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Abstract 

Two wave-guiding problems are treated in this work. The first part addresses the problem of a 

rectangular waveguide filled with a uniaxially anisotropic or uniaxial medium.  Different 

orientations of the optic axis of the uniaxial medium are considered and the wave transmission and 

modal behaviors are investigated. When the optic axis is aligned with one of the coordinate axes, 

i. e., x, y, or z axis, the method of wave decomposition with respect to the optic axis orientation is 

proposed and the complete analytic solutions are presented and compared with conventional 

transverse-to-z solutions. When the optic axis is tilted but lying in one of the side wall planes, TE0n 

or TEm0 (transverse to z) modes are shown to be supported. Furthermore, the supported hybrid 

wave modes in these cases are numerically found from calculations using the proposed boundary 

condition matrix (BCM) method. Different from the conventional spectral domain calculation 

methods, the numerically found hybrid wave modes are expressed as a linear combination of 

ordinary and extraordinary waves. The algorithm is illustrated and numerical examples are given. 

The validity of the solution is verified by comparing its results with those of the aligned cases that 

are analytically solved. 

The second wave-guiding structure is focused on a type of metamaterial realization. Analyses 

and experimental results of the negative resistance enhanced composite right/left-handed (NR-

CRLH) transmission line are presented. As a demonstration of its unique amplitude and phase 

behaviors and its application, the detailed analysis of the structure is followed by an example of 

high-directivity leaky-wave antenna (LWA). In contrast to the conventional CRLH unit cell with 

via terminated stubs, the NR-CRLH unit cell is designed with negative-resistance (NR) terminated  

stub that compensates the power loss from the orthogonal direction with respect to the direction of 

guided-wave propagation. The NR is realized using the inverted common collector (ICC) 
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configuration of an RF transistor, a common commercial product often seen for RF amplifier and 

oscillator applications. This implementation topology allows the active unit cell (AUC) to preserve 

all the CRLH properties including the unique dispersion relations, constant Bloch impedance in a 

broad operating frequency range, and bilateral operation. To highlight the advantages of the active 

metamaterial transmission line (TL), the NR-CRLH TL based LWA that permits the manipulation 

of the current distributions over the antenna surface is demonstrated. The NR-CRLH based active 

antenna allows the control of radiation performances including the patterns, beamwidth, and 

directivity. The measured results of the LWA prototype demonstrate enhanced directivity 

compared to the conventional CRLH LWA of the same lengths while minimally influencing all 

the preferable characteristics of full frequency scanning LWA. 
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Chapter 1  Introduction 

Wave-guiding structures are broadly used in all the microwave circuits and systems. They 

include metallic rectangular/circular waveguides, coaxial cables, microstrip/strip lines, dielectric 

slab waveguides, optic fibers, and many others. These wave guiding structures form the 

fundamental elements of various optical and microwave systems. Their propagation characteristics 

and field distributions must be thoroughly studied so that the guided-wave behaviors can be 

predicted and used in analysis and synthesis of the systems. With the development of differential 

equations, homogeneous and isotropic waveguide problems are usually less difficult in solving for 

the guided-wave characteristics, and in reality these problems provide sufficiently accurate results 

for fabricated microwave components. However, engineers sometimes find discrepancies between 

the predicted and measured wave behaviors. Some of these discrepancies are due to the complexity 

of the dielectric materials. In order to obtain better estimation, engineers came up with various 

ideas to measure the electrical properties of the materials and adjust the prediction in microwave 

design process. Both the measurement of the properties and the prediction of the microwave 

behaviors demand the knowledge of wave propagation in complex media. 

Rectangular waveguide (RWG) is a cylindrical wave guiding structure that is comprised of 

four metallic side walls forming a rectangular cross-section. The properties of a hollow RWG are 

determined by the dimensions denoted by a and b in x and y directions, respectively. Marcuvitz’s 

[1] and Collin’s [2] books are dedicated to the pertinent waveguide topics. By insertion of various 

types of media, a third degree of freedom in design of a RWG is introduced. Among many types 

of anisotropic media, gyromagnetic media were thoroughly studied (fully or partially filled in 

waveguides), because of the ease of controlling the magnetic property by adjusting the strength of 
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the external biasing field [3]. For example, ferrite materials are used in RWG to make phase 

shifters, isolators and other devices mostly documented in [4] and [5]. In recent decades waveguide 

problems still receive a lot of interest. For example, the rise of so called left-handed materials 

spurred the plasma simulation using waveguides [6], which then became one of the major 

implantations of metamaterials by means of negative permeability insertion. One way to model 

the unusual transmission phenomenon is to consider a waveguide homogeneously loaded with 

anisotropic media with artificial electric properties. 

Uniaxially anisotropic or uniaxial media are often incorporated in various microwave and 

optical applications. For example, single crystal sapphire was used in microstrip line structures [7] 

because of its consistent electrical properties, and iron-doped rutile was used to fill a rectangular 

waveguide [8] because of its paramagnetic property. Except for intentional uses, it is common to 

see the anisotropy in dielectric substrates and superstrates treated as undesirable, existing naturally 

or as the byproduct of modern fabrication process [9], though in some instances they may also 

benefit the circuit design [10]. Due to its broad existence, the uniaxial anisotropy must be 

accounted for to avoid errors, including but not limited to the resonant-frequency shift of the patch 

antennas [11] and the dispersive-characteristics change of the transmission lines [12]. The other 

major application of RWGs filled with dielectric media and other magnetic media is to measure 

the properties of materials [13], e.g., the biaxial medium [14]. These inverse engineering problems 

also require ascertaining the transmitting wave modes with the anisotropic insertion before 

establishing experiments and processing the obtained data. 

Birefringent dielectrics also drew considerable attention in the field of integrated optical 

devices. The 4×4 matrix method [15] was widely acknowledged and powerful in addressing 

problems with layered anisotropic dielectrics. However, this method is not appropriate for an RWG 
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problem because it ignores one of the transverse derivatives, e.g., the partial derivative with y is 

always assumed zero when z is the direction of guidance.  

In the microwave regime, a different 4×4 matrix method in spectral domain [16] [17] is of 

great importance for the analysis of microstrip and strip lines embedded in layered anisotropic 

superstrates and substrates. This spectral domain analysis (SDA) adopts Fourier transformations 

to simplify the convolution relations between planar sources and field components parallel to the 

planar boundaries [18]. The reduced number of field components suffices to construct planar 

boundary conditions for microstrip and stripline structures that have no side boundaries. However, 

in a closed waveguide problem the SDA is less efficient. It is justified in [19] that the SDA is not 

advantageous for certain enclosed waveguide problems. In this dissertation we present a method 

that neither needs Fourier transformations nor requires the method of moments for numerical 

calculations. The wave fields are formulated in terms of wavenumbers and the wave propagation 

characteristics are evaluated in the spectral domain. 

It is the objective of this work to analyze the field and mode solutions of the RWGs filled with 

uniaxial media. Similar to the significance of the biasing field direction for gyrotropic media, the 

role of the optic axis for uniaxial media is equally critical. It is convenient to categorize the 

problems as follows. 

1) Optic axis is aligned to one of the principle axes, namely x, y or z axis (aligned problems 

subdivided into uniaxial-x, uniaxial-y and uniaxial-z cases). 

2) Optic axis is tilted but lying in the cross section plane.  

3) Optic axis is tilted but lying in the side wall plane (to be discussed in details).  
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4) Optic axis is tilted but lying in an arbitrary direction and not parallel to any axis or plane 

(not to be addressed). 

The new mode decomposition which leads to complete solutions to all the aligned cases is to 

be detailed in this work. Part of the solutions to the second type is presented in Davis’ work [8] 

which concerns the computation of phase constant using the variational method. This approach 

provides the phase constants at different frequencies, but lacks further information on wave modes 

and field distributions. Type-three will be discussed in this work where the boundary condition 

matrix (BCM) method is discussed in detail. Numerical examples will be demonstrated along with 

the explanation to the algorithm. To the author’s best knowledge, when the optic axis is arbitrarily 

oriented (type-four), the problem has not been solved and is also beyond the scope of this work. 

The conventional spectral domain analysis also encounters computational difficulty. In the RWG 

chapters, the time harmonic dependence e-iωt is assumed through the mathematical derivations. 

The uniaxial medium, although complex, exists in nature. The concept of the negative 

permittivity and negative permeability medium has been of great interest since the year of 2000 

[20]. The concept and fundamental mathematical treatment of the medium with negative 

permittivity and negative permeability were first proposed by Veselago [21] nearly 50 years ago. 

However, it had not found massive applications until the first practical negative refractive-index 

medium (NIM) [22] was predicted in [23] and experimentally demonstrated in 2001 by Shelby, 

Smith and Schultz [24].  

Negative refractive-index materials have held considerable interests since they were 

experimentally demonstrated in both microwave spectrum and in optic regime. Unprecedented 

demonstrations of wave controllability have stemmed from these dielectric-and-metal-based 
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metamaterials. Researchers have found successful implementations in bulk medium and planar 

circuits, thus the metamaterials have attracted significant interests in broad applications. However, 

since the constituent metals are of finite conductivity, and the dielectrics are never ideally lossless, 

the artificial material which is often built with dense use of metal and dielectrics, suffers from 

inherent losses that are detrimental in most applications. For instance, the resolution of the slab 

lens [25] is severely limited, and the radiation performances of the leaky-wave antenna (LWA) 

[26] is degraded. The reason why the LWA performance is degraded will be analyzed. Moreover, 

although the planar circuit loss is finite, it is still surprisingly high when longer metamaterial 

transmission lines (TLs) are to be used.  

To address the loss problem, active media were suggested to incorporate for energy 

compensation [27]. Although the theory of combining NIM and active media were studied in [28] 

from a physics and mathematical perspective, there had been theoretical debate whether NIMs 

with low-loss or even gain violate causality in principle [29] [30]. However, considering that all 

the artificial NIMs are of limited bandwidth, the simultaneous negative refractive index and zero 

loss or gain is, at least in certain frequency range, proven acceptable [31]. In spite of the theoretical 

dispute, there has been considerable effort drawn to alleviate the issue, confirming the 

mathematical correctness. Among many, the spaser introduced by Bergman and Stockman [32] 

has proved to be a practical solution to provide optical gain [33]. The optical parametric 

amplification based on higher order harmonic energy generation was also predicted capable of 

alleviating the loss issue, and the experiment has been reported in [34]. Based on the same 

harmonic energy generation concept, in microwave frequency the use of parametric amplification 

utilizing nonlinear active components was proposed even earlier, and it has been demonstrated in 

an active bulk metamaterial [35] and a left-handed transmission line metamaterial [36]. However, 
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the parametric amplifications are usually narrow band, which limits their usage in broadband 

applications. 

Recently, the energy compensation in the microwave composite right/left-handed (CRLH) 

structure has been further investigated [37], where the tunnel diode is adopted to realize bi-

directional amplification by effectively functioning as a negative resistance (NR). Simultaneous 

negative propagation constant and net gain is achieved in a limited bandwidth within the left-hand 

frequency region. In terms of the reciprocity, it is advantageous over a previous paper [38] which 

allows only forward amplification by inserting quasi-unilateral microwave amplifiers between 

CRLH unit cells. However, due to the common alternating active-and-passive arrangement 

resembling the stack-up of the near field lens [27], the phase propagation of these active structures 

can hardly behave similarly to the composite right-handed (RH) and left-handed (LH) response 

across the transition frequency in a reasonably wide bandwidth. Furthermore, the amplification of 

the biased tunnel diode is highly frequency-dependent, thus impractical to maintain a consistent 

gain over a certain bandwidth which is important for system stability and most microwave 

applications including the leaky-wave antenna with backward-broadside-endfire scanning 

capability. Last but not the least, the series connection extends the unit cell length and breaks the 

metamaterialistic periodicity of the CRLH structure, resulting in the deteriorated return loss at the 

input and output ports. Nevertheless, it is enlightening to use NR for energy regeneration.  

In radio frequency, NR has been known since it was  first introduced by Hull [39], disclosing 

the dynatron. Modern NR circuits often appear as two-terminal (one port) circuits that is usually 

made of active components and biasing circuits [40]. The impedance looking into the two terminal 

network presents less-than-zero values in some frequency band depending on the active 

component characteristics. When operated as one-port devices, the circuits amplify and reflect 
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more power than the incident power injected from the input port. This enables the design of the 

reflection-type amplifiers that use the nonlinearities of transistors [41] or diodes [42] associated 

with circulators to separate input and output ports and avoid instability.  

In this dissertation, we take advantage of the NR technique to demonstrate an active CRLH 

unit cell with compensated loss or even provide net gain covering both the RH and LH frequency 

bands. The loss is addressed by replacing the shorted (grounded by vias) stubs with the negative-

resistance-terminated energy-regeneration stubs, thus the compensated-energy injection is not (in 

series) between the CRLH unit cells as the previously reported experiments [33] [38] did. The 

analysis and experiments of the new CRLH unit cell show that the loss can be completely 

compensated and the unit cell can even have forward gain. More importantly, the original CRLH 

phase characteristics and broad-band Bloch-impedance matching are preserved. The new structure 

is given the name as the negative resistance enhanced composite right/left-handed structure, 

abbreviated as NR-CRLH.  

One of the major applications of CRLH structure is the leaky-wave antenna (LWA) that 

exhibits frequency scanning capability covering from backward to end-fire angles including the 

broadside radiation [26]. The frequency scanning phenomenon perfectly manifests the phase 

propagation characteristics of LH and RH behaviors in different frequency bands, and this 

phenomenon has not been seen with any previous metallic-waveguide-based or microstrip-line-

based LWAs. In order to demonstrate the NR-CRLH structure, an LWA is designed, fabricated 

and measured. Both analysis and experimental results show that the NR-CRLH LWA has not only 

the similar frequency scanning capability but also higher directivity and narrower beamwidth in 

most working frequency band. In order to avoid confusion, in Chapter 4 and Chapter 5, the 
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harmonic time dependence is assumed to be ejωt since this is the common assumption in most of 

the pioneering publications and heavily cited literature in this field of study. 
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Chapter 2  Rectangular Waveguide Filled with Uniaxial Medium – 

Aligned Cases 

 Rectangular waveguide (RWG) filled with various anisotropic media has been receiving 

considerable interests for decades. In some cases the complex medium is intentionally inserted in 

waveguide for particular purposes, but sometimes the introduction of the complex media is 

unintentional. In either situations, the wave behaviors need to be studied prior to applications. For 

example, most modern commercial PCB substrates are unintentionally made uniaxial because of 

their mixing ingredients, but gyromagnetic media are still indispensable in microwave circulator 

and phase shifter design. 

An extensive discussion on guided waves in magneto-plasma medium can be found in Wait’s 

book [43], and the analysis of RWG filled with warm plasma is treated in [44]. The computation 

of dominant mode for a RWG filled with uniaxially anisotropic or uniaxial medium whose optic 

axis is arbitrarily tilted in the cross-section plane is presented in [8], by making use of the 

variational approach. In optics, a landmark paper by Berreman [15] for the anisotropic slab 

waveguide introduced the 4×4 matrix method, which is applicable to the stratified uniaxial case 

presented by Knoesen et al. [45]. Microwave substrate anisotropy drew attention because in 

practice many types of substrate materials were revealed to be anisotropic by accurate 

characterization, and the effect of uniaxial anisotropy was discussed by Pozar in [11] on the study 

of a patch antenna affected by uniaxial substrate. The anisotropic substrate, in current commercial 

products, are still common, among various low-cost FR-4 and FR-4 compatible woven fiber-glass 

materials [46] and high-performance PTFE-based ceramic-filled Roger materials [47]. In recent 

years, with the emerging enthusiasm in left-hand material, backward wave phenomenon in RWG 
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due to negative permeability and permittivity has been investigated [48]. In the other category of 

study, the RWG structure is employed to examine the constitutive parameters [14]. Liu et al. [49] 

obtained the dyadic Green’s functions for RWG using the eigenfunction expansion method. Their 

analysis is limited to when the optic axis is parallel to the direction of propagation. 

