonstrated in Fig. 5. 
The CoMPA operating with TM03 mode (CoMPA03) with one central narrow slot constitutes 
the simplest example of the implementation of the above-described principle.. The slot of 
the length of approx. λg/2 and the width of a fragment of λg makes the second (even) 
current wavelength to flow around (see Fig. 5a). The same effect can be explained in case of 
CoMPA operating on the mode TM05 (CoMPA05) (see Fig. 5b). The optimized dimensions of 
CoMPA05 scaled to the wavelength are depicted in Fig. 5c. The solid red and dash blue 
arrows represent the in-phase (approx. λg/2 long) and out-phase (approx. λg/5 long) source 
areas, respectively. 
Physical dimensions of the realized antenna prototype (see Fig. 6a) are listed below: patch 
size 268 × 643 mm, slot length 172.5 mm and ground plane size 298 × 680 mm. The patch is 

 

carried by plastic distance posts located over the ground plane at the height of 10 mm 
(approx. 0.03 λ0). The distance between the coaxial feed placed on the y-axis and the inner 
edge of one of the slots equals approx. 0.047 λg. All the structure was modeled in the IE3D 
method of moment simulation tool with a finite ground plane. 
 

a)    b)     c)  
 

Fig. 5. Vector surface current distribution represented by black arrows (simulated by IE3D) 
on the patch of the CoMPA operating on mode a) TM03, and b) TM05. c) Scheme of the 
CoMPA05 with dimensions related to the wavelength with schematic current distribution. 
 
The measured reflection coefficients of the realized prototype with and without a hardened 
polystyren (HPS) radom of 3 mm thickness placed at the height of 40 mm over the patch is 
illustrated in Fig. 6b. 
 

a)  b)  
Fig. 6.  a) Photograph of CoMPA05 prototype for 869 MHz band, b) measured reflection 
coeffcient of realized prototype with depicted influence of HPS radom. 
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The measured radiation patterns are presented in Fig. 7. The distance between the center of 
odd in-phase rectangular parts is equal to approx. 0.65 λ0, which explains the sidelobe level 
of about -13 dB similarly to the 0.5 λ0 spaced uniform array. The front-back ratio is approx. 
19 dB in the E-plane, although the ground plane dimensions exceed the size of the patch 
itself by only some 0.1 λ0 (!). The antenna gain without cover has been measured by means 
of the substitution method at 869.5 MHz in the antenna anechoic chamber (Mazánek et al., 
2000). The simulated values of the directivity 12.6 dBi and gain 12.4 dBi (the corresponding 
efficiency amounts to 95 %) are slightly higher than the measured gain 11.7 dBi. This 
phenomenon can result from the fabrication tolerance on one hand and the presupposed 
gain measurement error, which equals at least +/-0.5 dBi on the other hand.. The radiation 
of the antenna is directional in the E-plane and wider in the H-plane, which corresponds to 
the linear array of radiators in the y-axis. The measured 3dB beamwidth of 25° in the 
E-plane and of 65° in the H-plane confirms the gain enhancement (when compared to the 
gain of the standard rectangular microstrip patch operating on TM01 mode). In fact, the 
aforementioned gain reaches approx. 6-9 dBi, indeed depending on the heigth and the 
substrate used. The value of the impedance bandwidth BW = 2.8 % (related to VSWR = 2) is 
relatively low. It arises from the resonant character of the structure as it is expected in case 
of the patch-type antennas. In case of a particular RFID application at 869 MHz, where this 
prototype was used (Švanda et al., 2007), the impedance bandwidth is sufficient, because 
merely the 250 kHz band was required. 
 

a)  b)  
 

Fig. 7. Measured co-polar (Eco) and cross-polar (Ex) radiation patterns of CoMPA05 
for 869 MHz band in a) E-plane, and b) H-plane. 

 
2.2 Planar extension of CoMPA 
All examples of collinear antennas introduced in the first state-of-the-art chapter have one 
quality in common – each design can be considered as a linear antenna array. However, 
the principle of CoMPA in the microstrip patch technology enables the extension 
of the structure perpendicularly to the longitudinal axis of the array. This measure is 
introduced in the following text. The essence of this lateral extension of currents is similar 
to the principle used in the grid flat-panel array (Kraus & Marhefka, 2002). 
The first stage of the explanation has to be dedicated to the structure operating on the TM03 
mode, i.e.  CoMPA03. The latter can be considered as a linear array of radiators, which can be 

 

laterally extended. Yet in order to preserve the surface current distribution, it is 
indispensable to add a pair of lateral notches. These notches (of the length of approx. λg/4 ) 
are placed perpendicularly to the patch border, at the same y-coordinates as the slots. In 
consequence, the current distribution of the TM03 mode remains the same as on CoMPA. In 
addition, the similar phenomenon of currents that flow around the notches is maintained 
(see Fig. 8a). As a result, the Jy component plays a dominant role on the surface of the patch 
and the radiator exhibits a broadside hemispherical radiation with an enhanced gain. 
The domination of the Jy component on the majority of the patch surface is a crucial 
condition for maintainance of a reasonably low cross-polar level. Due to the fact that the 
area of radiating sources was extended, a higher level of directivity is presumed. 
By combining longitudinal and lateral extensions of CoMPA03, a motif with two central slots 
and two pairs of lateral notches operating on TM05 mode (called planar CoMPA; hereinafter 
referred to as PCOMPA05) is realized (see Fig. 8b). Fig. 8c shows PCoMPA05 motif divided 
by vertical and horizontal dashed lines into basic modules that form building blocks of the 
previously elaborated less complex versions of discussed PCoMPAs. The horizontal dashed 
lines divide the motif into areas with opposite orientation of the surface currents. These 
currents are denoted in the same fashion as in Fig. 5c, i.e. by solid red and dash blue arrows. 
The solid red arrows represent the in-phase regions, where the surface currents are nearly 
straight and oriented towards the y-axis (they are approximately λg/2 high). On the 
contrary, the dash blue arrows illustrate the out-phase regions, where the surface currents 
flow around the slots and notches. As a consequence, in the latter type the currents are 
oriented mostly towards the x-axis (their high is of approximately λg/5).  
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Fig. 8. Vector surface current distribution represented by black arrows on PCoMPA with a) 
TM03 and b) TM05 modes (simulated by IE3D). c) Scheme of PCoMPA05 showing separation 
to basic segments and line demarking in-phase and out-phase current source areas 
 
The initial design of the PCoMPA05 antenna prototype that is developed for 2.4 GHz band is 
based on the principle described above. The center design frequency was set to 2.44 GHz 
and the antenna initial dimensions were optimized by means of build in procedures of IE3D 
simulator, where the criteria of impedance matching and maximum gain were followed. 
Physical dimensions of the final antenna prototype follow: patch size 189 × 222 mm, slot 
length 56 mm, notches length 28 mm and ground plane size 240 × 260 mm. The patch is 
carried over the ground plane by plastic distance posts (in the simulation, this fact was 
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The measured radiation patterns are presented in Fig. 7. The distance between the center of 
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prototype was used (Švanda et al., 2007), the impedance bandwidth is sufficient, because 
merely the 250 kHz band was required. 
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and the antenna initial dimensions were optimized by means of build in procedures of IE3D 
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carried over the ground plane by plastic distance posts (in the simulation, this fact was 
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neglected) at the height of 5 mm (approx. 0.04 λ0). The patch is fed by a coaxial probe placed 
on the y–axis at the distance of around 0.047 λg above one of the slots. Measured and 
simulated reflection coefficients of the realized prototype are depicted in Fig. 9b. 
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Fig. 9. a) Photograph of realized PCoMPA05 prototype, b) measured and simulated reflection 
coefficient 
 
The distance between the centers of the in-phase source current areas equal 0.68 λ0. 
Consequently, similarly to the case of 0.5 λ0 element spacing in the linear uniform array, the 
sidelobe level is equal to about -10 dB. The front-back ratio is approximately 20 dB in both, 
the E plane and H plane. However, the ground plane dimensions exceed at all sides the size 
of the patch itself by merely some 0.2 λ0.. The measured radiation patterns are presented in 
Fig. 10. The simulated (15.8 dBi) and the measured gains (15.4 dBi) result in 92 % efficiency. 
The impedance bandwidth 173 MHz, i.e. BW = 7.1 % (for VSWR = 2) is sufficient for 
example for the 2.4 GHz ISM applications.  
 

a) b)  
Fig. 10. Measured co-polar (Eco) and cross-polar (Ex) radiation patterns of PCoMPA05  
prototype in a) E-plane, and b) H-plane. 

 
3. Efficient Analysis of Collinear Microstrip Patch Antennas 
 

An accurate and reliable characterization of both microwave and millimeter-wave antennas 
and circuits is one of the basic prerequisites for a successful computer-aided design (CAD), 

 

which constitutes a key prerequisite for a fast and cheap production process. Accordingly, 
our attention within the analysis of the CoMPA is concentrated mainly on a fast initial 
design showing sufficient accuracy that would not require the use of an expensive 
electromagnetic simulator. The selected analysis approach should be able to use the CoMPA 
rectangular building blocks for the effective implementation of the method and would also 
be suitable for more complex types of CoMPAs. All these requirements fulfill the multiport 
network model (MNM) (Gupta et al., 1981), which,  together with innovations implemented 
by the authors, is going to be subject to a brief  recapitulation here.  

 
3.1 Multiport network model of patch antennas  
The MNM is a method based on the Green’s function approach (Okoshi, 1985) that is 
restricted to planar circuit components with regular canonical shapes. It can be considered 
as an extension of the cavity model (Lo et al., 1979), (Richards et al., 1981). The patch 
antenna is analyzed as a two-dimensional planar network, whereas the electromagnetic 
fields underneath the patch and outside the patch are modeled separately as networks that 
are then connected together via edge ports (Gupta & Hall, 2000); see Fig. 11. 
 

 
Fig. 11. Rectangular patch antenna represented as multiport network, connected with 
radiating and non-radiating edge admittance networks (R-EAN and NR-EAN) according to 
(Gupta & Hall, 2000) 
 
The evaluation of the field underneath the patch is derived from the Green’s function and 
can be expressed in terms of Z-matrix of multiport network in the following way: 
 

2
0 0

),(),(

kkk

yxyx

LW
hjZ

yx

m
qqmnpp

n
nm

pq 













 
(1) 

 
where eigenfunction mn, for ports oriented along the y-direction is: 
 











2
)cos()cos(),(

Wk
ncsiykxkyx y

yxmn  (2) 

 



Collinear	Microstrip	Patch	Antennas 521

 

neglected) at the height of 5 mm (approx. 0.04 λ0). The patch is fed by a coaxial probe placed 
on the y–axis at the distance of around 0.047 λg above one of the slots. Measured and 
simulated reflection coefficients of the realized prototype are depicted in Fig. 9b. 

a) b) 

-30

-25

-20

-15

-10

-5

0

2300 2350 2400 2450 2500 2550 2600
frequency [MHz]

re
fle

ct
io

n 
co

ef
fic

ie
nt

 [d
B

]

measurement

simulation

 
Fig. 9. a) Photograph of realized PCoMPA05 prototype, b) measured and simulated reflection 
coefficient 
 
The distance between the centers of the in-phase source current areas equal 0.68 λ0. 
Consequently, similarly to the case of 0.5 λ0 element spacing in the linear uniform array, the 
sidelobe level is equal to about -10 dB. The front-back ratio is approximately 20 dB in both, 
the E plane and H plane. However, the ground plane dimensions exceed at all sides the size 
of the patch itself by merely some 0.2 λ0.. The measured radiation patterns are presented in 
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antenna is analyzed as a two-dimensional planar network, whereas the electromagnetic 
fields underneath the patch and outside the patch are modeled separately as networks that 
are then connected together via edge ports (Gupta & Hall, 2000); see Fig. 11. 
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and for ports oriented along the x-direction the following equation applies: 
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where the function sinc(z) is defined as sin(z)/z and, at the same time 
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with δ being the loss tangent of the dielectric, L and W rectangle’s length and width, and h 
the substrate’s height. Points (xp, yp) and (xq, yq) denote the locations of the ports p and q, 
respectively.  
The outer fields are modeled by means of so-called edge admitance networks (EAN), which 
might be considered as either radiating or non-radiating, depending on the shape of the 
voltage distribution along the edge. The non-radiating EAN (NR-EAN) are multiport 
networks consisting merely of the capacitance C (representing the energy stored in the 
fringing field). On the contrary, the radiating EAN (R-EAN) consists of parallel combination 
of the capacitance C and the conductances G (representing the power carried away by 
radiation and surface waves). The formulae for G and C can be found in (James & Hall, 
1989). 
The segmentation and desegmentation methods (Gupta et al., 1981) are used in order to 
identify the Z-matrix of non-regular shaped components, composed of the elementary 
segments, for which Green’s functions are available. This technique enables to connect these 
segments into the complex planar shape via external ports. The voltage distribution and 
further s-parameters can be derived easily from the Z-matrix. The mathematical description 
of the technique is presented in several antenna handbooks, e.g. (James & Hall, 1989). 

 
3.2 MNM of CoMPA03 
The very first MN model of CoMPA03 was originally developed in order to apply an MNM 
method on a patch antenna with inner slot (Holub & Polívka, 2007a) and to compare the 
results with IE3D full-wave method of moments based simulation, which was assumed 
referential. Firstly, the antenna geometry was designed and optimized in IE3D simulator. 
The design frequency equalled f = 2.44 GHz. The optimized structure dimensions are listed 
below: patch length L = 147.5 mm, patch width W = 86.0 mm, slot length Ls = 56.0 mm, slot 
width Ws = 2.5 mm, space between the slot and the coaxial feeding probe Lf = 29.0 mm and 
the air substrate height h = 5 mm. The segmentation method, instead of desegmentation one, 
was used as the latter produces small numbers in Z-matrix. It addition, it gives rise to a 
consequential error during the process of desegmentation resulting from  a substantial 
subtility of the inner slot(s) as well as from  a small distance between the additional inner 
and external ports of the slot. The complete MN model of CoMPA03 is made up of four 

 

segments; see Fig. 12a. The collateral segments are identical and the port distribution along 
the edges is uniform except of the central part with the ports No 11 and 35. The width of 
these two ports is equal to the width of the slot Ws. The Z-matrixes of two central parts are 
nearly identical, because their dimensions and the port layout are the same. Nevertheless, 
the upper central Z-matrix involves the feeding port No. 1 representing a coaxial feeding 
probe. The Z-matrix of the complete segmented structure is composed of 97 × 97 elements. 
The distribution of EAN’s is presented in Fig. 12b. The collateral edges are considered non-
radiating. The EAN’s contains the edge capacitance C only. The radiating EAN’s (R-EAN’s) 
are connected to the top and the bottom external ports of the patch. 
 

 
Fig. 12. a) Segmentation of MN model of CoMPA03, b) MN model of CoMPA03 with 
connected EANs and R-EAN 
 
The situation (i.e. EAN) slightly varies along the edges of the inner slot. The capacitance at 
the edge of the slot is different from the capacitance at the external edges of the antenna and 
thus should be considered in a way shown in Fig. 13a. The aforementioned configuration 
matches the capacitance of the gap in the microstrip line (Gupta et al, 1981). This approach 
requires inclusion of the capacitance Cg between the opposite ports at the slot edges; see Fig. 
13a. However, from the comparison of MNM with IE3D simulation results we have learned 
that the approach based on the consideration of the slot edges as just two external edges (see 
Fig. 13b) leads to results that are sufficiently accurate. The accuracy of the MN model 
depends on the number N of eigenfunctions in the calculation of Z-matrices of individual 
segments. The influence of the numer N on the results is demonstrated in the graph in Fig. 
14. For the simplest CoMPA03 radiator, the required accuracy can be achieved provided that 
the number N is of at least N = 20. The higher is the N, the higher is the accuracy. Yet, 
indeed,  the duration of the calculation increases accordingly. 

 
Fig. 13. a) Theoretical equivalent circuit model of inner slot R-EAN, b) implemented 
admittance network 
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and for ports oriented along the x-direction the following equation applies: 
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The same structure was simulated in IE3D (for comparison see results indicated in Fig. 14b. 
A slight difference in the orientation of the curves in Smith diagram between the IE3D and 
MNM results is caused by an inductance of the coaxial probe, which is not included in the 
MN model. 

a)  

b)  
Fig. 14. MS11 and S11 of CoMPA03 in Smith chart obtained by a) MNM, and b) IE3D 
simulation 
 
In order to get an idea of  the physical principle of the radiation structure, it is advisable  to 
visualize the surface current distribution (see Fig. 15). Similar characteristic can be achieved 
in MNM by a display of the voltage distribution along the edges. Given the fact that the 
currents flow against the direction of voltage gradient, we can sketch the arrows 
representing the principal directions of the currents at the edges. Although the visualization 
of the voltage distribution cannot comprehend the direction of the currents inside the 
structure, it represents a useful instrument for the analysis of the radiation structure. 
 

 
Fig. 15. Comparison of vector surface current distribution visualized by IE3D (left) and edge 
voltage distribution obtained by MN modelling (right) 

 

A more complex MN model of the CoMPA05, optimized for the frequency of 869 MHz, has 
been presented (Holub & Polívka, 2007b). The following rule applies: the higher is the 
structure complexity, the higher is the number of possible variants of segmentation. For 
instance, the segmentation of the CoMPA05 can be derived from the CoMPA03 segmentation 
by connecting additional rectangular segments to the shape of the CoMPA03. However, such 
approach would be ineffective as it would contain too many segments with dissimilar 
proportions.  
For edges with variable voltage distribution (non-radiating edges and inner slots), the 
number of segments per each half-wavelength should be considered from 8 to 10. In case of 
the uniform distribution, this number amounting to around 4-5 per each half-wavelength is, 
in general, sufficient. 

 
3.3 Modeling of zero thickness of inner slots 
The complexity of models (Holub & Polívka, 2007a), (Holub & Polívka, 2007b) results from 
a relatively complicated segmentation. The latter has to be used, due to a very limited width 
of the inner slots. This disadvantage can be eliminated by an effective MN modeling of the 
CoMPA, where the slot width is considered zero (instead of e.g. Ws = 0.5 mm); see Fig. 16. 
This approach has been first presented in (Holub & Polívka, 2008). Merely two unequal 
matrices have to be computed: the central matrix with a coaxial feeding and the top-bottom 
matrices. After the process of segmentation is accomplished, the ports along the opposite 
edges of the slots are located at the same xy-coordinates (this step has only an insignificant 
impact on the results). Due to the shift of the slot edge ports towards the center of the slots, 
the length of the CoMPA sections adjoining with the slots is extended. The ports along the 
slot edges are connected to the modified radiating EANs (MR-EANs); see Fig. 17c.  
 

 
Fig. 16. Effective segmentation of MN model of CoMPA05 considering zero thickness of slots, 
b) MN model of CoMPA05 connected with R-EANs and MR-EANs  



Collinear	Microstrip	Patch	Antennas 525

 

The same structure was simulated in IE3D (for comparison see results indicated in Fig. 14b. 
A slight difference in the orientation of the curves in Smith diagram between the IE3D and 
MNM results is caused by an inductance of the coaxial probe, which is not included in the 
MN model. 

a)  

b)  
Fig. 14. MS11 and S11 of CoMPA03 in Smith chart obtained by a) MNM, and b) IE3D 
simulation 
 
In order to get an idea of  the physical principle of the radiation structure, it is advisable  to 
visualize the surface current distribution (see Fig. 15). Similar characteristic can be achieved 
in MNM by a display of the voltage distribution along the edges. Given the fact that the 
currents flow against the direction of voltage gradient, we can sketch the arrows 
representing the principal directions of the currents at the edges. Although the visualization 
of the voltage distribution cannot comprehend the direction of the currents inside the 
structure, it represents a useful instrument for the analysis of the radiation structure. 
 

 
Fig. 15. Comparison of vector surface current distribution visualized by IE3D (left) and edge 
voltage distribution obtained by MN modelling (right) 

 

A more complex MN model of the CoMPA05, optimized for the frequency of 869 MHz, has 
been presented (Holub & Polívka, 2007b). The following rule applies: the higher is the 
structure complexity, the higher is the number of possible variants of segmentation. For 
instance, the segmentation of the CoMPA05 can be derived from the CoMPA03 segmentation 
by connecting additional rectangular segments to the shape of the CoMPA03. However, such 
approach would be ineffective as it would contain too many segments with dissimilar 
proportions.  
For edges with variable voltage distribution (non-radiating edges and inner slots), the 
number of segments per each half-wavelength should be considered from 8 to 10. In case of 
the uniform distribution, this number amounting to around 4-5 per each half-wavelength is, 
in general, sufficient. 

 
3.3 Modeling of zero thickness of inner slots 
The complexity of models (Holub & Polívka, 2007a), (Holub & Polívka, 2007b) results from 
a relatively complicated segmentation. The latter has to be used, due to a very limited width 
of the inner slots. This disadvantage can be eliminated by an effective MN modeling of the 
CoMPA, where the slot width is considered zero (instead of e.g. Ws = 0.5 mm); see Fig. 16. 
This approach has been first presented in (Holub & Polívka, 2008). Merely two unequal 
matrices have to be computed: the central matrix with a coaxial feeding and the top-bottom 
matrices. After the process of segmentation is accomplished, the ports along the opposite 
edges of the slots are located at the same xy-coordinates (this step has only an insignificant 
impact on the results). Due to the shift of the slot edge ports towards the center of the slots, 
the length of the CoMPA sections adjoining with the slots is extended. The ports along the 
slot edges are connected to the modified radiating EANs (MR-EANs); see Fig. 17c.  
 

 
Fig. 16. Effective segmentation of MN model of CoMPA05 considering zero thickness of slots, 
b) MN model of CoMPA05 connected with R-EANs and MR-EANs  
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The results of the IE3D simulation confirmed that the MR-EANs should not contain the 
capacitances representing fringing fields at the edges of the slots. These fields are minor, 
since the opposite edge of the slot and its influence is partly included in the model itself by 
means of the shift of the slot ports towards the axis of the slot. As for the external fields, they 
can be incorporated either by the connection of the susceptance B or by a short extension of 
ΔL. The elements of the Y-matrix characterizing the EANs are computed from the equivalent 
circuits indicated in Fig. 16. 
The distribution of the EANs for the CoMPA05 is depicted in Fig. 17. The main advantage of 
the presented solution consists in its compactness and simplicity. Compared to the previous 
models, the presented solution requires fewer steps during the segmentation, which does 
not save much of the calculation time (approx. 5 %) though. But still, the code is simpler and 
easier for implementation. 