However, there has not been any published work on the complete mode (beyond the dominant 

mode) and field solutions when the optic axis of the uniaxial medium in the RWG is not along the 

direction of propagation. No previous work has shown that the dominant mode can change when 

the optic axis is aligned in different directions. It is the purpose of this chapter to obtain the 

complete mode solutions, derived by employing the method of wave decomposition with respect 

to the direction of the optic axis. Specifically, we are concerned with the cases when the optic axis 

is aligned with one of the coordinate axes, namely x, y or z axis. These cases are named as the 

aligned problems, and we give them unique names: uniaxial-x, uniaxial-y and uniaxial-z. For three 

different orientations of the optic axis, the method of wave decomposition with respect to the optic 

axis is proposed. 

2.1.  Formulation 

The RWG is assumed to have width b in y direction and height a in x direction, with the z 

direction as the direction of propagation as shown in Figure 2-1. 
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Figure 2-1    A rectangular waveguide and its dimensions. 

Conventionally for a hollow waveguide, only the dimensions a and b determine the 

propagation characteristics. If size a is greater than b, the dominant mode is TE10 mode; if size b 

is greater than a, the dominant mode is TE01 mode. TM mode does not contribute to dominant 

modes. 

The aforementioned TE and TM modes are given the name in accordance with the nature of 

the field components. The TE mode has no electrical field along z axis, and the TM mode has no 

magnetic field along z axis. The insertion of an isotropic medium with relative permittivity εr and 

relative permeability μr inside the waveguide would not alter these fundamental characteristics. 

However, in the case of a waveguide filled with uniaxial medium, the mode decomposition and 

dominant mode behaviors will both change. The mode decomposition is a natural result of the 

following mathematical derivations. 

2.1.1.  Isotropic Case – Formulation 

When the medium in RWG is isotropic, travelling waves are usually decomposed into TE-to-

Z and TM-to-Z modes, of which Ez and Hz components are zeros, respectively. Typical treatment 
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can be found in many textbooks. It all comes down to solving the Maxwell equations in a source-

free region as follows, assuming the e-iωt time dependence. 

 E i B    (2-1) 

 H i D     (2-2) 

 0D    (2-3) 

 0B    (2-4) 

In the equations above the media are assumed to be isotropic. The constitution relations are 

thus given by 

 
0 r

E D    (2-5) 

 
0 r

H B    (2-6) 

Conventionally, the modes supported in a waveguide with homogeneous and isotropic interior 

space is decomposed into TE and TM modes. Guided wave solutions can be found in many 

textbooks. TE mode wave contains no E field component in Z direction, and TM mode wave has 

no H field component in Z direction. The decomposition of the wave modes with respect to Z axis 

was convenient and unique because the Z direction is the direction of propagation, while the two 

transverse directions are mathematically symmetrical thus interchangeable.  

Harrington uses wave potential scalars to formulate a group of scalar solutions [50]. In Kong’s 

book it starts from Ez and Hz then find vector formulas for transverse components [51]. What is in 

common between those two methods is the purpose to obtain the longitudinal components before 

the transverse components. In the following, Kong’s formulation is reviewed and modified for 

uniaxial-x problem, as an example of applying the revised formulation.  
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In the isotropic case, Maxwell’s equations can be split into transverse-to-Z and parallel-to-Z 

components. 

      0s z s z r s z
E E i H H          (2-7) 

      0s z s z r s z
H H i E E           (2-8) 

The Laplace operators with subscripts “s” or “z” are defined as follows. 

 ˆ ˆ
s x y

a a
x y

 
  

 
 (2-9) 

 ˆ
z z

a
z


 


 (2-10) 

Thus the general ‘del’ operator is the sum of the above two definitions. Each of equations (2-7)  

and (2-8) could be separated into two parts. One of the two parts contains all the transverse-to-z 

direction terms, the other part contains all the z directional terms. Specifically, (2-7) could be 

separated into (2-11) and (2-12) representing the transverse components and the Z components, 

respectively, and similarly (2-8) can be separated into (2-13) and (2-14). 

 
0 r s s z z s

i H E E          (2-11) 

 
0 r z s s

i H E       (2-12) 

 
0 r s s z z s

i E H H          (2-13) 

 
0 r z s s

i E H       (2-14) 

To further reform the equation (2-11) to equation (2-14), there are several vector product 

identities need to be used. These identities can be found in electromagnetics textbooks and will be 

briefed when the identities are used.. 

First, we use the z unit vector to cross-product (2-11) and (2-13) to obtain the following results. 
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 0
ˆ ˆ ˆ

z r s z s z z z s s z s
a i H a E E E

z
a E        


 


    (2-15) 

  0
ˆˆ ˆ

z s z z z sr sz s z s
a H aa i H H H

z
E  


          


 (2-16) 

Then, we use the z unit vector to cross product (2-15), and that is equivalent to cross product 

(2-11) twice. Therefore, the following two equations have to be equal with the left-hand side as 

 ˆ ˆ
z z s s

a a i H i H       , (2-17) 

and the right-hand side as 

 ˆ ) ˆˆ (
z s z z s s z zs z zs s

a E a E a
z

E EE
z

Eik
 

          


 

 


 
. (2-18) 

Now that we have obtained the left had side of (2-16) to be (2-18). Since (2-17) and (2-18) are 

equal, we can find Es vector in terms of Ez and Hs and put that back into (2-16). By doing so, the 

transverse magnetic field components in Hs vector are in terms of Ez and Hz only as follows. 

 02 2

0 0

1
z

s s r s z

r z

H
H i E

k z
  

   

 
    

 
  

 (2-19) 

Following the similar derivations, the transverse electric field components are also found in 

terms of Hz and Ez as follows. 

 02 2

0 0

1
z

s s s z

r z

E
E i H

k z
 

   

 
    

 
  

 (2-20) 

The equations (2-19) and (2-20) indicate that the transverse components are all ready to be 

obtained if Ez and Hz are solved.  
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2.1.2. Isotropic Case – Field Solutions 

The z components could be solved from their Helmholtz’s equations which are derived from 

Maxwell’s equations.  From (2-1) and (2-2) we have 

 

22 2 2 2 2

2

0 02 2
0

yx z z z z

r z

EE E E E E
E

x z y z z z z z x y
   

      
       

          

. (2-21) 

The above is Helmholtz’s equation whose solution in rectangular waveguide can be 

analytically solved using separation of variables. The final solutions can be found in many 

textbooks and are not listed here.  

Taking advantage of the vanished divergence of electrical field vector from Gauss’ law we 

have the following equation holding for electrically isotropic media 

 0
yx z

EE E

x y z

 
  

  
. (2-22) 

Then (2-21) becomes 

 
2 2

0 0
0

z r z
E E      , (2-23) 

where 

 
2 2

0 0 0
k    . (2-24) 

From (2-23), the dispersion relation could be derived as 

 
2 2 2 2

0 0z x y r
k k k       . (2-25) 

The above dispersion relation governs the guided wave behaviors. The transverse wave 

numbers are determined by the dimensions and take discrete values as given by 

 x
k m

a


  (2-26) 

 y
k n

b


  (2-27) 
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In Chapter 2 and Chapter 3, the index m is associated with the wavenumber along X axis, and 

the index n is associated with the wavenumber along Y axis. With the values of kx and ky limited 

because of the boundary conditions, the wavenumber kz (propagation constant) is only derivable 

through the dispersion relation as follows. 

 

2 2

2

0 0z r
k m n

a b

 
   

   
      

   

 (2-28) 

The propagation constant, or kz, takes either positive or negative values, corresponding to the 

wave travelling in positive Z direction or negative Z direction, respectively. When the excitation 

frequency is less than the cutoff frequency, kz takes imaginary value and the wave attenuations 

while propagating along the waveguide. Thus the frequency of a supported travelling wave has to 

be greater than the lowest cutoff frequency of the waveguide. In general, the cutoff frequency is 

given by 

 

2 2

2
c

r

c m n
f

a b

   
    

   

 (2-29) 

where the lower case letter c represents the speed of light in vacuum. 

2.1.3. Tensors for Uniaxial Media 

The solutions to the RWG problems involving uniaxial media with aligned optic axis can be 

obtained analytically. Plenty of mathematical methods developed for isotropic media could be 

adopted handily. The fundamental reason is that the relative permittivity tensors are always 

diagonal, namely, the off-diagonal elements are all zeros. The aligned cases include three 

difference alignments. When the optic axis is parallel to x axis, the tensor of the relative 

permittivity is given by 
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. (2-30) 

When the optic axis is aligned with y axis, the tensor of the relative permittivity is as follows. 

 

0 0

0 0

0 0

t

r y
y

t



 



 

 

 
 
 

 (2-31) 

Thirdly, when the optic axis is along the direction of propagation, the tensor of the relative 

permittivity is  

 

0 0

0 0

0 0

t

r z
t

z



 



 

 

 
 
 

. (2-32) 

With the above relative permittivity tensor defined, the constitution relations are given as 

follows. 

 
0

r E D     (2-33) 

Notice that the scalar relative permittivity in (2-5) is changed to be a tensor, in the form of a 

3-by-3 matrix as shown in equations (2-30) to (2-32). In the rest of this work on rectangular 

waveguides, for simplicity of discussion, the media are all assumed to be non-magnetic. Thus the 

constitution (2-6) can be simply written as 

 
0 r

H B    (2-34) 
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2.1.4. Uniaxial-z Case – Formulation 

 

Figure 2-2    A rectangular waveguide in the uniaxial-z case. 

In RWG with isotropic and homogeneous internal space, conventionally the travelling waves 

are decomposed into TE-to-Z and TM-to-Z modes. Solutions to such waveguides can be found in 

numerous electromagnetics and microwave textbooks and have been understood. They form the 

foundation of a large portion of microwave technologies. Among various solutions, the common 

procedure is to obtain the longitudinal components before the transverse components. This 

methodology works well for uniaxial-z case as we will show in the following procedure. 

First, the transverse field components are expressed in terms of Ez and Hz, the longitudinal 

components. If we define ∇𝑠 as the transverse part of Laplace operator in Cartesian coordinate 

system, Maxwell’s equations can be explicitly split into transverse-to-Z and parallel-to-Z groups 

as follows. 

      0s z s z s z
E E i H H         (2-35) 

      0s z s z t s z z
H H i E E            (2-36) 

The subscript s denotes the directions transverse to Z axis. Note the difference between the 

pair of equations (2-7) and (2-8) and the pair of equations (2-35) and (2-36). The only difference 

is the relative permittivity εz which is the relative permittivity along the optic axis with Ez 
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component. This difference is the result of applying the constitutive relation of matrix tensor (2-32) 

in Maxwell’s equations. 

It can be directly verified that the derivation process applied for the isotropic case can be 

applied to this uniaxial-z case as well. There is no modification to the vector operators and 

identities. Following the described mathematical manipulations, we have the expressions for 

transverse components in terms of the Ez and Hz components as follows. 

 02 2

0 0

1
z

s s t s z

t z

H
H i E

k z
  

   

 
    

 
  

 (2-37) 

 02 2

0 0

1
z

s s s z

t z

E
E i H

k z
 

   

 
    

 
  

 (2-38) 

Compared with the isotropic equations, the equations (2-37) and (2-38) are only different by 

employing εt instead of εr. Here the subscript ‘s’ also designates the components transverse to Z-

axis. Note that the above two equations contain no εz which is the relative permittivity along Z-

axis. Thus on the first sight the solutions are not affected by the presence of the anisotropy. 

However, the answer will be revealed by the examination of dispersion relation. 

2.1.5. Uniaxial-z Case – Solution 

Analytical solutions of uniaxial-z case can be obtained by solving PDEs similar to an isotropic 

case. First, the Maxwell equations are listed as follows. 
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It has been summarized in [49] that the modal decomposition results in TE-to-z and TM-to-z 

modes, corresponding to the o-wave and e-wave, respectively. Here we derive the analytical TM 

solutions first.  

TM modes solutions should contain no Hz component which is thus assumed to be zero. From 

(2-39) to (2-44) and with the help of Gauss’ law 

 0
yx z

t t z

EE E

x y z
  

 
  

  
, (2-45) 

we can find the second order PDEs for Ez given by 
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. (2-46) 

The first direct result of the above PDE is the dispersion relation of an extraordinary wave 

 
2 2 2 2
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z

z x y z

t

k k k


   


    (2-47) 

The solutions to the second order differential equations reflect standing wave along X-direction 

and Y-direction, and travelling wave on the Z-direction. The boundary conditions are the same as 

the isotropic case. The Ez magnitude has to vanish on the side-walls of the waveguide. Therefore 

the Ez solutions is found as follows. 
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0

s in s in z
ik z

z x y
E E k x k y e  

 (2-48) 

The magnitude E0 is an unknown value which will be determined when excitation is known. 

This solution serves as the first solved component in TM modes, whose Hz components are 

assumed to be zero. Hence the other components transverse to Z-axis can be all obtained through 

(2-37) and (2-38). The obtained solutions are listed and interested readers can compare the results 

with the isotropic results in Kong’s book [51]. For TMz wave the solutions are given as follows 

with Hz equal to zero. 
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 (2-53) 

Similarly, the TE solution which contains no Ez component will require first to solve for Hz 

component. Its PDE can also be derived from Maxwell’s equations with the help of the Gauss’ law 

for magnetic fields as 
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 (2-54) 

The resultant PDE is given by 
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, (2-55) 
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which is identical in a isotropic case, except that the isotropic case uses εr and the uniaxial-z TE 

mode solution employs εt. The lack of εz is because of Ez is assumed to be zero and indicates an 

ordinary wave dispersion relation known as 

 
2 2 2 2

0 0z x y t
k k k       . (2-56) 

From (2-55) and the boundary conditions for Ex and Ey components the Hz can be solved as 
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 (2-57) 

The derived solutions are given as follows with Ez components equal to zero. 
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The modes and corresponding cutoff frequencies are tabulated in Table 2-1. The values of kx 

and ky are given by the equations (2-26) and (2-27). 
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Table 2-1    Modes and Cutoff Frequencies of Uniaxial-z Case. 

Mode Exist Cutoff Frequency Compare 

TMZm0 No N/A No 

TMZ0n No N/A No 

TMZmn Yes 

2 2

2

m n
T M

c Z

z

c m n
f

a b

   
    

   
 TMmn 

TEZ0n Yes 
0

2

n
T E

c Z

t

n c
f

b 
  TE0n 

TEZm0 Yes 
0

2

m
T E

c Z

t

m c
f

a 
  TEm0 

TEZmn Yes 

2 2

2

m n
T E

cZ

t

c m n
f

a b

   
    

   

 TEmn 

 

2.2. Generalized Cases 

In the previous isotropic case and uniaxial-z case, Ez and Hz components are decoupled. The 

mathematical manifest is seen from the existence of the second order partial differential equations 

for Ez and Hz, separately. Consequently, the modes in the previous cases can be categorized into 

TE modes whose Ez component is zero and TM modes whose Hz component is zero. To be more 

specific, the conventional TE modes and TM modes are interchangeable with the mode denotation 

TEZ and TMZ modes, respectively. The necessity of this clarification is due to the proposed general 

formulation and mode decompositions with respect to the optic axis, which can be parallel to any 

one of the coordinate axes. 
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Even for the isotropic case, the mode decomposition can also be done with respect to other 

coordinate axes, too. Harrington briefly mentioned the feasibility of TE/TM to X axis modes and 

TE/TM to Y axis modes in his book [50]. In this section the formulation applying to all the aligned 

uniaxial waveguide cases are detained. The resultant decomposed modes are discussed in next 

section. 

2.2.1. Uniaxial-x and Uniaxial-y Cases 

The aforementioned separable PDEs of Ez and Hz manifest the convenience of decomposing 

the modes into TE and TM modes. However, in uniaxial-x and uniaxial-y cases, Ez and Hz are not 

always decoupled. In other words, partial differential equations (PDE) exclusively having Ez or Hz 

component as the only unknown cannot be derived from Maxwell’s equations. Therefore the 

TE/TM mode decomposition is not convenient to obtain the full solutions. 

However, decomposition with respect to the optic axis is always practical. Mathematically, in 

any uniaxial medium where the optic axis is aligned with one of the coordinate axes, Maxwell’s 

equations can be concisely organized to obtain the PDE exclusively with unknown field 

components that are parallel to the direction of optic axis. This fact allows the decomposition with 

respect to the direction of the components that are parallel to the optic axis.  

To be distinguished from previous TE/TM modes, TE-to-X (TEX) mode, and similarly TEY, 

TMX, TMY modes are defined. In order to eliminate confusion, terms TE/TM will imply 

transverse-to-Z modes only, so are the TEZ and TMZ, while other decompositions will always be 

identified by subscripts. The analyses of uniaxial-x case and uniaxial-y case are naturally similar 

in terms of mathematical treatment because of the rotational geometry between x and y coordinates 
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in the study of RWG, but the decomposition is not symmetric as in an isotropic waveguide because 

of the presence of the optic axis. 

To clarify the existence of the PDEs mentioned previously, we start the analysis with particular 

cases and lay down the necessary derivation procedures. For example, in uniaxial-x case, 

Faraday’s law remains the same, and the differential equations that are different from the uniaxial-

Z case are listed as follows. 

 
0

yz

x x

HH
i E

y z
  


  

 
 (2-63) 

 0

x z

t y

H H
i E

z x
  

 
  

 
 (2-64) 

 
0

y x

t z

H H
i E

x y
  

 
  

 
 (2-65) 

Note that the Gauss’ law is also changed to be 

 0
yx z

x t t

EE E

x y z
  

 
  

  
 (2-66) 

First we consider TM modes with Hz equal to zero. Conventionally one may attempt to solve 

for Ez prior to other components. However, due to the different relative permittivity in (2-63) from 

the other two Faraday’s law equations, and the inhomogeneity among the coefficients of the first 

order derivatives in Gauss’ law, solving for Ez is impractical because there is no separated second 

order PDE can be obtained. Therefore, conventional TM-to-Z modes are not supported in such a 

waveguide. 

Secondly we consider TE modes with Ez equal to zero. In this case, the separated second order 

PDE with neither kx nor ky being zero is not possible, too. Nevertheless, with one of the transverse 

wavenumber being zero, the solutions are approachable.  
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When kx = 0, the second order PDE for Hz component is 
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 (2-67) 

And the dispersion relation is derived as 

 
2 2 2

0 0z y x
k k       (2-68) 

It can be verified that this mode contains only Ex component, and this is the reason why in the 

dispersion relation there is only εx but not the relative permittivity in the transverse directions. 

When ky = 0, the second order PDE for Hz component is obtained as 
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 (2-69) 

And the dispersion relation is derived as 

 
2 2 2

0 0z x t
k k       (2-70) 

It can be verified that this mode contains only Ey component, and this is the reason why in the 

dispersion relation there is only εt but not εx. In uniaxial-y cases, the derivation of solutions is 

similar to the uniaxial-x case, thus the processes and details are omitted.  

Now the question arises: Are these two modes the only supported modes in such a rectangular 

waveguide? Next section we describe another method to solve for the complete wave modes. 

2.2.2. General Formulation 

The analyses of the uniaxial-x and uniaxial-y cases are naturally the same because of the 

rotational geometry between x and y coordinates in the study of RWG. We formulate the solution 

for broader generality, using the Laplace operators 
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 ˆ
c c

a
c


 


 (2-71) 

 ˆ ˆ
t u v

a a
u v

 
  

 
 (2-72) 

The subscript c denotes the direction of optic axis, and the subscript t (u, v) designates the 

directions transverse to c. For example, if the c stands for x, then u and v represent y and z. If the 

c designates y, then u and v represent x and z. 

Then Faraday’s law can be rewritten and separated as follows. 

 
0t c c t t

E E i H        (2-73) 

 
0t t c

E i H     (2-74) 

And Ampere’s law can be separated as follows. 

 
0t c c t t t

H H i E          (2-75) 

 
0t t c c
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The unit vector ˆ
c

a  is defined as the unit vector in the direction parallel to the optic axis. It 

applies in all the three aligned uniaxial cases. Applying anterior cross-product on the above 

equations, and using the general operators defined in (2-71) and (2-72), a similar derivation can be 

done following the same procedure described in Section 2.1.1 and Section 2.1.4.  We can obtain 

the most general equations for all three uniaxial cases given by 
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Inspired by the mode decompositions with respect to the orientation of the optic axis, it is better 

to obtain the Ec and Hc components, or Ex and Hx in this particular case, prior to other components. 

It can be easily verified that Ec and Hc components are always decoupled in PDEs and thus can be 

solved independently. Again, we first take the uniaxial-x case as the example and details the 

derivations. 

 For TEX modes, assume Ex = 0, and the second order PDE for Hx is given by 
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 (2-79) 

And this second order PDE bears the solutions to Hx component with assistance from the 

boundary conditions. The dispersion relation is the same as (2-56), which is TEZ mode dispersion 

relation in the uniaxial-z case. It represents an ordinary wave. Other components can be derived 

once Hx is obtained. 

For TMX modes, assume Hx = 0, and the PDE is derived as follows. 
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    (2-80) 

The above result is comparable to (2-47), which is the TMZ mode dispersion relation in the 

uniaxial-z case. This represents an extraordinary wave. 

Similarly, TMY modes have the dispersion relation as 
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    (2-81) 

Utilizing the general operators and unit vectors, we can conclude that for all the TEC modes, 

all the modal waves are ordinary waves, and they are all governed by the same dispersion relation 
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(2-56). Moreover, all the TMC mode waves are extraordinary waves, the they all have particular 

dispersion relation for each case that has been discussed before. One general form can be written 

as follows. 

 
2 2 2 2

0 0c c t u t v t c
k k k           (2-82) 

The modal decomposition results are discussed in the following section. 

2.3. Results 

This section discusses the wave modes,, dominant modes, field distributions, and other results 

with the solution from the previous section. 

2.3.1. Mode Decomposition in Uniaxial-x Case 

The decomposed modes in uniaxial-x case are summarized in Table 2-2. 

Table 2-2    Modes and Cutoff Frequencies of Uniaxial-x Case 

Mode Exist Cutoff Frequency Compare* 

TMXm0 No N/A N/A 

TMX0n Yes 
0
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n
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TMXmn Yes 

2 2

1 1

2

m n
T M

c X

t x

c m n
f

a b 

   
    

   
 Ez≠0; Hz≠0. 

TEX0n No N/A N/A 
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 Ez≠0; Hz≠0. 

* Compare with conventional transverse-to-z modes. 
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In uniaxial-x case, the TMX modes are extraordinary waves and the TEX modes are all ordinary 

modes. TMXm0 modes with ky = 0 do not exist because the solution would become trivial with Ex 

= 0. TMX0n modes correspond to the TE0n (transverse to Z) modes with kx = 0. TEXm0 modes 

correspond to the TEm0 (transverse to Z) modes with ky = 0. Note that TEmn (transverse to Z) modes 

with neither kx nor ky being zero are not supported in such waveguides. In agreement with the 

previous theoretical examination and prediction, the TM to Z modes are not supported at all. 

It is worth mentioning that the supported TMXmn modes and TEXmn modes do not find matched 

modes in conventional TE/TM (transverse to Z) mode set. Note that without using the proposed 

general formulation and mode decomposition with respect to optic axis, the TMXmn and TEXmn 

would be difficult to find from the conventional TE/TM mode (transverse to Z) decompositions. 

 Essentially both TMXmn mode and TEXmn mode would contain both Ez and Hz components. 

Therefore, again, the conventional method of separating Ez and Hz components from Maxwell’s 

equations would encounter difficulties. Similarly, TMXmn mode has no Hx component and TEXmn 

mode has no Ex component, but they are both comparable to conventional transverse-to-z modes 

as shown in the last column in Table 2-2. 

With the transverse wavenumbers defined in (2-26) and (2-27) which are valid in all the 

aligned uniaxial cases, the complete wave field component solutions of TMX modes are given as 

follows in the uniaxial-x case. 
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The complete wave field component solutions in the uniaxial-x case are given as follows for 

TEX modes. Note that the relation of the three wavenumber components follows the form of the 

conventional isotropic case with no uniaxiality involved. 
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Apparently they have the same sinusoidal functional dependence as the conventional TE and 

TM waves because the boundary conditions never changed. The dominant mode will be discussed 

in Section 2.3.3. 

2.3.2. Mode Decomposition in Uniaxial-y Case 

The decomposed modes in uniaxial-y case are summarized in Table 2-3. 

Table 2-3    Modes and Cutoff Frequencies of Uniaxial-y Case. 

Mode Exist Cutoff Frequency Compr* 

TMY0n No N/A N/A 

TMYm0 Yes 
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 Ez≠0; Hz≠0. 

TEYm0 No N/A N/A 

TEY0n Yes 
0

2

n
T E

c Y

t

n c
f

b 
  TE0n 

TEYmn Yes 

2 2

2

m n
T E

cY

t

c m n
f

a b

   
    

   

 Ez≠0; Hz≠0. 

* Compare with conventional transverse-to-z modes. 

In uniaxial-y case, TMYm0 modes with kx = 0 do not exist because the solution would become 

trivial with Ey = 0. TMY0n modes correspond to the TE0n (transverse to Z) modes with kx = 0. TEYm0 

modes correspond to the TEm0 (transverse to Z) modes with ky = 0. Note that TEmn (transverse to 

Z) modes with neither kx nor ky being zero are not supported in such waveguides. In agreement 

with the previous theoretical examination and prediction, the TM-to-Z modes are not supported at 

all. 
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It is worth mentioning that the supported TMYmn modes and TEYmn modes do not find matched 

modes in conventional TE/TM mode set. Note that without using the proposed general formulation 

and mode decomposition with respect to optic axis, the TMYmn and TEYmn would be difficult to 

find from the conventional TE/TM mode decompositions. Essentially both TMXmn mode and 

TEXmn mode wave solutions would contain both Ez and Hz components, whereas TMXmn mode has 

no Hx component and TEXmn mode wave has no Ex component.  

The complete wave field component solutions for TMY modes are given as follows in the 

uniaxial-y case. 
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The complete wave field component solutions for TEY modes are given as follows in the 

uniaxial-y case. Note that the relation of the three wavenumber components follows the form of 

the conventional isotropic case with no uniaxial permittivity involved. 
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The expression for calculating kz is the same as (2-96). 

2.3.3. Dominant Modes 

A waveguide is always characterized by the dominant mode and the corresponding cutoff 

frequency (fc). The cutoff frequency of a hollow waveguide’s dominant mode is determined by the 

waveguide dimensions, a and b. When a waveguide is homogeneously filled by an isotropic 

medium, for example, an isotropic dielectric, the cut off frequencies of all the modes are scaled 

down by the relative permittivity, so is that of the dominant mode as well. A recent example is the 

substrate integrated waveguide built using modern printed circuit board technology [52]. The 

cutoff frequencies are reduced by the substrates compared to hollow metallic waveguides. 

However, the situation changes in a different fashion due to the anisotropy of its internal 

medium. First, the cutoff frequencies of different modes are shifted at different levels. Secondly, 

the waveguide may be intrinsically changed due to the alternation of the dominant mode. Thirdly, 
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the field distributions, guided wave impedances and attenuation constants will all be affected. 

Details on each uniaxial case are provided in the following discussion. 

Uniaxial-Z Case 

For the uniaxial-z case, where the conventional TEZ10 and TEZ01 modes are supported, their 

cutoff frequencies are as follows. 
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The subscript c at the foot of f implies cutoff frequency, and symbol c in numerators denotes 

the velocity of light in vacuum. The above two cutoff frequency equations are different between 

TE and TM modes. The same set of equations fit for an isotropic case if the εz is replaced by εt, 

assuming the later relative permittivity characterizes the isotropic medium’s relative permittivity. 

No matter how great or small εt will be, the dominant mode would not change for isotropic case. 

Assuming a is greater than b, the dominant mode is always 1 0
T E

c Z
f . However, in the uniaxial-z case, 

the difference in the permittivities in (2-110) and (2-111) changes the order of lowest modes. The 

change can be demonstrated in Figure 2-3. 



 

36 

 

 

Figure 2-3  Dominant mode changes when the degree of anisotropy changes. 

In the example illustrated in Figure 2-3, the cutoff frequency of the TMZ11 is always the lowest 

among all TMz modes due to the lowest order. The cutoff frequency is derived from the dispersion 

relation and letting m of kx and n of ky to be the minimum values, namely m=1 and n=1. Stunningly, 

the TMZ11 mode also becomes the dominant mode including the lowest order TE modes when the 

relative permittivity along Z axis (εz) exceeds certain value which is around 14 in this example. 

Uniaxial-X Case 

In the uniaxial-x case, although the decomposition method has been changed, the way to pursue 

the dominant mode remains unaltered. In Table 2-2 where cutoff frequencies are tabulated the 

subscript cX is denoting that the cutoff frequency is formulated for the uniaxial-x case. Once again, 

it is observed that the dominant mode is determined not only by the dimensions of the waveguide, 

but also by the degree of anisotropy as shown in Figure 2-4. It is also worth mentioning that, of all 

the conventional transverse-to-Z modes, only the TEZm0 or TEZ0n modes coincide with TEXm0 and 

TMX0n modes of the uniaxial-x case, respectively. Ez and Hz are coupled in other modes. 
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Figure 2-4    Dominant mode changes as the degree of anisotropy (εx /  εt) changes 

in uniaxial-x case. 

In this example, although the dimension a is greater than b, the TMX01 mode which corresponds 

to the conventional TEZ01 mode becomes the dominant mode when the degree of anisotropy is 

strong enough, or when εx exceeds the value of 8. Clearly, the dominant mode is not exclusively 

determined by the waveguide dimensions. The anisotropy also affects which mode has the lowest 

cutoff frequency. 

Uniaxial-Y Case 

Last but not the least, from the supported modes and their cutoff frequencies tabulated in Table 

2-3 the uniaxial-y case mode shift is also studied. The analysis and wave mode change due to the 

varying degree of anisotropy is similar to the previous uniaxial-x case. It was found that the 

dominant mode shift (between TEY01 mode and TMY10 mode) occurs when the medium is 

negatively uniaxial (εy<εt), as shown in Figure 2-5. Specifically, the dominant mode is the TEY01 

mode when εy is smaller than 2.5, and the dominant mode is the TMY10 mode (corresponding to 

TEZ10) when εy is greater than 2.5. Again the anisotropy affects which mode is the dominant mode. 
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Figure 2-5    Dominant mode changes as the degree of anisotropy (εy /  εt) changes 

in uniaxial-y case.  

2.3.4.  Guided Wave Impedance 

Last but not least, attenuation constants due to conductor loss are also subject to change. 

Physically, these variances can be attributed to the change of field distributions that intensify the 

dissimilarities of the modes of the same indices. The wave impedance formulas are different 

between the ordinary waves and the extraordinary waves. Only the possible dominant modes are 

considered. The definitions of the impedances follow the regular RWG (isotropic) conventions. 

The TEXm0, TEY0n, TEZm0 and TEZ0n modes which are all o-waves have the same guided 

impedances given by 
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They are different from the isotropic dielectric filled waveguide by using the transverse relative 

permittivity other than the isotropic relative permittivity. Note that the optic axis is not involved 

because they are all ordinary waves with no E field component in the optic axis direction. 

And the guided wave impedances of TMX0n and TMYm0 modes whose electric fields are non-

zero in the optic axis direction are given by 
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0
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1

x y

c
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, (2-114) 

where the subscripts of the impedance η and permittivity ε represent the directions of the optic axis 

and the intrinsic impedances are given by 
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 . (2-115) 

Equations (2-112) and (2-114) appear in the identical form because essentially they both 

describe how electrically transverse-to-z modes (TEZ) behave. They include all the possible 

dominant modes except the TMZ modes in uniaxial-z case. In contrast, the TMZ modes in uniaxial-

z case are the only magnetically transverse-to-z modes among all the supported modes, and the 

formula of the characteristic impedance is in the unique form as 

 2 2

0
1

t c
Z f f 

 (2-116) 

2.3.5. Field Distributions 

In isotropic and uniaxial-z cases, plots of field distributions of TMZ31 modes are provided in 

[49] and duplicated in Figure 2-6. In those figures, the Ez magnitudes are assumed same, and 

dimensions and relative permittivities are not specified except the relative ratios. Details are given 

in the figure caption. The fields are calculated from the obtained dyadic Green’s functions over 
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the cross-section of the waveguide. In this work more field distributions are plotted using the 

analytical solutions. 