 
Fig. 17. Elements of Y-matrices characterizing non-radiating edge admittance network (NR-
EAN), radiating edge admittance network (R-EAN) and modified radiating EAN (MR-EAN) 

 
3.4 Efficient implementation of MNM for CoMPA0X analysis 
Although the amount of the saved computational time is insignificant, the main feature of 
the above-described approach lies in the difference in segmentation. In case we divide the 
CoMPA antenna into the physically logical blocks with similar current distribution 
(thatwould be bounded by radiating slots), these modules match the segments in MNM 
segmentations. The complexity of the structure can be determined by the excited TMxy mode 
and/or the number of patch modules (i.e. the areas between the slots). In the effective MNM 
method modelling we can take advantage of the periodicity of the structure. The 
development of a universal code for the previous models would be substantially 
complicated (especially the part dedicated to the algorithm of segmentation). Besides, the 
obtained model would be inefficient and nearly unusable. Owing to the presented novel 
effective segmentation, the situation is considerably simplified. 

 
Fig. 18. Sequential assembly of 5 segments in CoMPA09 MN modeling with feeding probe 
position according to eq. (4) 

 

From the given geometry dimensions of the internal and external modules as well as the 
number of ports along particular edges of the segments, it is necessary to allocate the 
positions of the individual ports and their widths. The next step is represented by the 
calculation of the Z-matrices for the internal and external CoMPA modules.  
The first port of the calculated internal matrix is the coaxial feeding port. Such type of the 
matrix is utilized uniquely for the central module with feeding port. The location of the port 
in question is determined by its distance from the central slot. When the first row and 
column of the matrix, representing the first feeding port, is erased, the matrix for all other 
internal modules, without any calculation, is obtained. 
Subsequently,  the connection of the individual ports to the whole structure is initiated. Fig. 
18 depicts the sequential assembly of the five modules on the example of the CoMPA09 
excited by the mode TM09. Red segments represent the modules already connected to the 
structure; the coax feeding is marked as ×. 
After the connection of the further segment, the ports along the edges are disarranged. 
Before the next assembly, the port distribution has to be rearranged. The first and the last 
segments stand for peripheral modules. The position of the feeding segment is determined 
by the following relation: 

1
2

floor level 






CoMPAfeed  (4) 

 
where feed is the order number of feeding module, CoMPAlevel represents the total number 
of antenna modules (MNM segments) and ‘floor‘ stands for the Matlab function round 
toward minus infinity. 

 
3.5 MNM and IE3D computational time comparison 
To evaluate the effectiveness and virtues of the MN method, it is necessary to compare its 
computational time with the one of  another method. Here we use IE3D as a reference. This 
EM simulator is well-suited for planar structures as is CoMPA utilized in our case. 

 
Fig. 19. IE3D mesh of CoMPA05 with 8 cells per wavelength, a) without AEC, b) with AEC 
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As for the accuracy of the  results, IE3D enables to use so-called automatic edge cells (AEC), 
which are narrow edge cells employed for a precise modeling of current distribution; see 
Fig. 19b, c. Usually it is recommended to set the mesh density to 20 cells per wavelength. As 
it is shown, the application of 8 cells per wavelenght, together with the AEC, leads to  
sufficiently accurate results, provided that a symmetric matrix solver (SMS) is used. The 
frequency shift of the reflection coefficient minimum when a number of 8 and 20 of cells per 
wavelength with AEC is used is equal to just about 0.8%. While the difference between 
MNM and IE3D optimal results is about 2.5% which is acceptable for initial design; see Fig. 
20. 
 

 
Fig. 20. Reflection coefficient comparison of CoMPA05 simulated by MNM and IE3D with 8 
and 20 cells per wavelength (with AECs) 
 

 
Fig. 21. Port distribution along the edges of MNM segment 
 

 

A low number of mesh cells with such a good accuracy can be explained by the surface 
current distribution on the CoMPA, where the gradient of the currents attains the highest 
level around the slots, for  due to the employment of the AEC,  the meshing is fine at the 
edges. 
The distribution of the ports along the edges in the used MNM is depicted in Fig. 21, where 
the number of ports along the particular sections utilized for comparison with IE3D are 8, 7, 
and 6 for the segment length, slot length and contact port length, respectively. The number 
of eigenfunctions in summation of the Z-matrix is equal N = 40. 
Because of a short computational time per frequency (that is less than one second), the 
antennas were analyzed at 31 frequency points within 2.3 - 2.6 GHz frequency band. 
The obtained results are summarized in the diagram in Fig. 22. The principal difference 
between IE3D and MNM consists in the rule that the computational time in IE3D rapidly 
rises with the increasing number N of CoMPA segments. However, the MNM calculation 
stays nearly constant, yet there is an exception – the calculation of the CoMPA03 (two 
CoMPA modules) requires half of the time, because the model is composed of two segments 
derived from one matrix, representing peripheral elements. The slight growth of the 
computational time (see Fig. 22) is attributable to the rising number of segmentation cycles. 
On the contrary, the main time consuming part – the computation of MNM Z-matrices – 
remains unchanged. To state the key virtue of the proposed MNM approach, it is necessary 
to point out that  we can calculate the CoMPA of any level without the significant rise in the 
computational time. 
 

 
Fig. 22. Comparison of computational time of MNM method and IE3D simulation; IE3D 
(8 cells), IE3D-optimal (8 cells with AEC) 
 
4. Conclusion 
 

A sort of novel collinear microstrip patch antennas with a hemispherical radiation pattern, 
showing an increased gain of approx. 12 ÷ 15 dBi has been comprehensively introduced. 
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The essence of the operation has been explained via surface current distribution of 
operational modes of the antenna, which can be described as slots and notches loaded 
microstrip patch operating with higher TM0X modes. Due to the collinear arrangement of the 
in-phase source current areas, the directivity can be enhanced by an increase in the order of 
the operational mode together with the enlargement of the patch longitudinal and lateral 
dimensions. The advantage of such arrangement, when compared to a classical patch array, 
is represented by a very simple structure without the need for any feeding network. 
The drawback, however, is given by the limited impedance bandwidth and also the 
impossibility to control the amplitude distribution as well as the phase of source currents on 
the structure. This structure is namely suitable for applications, where the gain ranging from 
approx. 12 to 20 dBi is required. Typical applications are terminal antennas destined 
for communication purposes or RFID reader antennas. 
Subsequently, the effective multiport network model has been implemented for the CoMPA 
fast initial design, based on the presumtion of zero slot width. The results then match very 
sufficiently the results obtained by the IE3D simulator. The comparison of the 
computational times of the MNM and the IE3D shows that in case the number N of CoMPA 
modules increases, the IE3D computational time is approximately proportional to the N2, 
while the MNM time remains nearly constant or increases very slowly. When stressing the 
advantages of the novel type of segmentation introduced in this chapter, it is crucial to 
mention also the compactness and simplicity of the MNM algorithm, indeed when 
compared to the original implementation. 
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1. Introduction    
 

Slot dipole antennas fed by coplanar waveguide (CPW) have a number of appealing 
characteristics that include relatively low feed line dispersion and losses at millimeter-wave 
frequencies, ease of integration with circuit components due to the uniplanar configuration, 
and considerably wider impedance bandwidth than microstrip patch antennas on 
comparable substrates, e.g., (Miao et al., 2000). In the sub-millimeter and millimeter-wave 
ranges, CPW-fed slots have been used to feed dielectric lens antennas (Focardi et al., 2002); 
arrays of CPW-fed slots are also expected to be used for space applications (Neto et al., 
2003).  
While a variety of CPW-fed slot arrays have been reported (see section 3), rigorous design 
procedures for CPW-fed slot arrays that incorporate the effects of element interactions in the 
form of mutual coupling have only rarely been presented (Huang et al., 1999; Jacobs & 
Joubert, 2009b). An iterative design typically involves the a priori generation of self-
admittance data for representative slot dimensions, and requires the calculation of mutual 
coupling between all possible slot pairs in the array; this is especially pertinent if a non-
uniform aperture distribution aimed at achieving reduced sidelobe levels is to be realized.  
In this chapter an overview of the current state-of-the-art in the design of non-uniform linear 
CPW-fed antennas, as well as its subsidiary calculations, is presented. In section 2, the field 
distribution in an isolated CPW-fed is shown; this is important information for the 
calculation of mutual coupling. Section 3 focuses on the calculation of mutual coupling 
using a reciprocity-based paradigm. This is done in the context of two important practical 
cases. The first involves mutual coupling between slots on electrically thin substrates, where 
a simplified yet accurate method can be used that obviates use of the substrate Green’s 
function. Arrays of slots on such substrates exhibit bi-directional radiation. The second 
involves an extended reciprocity approach for calculating the mutual admittance between 
slots on a conductor-backed two-layer substrate, a configuration that would be useful when 
unidirectional radiation is required. Section 4 gives details of two types of CPW-fed linear 
array design. First, the iterative design using an approximate procedure of a uniform array 
on a conductor-backed two-layer substrate is summarized; measured results are presented. 
The procedure doesn’t require the explicit calculation of the mutual admittance between 
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pairs of slots, but does take such interactions into account through full-wave calculations of 
the input impedance of the array as a whole. Second, the implementation of a rigorous 
iterative design procedure for a non-uniform array with reduced sidelobe levels on an 
electrically thin substrate is described; measured sidelobe levels of about 16 dB below the 
main beam were achieved.  Due to the electrically thin substrate, the design procedure could 
draw on the simplified method for calculating mutual admittance outlined in section 3. 
Section 5 briefly summarizes some of the main findings. 

 
2. Field properties of isolated CPW-fed slots 
 

CPW-fed slots are normally operated in the vicinity of their second resonances because of 
the favourable impedance bandwidth properties here (compared to the first-resonant 
region).  A CPW-fed slot on a single dielectric layer is shown in Fig. 1. In order to more 
accurately account for its use in a linear array environment (see Fig. 4), the slot is terminated 
in a perfect short-circuit realized by a section of transmission line of length ls.  
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Fig. 1. Top and side views of CPW-fed slot on single-layer substrate. L ≡ half-length and W ≡ 
width of radiating slot; s ≡ slot width and w ≡ center strip width of CPW feed line; h ≡ 
dielectric layer height; εr ≡ relative dielectric constant; ls ≡ length of CPW stub implementing 
short-circuit. 
 