 

Figure 2-6    Field distributions of the TM31 mode in the uniaxial-z case and the 

isotropic case. Dimension ratio is a/b = 2. The uniaxial-Z case has εz 

/ εt = 2.5. 

Plots of field distributions of TMC31 modes (the subscript ‘C’ stands for X or Y) for uniaxial-

x and uniaxial-y cases are shown in Figure 2-7 through Figure 2-14, along with the plots of the 

contours of the equal-field-strength curves. The equal strength contour is given by |𝐸|2 = 𝐸𝑥
2 +

𝐸𝑦
2 + 𝐸𝑧

2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  

In all the three-D plots, the amplitudes of Ez are all normalized to be 1 V/m for comparisons. 

The relative permittivity values are specified in the figures. Note that the relative relations among 

the E-field components are also calculated and included with the figures. The waveguide 

dimensions are all same as a=10 cm and b=5cm. 

Across all the field plots, although all the peaks and valleys are at the same locations in the 

cross-section plane (XY plane), their peak magnitudes are different. Although field distributions 

all follow the sinusoidal functional dependence, the field strength over the cross-section plane are 

quite different. In guided wave structures or microwave component design, the difference may 

affect the result of insertion loss or the performances at the discontinuities. In radiative unit design, 
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the field distribution may result in the changes in far field radiation pattern and antenna 

performances [11]. 

 

Figure 2-7    Field distribution of the TMZ31 Modes in the isotropic case. 

 

Figure 2-8    Contours showing the equal-magnitude curves in the isotropic case. 
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Figure 2-9    Field distribution of the TMX31 Modes in the uniaxial-x case. 

 

 

Figure 2-10    Contours showing the equal-magnitude curves in the uniaxial-x case. 
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Figure 2-11    Field distribution of the TMX31 Modes in the uniaxial-x case. 

 

 

Figure 2-12    Contours showing the equal-magnitude curves in the uniaxial-y case. 
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Figure 2-13    Field distribution of the TMY31 Modes in the uniaxial-y case. 

 

 

Figure 2-14    Contours showing the equal-magnitude curves in the uniaxial-y case. 
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All the contour plots exhibit one period along Y axis and three period over X axis. This is due 

to the mode chosen. 

2.3.6. Attenuation Constants 

The attenuation constants due to finite conductor loss are derived using the perturbation 

method and presented as follows with Rs representing the metal surface resistance, which is the 

real part of a lossy (highly conductive) medium’s intrinsic impedance [53]. 
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Note that the intrinsic impedance has the same real part and imaginary part. Then the 

attenuation constants can be found as follows for TMX0n (TEZ0n) modes 
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and for TEXm0(TEZm0) modes 
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For TEY0n (TEZ0n) modes the attenuation constant is given by 
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and for TMYm0 (TEZm0) modes the result is 
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The cutoff frequency expressions for uniaxial-x and uniaxial-y cases can be found in Table 2-2 

and Table 2-3, respectively. Finally for TMZ modes in the uniaxial-z case the attenuation constant 

is derived as follows. 
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The fc expression for TMZ modes can be found in (2-111). 

2.4. Summary 

In this chapter we have shown the mathematical derivation and mode decomposition method 

developed for the RWGs filled with uniaxial medium whose optic axis is aligned with one of the 

coordinate axes. Dominant mode change was found through the calculations using the analytical 

solutions. Field distributions revealed the change due to the incorporation of the uniaxial medium. 

Complete fields and wave mode solutions are provided, along with the impedance and attenuation 

constants.   
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Chapter 3    Rectangular Waveguide Filled with Uniaxial Medium – 

Tilted Cases 

Tilting of the optic axis elevates the complexity of the problem substantially. The aligned 

problems are only slightly distinctive from the isotropic problem in terms of formulation, wave 

modes and standing wave conditions. However, the birefringence that induces the double 

reflection phenomenon significantly complicates waveguide problems. Relevant electromagnetic 

problems on reflection and transmission were thoroughly investigated in [54], which enlightened 

the study of the reflection behaviors on the waveguide’s inner side walls (uniaxial-metal interfaces). 

Furthermore, the approach to solve the side wall problem depends heavily on the aforementioned 

study of reflections. The following discussion will be organized by directions of optic axis 

orientations. 

When the optic axis is tilted but lying in the cross-section plane, namely the x-y plane 

according to Figure 2-1 in Chapter 2, the research into this type of problem was first reported in 

[8] using the variational method. The vectorial variational formula of guided propagation constant 

in an inhomogeneous and/or anisotropic waveguide was first derived by Berk [55], and since 

detailed in several textbooks, e.g., [4] and [56]. Although certain restrictions apply, the method 

has proved successful in treating resonators and waveguides enclosing anisotropic media. By 

employing the so-called Rayleigh-Ritz procedure, asymptotic numerical results can be obtained. 

Although it is considered concise and conceives unified formulation, the variational method 

solutions lack adequate information to model all of the travelling waves. The method provides 

only the propagation constant of dominant mode, but other quantities of interests including kx, ky 

and field distributions are, at least in Davis’ paper, not available. Moreover, its convergence and 
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accuracy depend on structural configurations and modal approximations [57], or the selected test 

functions. The trial solutions of the field components in [8] need to be modified in order to be used 

for other uniaxial waveguide problems. Although it has these disadvantages, the variational 

method can still be applied in future work to verify the correctness of the computed results 

presented here. In Chapter 3, we consider the problem when the optic axis is tilted but lying in the 

side wall plane, i.e., either the X-Z plane or the Y-Z plane. The first following section will review 

the constitutive relation with complex matrix forms. The second section will brief the analytical 

solutions, followed by the hybrid numerical solutions in the third section. The fourth section 

presents a detailed example for readers to understand how the computation routine works. 

3.1. Constitutive Relations 

The constitutive relations in the aligned cases have been discussed in the previous chapter. The 

relative permittivity tensors are in diagonal form with off-diagonal elements all zeros. This 

changes in the tilted cases. In general, the tensor can be obtained using the transformation matrix 

[56]. The transformation matrix can be obtained as the combination of two of the three matrices 

as follows. 
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xR



  

 

 

 

 
 

 

 (3-3) 

The above transformation matrices are defined to be used with the rotation with respect to Z, 

Y, and X axis, respectively. The rotating angles are called Euler Angles which are shown in Figure 

3-1. 

 

Figure 3-1 Demonstration of Euler Angles in transformation matrices. The most 

general transformation takes three rotations but may use two or three 

rotation matrices. 

Although the rotation matrix is defined in three forms, a general rotating process requires only 

two out of the three. More details can be found in many other mathematics books like [56]. In this 

chapter, the relative permittivity matrices will be rotated only once along one of the coordinate 

axes.  
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3.1.1. Rotation in Cross-Section Plane 

Assume originally the optic axis is aligned with one of the axes in the cross section plane, 

namely the X-Y plane. If the medium is rotated around the axial direction with an angle γ as 

depicted in Figure 3-2 the permittivity tensors will have non-zero off-diagonal elements. 

 

 

Figure 3-2  Optic axis tilts from x axis and lies in the cross section plane.  

Taking uniaxial-x as the initial configuration and applying Euler’s angle rotation, the rotated 

tensor can be obtained by 
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which results in the following form. 
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The rotated matrix elements are given by 

 
2 2

1 1
c o s s in

x t
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2 2

2 2
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x t
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1 2 2 1

( ) co s sin
x t

         (3-8) 

Note that for a positive uniaxial medium whose εx is greater than εt, the off diagonal elements 

are positive, and they are negative for a negative uniaxial medium. 

3.1.2. Rotation in Side Wall Plane 

An RWG has two orthogonal side wall planes, both of which are parallel to the direction of 

propagation. The structural characteristic, sometimes referred to as rotational symmetry, allows us 

to demonstrate the solution to one type of problem and the method is automatically applicable to 

the other, the symmetric problem. Accordingly, the tilted case with the optic axis lying in Y-Z 

plane and the tilted case with the optic axis lying in X-Z plane are considered as symmetric 

problems, and here we use the former one as the example. 

Assume the optic axis is originally along z-axis, and it is tilted by an angle α in the y-z plane 

as shown in Figure 3-3.  
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Figure 3-3    Optic axis tilts from the z axis and lies in the y-z plane. 

Then we have five non-zero elements in the tensor can be obtained by 
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which results in the following form 
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The matrix entries are derived as follows. 
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Those who are familiar with gyrotropic media may easily recognize the similarity between the 

tensors in (3-5) and (3-10) and the permeability tensor of a ferrite with biasing magnetic field in z 
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and x directions [3], respectively. Moreover, the guided wave problem with tensor (3-10) is exactly 

rotationally symmetric with the configuration in [58], where the permittivity matrix was given by 

 

1 3
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. (3-14) 

The matrix elements are defined in [58]. The matrix in (3-14) is the same form as a uniaxial 

side-wall case with optic axis lying in X-Z plane. Because of the similarity in the tensor forms, it 

seems advisable to import those methods developed for gyrotropic RWGs. However, differences 

between tensorial terms restrict the direct usage, and additional complexity is encountered when 

determining the wave modes for tilted uniaxial problems. Hence we will address this uniaxial 

RWG problem in a different approach. 

In the following discussion, we take the side-wall plane case with the optic axis in Y-Z plane 

as the example to conduct derivation and computation. The method and principles all apply to the 

other side-wall plane case as well, due to the rotational symmetry of the rectangular waveguide 

geometry. 

3.2. Analytical Solution 

First we consider the case that can be solved analytically by following a conventional method 

of manipulating separated PDEs of Maxwell’s equations in the source-free region.  
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Gauss’ law for magnetic flux density remains the same as the non-magnetic aligned cases since 

the tilted medium is again assumed non-magnetic. The relative permittivity tensor is defined in 

(3-10) whose elements are given in (3-11) to (3-13).  

The separated PDEs of the two curl equations are listed as follows. 
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Compared to the isotropic or the aligned cases, the fifth and the sixth PDEs share the coupled 

Ey and Ez components due to the existence of the ε23 element, which, as will be demonstrated, lead 

to the existence of the hybrid modes. The electric field Gauss’ law can be written as 

 2 2 2 3 2 3 3 3
0

t x y z y z
E E E E E

x y y z z
    

    
    

    
 (3-24) 

The above equation comes from the sum of partial derivative of Dx with x, partial derivative 

of Dy with y and partial derivative of Dz with z. Both Dy and Dz are combinations of Ey and Ez due 

to the non-zero ε23 entry. 



 

55 

 

Although Ey and Ez components are coupled and are impractical to separate, the mode that has 

only Ex component might still be supported. This inspired the process of seeking the analytical 

mode. One may also follow the conventional fashion to find the analytical modes as explained in 

numerous previous papers that address the anisotropy in waveguides. The conventional fashion 

directly verifies the support of TE and TM modes by arbitrarily letting Ez and Hz components 

vanish, respectively. Moreover, the TE modes can have one of the transverse wavenumbers being 

zero and need to have less number of wave components, thus are even easier for mathematical 

verification. 

From the separated PDEs, direct verification confirms that when the x dependence is gone the 

TE waves are described by the following reduced number of PDEs. 
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The resultant equations above contain no permittivity along the optic axis. Applying boundary 

conditions, these first order PDEs lead to ordinary wave (o-wave) solutions given in the following 

equations. 
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where H0 can be solved once the excitation is known and ky satisfies the following condition to 

form standing waves between the planes separated by the distance b. 

 
, 1, 2 , 3

y
k b n n 

 (3-31) 

The above solution shows that the conventional TE0n modes are supported in the case when 

the optic axis is tilted and lying in y-z plane. The supported analytical mode contains only Ex 

component with electric field. This fact eliminated the need to involve the off-diagonal relative 

permittivities. It can also be easily verified that there is no other conventional modes supported in 

such waveguide. 

Due to the rotational symmetry, when the optic axis is tilted and lying in the x-z plane, the 

TEZm0 modes of o-waves are supported. In these side wall problems, no other travelling modes of 

exclusively o-waves or exclusively extraordinary waves (e-wave) can be found. Therefore, as has 

been established by numerous former researchers, we must resort to hybrid modes that are 

combinations of o-waves and e-waves. The coupled waves are connected in that they share the 

identical propagation constant along the guided direction.  

Since our objective is to obtain the full solution of all the propagating modes, field distributions 

and wavenumbers, we choose a method that includes and relates every aspect of the final solutions. 

To this end, the total wave formulation using wavenumbers is distinguished from other approaches. 

3.3. Hybrid Mode Solutions 

The hybrid mode will be solved using the combined wave formulation as a combination of 

ordinary wave and extraordinary wave. The coupling of the two types of modes can be either seen 

from the previous description in the analytical mode solutions or the wave reflection behaviors. 
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3.3.1. Free Space Wave Formulation 

Taking curl on both sides of (3-15) and making the use of the equation (3-16), we can find a 

general wave equation for the electric field in source-free region filled by uniaxial media as follows. 

 2

0 0
0rE E



           (3-32) 

The above equation leads to three scalar partial differential equations which are the x, y and z 

components in the vectorial equation. For general anisotropic media in unbounded space, the 

electric field components can be solved using dyadic Green’s functions [59]. However in a 

waveguide problem where the boundary conditions are much more complex, the dyadic Green’s 

functions are difficult to use. Therefore in solving this problem we use vectorial wave formulation 

and solve matrix problems. 

Making use of the tensor operation [54] and assuming plane wave solution 
 x y z

i k x k y k zik r
e e

 
 , 

the wave equation (3-32) can be rewritten as 
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     ,  (3-33) 

where 2 2

0 0 0
k     and the 3-by-3 matrix k  is defined as [54] 
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Subsequently the wave equation for electric fields can be found in the matrix form as  
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by transforming the double-curl equation of the E field. Hence the problem of partial differential 

equations is turned into an eigenvalue problem. The E-field vector solution can be easily found 

with boundary condition after the hybrid mode wave is formulated.  

The determinant of the coefficient matrix in (3-35) can be written in the form of the 

multiplication of three polynomials as follows. 

    
2 2 2 2 2 2 2 2 2

0 2 2 2 3 3 3 0 0
2

x y z t x t y y z z t z
k k k k k k k k k k k              (3-36) 

Letting the determinant of the coefficient matrix vanish [60], the dispersion relations for o-

wave and e-wave are obtained as follows. 

 
2 2 2 2

0x y z t
k k k k     (3-37) 

 
2 2 2 2

2 2 2 3 3 3 0
2

x t y y z z t z
k k k k k k          (3-38) 

Equation (3-37) is the dispersion relation for the o-wave and (3-38) is that for the e-wave. Then 

the eigenvectors representing the characteristic wave fields can be calculated numerically [61] or 

symbolically [56] [62]. The general numerical solutions have been explored in [63] for radiation 

problems. The symbolical solutions are explored here and used in further formulation.  

Consider the eigenvalue problem in the matrix operation in (3-35). It is to seek eigenvector 

solutions with eigenvalues of zeors, or equivalently, the solution to the homogeneous linear 

equations with three unknowns (Ex, Ey Ez). The three unknowns form a valid wave solution only 

when the determinant is zero. 

When the determinant is zero, the rank of the coefficient matrix is not full. When the three 

wavenumbers satisfy one of the dispersion relations, the coefficient matrix leads to two vector 
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solutions. The two vector solutions are obtained when the three wavenumbers satisfy either the 

ordinary wave dispersion relation or the extraordinary wave dispersion relation. 