When evaluating the mutual admittance between pairs of slots, the aperture electric field 
distribution is required (see section 3). IE3D (Zeland Software, 2001), a full-wave 
electromagnetic simulator that employs magnetic current modeling and assumes laterally 
infinite ground planes and dielectrics, can be used to obtain this information. Figs. 2 and 3 
(Jacobs & Joubert, 2009a) show magnitudes and phases at 6 GHz of the tangential electric 
fields along longitudinal slot centers of three isolated slots on an electrically thin substrate 
with h = 1.575 mm and εr = 2.33 (at 6 GHz, h  = 0.048λd = 0.0315λ0, with λd and λ0 the 
wavelengths in the dielectric and free space respectively). The slots’ widths W was 1 mm, 
their half-lengths L were in the vicinity of the second-resonant half-length Lres = 21. 75 mm, 

 

and the length of the short-circuit stub ls was 0.48λCPW = 19.4 mm. The slots were fed by a 87 
Ω CPW feed line that had dimensions w = 3 mm and s = 1 mm.  (The same radiating slot and 
feed line dimensions were used in obtaining the mutual admittance results of Figs. 6–8.) The 
aperture field vector component shown is the one directed across the width of the slot; the 
orthogonal component was negligible by comparison.  
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Fig. 2. Magnitude of electric field of isolated slots with half-lengths in vicinity of second-
resonance half-length Lres. Lres = 21.75 mm, W = 1 mm, ls = 19.4 mm = 0.48 λCPW, h = 1.575 
mm, εr = 2.33, w = 3 mm, s = 1 mm. Vertical lines correspond to position of CPW. 
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Fig. 3. Phase of electric field of isolated slots with half-lengths in vicinity of second-
resonance half-length Lres. Lres = 21.75 mm, W = 1 mm, ls = 19.4 mm = 0.48 λCPW, h = 1.575 
mm, εr = 2.33, w = 3 mm, s = 1 mm. Vertical lines correspond to position of CPW. 
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pairs of slots, but does take such interactions into account through full-wave calculations of 
the input impedance of the array as a whole. Second, the implementation of a rigorous 
iterative design procedure for a non-uniform array with reduced sidelobe levels on an 
electrically thin substrate is described; measured sidelobe levels of about 16 dB below the 
main beam were achieved.  Due to the electrically thin substrate, the design procedure could 
draw on the simplified method for calculating mutual admittance outlined in section 3. 
Section 5 briefly summarizes some of the main findings. 

 
2. Field properties of isolated CPW-fed slots 
 

CPW-fed slots are normally operated in the vicinity of their second resonances because of 
the favourable impedance bandwidth properties here (compared to the first-resonant 
region).  A CPW-fed slot on a single dielectric layer is shown in Fig. 1. In order to more 
accurately account for its use in a linear array environment (see Fig. 4), the slot is terminated 
in a perfect short-circuit realized by a section of transmission line of length ls.  
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Fig. 1. Top and side views of CPW-fed slot on single-layer substrate. L ≡ half-length and W ≡ 
width of radiating slot; s ≡ slot width and w ≡ center strip width of CPW feed line; h ≡ 
dielectric layer height; εr ≡ relative dielectric constant; ls ≡ length of CPW stub implementing 
short-circuit. 
 
When evaluating the mutual admittance between pairs of slots, the aperture electric field 
distribution is required (see section 3). IE3D (Zeland Software, 2001), a full-wave 
electromagnetic simulator that employs magnetic current modeling and assumes laterally 
infinite ground planes and dielectrics, can be used to obtain this information. Figs. 2 and 3 
(Jacobs & Joubert, 2009a) show magnitudes and phases at 6 GHz of the tangential electric 
fields along longitudinal slot centers of three isolated slots on an electrically thin substrate 
with h = 1.575 mm and εr = 2.33 (at 6 GHz, h  = 0.048λd = 0.0315λ0, with λd and λ0 the 
wavelengths in the dielectric and free space respectively). The slots’ widths W was 1 mm, 
their half-lengths L were in the vicinity of the second-resonant half-length Lres = 21. 75 mm, 

 

and the length of the short-circuit stub ls was 0.48λCPW = 19.4 mm. The slots were fed by a 87 
Ω CPW feed line that had dimensions w = 3 mm and s = 1 mm.  (The same radiating slot and 
feed line dimensions were used in obtaining the mutual admittance results of Figs. 6–8.) The 
aperture field vector component shown is the one directed across the width of the slot; the 
orthogonal component was negligible by comparison.  
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Fig. 2. Magnitude of electric field of isolated slots with half-lengths in vicinity of second-
resonance half-length Lres. Lres = 21.75 mm, W = 1 mm, ls = 19.4 mm = 0.48 λCPW, h = 1.575 
mm, εr = 2.33, w = 3 mm, s = 1 mm. Vertical lines correspond to position of CPW. 
 

-30 -20 -10 0 10 20 30
-120

-90

-60

-30

0

30

60

 x (mm)

Ph
as

e 
(d

eg
.)

0.9Lres
Lres
1.1Lres

 
Fig. 3. Phase of electric field of isolated slots with half-lengths in vicinity of second-
resonance half-length Lres. Lres = 21.75 mm, W = 1 mm, ls = 19.4 mm = 0.48 λCPW, h = 1.575 
mm, εr = 2.33, w = 3 mm, s = 1 mm. Vertical lines correspond to position of CPW. 
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Contrary to the nearly constant phases of CPW-fed slots with half-lengths in the vicinity of 
the first-resonant half-length (Jacobs, 2007), the phases of these second-resonant slots exhibit 
a sharp rise close to the CPW feed line, while changing little in the outer reaches of the slots. 
Increases in slot length result in offsets of phases with respect to phases of preceding 
lengths. Similar graphs were obtained for slots on conductor-backed two-layer substrates 
(Jacobs, 2007). 

 
3. Mutual coupling between CPW-fed slots 
 

The focus of this section is the calculation of mutual coupling between slot pairs in linear 
arrays of slots fed in series by CPW. The geometry of such an array, designed for a 
broadside main lobe, is shown in Fig. 4. While a variety of types of CPW-fed slot arrays have 
been reported, for instance wideband linear CPW-fed log-periodic dumb-bell slot arrays 
(Kim et al., 2006), amplifier arrays using CPW-fed folded slot antennas (Tsai et al., 1994), 
and CPW-fed planar (two-dimensional) slot arrays in multi-chip module-deposition (MCM-
D) technology (Soliman et al., 1999), the rigorous calculation of mutual coupling between 
slot array elements in the context of iterative array design procedures has only rarely been 
addressed, e.g., Huang et al. (1999). For certain applications, such calculations seem 
unnecessary: the design of uniform CPW-fed arrays on both single-layer substrates (Qui et 
al., 2002) and conductor-backed two-layer substrates (Jacobs et al., 2003) have been 
accomplished without explicitly calculating the mutual coupling between individual pairs 
of slots, as noted earlier. On the other hand, the design of non-uniform arrays subject to 
rigorous sidelobe-level specifications generally requires explicit, accurate accounts of the 
mutual coupling between all possible slot pairs in the array.  
 

 
Fig. 4. Top view of N-element CPW-fed linear slot array with equiphase element excitations. 
Lm ≡ half-length and Wm ≡ width of radiating slot m, where m = 1, 2 .. N; s ≡ slot width and w 
≡ center strip width of CPW feed lines; λCPW ≡ CPW wavelength. 

 
3.1 Mutual coupling between slots on electrically thin single-layer dielectric substrate 
For electrically thin substrates a simplified method based on a well-known reciprocity-based 
expression can be used to find the mutual admittance between two broadside CPW-fed slots 
(Jacobs & Joubert, 2009a). The method is eminently suitable for easy incorporation into 

 

iterative array design algorithms, and for fast evaluation. The geometry is shown in Fig. 5; 
slot orientations correspond to their orientation in a linear array such as that of Fig. 4. The 
slots in Fig. 5 are intended to be accurate models of slots in an array environment – hence 
their termination in CPW sections implementing short-circuits that extend beyond their 
radiating portions (this will be more fully described below). The kind of mutual admittance 
calculation performed here is required when adopting a so-called first-order interaction 
approach (Amitay et al., 1972) towards finding the mutual admittance between any two 
slots in an array: the mutual admittance between a specific pair of slots is, for the sake of 
simplicity, assumed to be identical to the mutual admittance between them when the other 
slots in the array are removed.  

 
Fig. 5. Top and side views of broadside CPW-fed slots on single-layer dielectric substrate. L1 
= L2 ≡ half-lengths and W1 = W2 ≡ widths of radiating slots; d ≡ distance between radiating 
slots; s ≡ slot width and w ≡ center strip width of CPW feed lines; h ≡ dielectric layer height; 
εr ≡ relative dielectric constant; ls ≡ length of CPW stub implementing short-circuit.  
 
The simplified method assumes that, for mutual admittance calculations between CPW-fed 
slots on electrically thin single-layer substrates, the inhomogeneous air-dielectric layer-air 
medium can be sufficiently accurately approximated by a homogenous free space (this is 
different from the approach taken by Huang et al. (1999)). The mutual admittance between 
CPW-fed slots 1 and 2 of Fig. 5 can then be found by adapting results originally derived for 
wire dipoles radiating in free space in (Balanis, 1996) to slots in an infinite ground plane 
radiating in free space. If it is assumed that CPW feed lines have negligible effect on mutual 
coupling, only the radiating portions of the CPW-fed slots need to be considered. Hence, 
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In the above, Hz21 is the magnetic field of equivalent magnetic current Im1 at the position of 
slot 2 when slot 1 radiates in isolation (Im1 represents slot 1 when radiating in isolation), Im2 
is the equivalent magnetic current representing slot 2 when radiating in isolation, V1 is the 
terminal voltage of slot 1 when radiating in isolation, V2 is the terminal voltage of slot 2 
when radiating in isolation, L1 and L2 are the half-lengths of slots 1 and 2 respectively, s is 

the slot width and w the center strip width of the CPW feed line, 22
12 )( dzzr  , 

000 k  is the free-space wavenumber, and 000    the free-space intrinsic 

impedance. r and  are spherical coordinates and the dimensions constituting the 
integration boundaries are shown in Fig. 5. 
The above equations can be implemented as follows to find Y21 against slot spacing d for two 
CPW-fed slots on an electrically thin substrate: 
First, each CPW-fed slot of Fig. 5 is simulated in isolation using IE3D (in the case of twin 
slots, only one slot needs to be simulated). As noted earlier, in order to accurately model a 
CPW-fed linear array environment, each slot is terminated in a perfect short-circuit realized 
by a section of transmission line of length ls, with ls measured from the center of the 
radiating portion of the slot. For composite slot (feed line, radiating slot and short-circuit 
termination)  k, where k = 1 or 2, the simulation yields the tangential electric field along the 
center of the radiating slot (see Figs. 2 & 3), from which its equivalent magnetic current 
density Imk can be obtained. It is assumed that the radiating slot electric field only has a 
vector component across the width of the slot (in other words, the small longitudinal 
component predicted by IE3D is neglected), and that the field is constant across the width of 
the slot. The latter assumption, which enables calculation of Im1 and Im2 by simply 
multiplying the corresponding equivalent magnetic current density by the slot width, can be 
enforced in IE3D by adopting a discretization that allows for only one cell across the slot 
width. In addition to the slot tangential field, the isolated-slot moment-method analysis also 
gives the terminal voltages Vk, where k = 1 or 2. Excitation ports in IE3D are defined at the 
ends of feed lines (cf. Fig. 5). The port voltage computed by IE3D at the end of the feed line 

 

is in fact the terminal voltage, and is found by integrating the transverse electric field in one 
of the two CPW slots over the slot width. In the mutual admittance calculations described 
below, terminal voltages (and isolated slot self-admittances) were referred to centers of 
radiating slots. 
Second, Equation (1) was evaluated for each instance of slot separation d. In accordance with 
the definition of the quantities that constitute equation (1), Im1, Im2, V1 and V2 were kept the 
same for all values of d. Curves of Y21 against d obtained with the reciprocity-based method 
outlined above were compared with curves computed using IE3D. Using a moment-method 
approach towards this end implies that the entire two-slot structure of Fig. 5 needs to be 
solved for each instance of d. Ports were defined at the ends of the CPW feed lines, and from 
the full-wave solution IE3D calculated the two-port Y parameters of the structure with 
respect to the above ports. Y parameters (including Y21) were afterwards referred to centers 
of radiating slots.  
Y21 against d with 0.9λCPW ≤ d ≤ 2λCPW was computed for three pairs of identical broadside 
(twin) slots on the electrically thin substrate with h = 1.575 mm and εr = 2.33 (at 6 GHz, h = 
0.048λd = 0.0315λ0, with λd and λ0 the wavelengths in the dielectric and free space 
respectively). The slots’ widths W was 1 mm, their half-lengths L1 = L2 were 0.9Lres, Lres and 
1.1Lres respectively, with Lres = 21. 75 mm, and the length of the short-circuit stub ls was 
0.48λCPW = 19.4 mm. The slots were fed by a 87 Ω CPW feed line that had dimensions w = 3 
mm and s = 1 mm. The resonant slot had a self-impedance of 17 Ω, and hence can be 
considered a ‘typical’ slot from a linear array perspective, given that the input impedance of 
a broadside CPW-fed linear array is simply the sum of the slots’ active impedances, and 
since slot self-impedance is often considered a first-order approximation to slot active 
impedance (Elliott, 1981). The self-impedances of the 0.9Lres and 1.1Lres slots were 20-j16 Ω 
and 16+j19 Ω respectively. 
The real and imaginary parts of Y21 against normalized slot separation d/λCPW for the twin 
slots with L1 = L2 = Lres are shown in Fig. 6; results from both the reciprocity-based method 
(the curves labeled ‘rec.’) and IE3D are given. Likewise, Y21 against d/λCPW for twin slots with 
L1 = L2 = 0.9Lres and L1 = L2 = 1.1Lres are shown in Figs. 7 and 8 respectively.  The third set of 
curves (labeled ‘improved rec.’) in each of Figs. 6–8 correspond to an improved version of 
the reciprocity-based method that used, instead of the terminal voltages Vk obtained from 
IE3D, new terminal voltages Vk, new that were computed as follows. The most accurate results 
for Y21 in a linear array with broadside main lobe are required when the slot spacing d = 
λCPW ; this is the minimum spacing between slot elements, and the effect of mutual coupling 
would be the greatest here. Thus, for each of the twin slot cases represented in Figs. 6–8, the 
value of Y21 was computed at d = λCPW  using IE3D; so was the reaction integral in equation 
(1). The product V1, new V2, new was then obtained from the quotient of IE3D’s Y21 and the 
reaction integral value. Since twin slots were involved, V1, new and V2, new are equal. These 
voltages were then used in a new evaluation of equation (1) over the range of d.   
Figs. 6–8 reveal generally good agreement between Y21 computed using the original 
reciprocity-based method and Y21 computed using IE3D, with agreement being best for the 
0.9Lres twin slots and least good for the longest (i.e., 1.1Lres)  twin slots.  For each of the three 
cases, the magnitude of the difference between the Y21-against-d curves obtained with the 
original reciprocity-based method and IE3D were computed, and normalized to the 
magnitude of the isolated slot self-admittance, |Yself|.  Averaged over the range of d, the 
normalized magnitude of the difference was found to be 10.2% for the Lres slots, 1.8% for the 
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In the above, Hz21 is the magnetic field of equivalent magnetic current Im1 at the position of 
slot 2 when slot 1 radiates in isolation (Im1 represents slot 1 when radiating in isolation), Im2 
is the equivalent magnetic current representing slot 2 when radiating in isolation, V1 is the 
terminal voltage of slot 1 when radiating in isolation, V2 is the terminal voltage of slot 2 
when radiating in isolation, L1 and L2 are the half-lengths of slots 1 and 2 respectively, s is 

the slot width and w the center strip width of the CPW feed line, 22
12 )( dzzr  , 

000 k  is the free-space wavenumber, and 000    the free-space intrinsic 

impedance. r and  are spherical coordinates and the dimensions constituting the 
integration boundaries are shown in Fig. 5. 
The above equations can be implemented as follows to find Y21 against slot spacing d for two 
CPW-fed slots on an electrically thin substrate: 
First, each CPW-fed slot of Fig. 5 is simulated in isolation using IE3D (in the case of twin 
slots, only one slot needs to be simulated). As noted earlier, in order to accurately model a 
CPW-fed linear array environment, each slot is terminated in a perfect short-circuit realized 
by a section of transmission line of length ls, with ls measured from the center of the 
radiating portion of the slot. For composite slot (feed line, radiating slot and short-circuit 
termination)  k, where k = 1 or 2, the simulation yields the tangential electric field along the 
center of the radiating slot (see Figs. 2 & 3), from which its equivalent magnetic current 
density Imk can be obtained. It is assumed that the radiating slot electric field only has a 
vector component across the width of the slot (in other words, the small longitudinal 
component predicted by IE3D is neglected), and that the field is constant across the width of 
the slot. The latter assumption, which enables calculation of Im1 and Im2 by simply 
multiplying the corresponding equivalent magnetic current density by the slot width, can be 
enforced in IE3D by adopting a discretization that allows for only one cell across the slot 
width. In addition to the slot tangential field, the isolated-slot moment-method analysis also 
gives the terminal voltages Vk, where k = 1 or 2. Excitation ports in IE3D are defined at the 
ends of feed lines (cf. Fig. 5). The port voltage computed by IE3D at the end of the feed line 

 

is in fact the terminal voltage, and is found by integrating the transverse electric field in one 
of the two CPW slots over the slot width. In the mutual admittance calculations described 
below, terminal voltages (and isolated slot self-admittances) were referred to centers of 
radiating slots. 
Second, Equation (1) was evaluated for each instance of slot separation d. In accordance with 
the definition of the quantities that constitute equation (1), Im1, Im2, V1 and V2 were kept the 
same for all values of d. Curves of Y21 against d obtained with the reciprocity-based method 
outlined above were compared with curves computed using IE3D. Using a moment-method 
approach towards this end implies that the entire two-slot structure of Fig. 5 needs to be 
solved for each instance of d. Ports were defined at the ends of the CPW feed lines, and from 
the full-wave solution IE3D calculated the two-port Y parameters of the structure with 
respect to the above ports. Y parameters (including Y21) were afterwards referred to centers 
of radiating slots.  
Y21 against d with 0.9λCPW ≤ d ≤ 2λCPW was computed for three pairs of identical broadside 
(twin) slots on the electrically thin substrate with h = 1.575 mm and εr = 2.33 (at 6 GHz, h = 
0.048λd = 0.0315λ0, with λd and λ0 the wavelengths in the dielectric and free space 
respectively). The slots’ widths W was 1 mm, their half-lengths L1 = L2 were 0.9Lres, Lres and 
1.1Lres respectively, with Lres = 21. 75 mm, and the length of the short-circuit stub ls was 
0.48λCPW = 19.4 mm. The slots were fed by a 87 Ω CPW feed line that had dimensions w = 3 
mm and s = 1 mm. The resonant slot had a self-impedance of 17 Ω, and hence can be 
considered a ‘typical’ slot from a linear array perspective, given that the input impedance of 
a broadside CPW-fed linear array is simply the sum of the slots’ active impedances, and 
since slot self-impedance is often considered a first-order approximation to slot active 
impedance (Elliott, 1981). The self-impedances of the 0.9Lres and 1.1Lres slots were 20-j16 Ω 
and 16+j19 Ω respectively. 
The real and imaginary parts of Y21 against normalized slot separation d/λCPW for the twin 
slots with L1 = L2 = Lres are shown in Fig. 6; results from both the reciprocity-based method 
(the curves labeled ‘rec.’) and IE3D are given. Likewise, Y21 against d/λCPW for twin slots with 
L1 = L2 = 0.9Lres and L1 = L2 = 1.1Lres are shown in Figs. 7 and 8 respectively.  The third set of 
curves (labeled ‘improved rec.’) in each of Figs. 6–8 correspond to an improved version of 
the reciprocity-based method that used, instead of the terminal voltages Vk obtained from 
IE3D, new terminal voltages Vk, new that were computed as follows. The most accurate results 
for Y21 in a linear array with broadside main lobe are required when the slot spacing d = 
λCPW ; this is the minimum spacing between slot elements, and the effect of mutual coupling 
would be the greatest here. Thus, for each of the twin slot cases represented in Figs. 6–8, the 
value of Y21 was computed at d = λCPW  using IE3D; so was the reaction integral in equation 
(1). The product V1, new V2, new was then obtained from the quotient of IE3D’s Y21 and the 
reaction integral value. Since twin slots were involved, V1, new and V2, new are equal. These 
voltages were then used in a new evaluation of equation (1) over the range of d.   
Figs. 6–8 reveal generally good agreement between Y21 computed using the original 
reciprocity-based method and Y21 computed using IE3D, with agreement being best for the 
0.9Lres twin slots and least good for the longest (i.e., 1.1Lres)  twin slots.  For each of the three 
cases, the magnitude of the difference between the Y21-against-d curves obtained with the 
original reciprocity-based method and IE3D were computed, and normalized to the 
magnitude of the isolated slot self-admittance, |Yself|.  Averaged over the range of d, the 
normalized magnitude of the difference was found to be 10.2% for the Lres slots, 1.8% for the 
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0.9Lres slots, and 12% for the 1.1Lres slots. These average errors decreased to 3%, 1.4%, and 
2.4% respectively when the improved reciprocity-based method was used. Hence excellent 
results can be obtained at the cost of further pre-processing required to compute the 
terminal voltages V1, new and V2, new in the manner described above. In an actual linear array 
design, this would need to be done once only, presumably for the same matrix of slot 
lengths and widths that self-admittance data will be generated for (Huang et al., 1999).  
In order to verify the accuracy of IE3D’s calculations, Y21 against frequency was computed 
using that simulator for a twin slot configuration with a fixed layout identical to that shown 
in Fig. 5, except for one of the slots being rotated by 180o in order to enable feeding it from 
the edge of the substrate via a coaxial launcher. The twin slots were designed to be at their 
second resonances at 6 GHz, and had L1 = L2 = 20.95 mm = Lres, 6 GHz, and W1 = W2 = 1 mm on 
an electrically thin substrate with h = 0.813 mm, εr = 3.38±0.05 and tan δ = 0.0027 (i.e., Rogers 
RO4003C laminate).  The feed line characteristic impedance was 83 Ω (w = 3 mm and s = 1 
mm). Fig. 9 shows good agreement between measured and simulated Y21 (referenced to the 
centers of the slots) data. 
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Fig. 6. Mutual admittance Y21 against broadside distance d/λCPW at 6 GHz for CPW-fed twin 
slots with L1 = L2 = Lres = 21.75 mm. W1 = W2 = 1 mm, ls = 19.4 mm = 0.48 λCPW, h = 1.575 mm, 
εr = 2.33, w = 3 mm, s = 1 mm. 
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Fig. 7. Mutual admittance Y21 against broadside distance d/λCPW at 6 GHz for CPW-fed twin 
slots with L1 = L2  = 0.9Lres = 19.575 mm. W1 = W2 = 1 mm, ls = 19.4 mm = 0.48 λCPW, h = 1.575 
mm, εr = 2.33, w = 3 mm, s = 1 mm. 
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Fig. 8. Mutual admittance Y21 against broadside distance d/λCPW at 6 GHz for CPW-fed twin 
slots with L1 = L2 = 1.1Lres = 23.925 mm. W1 = W2 = 1 mm, ls = 19.4 mm = 0.48 λCPW, h = 1.575 
mm, εr = 2.33, w = 3 mm, s = 1 mm.   
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0.9Lres slots, and 12% for the 1.1Lres slots. These average errors decreased to 3%, 1.4%, and 
2.4% respectively when the improved reciprocity-based method was used. Hence excellent 
results can be obtained at the cost of further pre-processing required to compute the 
terminal voltages V1, new and V2, new in the manner described above. In an actual linear array 
design, this would need to be done once only, presumably for the same matrix of slot 
lengths and widths that self-admittance data will be generated for (Huang et al., 1999).  
In order to verify the accuracy of IE3D’s calculations, Y21 against frequency was computed 
using that simulator for a twin slot configuration with a fixed layout identical to that shown 
in Fig. 5, except for one of the slots being rotated by 180o in order to enable feeding it from 
the edge of the substrate via a coaxial launcher. The twin slots were designed to be at their 
second resonances at 6 GHz, and had L1 = L2 = 20.95 mm = Lres, 6 GHz, and W1 = W2 = 1 mm on 
an electrically thin substrate with h = 0.813 mm, εr = 3.38±0.05 and tan δ = 0.0027 (i.e., Rogers 
RO4003C laminate).  The feed line characteristic impedance was 83 Ω (w = 3 mm and s = 1 
mm). Fig. 9 shows good agreement between measured and simulated Y21 (referenced to the 
centers of the slots) data. 
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Fig. 6. Mutual admittance Y21 against broadside distance d/λCPW at 6 GHz for CPW-fed twin 
slots with L1 = L2 = Lres = 21.75 mm. W1 = W2 = 1 mm, ls = 19.4 mm = 0.48 λCPW, h = 1.575 mm, 
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Fig. 7. Mutual admittance Y21 against broadside distance d/λCPW at 6 GHz for CPW-fed twin 
slots with L1 = L2  = 0.9Lres = 19.575 mm. W1 = W2 = 1 mm, ls = 19.4 mm = 0.48 λCPW, h = 1.575 
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Fig. 8. Mutual admittance Y21 against broadside distance d/λCPW at 6 GHz for CPW-fed twin 
slots with L1 = L2 = 1.1Lres = 23.925 mm. W1 = W2 = 1 mm, ls = 19.4 mm = 0.48 λCPW, h = 1.575 
mm, εr = 2.33, w = 3 mm, s = 1 mm.   
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Fig. 9. Computed and measured mutual admittance Y21 against frequency for CPW-fed twin 
slots. L1 = L2 = Lres, 6 GHz = 20.95 mm, W1 = W2 = 1 mm, ls = 18.3 mm = λCPW, 6 GHz, d = λCPW, 6 GHz 
= 38.1 mm, h = 0.813 mm, εr = 3.38±0.05, tan δ = 0.0027, w = 3 mm, s = 1 mm. 