Homogeneous equations do not have unique solution but ratios among elements in each 

solutions is fixed [56]. For example, in the matrix problem below 

 

1 1 1 2 1 3 1

1 1 2 2 2 3 2

3 1 3 2 3 3 3

0

0

0

a a a x

A x a a a x

a a a x

     

     
  

     

         

, (3-39) 

if the determinant of the matrix A is zero, then the solution to the vector x can be formulated as 

 
1 3 1

3 3 3

x M

x M
 , (3-40) 

 
2 3 2

3 3 3

x M

x M
 , (3-41) 

 
3

1x  , (3-42) 

if M33 is not zero. The Mij represent the minor of the matrix with the subscripts i and j denoting 

the row-position and column position of the entry in the matrix. The above solution uses the minors 

of the third row in the coefficient matrix assuming the M33 is non-zero. If M33 is zero, then one 

can use either the minors of the second row or the first row. They all yield the same answer when 

normalized. Another formulation gives x1=M31, x2=M32 and x3=M33 which is used in subsequent 

eigenvector solution formulation. 

Consequently, for o-wave vector and e-wave vector, the obtained solutions are normalized 

when used in calculations. Using the solution formulated using the minors of the coefficient matrix, 

the two vector solutions can be found as follows.  
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 (3-44) 

The superscripts or and ex designate the characteristic types of o-wave and e-wave, 

respectively. The dispersion relations (3-37) and (3-38) apply to the vectors (3-43) and (3-44), 

respectively. The above results agree with those presented in [54]. 

Another set of symbolic vector solutions that will be used in the future is given by 
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. (3-46) 

The vectors are the characteristic wave vectors solved previously. The subscript i represents 

the incident wave. The notation is useful in wave reflection behavior studies. 

3.3.2. Reflection Behaviors 

The birefringence effect in anisotropic media has been studied broadly. What birefringence 

effect suggests is that on the boundary with anisotropic media involved, the incident wave of a 

single characteristic mode may produce reflected wave(s) as a combination of different 

characteristic waves. In order to formulate a complete travelling wave that contains all the possible 
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waves travelling simultaneously, we need to first study wave reflection behaviors at the uniaxial 

and metal boundaries of the RWG inner walls. For simplicity we assume the metal walls are perfect 

conductors (PECs). 

The investigations are based on the characteristic vectors. In general, the ordinary incident 

wave would be reflected with two characteristic waves thus 

 

o r e x

x r x r

io o o o r o e e x

r i y r i y r

o r e x

z r z r
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. (3-47) 

Similarly, generally the incident e-wave would have the reflected waves as 
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. (3-48) 

In the above formulation, the subscript r denotes the reflected wave. The superscript io denotes 

the reflection from an ordinary incident wave, and the superscript ie denotes the reflection from 

an extraordinary incident wave. The superscript with reflection coefficients R’s denotes the co-

type and cross-type reflection coefficients. 
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Figure 3-4    Reflection on x=0 plane is a simple case in which the incidence angle 

and the reflection angle are same, θi=θr. 

Figure 3-4 shows the wave reflection on the boundary parallel to y-z plane, or with more 

generality, the plane in which the optic axis is lying. In other words, the plane of incidence (POI) 

is perpendicular to the plane in which the optic axis is lying. While the wavenumbers ky and kz 

retain their values in the reflected waves due to phase matching, birefringence generally induces 

two vertical (normal to the boundary) wavenumbers for two different types of characteristics 

waves [33]. The two vertical wavenumber formulas are given by 
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0

o r

x t y z
k k k k     (3-49) 
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      (3-50) 

However, since kx appears only in quadratic terms in both ordinary and extraordinary 

dispersion relations above, the reflected wave actually retains the same normal wavenumber 

magnitude (although with flipped signs) and is of the same characteristic type with the incident 

wave. This behavior can also be confirmed using the field vectors to satisfy the BCs. Similar 

reflection from gyrotropic-PEC boundary was also observed and mentioned as reflection symmetry 
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in [64] addressing a gyromagnetic-medium-filled rectangular waveguide, and it is later reused in 

[58] addressing a gyroelectric-medium-filled rectangular waveguide. If the second medium is 

other isotropic dielectric instead of PEC, the transmitted waves will possess both a parallel 

polarized wave and a perpendicular polarized wave unless the POI is aligned with the tilted optic 

axis. But PEC boundary considers no transmitted waves. 

 

Figure 3-5    Reflection on y=0 plane causes double reflection. Birefringence 

phenomenon is observed. 

Figure 3-5 illustrates the wave reflection on the x-z plane which is a more representative 

birefringence case, in which one incident beam causes two reflected beams of distinct 

characteristic types, regardless of the incident wave type. For an arbitrary incident o-wave, the 

reflected o-wave retains the same ky (normal to the boundary) magnitude but flips the sign, while 

the reflected e-wave has a different ky which can possibly be negative and/or having an imaginary 

part as seen in the following equations. 
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      (3-52) 

As a consequence, at some incidence angles incident o-waves may be reflected with 

attenuating e-waves and vice versa. In those cases the excited signals can be seriously distorted. 

In order to support a lossless guided mode, all the wavenumbers must be real with proper signs.  

Herein lies the most significant dissimilarity between the aligned problems and the tilted 

problems (the isotropic RWG problem is same as the former). The aligned problems have 

travelling wave that can be characterized by discrete transverse wavenumbers with indices m, n, 

resulting in no more than two non-zero magnitudes for transverse phase constant. However, this 

tilted case has possibly three different ky magnitudes along with one kx magnitude. This fact 

complicates the wave formulation and functional dependence of the field components. 

3.3.3.  Travelling Wave Formulation 

The travelling wave inside the waveguide can be formulated as the combination of the ordinary 

wave and extraordinary wave sharing the same propagation constant along the direction of 

propagation. Making use of the eigenvector solutions (3-43) and (3-44), we can first formulate all 

the possible wave beams as follows. With full understanding of the wave behaviors in the guided 

uniaxial region, we can formulate the total travelling wave as follows. 
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The total wave is the hybrid of attenuation-free o-waves and e-waves propagating in all the 

four transverse directions. The subscripts u (up) and d (down) denote the signs of kx to be positive 

and negative, respectively. Similarly, ky is positive when it appears with subscript p and negative 

when it is with n. The vector types are indicated by superscripts or and ex, for o-waves and e-

waves, respectively.  

The vector expressions are all in terms of wavenumbers whose numerical domains are 

determined based on the previous studies of reflections and dispersion relations. All terms must 

share the same propagation constant along the guided direction (kz). Each field vector has a unique 

magnitude, thus there are eight unknowns.  

On each inner face of the four side walls of the RWG, there are two BCs. Thus a total of eight 

BCs are available, sufficient to solve for the eight unknowns. The boundary conditions can be 

expressed as 

   
,

0 , , 0
y z

E x o r a y z  , (3-54) 

   
x ,

, 0 , 0
z

E x y o r b z  . (3-55) 

We can treat the problem of eight linear equations as another problem of eigenvalues even 

though some terms are complex, and the eigenvectors contain the magnitude information. An 8×8 

boundary condition matrix (BCM) is expected and formulated as follows. 
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Due to the same mathematical reason, in order to have a non-trivial solution of the E vector, 

the matrix coefficient has to vanish at the four boundaries. However, the coefficient matrix is not 

practical to manipulate because some of the entries are functions of spatial coordinates. 

To address this issue, we take advantage of the results from the first case on x=0 and x=a planes 

in the reflection investigation. Basically, the issue is created when we assume the birefringence 

effect on all the four side walls. However, since the independence between o-waves and e-waves 

on these boundaries is known, we claim that the full set of boundary conditions could be satisfied 

as long as each pair of incident and reflected waves can meet the boundary conditions.  

Equivalently, from (3-43) we can tell that, when kx flips its sign, it corresponds to a wave 

reflected on x=0 or x=a plane. The reflection coefficients can be determined quickly as +1, because 
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the y and z components also flip their signs and the incident wave vector and reflected wave vector 

sum to have zero y and z components. 

Similarly, from (3-44) we can tell that the reflection coefficient for incident e-wave is  ̶ 1, 

because the y and z components would not flip their sign. Thus the  ̶ 1 reflection coefficient is 

needed to satisfy the boundary conditions. 

A similar strategy was adopted in the gyrotropic guide analyses in [64] and [58].The simplified 

relations could be described by the following formulas. 
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x

k a m m  . (3-61) 

Accordingly, each pair of waves that are only differentiated by equal and opposite kx values 

has the identical magnitude since the reflection coefficient is of unit magnitude. As a consequence, 

the Ey and Ez components can pose sinusoidal dependence on x direction as 
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 (3-62) 

Hence the number of unknowns reduces to half and the 8×8 matrix is to be replaced by a 4×4 

matrix as 
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So far the x-dependence has been addressed and the complex coefficient matrix depends only 

on y coordinate which takes values 0 and b. So far the mathematical procedure and its complexity 

are hardly distinctive from those of an RWG filled with a ferrite biased in a transverse direction. 

However, for a gyromagnetic problem one can proceed and find the transcendental function (TF) 

by making the determinant of the coefficient matrix zero.  

This is due to the fact that the dispersion relations of unbounded gyromagnetic media 

magnetized along one of the coordinate axes yield  wavenumbers with even orders only, and the 

TFs may eventually be found having sinusoidal functions of equal and opposite wavenumbers, 

consequently the waveguides are reciprocal [64]. This is different from the non-reciprocity 

observed when the guides are partially filled [65] [66]. 

In contrast, from (3-52) we can see that the two ky roots differ by both sign and magnitude. As 

a consequence the TF found from the determinant of the matrix should not have sinusoidal function 

of ky, but complex exponential functions instead. Of course complex exponential functions could 

be converted in terms of sinusoidal functions according to Euler’s equation, however, if that was 

done, the TF would have imaginary part and real part, and eventually two TFs to solve 

simultaneously. These factors increase the difficulty in solving TFs in an asymptotic approach. 

Thus we introduce the following graphical method with high automation. 
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3.3.4.  Computational Process 

The problem now comes to solving the matrix problem (3-63) as another eigenvector problem. 

The numerical computations exploring cutoff modes at particular frequency proceeds in steps as 

listed below. 

1) Since kx takes known discrete values as in (3-61), the given frequency should be higher 

than the value below which any other wavenumber is complex when m is set equal to one. On the 

other hand, when the frequency is high enough, m may take multiple values but cannot grow 

beyond the point below which other wavenumbers are real and with proper signs.  

2) The propagation constant kz is the main loop variable discretized at a reasonably fine 

resolution. In accordance with each m index, kz is discretized in its domain, whose upper bound is 

set such that the four ky values are real and with proper physical meaning. The resolution may 

affect the number of modes the program can identify and the accuracy of the final outcome. 

3) After kz and kx are ready, the four values of ky are determined from the dispersion relations, 

including e-wave roots   and   o-wave roots. When a set of wave numbers satisfying dispersion 

relations are used, the electric field vectors could be computed directly using the eigenvectors. The 

electric field vectors are better to be normalized before their components are taken in determinant 

calculations. 

4) Once the waves and fields are prepared, the program traverses all the valid combinations 

of the wavenumbers and computes the determinant values. For each possible m value in (3-61), as 

kz changes, curves of determinant values are to be recorded. Plots of the curves can help improve 

understanding of their functional behaviors.  
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5) At the points where BCM determinant is zero the supported modes are identified and the 

corresponding sets of wavenumbers are saved. Visual recognition on the plotted curves is not 

reliable; instead, it can be executed automatically to locate the desired kz values using curve fitting 

and Newton-Ralphson method in the program. This procedure yields higher accuracy beyond the 

resolution of discretization and significantly saves computational time. 

6) After mode-related wavenumbers are obtained, the BCM eigenvalue equation (3-63) is 

reconstructed to calculate the four wave magnitudes in the column vector, which is an eigenvector 

associated with eigenvalue zero. The general method using singular value decomposition [39] is 

used and compared with the results obtained from using cofactors to formulate vectors orthogonal 

to the BCM’s row space [34]. The program ends with both the wave modes and field components 

obtained. 

To find the lowest frequency where there exists at least one propagating hybrid mode, the 

program may start from a reasonably low frequency, go up gradually by fine increments, and stop 

at the frequency at which one or more propagating hybrid modes are found. The starting low 

frequency should be determined from the greater one of the two original relative permittivities and 

the larger size of the two dimensions, assuming TE modes of an aligned problem to be treated. 

Note that TM11 mode needs also to be taken into account if the tilted problem could originate from 

a uniaxial-z case. The example given in the following section demonstrates how the computation 

routine works. The Matlab script code is programmed for computation. 

3.4. Solution Example 

In the example through this whole section, the dimensions of the rectangular waveguide are 

set a=57.5 mm and b=27.94 mm. The anisotropic relative permittivities are originally εz=4 and 
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εt=3. Then the clockwise rotation angle is 30 degrees, i.e., the angle α in Figure 3-3 is 30°. The 

script runs at 10 GHz, under which frequency kx can take up to seven values before other 

wavenumbers become complex, but not all of them support propagating hybrid modes.  

3.4.1.  Analytical Solution 

The wavenumbers of the four lowest order TEZ0n modes are calculated and tabulated in Table 

3-1. Again, omitting the hybrid modes may result in tremendous design errors. For example, if the 

TEZ01 mode is taken as the dominant mode which is to be assumed as the only propagating mode 

up to the TEZ02 mode cutoff frequency, this design should not be considered reliable. The following 

subsection shows that hybrid mode also exist below 6.2 GHz. 

Table 3-1    Analytically obtained wavenumbers for TEZ0n modes when the optic 

axis is tilted but lying in the y-z plane. f=10 GHz. εt=3.0, b=27.94 mm, 

k=362.76, kx=0 (m=0). The ky values in different modes are listed in the 

table. The calculated kz values at 10 GHz are calculated and put in this 

table. 

n 1 2 3 4 

ky 112.42 224.84 337.26 449.68 

kz 344.90 284.68 133.60 265.74j 

Mode TE01 TE02 TE03 NA 

fc 3.099 GHz 6.198 GHz 9.297 GHz NA 

 

3.4.2.  Hybrid Solution Preparation 

The hybrid mode calculation starts from determining the vector for all the possible kx values 

which take the known values starting from m=1. In this particular case, the kx is found that it can 

take up to 6 values listed in the following table. 



 

72 

 

Table 3-2  Numerical solution starts from calculating the possible kx values. The 

possible values in this particular example is listed. 

m 1 2 3 4 5 6 

kx 54.636 109.273 163.909 218.546 273.182 327.818 

 

The process to find the possible kx values has been stated in Section 3.3.4. Clearly that the kx 

values are dependent on the waveguide dimension a. The index m cannot go beyond the point 

where all the ky values are imaginary even kz is assumed zero. 

Secondly, the maximum kz values for each kx value is calculated. Again, the domain of kz 

values are confined in the region where all the ky values, for both o-wave and e-wave, are real and 

having correct signs. 

Table 3-3  Numerical solution need to know the maximum kz values for each kx 

value. 

m 1 2 3 4 5 6 

kz Max 358.62 345.9 323.6 289.52 238.66 155.32 

 

The resolution of the solution depends on the resolution of kz increment, which is set as 0.01 

in this example. Finer resolution takes more computational time but the process can be parallelized 

once all the wavenumbers are obtained, thus utilizing modern computational technology the 

calculation process can be accelerated significantly. 

Once the kx values and kz max values are determined, all the ky values can be obtained from 

the dispersion relations. The sampled values are tabulated in the following tables. 
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Table 3-4  The minimum and maximum values of ky of the extraordinary wave 

propagating in negative Y direction. 

m 1 2 3 4 5 6 

Max -162.09 -168.665 -178.05 -189.06 -200.216 -208.73 

Min -399.01 -388.51 -370.36 -343.33 -305.08 -205.53 

 

Table 3-5  The minimum and maximum values of ky of the extraordinary wave 

propagating in positive Y direction. 

m 1 2 3 4 5 6 

Max 399.005 388.51 370.35 343.33 305.08 250.526 

Min 66.73 76.5 91.83 111.91 136.62 167.34 

 

Table 3-6  The minimum and maximum values of ky of the ordinary wave 

propagating in positive Y direction. 

m 1 2 3 4 5 6 

Max 358.62 345.91 323.62 289.54 238.68 155.34 

Min 3.95 4.605 4.95 3.275 2.78 2.354 

 

Table 3-7  The minimum and maximum values of ky of the ordinary wave 

propagating in negative Y direction. 

m 1 2 3 4 5 6 

Min -358.62 -345.91 -323.62 -289.54 -238.68 -155.34 

Max -3.95 -4.605 -4.95 -3.275 -2.78 -2.354 

 

Table 3-4 and Table 3-5 tabulate the minimum and maximum values of the e-wave’s ky values. 