 
3.2 Slots on conductor-backed two-layer substrate 
Fig. 10 shows twin CPW-fed slots on a two-layer conductor-backed substrate with an air 
bottom layer (i.e., εr2 = 1). For applications that require unidirectional radiation, this 
particular structure is of interest as the radiation efficiency attainable with appropriately-
spaced twin slots on such a substrate is comparable to that of twin slots on λd/4 single-layer 
substrates with a reflector positioned λo/4 away from the CPW ground planes side (Qiu et 
al., 2000) (λd is the wavelength in the dielectric; λo is the free-space wavelength). This is true 
even though the substrate of Fig. 10 is of lesser electrical height than the twin slots on a 
single-layer substrate – potentially an advantage at microwave frequencies.  

 
3.2.1 Effect of conducting back plane 

The antenna input impedance of a linear slot array on λd/4 single dielectric substrate is 
unaffected by a back reflector placed λo/4 on the side of the CPW ground planes (Qiu et al., 
2002). This is an indication that the back reflector has minimal influence on mutual coupling 
between the array slots.  However, in this section the presence of a back reflector placed 
below a two-layer substrate (Fig. 10) is shown to change the mutual coupling between slots.  
This implies a change in internal coupling (i.e., coupling on the dielectric side) due to the 
presence of the back plane. Thus, the appropriate parallel-plate two-layer Green's function 
would be needed in order to account for mutual coupling with sufficient accuracy in an 
iterative array design procedure (Jacobs et al., 2005).  
 

 

 
Fig. 10. Top and side views of broadside CPW-fed twin slot antennas on conductor-backed 
two-layer substrate. L ≡  half-length and W ≡ width of radiating slots; d ≡ distance between 
radiating slots; s ≡ slot width and w ≡ centre strip width of feed lines; lf ≡ length of feed 
lines; h1 and h2 ≡ dielectric layer heights; εr1 and εr2 ≡ relative dielectric constants.  
 
Assuming infinite top and bottom conducting planes and dielectric layers with dielectric 
constants εr1 = 3.38 and εr2 = 1, with the top substrate layer height h1 = 0.813 mm, simulations 
were carried out at 10 GHz to demonstrate the effect of back plane height on mutual 
coupling between the twin slots of Fig. 10 (Jacobs et al., 2005). Three values of bottom layer 
height, or back plane distance, were considered, namely h2 = , λo/4, and λo/6 (at 10 GHz, 
λo/4 = 7.5 mm and λo/6 = 5 mm). The case h2 =  is equivalent to the absence of a back plane. 
A CPW feed line with characteristic impedance of about 50 Ω for the case h2 =  is used (w = 
3.7 mm and s = 0.2 mm). For each of the cases h2 = , λo/4, and λo/6, an isolated (radiating) 
slot with a width W = 0.4 mm was designed to be resonant at 10 GHz by adjusting its half-
length L. The resulting resonant slot half-lengths were 10.36 mm, 10.60 mm and 10.67 mm 
respectively, with corresponding self-impedances of 12.5 , 11.2 , and 13.9 .  
Fig. 11 shows the real and imaginary parts g21 and b21 of the normalized mutual admittance 
y21 as a function of normalized distance d/λCPW for each of the three cases h2 = , λo/4, and 
λo/6. y21 is the mutual admittance Y21 normalized with respect to the relevant isolated 
resonant slot self-admittance. The reason for normalizing Y21 is that, in a linear array 
context, the relative size of mutual admittance magnitudes with respect to the slots' self-
admittance magnitudes is an indicator of the extent of the effect of mutual coupling on the 
array input impedance.  
The normalized curves indicate that, in the absence of a back plane, the maximum values of 
the magnitudes of the real part (G21) and imaginary part (B21) of the mutual admittance Y21 
are about 40% and 27% respectively of the resonant slot self-admittance; the maximum of 
|g21| occurs at d = λCPW and the maximum of |b21| at d = 1.4 λCPW. 
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Fig. 9. Computed and measured mutual admittance Y21 against frequency for CPW-fed twin 
slots. L1 = L2 = Lres, 6 GHz = 20.95 mm, W1 = W2 = 1 mm, ls = 18.3 mm = λCPW, 6 GHz, d = λCPW, 6 GHz 
= 38.1 mm, h = 0.813 mm, εr = 3.38±0.05, tan δ = 0.0027, w = 3 mm, s = 1 mm. 

 
3.2 Slots on conductor-backed two-layer substrate 
Fig. 10 shows twin CPW-fed slots on a two-layer conductor-backed substrate with an air 
bottom layer (i.e., εr2 = 1). For applications that require unidirectional radiation, this 
particular structure is of interest as the radiation efficiency attainable with appropriately-
spaced twin slots on such a substrate is comparable to that of twin slots on λd/4 single-layer 
substrates with a reflector positioned λo/4 away from the CPW ground planes side (Qiu et 
al., 2000) (λd is the wavelength in the dielectric; λo is the free-space wavelength). This is true 
even though the substrate of Fig. 10 is of lesser electrical height than the twin slots on a 
single-layer substrate – potentially an advantage at microwave frequencies.  
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The antenna input impedance of a linear slot array on λd/4 single dielectric substrate is 
unaffected by a back reflector placed λo/4 on the side of the CPW ground planes (Qiu et al., 
2002). This is an indication that the back reflector has minimal influence on mutual coupling 
between the array slots.  However, in this section the presence of a back reflector placed 
below a two-layer substrate (Fig. 10) is shown to change the mutual coupling between slots.  
This implies a change in internal coupling (i.e., coupling on the dielectric side) due to the 
presence of the back plane. Thus, the appropriate parallel-plate two-layer Green's function 
would be needed in order to account for mutual coupling with sufficient accuracy in an 
iterative array design procedure (Jacobs et al., 2005).  
 

 

 
Fig. 10. Top and side views of broadside CPW-fed twin slot antennas on conductor-backed 
two-layer substrate. L ≡  half-length and W ≡ width of radiating slots; d ≡ distance between 
radiating slots; s ≡ slot width and w ≡ centre strip width of feed lines; lf ≡ length of feed 
lines; h1 and h2 ≡ dielectric layer heights; εr1 and εr2 ≡ relative dielectric constants.  
 
Assuming infinite top and bottom conducting planes and dielectric layers with dielectric 
constants εr1 = 3.38 and εr2 = 1, with the top substrate layer height h1 = 0.813 mm, simulations 
were carried out at 10 GHz to demonstrate the effect of back plane height on mutual 
coupling between the twin slots of Fig. 10 (Jacobs et al., 2005). Three values of bottom layer 
height, or back plane distance, were considered, namely h2 = , λo/4, and λo/6 (at 10 GHz, 
λo/4 = 7.5 mm and λo/6 = 5 mm). The case h2 =  is equivalent to the absence of a back plane. 
A CPW feed line with characteristic impedance of about 50 Ω for the case h2 =  is used (w = 
3.7 mm and s = 0.2 mm). For each of the cases h2 = , λo/4, and λo/6, an isolated (radiating) 
slot with a width W = 0.4 mm was designed to be resonant at 10 GHz by adjusting its half-
length L. The resulting resonant slot half-lengths were 10.36 mm, 10.60 mm and 10.67 mm 
respectively, with corresponding self-impedances of 12.5 , 11.2 , and 13.9 .  
Fig. 11 shows the real and imaginary parts g21 and b21 of the normalized mutual admittance 
y21 as a function of normalized distance d/λCPW for each of the three cases h2 = , λo/4, and 
λo/6. y21 is the mutual admittance Y21 normalized with respect to the relevant isolated 
resonant slot self-admittance. The reason for normalizing Y21 is that, in a linear array 
context, the relative size of mutual admittance magnitudes with respect to the slots' self-
admittance magnitudes is an indicator of the extent of the effect of mutual coupling on the 
array input impedance.  
The normalized curves indicate that, in the absence of a back plane, the maximum values of 
the magnitudes of the real part (G21) and imaginary part (B21) of the mutual admittance Y21 
are about 40% and 27% respectively of the resonant slot self-admittance; the maximum of 
|g21| occurs at d = λCPW and the maximum of |b21| at d = 1.4 λCPW. 
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Fig. 11. Real and imaginary parts g21 and b21 of normalized mutual admittance y21 vs. 
interslot distance d/λCPW at 10 GHz. 
  