Note that they are usually not opposite of each other. In contrast, Table 3-6 and Table 3-7 values 
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are opposite of each other because the ordinary dispersion relations end up have ky values equal 

and opposite. A more important observation is that the ordinary wave ky values always reach zeros 

faster than those of the e-wave. 

 

Figure 3-6    (Color) The curves of ky values corresponding to the Table 3-4 min 

and max values. The yellow curve shows the set of ky values at the 

index m=6 (top left curve). Magenta m=5, red m=4, cyan m=3, green 

m=2, and blue m=1 (bottom right curve). 
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Figure 3-7    (Color) The curves of ky values corresponding to the Table 3-5 min 

and max values. The yellow curve shows the set of ky values at the 

index m=6 (bottom left curve) while the blue shows m=1(top right 

curve). Magenta m=5, red m=4, cyan m=3, and green m=2. 

 

Figure 3-8    (Color) The curves of ky values corresponding to the Table 3-7 min 

and max values. The yellow curve shows the set of ky values at the 

index m=6 (top left curve) while the blue shows m=1 (bottom right 

curve). Magenta m=5, red m=4, cyan m=3, and green m=2. 
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Figure 3-9    (Color) The curves of ky values corresponding to the Table 3-6 min 

and max values. The yellow curve shows the set of ky values at the 

index m=6 (bottom left curve) while the blue shows m=1 (top right 

curve). Magenta m=5, red m=4, cyan m=3, and green m=2. 

3.4.3.  Matrix Solutions 

With all the wavenumbers discretized numerically, the calculation process then goes through 

all the combinations that satisfy either e-wave or o-wave dispersion relations and plots all the 

determinant values versus kz’s. The valid solutions that makes the determinant of (3-63) equal to 

zero can be captured through looking for the points where the determinant curves (absolute value, 

real part, and imaginary part). An example of the plots of the coefficient matrix determinant are 

shown in the following figures, with m=1 up to m=6. The tables that present the captured solutions 

of wavenumbers are given after each figure. These curves demonstrate how the determinant of the 

coefficient matrix varies as kz traverses its domains. It is interesting to observe that each phase 

curve jumps drastically ±π and flips its sign at those locations where the other three curves go to 

zero. This feature can be used to identify the zero points in a computer program which provides a 

clear means of automation.  
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In the tables that present the obtained solutions, the index m has the meaning of the 

conventional waveguide solutions. However the index S does not determine any deterministic 

values like m does (e.g., kx = mπ/a), but rather denotes the order that the mode is found. Arbitrarily 

defined, among the modes with the same m index, the kz grows greater as the S index increases. 

 

Figure 3-10    BCM determinant curves versus kz values with m=1, taking absolute 

value, real part, imaginary part and phase. f=10GHz. 
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Table 3-8    Wavenumbers of Hybrid Modes CM1S with m=1 at f=10GHz. 

S 1 2 3 4 5 

kx (m=1) 54.64 54.64 54.64 54.64 54.64 

kz 123.07 199.28 280.01 308.60 341.07 

o r

y p
k  336.84 298.16 224.06 182.68 110.81 

o r

y n
k  –336.84 –298.16 –224.06 –182.68 –110.81 

e x

y p
k  360.43 311.22 227.51 184.73 119.01 

e x

y n
k  –393.23 –364.32 -–302.13 –266.97 –209.90 

Mode CM11 CM12 CM13 CM14 CM15 

 

 

Figure 3-11    BCM determinant curves versus kz values with m=2, taking absolute 

value, real part, imaginary part and phase. f=10 GHz. 
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Table 3-9    Wavenumbers of Hybrid Modes CM2S with m=2 at f=10GHz. 

S 1 2 3 4 5 

kx (m=2) 109.27 109.27 109.27 109.27 109.27 

kz 83.78 239.13 269.70 308.42 329.27 

Mode CM21 CM22 CM23 CM24 CM25 

 

 

Figure 3-12    BCM determinant curves versus kz values with m=3, taking absolute 

value, real part, imaginary part and phase. f=10 GHz. 
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Table 3-10    Wavenumbers of Hybrid Modes CM3S with m=3 at f=10 GHz. 

S 1 2 3 4 

kx (m=3) 163.9 163.9 163.9 163.9 

kz 134.08 239.13 269.7 308.42 

Mode CM31 CM32 CM33 CM34 

 

 

Figure 3-13    BCM determinant curves versus kz values with m=4, taking absolute 

value, real part, imaginary part and phase. f=10 GHz. 

In Table 3-11, the solutions are presented with complete sets of wavenumbers, though the ky’s 

can be obtained from the dispersion relations once the kx and kz are given. 
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Table 3-11    Wavenumbers of Hybrid Modes CM4S with m=4 at f=10 GHz. 

S 1 2 3 

kx 218.55 218.55 218.55 

kz 196.04 230.59 276.25 

o r

y p
k  213.08 175.10 86.71 

o r

y n
k  –213.08 –175.10 –86.71 

e x

y p
k  246.30 209.00 139.75 

e x

y n
k  –298.54 –270.45 –213.37 

Mode CM41 CM42 CM43 

 

 

Figure 3-14    BCM determinant curves versus kz values with m=5, taking absolute 

value, real part, imaginary part and phase. f=10 GHz. 

The obtained solutions pertaining Figure 3-14 curves are given in the following table. 
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Table 3-12    Wavenumbers of Hybrid Modes CM5S with m=5 at f=10 GHz. 

S 1 2 3 

kx  273.18 273.18 273.18 

kz 118.97 167.52 227.66 

o r

y p
k  206.91 170.01 71.66 

o r

y n
k  –206.91 –170.01 –71.66 

e x

y p
k  261.63 225.05 154.57 

e x

y n
k  –293.33 –269.69 –215.24 

Mode CM51 CM52 CM53 

 

 

Figure 3-15    BCM determinant curves versus kz values with m=6, taking absolute 

value, real part, imaginary part and phase. f=10 GHz. 
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With m=6, the only captured solution is having kx =327.82, kz =146.47, ordinary ky‘s with 

magnitude 51.74, and e-wave ky’s as 176.42 (positive direction) and -215.45 (negative direction). 

The resultant hybrid modes are tabulated in Table 3-8 through Table 3-12, presenting the hybrid 

modes with m=1 through m=5 as labeled in mode numbers and titles. 

Again, the S index does not directly relate to any wavenumber, and this is apparently different 

from the n index in isotropic waveguide modes. It is hard to abstract the relations analytically due 

to the complex nature of the BCM determinant. The mode names are arbitrarily assigned as CMms 

modes. The nomenclature implies ‘the Coupled Modes’, in contrast with the pure o-wave modes 

and pure e-wave modes found in aligned problems. The first subscript ‘m’ is the kx index, and the 

second subscript S merely accounts for the sequence of the mode found in the aforementioned 

algorithm under a certain m value. The first found mode is assigned S=1, with the smallest kz value 

among all those who share the same m index. 

The most prominent difference between S and n is that the former corresponds to three 

magnitudes while the latter maps to only one. Actually, n directly relates to the ky expression 

regardless of temporal frequency, while without frequency and m specified a solitary S is 

nonsensical. In the given example, not surprisingly, there is no obvious correlation between the ky 

values in Table 3-1 and the ky values in Table 3-8 through Table 3-12. 

3.4.4. Finding Dominant Mode 

In this particular configuration, the dominant mode is found to be the TEZ01 mode, meaning 

that the lowest hybrid mode cutoff frequency is greater than 3.1GHz.  
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To find the lowest hybrid mode, namely the hybrid mode of the lowest operating frequency, 

the code starts from the lowest possible cutoff frequency of the isotropic RWG, 1.3GHz, taking 

the TEZ10 mode with the larger dimension a and the greater relative permittivity 4. This rule applies 

to all the tilted cases. At each frequency, the calculation process first determines if kx and ky can 

be assigned with valid values. The method to mesh wavenumbers has been described previously. 

If valid wavenumbers are discretized, then the code scans through all the possible m indices and 

look for supported modes. If no modes are found, then the code will proceed with next higher 

frequency until a hybrid mode is found.  

In this example, the first frequency at which a hybrid mode found is 3.2 GHz, marginally (3%) 

higher than that of the TEZ01 mode but much lower than that of TEZ02 mode. 

We tried another configuration with εz changed to be 6, and the first hybrid mode is found at 

2.76 GHz, lower than that of the TEZ01 mode which is not affected by εz at all. This computation 

clearly shows that the hybrid mode could possibly be the dominant mode depending on the 

properties of the uniaxial medium. 

3.5.  Verification 

3.5.1. Comparison with the Uniaxial-z Case 

The validity of the method can be verified by comparisons with limiting cases whose solutions 

were obtained in Chapter 2. This can be done by changing the optic axis orientations. By setting 

the rotation angle α very close to 0° or 90°, the problems approach the uniaxial-z or uniaxial-y 

case, respectively. 
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For uniaxial-z case (α=0) , the TEz and TMz mode propagation constants of lower order modes 

are calculated from the analytical solutions in the previous chapter and summarized in Table 3-13 

and Table 3-14. In the cells where imaginary numbers appear the m and n indices correspond to 

the modes attenuating at the frequency.  

Table 3-13    Analytically calculated propagation constants (kz) of TEZ modes in 

the uniaxial-z case. f=10GHz. a=57.5mm, b=27.97mm, εz=4, εt=3. 

TEz n=0 n=1 n=2 n=3 n=4 

m=0 NA 344.90 284.68 133.60 265.74j 

m=1 358.6218 340.55 279.39 121.92 271.30j 

m=2 345.9107 327.13 262.87 76.87 287.33j 

m=3 323.6178 303.46 232.76 94.96j 312.23j 

m=4 289.5385 266.82 182.43 172.95j 344.07j 

m=5 238.6762 210.54 80.08 238.28j 381.11j 

m=6 155.3378 107.20 162.55j 299.35j 422.00j 

 

Table 3-14    Analytically calculated propagation constants (kz) of TMZ modes in 

the uniaxial-z case. f=10GHz. a=57.5mm, b=27.97mm, εz=4, εt=3. 

TMz n=0 n=1 n=2 n=3 n=4 

m=0 NA NA NA NA NA 

m=1 NA 346.23 302.39 209.87 149.35j 

m=2 NA 336.39 291.07 193.21 170.36j 

m=3 NA 319.32 271.16 161.67 200.54j 

m=4 NA 293.76 240.54 102.29 236.41j 

m=5 NA 257.19 194.19 98.42j 275.75j 

m=6 NA 203.76 114.37 185.24j 317.28j 
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Results from the hybrid mode algorithm are laid out in Table 3-15, where the imaginary kz 

values corresponding to attenuating modes are not calculated and thus not presented. The 

comparison and mapping results are shown in Table 3-16. When m=0 the analytical solutions are 

found in Table 3-1 to which the TEZ0n modes in Table 3-13 can be mapped. 

Table 3-15  Numerically calculated propagation constants (kz) when α=0.1°. The 

results are approaching the analytical solutions in uniaxial-z case. 

Index Values of kz 

m=0 (Use Analytical Results from Table 3-1) 

m=1 121.92 209.87 279.39 302.39 340.55 346.23 

m=2 76.87 193.21 262.87 291.07 327.13 336.39 

m=3   161.67 232.76 271.16 303.46 319.32 

m=4   102.29 182.43 240.54 266.82   

m=5     80.08 194.19 210.54   

m=6      114.38  107.19   

 

Table 3-16  Modes found from the limiting case calculations (Table 3-15) and 

mapping to Uniaxial-z Modes (Table 3-13 and Table 3-14). 

Index Mapped Modes 

m=0 (Map to TEZ01, TEZ02 and TEZ03 modes in Table 3-1) 

m=1 TEZ13 TMZ13 TEZ12 TMZ12 TEZ11 TMZ11 

m=2 TEZ23 TMZ23 TEZ22 TMZ22 TEZ21 TMZ21 

m=3   TMZ33 TEZ32 TMZ32 TEZ31 TMZ31 

m=4   TMZ43 TEZ42 TMZ42 TEZ41   

m=5     TEZ52 TMZ52 TEZ51   

m=6     TMZ62  TEZ61   
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3.5.2.  Comparison with the Uniaxial-y Case 

A similar comparison is made with the uniaxial-y case as well by letting the rotation angle be 

89.9°. The calculated propagation constants from the analytical solutions in Chapter 2 are put in 

Table 3-17 and Table 3-18 for TEY modes and TMY modes, respectively.  

Table 3-17  Analytically calculated propagation constants (kz) of TEY modes in the 

uniaxial-y case. f=10GHz. a=57.5mm, b=27.97mm, εy=4, εt=3. 

TEy n=0 n=1 n=2 n=3 n=4 

m=0 NA 344.90 284.67 133.60 265.74j 

m=1 NA 340.55 279.38 121.92 271.30j 

m=2 NA 327.13 262.87 76.87 287.33j 

m=3 NA 303.46 232.75 94.96j 312.23j 

m=4 NA 266.82 182.43 172.95j 344.07j 

m=5 NA 210.54 80.08 238.28j 381.11j 

m=6 NA 107.19 162.55j 299.36j 422.00j 

 

Table 3-18  Analytically calculated propagation constants (kz) of TMY modes in the 

uniaxial-y case. f=10GHz. a=57.5mm, b=27.97mm, εy=4, εt=3. 

TMy n=0 n=1 n=2 n=3 n=4 

m=0 NA NA NA NA NA 

m=1 415.3005 394.49 324.14 144.27 311.68j 

m=2 404.3749 382.97 310.02 108.9 325.73j 

m=3 385.4782 362.96 284.94 55.38j 347.89j 

m=4 357.3478 332.93 245.55 154.80j 376.72j 

m=5 317.5394 289.79 182.83 225.45j 410.84j 

m=6 260.758 226.15 24.29 289.25j 449.03j 
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The proposed algorithm results are in Table 3-19 and their mode mapping results are in Table 

3-20. Note that when m=0 we again use Table 3-1 to which the TEY0n modes in Table 3-17 can be 

mapped. 

Table 3-19 Numerically calculated propagation constants when α=89.9°. The 

results are approaching the analytical solutions in uniaxial-y case. 

Index kz values 

m=0 (Use Analytical Results from Table 3-1) 

m=1 121.92 144.27 279.39 324.14 340.55 

m=2 76.87 108.90 262.87 310.02 327.13 

m=3     232.76 284.94 303.46 

m=4     182.43 245.55 266.82 

m=5     80.08 182.83 210.54 

m=6       24.29 107.20 

 

Table 3-20   Modes found from the limiting case calculations (Table 3-19) and 

mapping to uniaxial-y Modes (Table 3-17 and Table 3-18).  

Index Mapped Modes 

m=0 (Map to TEZ01, TEZ02 and TEZ03 modes in Table 3-1) 

m=1 TEY13 TMY13 TEY12 TMY12 TEY11 

m=2 TEY23 TMY23 TEY22 TMY22 TEY21 

m=3     TEY32 TMY32 TEY31 

m=4     TEY42 TMY42 TEY41 

m=5     TEY52 TMY52 TEY51 

m=6       TMY62 TEY61 
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The tables that present the aligned results provide more interesting insight worth mentioning. 