Adding a back plane at h2 = λo/4 results in significantly higher relative maximum values of 
about 68% and 40% for |G21| and |B21| respectively; other extrema also show notable 
increases compared to the h2 =  case. The back plane has the effect of shifting the curves for 
g21 and b21 so that their extrema in general are not aligned with those of the curves for h2 = . 
These effects can be ascribed to internal mutual coupling (the external equivalent problem, 
concerned with fields in the half-space adjacent to the CPW ground planes, is unchanged by 
the addition of a back plane), indicating that the input impedance of an array on the single-
layer substrate would be significantly affected when a back plane is placed λo/4 away. 
Decreasing the back plane distance to h2 = λo/6 results in curves quite similar to, and more 
or less "in phase" with, the curves for the case h2 = λo/4 with somewhat higher maximum 
values for g21 and b21 (0.71 and 0.45 respectively vs. 0.68 and 0.4), suggesting that the effect of 
mutual coupling increases as back plane distance decreases. At d = λCPW the magnitude of 
the real part of the mutual admittance was about 40% of the relevant resonant slot self-
admittance for all cases of h2.  

 
3.2.2 An extended reciprocity-based method for calculating mutual admittance 
In this section, a computational strategy based on the well-known expression derived from 
reciprocity is proposed to calculate the mutual admittance between two CPW-fed slots on 
conductor-backed two-layer substrates (Jacobs et al, 2009). The formulation iteratively 
updates the field distribution in both slots to account for the coupling interaction between 
the slots. The classical reciprocity-based approximation assumes that the field in the slot is 
the same whether the slot is radiating in isolation or in the presence of a second short-

 

circuited slot. In cases where mutual coupling is high, such as for resonant-length twin slots, 
this assumption becomes invalid.  
The two CPW-fed slots on a conductor-backed two-layer substrate, as shown in Fig. 10, are 
center-fed by an infinitesimal voltage source that is placed in the centre of a short section of 
slotline connecting the two CPW feed line slots at their ends. Employing the standard 
formulation derived from reciprocity the mutual admittance Y12 between them is 
(Nauwelaers & Van de Capelle, 1988)  
 

 
 

 

 
(2) 

 
where M2 is the equivalent magnetic current density representing slot 2, V1 and V2 are the 
terminal voltages of slots 1 and 2, respectively and, assuming that the effects of mutual 
coupling between CPW feed lines, and between feed lines and radiating slots are negligible, 
S2 is the surface area of slot 2. H21 is the magnetic field at the position of slot 2 due to the 
equivalent magnetic current density, M1, representing slot 1. H21 is calculated as the sum of 
the internal field (using the Green’s function for the conductor-backed two-layer substrate), 
and the external field (using the free-space Green’s function).  
The initial estimates for M1 and M2 are determined by calculating the electric field 
distributions in the isolated slots using a moment-method solver e.g. IE3D. The isolated-slot 
moment-method analysis also yielded the terminal voltages V1 and V2.  
A schematic representation of CPW-fed twin slots is shown in Fig. 12. In situation a, slot 1 is 
assumed to be excited such that its terminal voltage aV1 equals V1 (i.e., the terminal voltage 
of slot 1 when radiating in isolation), while slot 2 is short-circuited. Hence 
 

 
 

 

 
(3) 

 
where aI1 is the terminal current entering port 1. The current aI2 entering port 2 can then be 
found using (Balanis, 1982) adapted for slots (from its original form for wire dipoles):  
 

 
 

 

 
(4) 

 
where all quantities on the right-hand side are similar in meaning to the corresponding 
quantities in equation (2). For the first interaction, H21x is the longitudinal component of the 
magnetic field at the position of slot 2 when slot 1 radiates in isolation with terminal voltage 
V1 (and terminal current aI1 ), M2x and V2 are the equivalent magnetic current density and 
terminal voltage respectively of slot 2 when radiating in isolation, and S2 is the surface area 
of slot 2. From equations (2) and (4) it follows that 
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circuited slot. In cases where mutual coupling is high, such as for resonant-length twin slots, 
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and the external field (using the free-space Green’s function).  
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distributions in the isolated slots using a moment-method solver e.g. IE3D. The isolated-slot 
moment-method analysis also yielded the terminal voltages V1 and V2.  
A schematic representation of CPW-fed twin slots is shown in Fig. 12. In situation a, slot 1 is 
assumed to be excited such that its terminal voltage aV1 equals V1 (i.e., the terminal voltage 
of slot 1 when radiating in isolation), while slot 2 is short-circuited. Hence 
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where Y12 is the first iteration of the mutual admittance, computed using equation (2) with 
the field distribution for the slots radiating in isolation. 

 
Fig. 12. Schematic representation of CPW-fed twin slots with terminal voltages and currents, 
and port terminations used in higher-order iterative procedure.  
 
Situation b is set up to account for the effect that the current aI2 induced by slot 1 at the 
terminals of slot 2 (cf. situation a) in turn has on slot 1. Hence slot 2 is assumed to be excited 
by a terminal current 
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while slot 1 is short-circuited. The short-circuit current bI1 at port 1 can then be found from 
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The final step in the iterative procedure is to revisit situation a and compute updated 
versions updateaI ,

1  and updateaV ,
1 of the current aI1 and voltage aV1 at port 1:  
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An updated version of the mutual admittance Y12 = Y21 that includes the effect of the above 
higher-order interactions between the slots can then be found from 
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while an estimate estY ,11 of the two-port self-admittance Y11 (at this point only Yself is 

available) can be computed as follows:  
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The process of updating the two-port admittance parameters can be repeated iteratively 
until the effect of the next higher-order interaction is negligible.  
Fig. 13 shows the Y12-against-d curves for the classical reciprocity approach, the iterative 
reciprocity-based formulations and a moment-method solver (IE3D) for the case of two 
identical (twin) resonant slots. Y12 against broadside slot separation d was computed at 10 
GHz for CPW-fed slots on a conductor-backed two-layer substrate configured for high 
radiation efficiency. The substrate had h1 = 0.813 mm = 0.05λd, h2 = 5 mm = λ0/6, εr1 = 3.38, 
and εr2 = 1 (λd is the dielectric wavelength in the top layer and λ0 the free-space wavelength). 
The substrate allowed for propagation of the TM0 two-layer parallel-plate mode only. Slot 
dimensions were W = 0.4 mm and L = Lres = 10.87 mm, yielding a resonant self-resistance of 
14 Ω; dimensions of the 50 Ω feed line were w = 3.7 mm and s = 0.2 mm.  
The extended reciprocity-based curves resemble the shape of the moment-method curves 
much closer than the classical reciprocity-based curves. The reciprocity-based approach for 
mutual admittance calculations between CPW-fed slots on conductor-backed two-layer 
substrates – modified to account for higher-order interactions – is a viable alternative to a 
moment-method-based approach, offering comparable accuracy and the advantages of 
simplicity of implementation within iterative array design procedures. 
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where Y12 is the first iteration of the mutual admittance, computed using equation (2) with 
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The final step in the iterative procedure is to revisit situation a and compute updated 
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The process of updating the two-port admittance parameters can be repeated iteratively 
until the effect of the next higher-order interaction is negligible.  
Fig. 13 shows the Y12-against-d curves for the classical reciprocity approach, the iterative 
reciprocity-based formulations and a moment-method solver (IE3D) for the case of two 
identical (twin) resonant slots. Y12 against broadside slot separation d was computed at 10 
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and εr2 = 1 (λd is the dielectric wavelength in the top layer and λ0 the free-space wavelength). 
The substrate allowed for propagation of the TM0 two-layer parallel-plate mode only. Slot 
dimensions were W = 0.4 mm and L = Lres = 10.87 mm, yielding a resonant self-resistance of 
14 Ω; dimensions of the 50 Ω feed line were w = 3.7 mm and s = 0.2 mm.  
The extended reciprocity-based curves resemble the shape of the moment-method curves 
much closer than the classical reciprocity-based curves. The reciprocity-based approach for 
mutual admittance calculations between CPW-fed slots on conductor-backed two-layer 
substrates – modified to account for higher-order interactions – is a viable alternative to a 
moment-method-based approach, offering comparable accuracy and the advantages of 
simplicity of implementation within iterative array design procedures. 
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Fig. 13. Mutual admittance Y12 against broadside distance d/λCPW for CPW-fed twin slots 
with L1 = L2 = Lres = 10.87 mm computed using the classical and extended reciprocity 
approaches, and IE3D. W1 = W2 = 0.4 mm; h1 = 0.813 mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1; lf = 
0.5λCPW. 

 
4. Linear arrays of CPW-fed slots 
 

4.1 Uniform array on conductor-backed two-layer substrate 
This section describes how an approximate iterative design procedure for uniformly-excited 
CPW-fed linear slot arrays on single-layer substrates (Qiu et al., 2002) can be extended to the 
case of an 8-element CPW-fed slot array on a conductor-backed higher-lower permittivity 
two-layer substrate (Jacobs et al., 2003). When designing series-fed broadside linear slot 
arrays, it is desirable to have slots excited in-phase and with equal magnitude for maximum 
gain. This implies that slots should be spaced λCPW rather than λg/2 apart, even though the 
latter the spacing would seem preferable due to the ensuing phase cancellation of the 
substrate mode which would result in improved radiation efficiency (λCPW is the wavelength 
of the CPW feed line; λg is the wavelength of the dominant substrate mode). Previously 
reported investigations of linear arrays on single-layer substrates, and λd/4 substrates with a 
back reflector positioned λo/4 away, however indicated that a λCPW spacing (as opposed to 
λg/2 spacing) does not affect gain adversely (Qiu et al., 2002). 
The top view layout of a generic CPW-fed linear array is shown in Fig. 4; given the present 
context, all slot half-lengths were assumed to be equal and likewise for slot widths. For 
simulation purposes, substrate layer heights and dielectric constants were selected (as 
before) to ensure that a non-leaky CPW feed line would result – this requires a higher-lower 
permittivity substrate, the higher permittivity layer being adjacent to the slots (Huang & 
Kuo, 1998). The selected values were h1 = 0.813 mm, εr1 = 3.38, h2 =  5 mm (λo/6 at 10 GHz), 
and εr2 = 1.1 (see side view in Fig. 10). Using IE3D, a 50 Ω CPW feed line was designed that 
had w = 3.7 mm and s = 0.2 mm.  

 

The array (N = 8) was designed for operation at 10 GHz using the following steps in an 
iterative fashion; the procedure relies on the assumption that slot active impedances are 
largely determined by the corresponding slot self-impedances (and to a lesser extent by 
mutual coupling). 
1. The self-impedance Zin,slot of a single slot dipole with half-length L and (radiating slot) 

width W was computed using IE3D (infinite ground planes were assumed 
throughout). For the first iteration, convenient values of W and L were chosen.  