First, for isotropic waveguides, the TE and TM to Z modes with the same m and n indices would 

share the same cutoff frequency and the same propagation constant at any frequency. However, 

this does not occur for the aligned uniaxial cases. Secondly, for isotropic waveguides, if the size a 

is designed as multiple of b then there must be repeated values in cutoff frequency or propagation 

constant. While this is not seen in the examples, in general the probability is very small because it 

occurs only when the dimensions and permittivities satisfy certain conditions. These two remarks 

also provide justification for mode-mapping based on matching propagation constants. 

3.6.  Modal Behaviors 

In this section we investigate the effect of uniaxial permittivity, tilting angle, and RWG 

dimension on the cutoff frequency of the calculated hybrid modes. To recap the conditions, the 

waveguide dimensions take the same waveguide dimensions and constitutive parameters as the 

example illustrated in [8]. The waveguide dimensions are a=5.75 cm and b=2.7945 cm. The 

inserted anisotropic medium is assumed to have relative permittivities εt =3 and εz =4 unless 

otherwise specified. εz is the relative permittivity along the optic axis and εt is that along the other 

two transverse-to-optic-axis directions. In the previous demonstration the optic axis tilting angle 

was set 30° but is to be changed in this section. The TE0n modes have been analytically obtained 

and the lowest cutoff frequency belongs to the TE01 mode with cutoff frequency fc,10 = 3.1 GHz. 

In the following we discuss three particular phenomena of interest. 
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3.6.1. The Effect of Relative Permittivity 

Generally, the cutoff frequencies of all the wave modes in a waveguide homogeneously filled 

with isotropic dielectric medium would be decreased by the ratio of refractive index, which is 

calculated from the relative permittivity as 1 /
r

 . This has been a practical method in waveguide 

miniaturization. Oftentimes, fabricated waveguides on dielectric substrates cannot avoid having 

internal space filled by dielectrics, and the wave and field behaviors in such waveguides must be 

studied in order to fully understand the propagation characteristics. Similar reasons motivate the 

study of wave mode behaviors when the internal uniaxial medium varies. 

The cutoff frequencies of the lowest hybrid modes as the relative permittivity εz increases are 

plotted in Table 3-16. In the calculation the other relative permittivity εt remains the same value 3. 

Thus the change of εz also means the change of the degree of positive uniaxial anisotropy. 

Obviously the negative-slope curve implies lower cutoff frequency as εz gets larger. Intuitively 

this reminds the result shown in [67] and Chapter 2, where the cutoff frequency of the TM11 mode 

in the uniaxial-z case becomes lower than that of the TE10 mode (a>b) as εz becomes large enough. 

Note that if the medium is isotropic with relative permittivity εr=3, the cutoff frequency of the 

TM11 mode is 3.446 GHz, which is what the curve approaches as εz decreases to the left. In this 

limiting case, the medium is approaching its isotropic appearance, and the supported modes should 

also approach those of the isotropic waveguide with dielectric constant 3. This turns out to be 

another evidence of the connection between the hybrid mode and the aforementioned TM-to-z 

mode in the uniaxial-z case. 
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Figure 3-16    The change of the cutoff frequency of the lowest hybrid mode as the 

relative permittivity along the optic axis increases. εt = 3. 

3.6.2.  The Effect of the Tilting Angle 

It has been well known that the tilted uniaxial medium cause reflection and refraction 

differently when the optic axis varies [54]. The same phenomena have also been seen with other 

media, e.g., biaxial media [68]. In this section the effect of the tilting angle on the propagating 

modes are studied. 

The plot in Figure 3-17 demonstrates how the cutoff frequency changes as the optic axis tilts 

to larger angles. Apparently as the tilting angle increases from the lower value 5 degrees up to 85 

degrees, the cutoff frequency of the lowest hybrid mode shifts up in general, however, a peak 

appears around 65 degree, which is believed to be dependent on the waveguide dimensions and 

constitutive parameters. 
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Figure 3-17    The change of the cutoff frequency of the lowest hybrid mode as the 

tilting angle increases. εt = 3, εz = 4. 

The algorithm does not calculate the case when one of the transverse wavenumbers is zero, 

since those cases correspond to the de-coupled modes in aligned cases. Therefore, in limiting cases, 

the curve must approach the lowest cutoff frequency of either TE11 or TM11 mode.  

When the tilting angle is close to zero (equivalently uniaxial-z case), the analytical solutions 

presented in the previous chapter can be used. The waveguide dominant mode is the TE10 mode 

with cutoff frequency about 1.506 GHz. However, this mode is not examined by the hybrid mode 

calculation process because it does not process the case when kx or ky is zero. Nevertheless, the 

calculation process does capture the lowest mode with neither of the transverse wavenumbers 

being zero. Actually, the TM11 mode has the cutoff frequency 2.984 GHz, close to the plotted value 

when the angle α is small, and it is supposed to be what the curve approaches when the tilting 

approaches zero. 

When the tilting angle is close to 90 degree (eventually uniaxial-y case), the analytical 

solutions can be used again. The dominant mode is the TMY10 (TEZ10) mode with cutoff frequency 
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about 1.304 GHz. Note that although the TMY10 mode is actually also TEZ10 mode, its cutoff 

frequency is different from the TE10 mode (also TEZ10 mode) mentioned in the previous paragraph. 

The reason is the orientation of the optic axis. Former case has only Ey component in the electric 

field and that is in the direction perpendicular to the orientation of the optic axis. In contrast, the 

TMY10 mode that also has only Ey component in the electric field has its only E field component 

parallel to the direction of optic axis. This causes the difference in this dominant mode cutoff 

frequency. To prove it, we show that 1 .5 0 6 4 1 .3 0 4 3 . 

 In this particular waveguide dimension, TMY10 is lower than that of the TEY0n mode. The sole 

e-wave mode TMY11 (no transverse-to-z mode corresponding) mode has the lowest fc with neither 

of the transverse wavenumbers being zero. It can be calculated as 3.362 GHz, which is what the 

curve approaching to when α grows large in Figure 3-17. It is worth mentioning that this 

comparison with the results from the aligned-case solutions verifies the correctness of the 

computation process. 

3.6.3.The Effect of the Dimension 

Last but not the least, we shall demonstrate how the waveguide dimension a influences the 

hybrid mode cutoff frequency. Figure 3-18 shows the calculation results with the dimension a 

being from the same as the dimension b (square cross-section) up to about 20 percent greater than 

the original value (5.75 cm). The dimension b is kept the same because the analytical TE0n modes 

depends exclusively on b and their cutoff frequencies do not change as these computations run. It 

is observed that the cutoff frequency of the lowest hybrid mode decreases monotonically as the 

waveguide cross-section ratio a/b increases. 
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Figure 3-18    The change of the cutoff frequency of the lowest hybrid mode as the 

waveguide dimension a changes while dimension b remains at 

b=2.7945 cm. εt = 3, εz = 4. 

3.7.  Field Distributions 

In the study of aligned cases, the field distributions were plotted in Section 2.3.5. The common 

phenomenon among all the aligned uniaxial cases and the isotropic cases is that all the field 

distributions are symmetrical. The distributions are symmetrical to the middle lines and the 

geometric center of the cross-section. This symmetry feature is due to the sinusoidal functional 

dependence of the solutions. However, the symmetry is broken in the titled case. 

The same sample waveguide is used to demonstrate the field distributions of various 

propagating hybrid modes. Specifically, the first example is when the tilting angle is 30° in y-z 

plane, the field distributions of the hybrid mode with m=2, namely kx=109.27. Ordinary ky=±106, 

extraordinary kyp= 122.76 and kyn= – 210.5. Compare the above results with that 1 1 2 .4 2b  , 

which is different from all the ordinary and extraordinary ky’s.  The obtained field solutions are 

plotted in 3-D form in Figure 3-19.  
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Again, note that the ordinary wave ky value is close to but not equal to π/b, partially explaining 

why the variation of the field amplitude along y-axis shows no duplication but the variation along 

x-axis repeats.  

 

Figure 3-19    Field distribution of the first example over the cross-section of the 

waveguide filled with uniaxial medium with tilted optic axis. (α=30°) 

Figure 3-20 shows the equal-magnitude contours of the electric field magnitude distributions, 

which provide better means of comparing with the electric field distribution contours in the aligned 

uniaxial cases and the isotropic case plotted in Chapter 2. The symmetry that can be observed in 

the figures from Figure 2-7 through Figure 2-14 are not seen with the tilted cases. It is obvious in 

Figure 3-20 that there exists no perfect symmetry with respect to the geometric center of the cross-

section rectangle in field distributions. The asymmetry is primarily due to the simultaneous 

presence of o-wave and e-wave which the hybrid modes are comprised of, while in the aligned 

cases the o-wave and e-wave are separated and travel as TE and TM (transverse to the optic axis) 

modes, respectively. 
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Figure 3-20    Contour plot of the field distribution of the first example over the 

cross-section of the waveguide filled with uniaxial medium with tilted 

optic axis (α=30°). 

Another example is shown in Figure 3-21 and Figure 3-22 with field distribution and contour 

curves presented, respectively. In this example m=3 (kx=163.91), ordinary ky=±178.86, extra-

ordinary kyp=197.57 and kyn= – 269.44. Note that 2π/b≈224.84. 

 

Figure 3-21    Field distribution of the second example over the cross-section of the 

waveguide filled with uniaxial medium with titlted optic axis. (α=30°) 
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Figure 3-22    Contour plot of the field distribution of the second example over the 

cross-section of the waveguide filled with uniaxial medium with 

titlted optic axis. (α=30°) 

Once again, the validation of the results could be conducted by comparing the field 

distributions. Figure 3-23 shows the field plots from the same computational algorithm but with a 

limiting configuration as the tilting angle is only 0.1° off the z-axis. Almost perfect symmetry is 

found in this limiting case, which is close to the aligned uniaxial-z case. The field distribution of 

the presented mode is approaching the TMZ31 mode in uniaxial-z case, whose field contours 

approximately reflect the distributions in the uniaxial aligned case. 

 

Figure 3-23    Contour plot of the limiting case field distribution of the second 

example over the cross-section of the waveguide filled with uniaxial 

medium with almost aligned optic axis. (α=0.1°) 
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In summary, the field distributions of various uniaxial cases in rectangular waveguides are 

demonstrated. The field distributions of all the aligned cases are obtained analytically and show 

perfect symmetry. The field distributions of the hybrid modes in the tilted cases do not show 

symmetry due to the coupled e-wave and o-wave that have different wave numbers along y-axis 

(x-axis if tilted in the x-z plane). It can thus be concluded that the tilting angle not only changes 

the mode behaviors but also affect the symmetry of the electric field amplitude distributions. The 

presented field distributions provide a useful means of helping to physically understand the modal 

behaviors and waveguide characteristics. 

3.8.  Summary 

The problem of the waveguide filled with uniaxial media are addressed in Chapter 2 and 

Chapter 3. The aligned problems are analytically solved and the new mode decomposition with 

respect to the optic axis direction is presented. Analytical field solutions are derived and wave 

impedances are formulated in Chapter 2.  

The tilted problems are solved using the proposed numerical technique. The computational 

routine is explained in detail and an example was used to illustrate the usage of the algorithm. In 

particular, the hybrid modes are analyzed in detail. In the example the calculated wavenumbers 

are presented and used for defining the wave modes. The validity of the calculation process was 

verified by comparing the calculated results with the results analytically obtained from the aligned 

cases, since the results of slight tilting and close to 90 degree tilting should be similar to the results 

of the 0 degree tilting and 90 degree tilting which are the aligned cases. Except for the calculated 

wavenumbers, the validity of the calculation process was also demonstrated by comparing the 

obtained field results with the limiting cases. At these limiting cases, the hybrid modes also exhibit 
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close to periodic and sinusoidal field magnitude distributions like the isotropic and the aligned 

cases.  

Again, characterizing the dominant mode is important for waveguide structures. It was found 

that the hybrid mode may also become the dominant mode, or the lowest hybrid mode can have a 

cutoff frequency lower than that of the supported TE modes. Therefore care must be taken when 

this type of waveguide structure is used in a RF system because out-of-band signal may be 

transmitted undesirably in the form of hybrid mode. Last but not the least, we investigated how 

certain parameters would affect the dominant mode, particularly the hybrid dominant mode. 
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Chapter 4  NR-CRLH Transmission Line Metamaterial 

Postulated decades ago [21], negative refractive-index materials (NIM) have held considerable 

interests since the experimental verifications in microwave frequency range [24] and optic regime 

[69]. Since modern fabrication techniques allow broad usage of planar structures, the metamaterial 

reported in [70] and [71] and the CRLH structure reported in [72] and [73] have recently received 

considerable attention. However, for over a decade the inherent loss has been one of the major 

problem that has plagued establishing metamaterial as a mainstream waveguide technology. 

Although there had been theoretical debate on the existence of loss-free NIMs which may violate 

the law of causality [29], the argument soon ended with the validity of the energy-compensating 

NIMs justified in [30] and [31]. After the problem of loss was first revealed in [25], the layered 

structure with alternatively stacking lossy NIM layers and gain-medium layers was suggested [27] 

and later experimentally validated by loss-free photonic NIM [33]. Notwithstanding the success in 

optic frequency, that topology has not proven prevailing in microwave bands. 

In the planar metamaterials, the loss is mainly attributed to the non-ideal lossy materials, 

lumped component imperfection, and leaky-wave radiation. Although the amount of loss from unit 

cells may be negligible, metamaterial transmission lines typically consist of multiple cascaded unit 

cells which can lead to significant insertion loss. Even in the applications where the metamaterial 

structures are made of only a handful of unit cells, the loss can still cause notable negative impact. 

For instance, the metamaterial based resonators are often found with lower quality factor than 

conventional microstrip TL based resonators [74]. Radiating metamaterial leaky-wave antennas 

(LWAs), however, take advantage of the radiative loss to produce full frequency scanning beams 

[26]. Yet several performance limitations remain to be solved. The most critical problem is the 

exponentially decaying current amplitude profile that causes degradation of spatial resolution. 
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Therefore, it is desirable to develop metamaterial TLs that are capable of controlling the amplitude 

of the guided waves, not only to compensate the loss but also to control the radiation characteristics 

of the LWAs. 

Few have explored loss compensation and amplitude control along metamaterial transmission 

lines and LWAs. In [38], the quasi-unilateral amplifiers are incorporated to compensate for the 

current amplitude attenuation. Near the transition frequency the improved directivity and gain were 

demonstrated. However, the involved amplifiers not only compromise the reciprocity, but may 

also affect the phase response in the LH and/or RH frequency bands, and thus the capability of 

frequency beam scanning. The unilateral amplifiers were later replaced by the tunnel diodes [37] 

which permit bi-directional operation. Although the reciprocity is retained, the amplification 

behavior is highly frequency-dispersive in the range of less than 1 dB to greater than 10 dB, with 

an undesirable peak (in the amplification versus frequency curve) in the LH region. In addition, it 

can be shown that the input reflection coefficients may be greater than one in magnitude thus 

leading to system instability and oscillation between adjacent unit cells. Inevitably, in both of the 

previous attempts, loss-compensation occurs at the expenses of risking the unit-cell length and 

trading off the desired consistent Bloch impedance in broad bandwidth. These compromises are 

due to their design topology inherited from [27] where NIMs and gain units are serially cascaded 

in an alternating fashion.  

This work presents a new energy regenerating technology developed to not only compensate 

the loss but also to control the amplitude of the guided wave. The loss-compensating power is 

pumped-in from the orthogonal direction with respect to the propagating waves. This energy 

regeneration is realized by terminating the inductive stubs of the passive CRLH unit-cell with NR 

circuits. As will be discussed, the length of these stubs are not necessarily same as the NR 
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terminated stub. Furthermore, the proposed topology fundamentally changed the principle of loss 

compensation by creating an active unit cell (AUC), effectively combining the vital metamaterial 

characteristics of the conventional passive unit cell (PUC) and bi-directional gain without 

physically breaking guide discontinuities along the transmission line. 

An improved set of equivalent circuit model (ECM) compared with the conventional ECM will 

be introduced to inspire physical interpretation of the AUC. Conventionally the CRLH unit cells 

are comprehended from the ideal loss-free ECM and in most low-loss applications the ideal ECM 

is sufficient for evaluation/prediction purposes as well. However, it is advantageous to understand 

the functionality of the incorporated negative resistance from the proposed ECM model which is 

a variation of the conventional lossy model.  