2. An 8-element array was constructed of identical slots spaced λCPW apart, each with the 
W and L determined in the previous step. The self-impedance Zin,array of the array was 
determined using IE3D.  

3. The difference Zdiff between the array input impedance and the desired input 
impedance of 50 Ω was found.  

4. Using IE3D, new L and W values were found that would yield a new slot self-
impedance of Zin,slot — Zdiff/N.  

5. Steps (2) and onwards were repeated until Zin,array was within an acceptable margin 
from 50  Ω. 

The iterative procedure converged to L and W values of 12.04 mm and 1.17 mm respectively. 
In Fig. 14 measured return loss against frequency is shown for the above design 
manufactured on a 12″x18″ Rogers RO4003C substrate. The deviation of the measured 
operating frequency of 9.7 GHz from the design frequency of 10 GHz can be attributed to 
manufacturing and material considerations that likely included deviations from specified 
dielectric constants, and inconsistencies in the thickness of the polystyrene bottom layer. 
The E-plane co-polarized radiation pattern measured at 9.7 GHz is shown in Fig. 15. Good 
agreement with the predicted pattern was exhibited, indicating insignificant leakage of the 
dominant two-layer parallel-plate mode from the sides of the antenna. Sidelobe levels were 
below -13 dB as expected except for a sidelobe at 85º that had a level of about -10 dB; this 
could have been caused by an inadvertently-excited higher-order mode on the CPW feed.  
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Fig. 14. Measured return loss against frequency for 8-element CPW-fed slot array on 
conductor-backed two-layer substrate. 
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Fig. 14. Measured return loss against frequency for 8-element CPW-fed slot array on 
conductor-backed two-layer substrate. 
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Fig. 15. E-plane co-polarization pattern measured at 9.7 GHz for 8-element CPW-fed slot 
array on conductor-backed two-layer substrate. 

 
4.2 Non-uniform array on single-layer substrate 
This section describes design of a linear non-uniform slot array series-fed by CPW, on an 
electrically thin substrate for computational simplification, with sidelobe levels substantially 
reduced beyond that of a uniform array (Jacobs & Joubert, 2009b). The geometry of such a 
linear array is as shown in Fig. 4. A low-sidelobe level specification typically requires 
explicit, accurate accounts of the mutual coupling between all possible slot pairs in the 
array, and hence the ability to enforce a suitably tapered slot excitation. In what follows, the 
iterative design of a 5-element non-uniform linear CPW-fed array with reduced sidelobe 
levels on an electrically thin substrate is described. Because of the electrically thin substrate, 
mutual coupling can be accounted for using the reciprocity-based method involving the 
assumption of a homogeneous free-space medium, as discussed in section 3.1 (Jacobs & 
Joubert, 2009a).  

 
4.2.1 Array design procedure 
The first step was to synthesize a 5-element Dolph-Tschebychev array of isotropic radiators 
to have a maximum sidelobe level of -20 dB below the main beam maximum (Balanis, 1996). 
The spacing between the radiators was d = 0.78λ0, with λ0 the free-space wavelength at the 
design frequency of 5.6 GHz (this frequency belongs to the upper WLAN band). 0.78λ0 
equals λCPW, the wavelength of a 70 Ω CPW feed line on a substrate with height h = 1.575 
mm and relative permittivity εr = 2.33, the substrate of choice for the physical array; the 
CPW centre strip and slot widths were w = 3 mm and s = 0.5 mm respectively (see Fig. 14). 
The aim of this particular spacing was to ensure in-phase excitation of the slots. The 
resulting excitation values were [V1 V2 V3 V4 V5] = [0.52 0.83 1.00 0.83 0.52]. 
 

 

The second step entailed setting up a slot self-admittance database, as well as corresponding 
field distribution and terminal voltage databases for the calculation of mutual admittances. 
In particular, self-admittance data was generated using IE3D for a grid of half-lengths and 
widths of isolated CPW-fed slots: half-length values were between 18.5 and 27.5 mm (at a 
0.75 mm interval), and widths were between 0.25 and 3.25 mm (at a 0.25 mm interval). 
Aperture field and terminal voltage data was collected concurrently with the self-
admittance data.  
The steps followed in iteratively designing the array are now outlined (see also Huang et al. 
(1999)) – consider in this regard the generic linear CPW-fed slot array of Fig. 4 that has 
N slots spaced λCPW apart with slot half-lengths and widths mL  and mW  (m = 1, 2, ..., N). In 
network terms, the array can be viewed as an equivalent transmission line circuit with the 
slots represented by series active impedances separated by λCPW-long sections of 
transmission line (Huang et al., 1999; Meide et al., 2002). An active voltage mV  exists across 
the series active impedance representing slot m, while a current I is common to all slot 
impedances due to the series nature of the equivalent circuit. The corresponding active 
admittance of slot m is a

mY = I/Vm. For an N-element array, the iterative design proceeds as 
follows: 
1. A desired input impedance Zin,des is chosen (50 Ω for the purposes of this letter). The 

desired slot active admittances a
desmY , can then be found using the following two 

equations: 
 

a
desm

N

m
desin Y

Z
,1=

,
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N
a
desN

a
des VYVY ,1,1 ...   (14) 

 
2. Starting values for the lengths and widths ),( mm WL  can then be assumed or 

calculated. Good starting values can be obtained by initially assuming zero mutual 
coupling between the slots and then calculating slot dimensions ),( mm WL  from the 

self-admittance database that would realize a
desmmm YY , .   

3. These dimensions ),( mm WL  are then used to calculate the mutual admittances Ymn 
between all possible slot pairs m and n according to section 3.1 (Jacobs & Joubert, 
2009a). A linear interpolation scheme is used to calculate the updated mutual 
admittances Ymn during this step for specific ),( mm WL  dimensions (from the discreet 
field distribution and terminal voltage database compiled previously). 

4. A set of 2N non-linear equations can then be solved to enforce the desired relative slot 
excitations, the chosen matching criteria, and of course resonance of the N slots in the 
array. The mutual admittances Ymn are kept constant as calculated in step (3), and a 
new set of ),( mm WL  are sought (in effect a new set of self-admittances Ymm are 
determined) that will satisfy the design equations. The equations are of the form: 
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Fig. 15. E-plane co-polarization pattern measured at 9.7 GHz for 8-element CPW-fed slot 
array on conductor-backed two-layer substrate. 
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desmY , can then be found using the following two 

equations: 
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2. Starting values for the lengths and widths ),( mm WL  can then be assumed or 

calculated. Good starting values can be obtained by initially assuming zero mutual 
coupling between the slots and then calculating slot dimensions ),( mm WL  from the 

self-admittance database that would realize a
desmmm YY , .   

3. These dimensions ),( mm WL  are then used to calculate the mutual admittances Ymn 
between all possible slot pairs m and n according to section 3.1 (Jacobs & Joubert, 
2009a). A linear interpolation scheme is used to calculate the updated mutual 
admittances Ymn during this step for specific ),( mm WL  dimensions (from the discreet 
field distribution and terminal voltage database compiled previously). 

4. A set of 2N non-linear equations can then be solved to enforce the desired relative slot 
excitations, the chosen matching criteria, and of course resonance of the N slots in the 
array. The mutual admittances Ymn are kept constant as calculated in step (3), and a 
new set of ),( mm WL  are sought (in effect a new set of self-admittances Ymm are 
determined) that will satisfy the design equations. The equations are of the form: 
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Imag( a

mY ) = 0, for  m = 1, …, N (17) 
 

 Throughout the non-linear equation solving process, a bivariate spline interpolation 
scheme (McNamara & Joubert, 1994) is used to calculate new self-admittances Ymm for 
arbitary ),( mm WL  dimensions, using the previously compiled discreet self-admittance 
database. 

5. Updated mutual admittances for the new slot dimensions can then be calculated, and 

the true active admittances determined using 
m

n
mn

N

n

a
m V

VYY 
1=

= , from which the actual 

input impedance of the array can then be found. If Zin is not close enough to the 
desired value of desinZ , , steps 4 and onwards are repeated until convergence is 
obtained.  

 
4.2.2 Results and discussion 
Application of the above procedure yielded the following dimensions for the N = 5 array: L1 
= L5 = 23.9 mm, W1 = W5 = 0.3 mm, L2 = L4 = 23.1 mm, W2 = W4 = 1.15 mm, and L3 = 23.1 mm, 
W3 = 2.2 mm. For the purpose of simulating the full array in IE3D, a short-circuit stub 
termination of length ls = 21 mm ≈ λCPW /2 was added (see Figure 4), as well as a front-end 
CPW feed section of length λCPW /2. The simulated array was etched on a Rogers RT/duroid 
5870 laminate (h = 1.575 mm, εr = 2.33±0.02, tan δ = 0.0009) of dimensions 230 mm × 135 mm 
(see Figure 16), and its reflection coefficient, radiation patterns and gain were measured.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16. The manufactured 5-element CPW-fed array. 

 

Fig. 17 shows the simulated and measured array reflection coefficient against frequency. The 
simulated and measured resonant frequencies were 5.61 GHz and 5.59 GHz respectively, 
which are both very close to the design frequency of 5.6 GHz. The simulated fractional 
bandwidth was 1.5% (VSWR < 2), while the corresponding measured bandwidth was 2.1%, 
confirming the inherently narrow-band nature of the feeding scheme. Discrepancies 
between simulation and measurement can likely be attributed to manufacturing errors.  
Fig. 18 displays the simulated and measured normalized E-plane radiation patterns (the 
array lies in the xy plane). The simulated co-polarization pattern has a maximum sidelobe 
level of about -17 dB, which is higher than the designed-for Dolph-Tschebychev sidelobe 
level of -20 dB. This can be attributed to the accuracy of mutual admittance calculations. The 
measured co-polarized pattern on the whole agrees well with the simulated pattern (the 
discontinuity in the simulated pattern at Theta = ±90 is due to IE3D setting the electric field 
component perpendicular to the infinite ground plane, i.e., the co-polarized component, to 
zero at far-field observation points coinciding with the ground plane; this apparently is an 
artifact of the simulator). The somewhat higher maximum sidelobe levels of about -16 dB in 
the measurement can possibly be attributed to the finite substrate (simulations were carried 
out for a laterally infinite substrate). Fig. 18 also gives the measured cross-polarization 
which is significantly below co-polarization levels (simulated cross-polarization was too 
small to show on this graph). 

Fig. 17. Simulated and measured reflection coefficient vs. frequency. 
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Fig. 18. Simulated and measured E-plane radiation patterns. 
 
The maximum boresight gain of the array is at 5.62 GHz, i.e., 14 dBi (predicted) and 13.5 dBi 
(measured). The corresponding radiation efficiency was calculated using IE3D to be 97%, 
indicating negligible power loss to substrate modes due to the electrically thin substrate. 

 
5. Final remarks  
 

The design of non-uniform linear CPW-fed slot arrays with sidelobe levels significantly 
reduced below that of uniform arrays was presented; efficient methods for accomplishing 
important parts of the design, such as the calculation of mutual coupling subject to 
representative substrate configurations, were summarized. Results of a practical 
implementation on an electrically thin single-layer dielectric substrate was shown; measured 
sidelobe levels of -16 dB below could be achieved.  
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