4.1. A Brief History of the CRLH Structure 

The original CRLH structure was first introduced in [72] in 2002 as the “left-handed” 

transmission line, known as one of the practical planar realization of the emerging metamaterial. 

The other well-known metamaterial transmission loaded with lumped L-C components was also 

introduced in the same year and can be found in [70]. More details about the lumped component 

loaded metamaterial transmission line can be found in [71].  

Regarding the CRLH TL only, its left-handed characteristic of the CRLH structure was 

discussed in depth for the first time in [75]. However, as its name suggested, it was better known 

for possessing both right-handed (positive propagation constant) and left-handed (negative 

propagation constant) frequency bands on its spectrum. The composite feature of both LH and RH 

performances was first taken advantage of in [26] as a leaky-wave antenna capable of backfire-to-

endfire (including broadside) frequency scanning. Analyses on the support of LH and RH 
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characteristics was first seen in 2003 [73], and in and after the year of 2004 a number of articles 

from the original group of UCLA demonstrated complete theory and broad applications of the 

CRLH structure including the transmission line characteristics [76] [77], design of dual-band 

couplers [78] [79], and implementation of resonators [74]. A comprehensive review of the relevant 

fundamentals can be found in [80]. Among various applications, we are focused on the leaky-wave 

antenna applications. Sufficient survey material on metamaterial antennas can be found in [81]. 

4.2.  Fundamentals of CRLH Transmission Line 

CRLH 

unit cell

ln

lg

Ws ls

Wc

Wn

ΔZ

 

Figure 4-1    Unit cell of the conventional CRLH periodic structure (with regular 

input/output transmission lines). The number of pair of fingers shown 

in the figure is 3. 

The CRLH transmission lines (TL) consisting of CRLH unit cells shown in Figure 4-1 can be 

analyzed using the theory of periodic structure (a thorough explanation can be found in Collin’s 

Book [4]). The theory analyzes the cascaded structure by first analyzing each unit-cell behaviors 

and then utilizing network parameters to calculate and evaluate the behaviors of the entire structure. 

The method treats the structure of finite length based on the infinitely cascaded structures. 
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4.2.1.  Conventional TL and LH TL 

The conventional transmission line, for example, a microstrip line, a strip line, a coaxial cable 

or a rectangular waveguide, can also be analyzed using the theory of periodic structure as shown 

in Figure 4-2. Typically, transmission lines are analyzed using the telegraph function as 

demonstrated in many textbooks (e.g., see [4] and [5]). 

LΔz

CΔz

RΔz

GΔzv(z, t) v(z+Δz, t)

i(z, t) i(z+Δz, t)

Δz
 

Figure 4-2    Voltage and current definitions and the equivalent circuit for an 

incremental length of a conventional transmission line. 

The conventional TL can be considered as right-handed material, whose refractive index is a 

positive number. In terms of guided waves, the direction of phase propagation and power flow are 

parallel. The solutions to the propagating waves always have phase delay across the unit cell. 

However, the metamaterial TLs, or sometimes called negative-refractive-index material TL, are 

considered as left-handed material, whose refractive index is a negative number. Consequently, 

the direction of phase propagation and power flow are anti-parallel. The solutions to the 

propagating waves always have negative delay (phase advance) across the unit cell. Ideally, the 

CRLH structure seamlessly combines the two phase propagation characteristics and thus provide 

more flexibility than single LH or RH TLs. 
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Figure 4-3    Voltage and current definitions and the equivalent circuit for an 

incremental length of a left-handed transmission line. 

The diagram shown in Figure 4-3 is designed such that it is complementary to the conventional 

structure as shown in Figure 4-2. The diagrams in these two figures scan illustrate the differences 

between a RH that produces phase day and a LH TL that produces phase advance. Note that the 

notations and circuit structure are not necessarily same for other LH TLs. Combining the RH TL 

and LH TL makes a composite right-handed and left-handed transmission line. 

4.2.2.  CRLH TLs 

A CRLH TL can consist of an arbitrary number of unit cells. Consider a CRLH TL consisting 

of over ten unit cells, of which the three consecutive unit cells are shown in Figure 4-4. The figure 

shows three unit cells between the section on their left and the section on their right. In other words, 

the CRLH TL is not terminated at either the leftmost unit cell or the rightmost unit cell in Figure 

4-4. Note that the terminating unit cells are usually different from the regular unit cells. 



 

106 

 

. . . . . .

 

Figure 4-4    Demonstration of three unit cells in an infinitely long periodic structure 

(between semi-infinite section on the left and semi-infinite section on 

the right). 

When designed properly, the input impedance of a properly terminated CRLH TL can be 

approximately 50 Ohm, and the transition between a normal TL and a CRLH TL is simply a direct 

connection as Figure 4-5 shows. When the characteristic impedance of a CRLH TL is designed to 

be other than the standard value of 50 Ohm, an impedance transformer can be used for the 

transition as shown in Figure 4-6. If the width of the unit cell or TL, which is usually the width of 

the inter-digit capacitor, is not the same as the width of a conventional TL which is matched to the 

CRLH TL, care should be taken and the transition may be done with tapering. 

 

Figure 4-5    A 10-unit-cell CRLH TL transitioned to a 50 Ohm microstrip line 

without tapering. 
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Figure 4-6    (Figure 9(a) in [80]) Presence of a 24-unit-cell CRLH TL with normal 

transmission lines and SMA connections. Tapering can be observed 

on both terminals of the CRLH TL.  

One may notice that the TLs in Figure 4-5 and Figure 4-6 are symmetric but the unit cells in 

Figure 4-4 are not. This will be explained after the unit cell study. 

4.2.3.  CRLH Unit Cell Layout 

The layout of a CRLH unit cell is shown in Figure 4-1. The unit cell is composed of an inter-

digit capacitor (IDC) and a shorted stub. The total length of the unit cell is the sum of the IDC 

finger length (ln), IDC finger gap (lg) and the width of the shorted stub (Ws). The edge-to-edge 

width (Wn) of the IDC determines the widths of the metamaterial TL. Usually it is preferable to 

have Wn equal to the width (Wc) of the desired microstrip transmission line. If Wn cannot be made 

equal to Wc, again, tapering can be used to realize a smooth transition. The total length of the unit 

cell follows the conventional notation given by Δz. 

The length of the unit cell is assume to be Δz, or d in the analysis of periodic structure. The 

equivalent circuit model is valid when Δz is much smaller than the wavelength corresponding to 

the highest frequency in the desired band. A commonly accepted rule for Δz is Δz ˂ λg/4, where 
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λg is the wavelength of the guided wave. A more conservative criterion is known as Δz ˂ λg/10 

which provides better approximation. 

There are various EM simulation commercial software tools that can be used to simulate the 

unit cell behaviors as shown in Figure 4-1. For example, method of moments [82] based planar 2-

D simulation tools like Ansys Designer, Keysight ADS and Sonnet, finite element based 3-D 

simulation tool Ansys HFSS, and finite-element based CST. The primary tools used in this work 

are HFSS and ADS. 

A simulation model in HFSS is shown in Figure 4-7. The number of finger pairs is 5, the finger 

length ln is 10.2 mm, the finger gap lg is 0.2 mm, and the finger width is 0.3 mm, thus the total 

width Wn is 4.8 mm, about the same as the 50 Ohm microstrip line on the RO/duroid 5880 substrate 

of 62 mil (1.57 mm) thickness. The width of the stub is 1 mm. 

 

Figure 4-7    The 3-D model drawn in HFSS simulation software with feeding lines 

20 mm. 
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The unit-cell simulation results are presented in this section. In each figure there are four curves 

plotted representing different stub length ls’s. The systematic design method of a CRLH unit cell 

has been detailed in many literature, particularly useful guide can be found in a textbook written 

by Caloz and Itoh [83]. In a simpler yet practical manner, the design can start from the ideal circuit  

model and IDC and stub parameters, then tune the stub length ls to find the optimum design. The 

design methodology will be detailed in the analysis of the equivalent circuit model (ECM). 

The return loss plots are presented in Figure 4-8. The desired null that occurs near 2.05 GHz 

implies the approximate locus of the transition frequency. The spurious narrow peak and drop that 

occurs near 2.75 GHz is primarily due to the self-resonance of the IDC [84]. The simulation of the 

IDC alone will be presented elsewhere. The peak (nearly total reflection) right after 3.5 GHz 

confines the upper limit of the fundamental working band, which can also be identified in the 

dispersion relation. 

 

Figure 4-8    Return loss of the simulated unit cell with stub length as 8.8 mm, 9 

mm, 9.1 mm, and 9.2 mm.  
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The insertion loss curves are plotted in Figure 4-9. It can be observed that for a such a short 

structure, the insertion loss is comparable to a common transmission line near the transition 

frequency, if we consider the common transmission line can have below -20 dB return loss in a 

very broad frequency range. The substrate is the industrial well-known low-loss material with loss 

tangent only 0.0009. The reason that causes the loss is primarily due to the leaky-wave radiation 

from the apertures. The radiative characteristics will be discussed in the section describing the 

leaky-wave antenna. 

 

Figure 4-9    Insertion loss of the simulated unit cell with stub length as 8.8 mm, 9 

mm, 9.1 mm, and 9.2 mm. 

From the regular S parameters in dB, the left-handed properties of the unit cell cannot be 

revealed. But one can plot the insertion phase from which interesting phase advance phenomenon 

will be discovered. Moreover, one can plot and examine the dispersion diagram, or Brillouin 

diagram, to find the phase behavior of the unit cell. The dispersion diagram of the simulated unit 

is shown in Figure 4-10. The horizontal axis Beta_p is calculated from the simulated S parameters 

using the equation given by [4] 
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The transition frequency is found near 2.05 GHz, and the band-gap is found minimum with 

stub length to be 9.1 mm. The straight line represents the dispersion of the free-space propagation 

constant with frequency. The curves appear as frequency versus the phase delay over the unit-cell 

physical length calculated from 

 0
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d d
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  . (4-2) 

 

 

Figure 4-10    Dispersion diagram calculated from the simulated unit-cell S-

parameters with stub length as 8.8 mm, 9 mm, 9.1 mm, and 9.2 mm. 

The dispersion relation in Figure 4-10 also demonstrates the leaky-wave region, or radiation 

region and the non-radiation region, divided by the straight air line. The radiative characteristics 

will be discussed in Chapter 5. 

Air Line 
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A set of plots for the Bloch impedance over the frequency band are shown in Figure 4-11. The 

Bloch impedance is calculated from the S-parameters as follows. 
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 (4-3) 

The Bloch impedance is represented as one impedance value if the unit cell of a periodic 

structure is symmetric, and when the unit cell is asymmetric two ZB’s are required to describe the 

impedance seeing from left port and right port, or port-1 and port-2 of the unit cell’s two port 

network. Although the unit cell shown in Figure 4-1 is not a symmetric structure, note that the 

antenna or transmission line in Figure 4-5 and Figure 4-6 are symmetric. Therefore here the unit 

cell’s parameters are used to claculate the symmetric Bloch impedance. Details will be given in 

the ECM subsection. 

 

Figure 4-11    Bloch impedance (real part) of the unit cell calculated from the 

simulated S-parameters with stub length as 8.8 mm, 9.0 mm, 9.1 mm, 

9.2 mm. 
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It is worth mentioning that the dispersion diagram and the Bloch impedance curves both reveal 

the existence of band-gap, a narrow frequency range over which the unit cell theoretically behaves 

as an unmatched, extraneous phase delay unit. It is hard to completely avoid the band-gap in 

simulations and calculation, however near the transition frequency the constituted TLs/LWAs 

usually behave well.   

The above presented simulation results find the optimum design with stub length 9.1 mm by 

tuning the stub length [85]. It demonstrates a design process that seeks the optimum design by 

repeatedly simulating the entire structure. The following sections demonstrate another type of 

design flow and the derivations of the equations used in the periodic structure analysis. 

4.2.4. IDC Simulations 

In order to estimate the final TL behavior, the ECM of each single unit cell is usually obtained 

prior to evaluating the TL design. In an ideal loss-free CRLH unit cell ECM, the series capacitance 

and inductance are primarily contributed from the IDC, and the shunt inductance resides in the 

grounded short stub. Therefore, we can simulate and extract the ECM’s lumped component values 

from separate IDC and shorted stub simulations [78]. The procedure of parameter extraction for 

an IDC design is as follows. 

In HFSS 3-D model simulation software, a microstrip line inter-digital compacitor (IDC) is 

drawn as shown in Figure 4-12. The microwave circuits will all be simulated and built on the low-

loss 62 mil thick Rogers RT/duroid 5880 substrates with dielectric constant 2.2.  
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Figure 4-12    IDC model (top view) in HFSS simulation software. The substrate is 

the 62 mil thick Rogers RT/duroid 5880 with dielectric constant equal 

to 2.2 and loss tangent 0.0009. The IDC figure width is 0.3 mm and 

the gaps measure 0.2 mm. 

The microstrip lines connected to the IDC can be de-embedded using wave ports at their 

terminals, so that the simulated S-parameters or Z-parameters or Y-parameters are nearly just the 

responses of the IDC. Using lumped circuit elements, the IDC can be modeled as shown in Figure 

4-13a), which is a loss-free version of the model presented in [86]. The ECM can also be abstracted 

as a π-network as shown in Figure 4-13b). 

a)    

CS LS

CP CP

        b)    

Y1 Y1

Y2

 

Figure 4-13    a) The ECM of an IDC. b) The π-network of the IDC ECM. 

The Y matrix of the π-network is given by [5] 

 
1 1 1 2 1 2 2

2 1 2 2 2 1 2

Y Y Y Y Y

Y Y Y Y Y

    
   

    

, (4-4) 

where the matrix elements are defined as follows. 

 
1 P

Y j C  (4-5) 
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The Y matrix can be obtained through simulations thus Yij‘s are known after simulation. Note 

that Y2 = –Y12.Then the lumped elements can be derived using the Yij‘s as given by 
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Using the given dimensions, the calculated results are LS = 2.9 nH, CP = 0.52 pF, and CS = 2pF. 

The simulated S-parameters may have spurious spikes where the calculated component values are 

extraneous [84]. The presence of the spurious spikes may prohibit the use of the CRLH unit cell 

to be used near the frequencies where the spikes appear. A solution has been proposed [84] to 

improve the bandwidth utilization of the microstrip IDC based CRLH unit cell. 

The spurious spikes do not appear in the L-C loaded CRLH transmission lines, but the limited 

Q values of the capacitor components prohibits the use of L-C loaded CRLH TL in frequency 

bands higher than, typically, 2-3 GHz. 

4.2.5.  Short-Stub Simulations 

Short stubs along with open stubs have been used broadly in impedance matching network [4], 

multiband filter design [87] [88], diplexer design [89], and many other resonance/non-resonance 
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based implementations. A typical short stub layout between connecting transmission lines are 

shown in Figure 4-14. 

 

Figure 4-14    The short-stub model (top view) in HFSS simulation software. The 

small circle on the end of the stub is the via connecting to the ground 

plane of the microstrip line stack-up. 

The microstrip line connecting to the short stub is de-embedded to look through into the stub 

directly. The behavior of a short stub can be understood from the ECM as shown in Figure 4-15. 

Although the notations are same as the IDC ECM, the physical functionality of the notations are 

different between the two sub-sections. 

a)        b)    

Z2

Z1 Z1

 

Figure 4-15    a) The ECM of a short stub. b) The T-network of the short-stub ECM. 

The Z-matrix of the T-network is expressed as follows. 

 
1 1 1 2 1 2 2

2 1 2 2 2 1 2

Z Z Z Z Z
Z

Z Z Z Z Z

   
    

   

 (4-10) 

The Z1 and Z2 in (4-10) are given by 
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The Z matrix can be obtained through simulations thus Zij‘s are known after simulation. Note 

that Z2 = Z12.Then the lumped elements can be derived using the Zij‘s as given by 

  1 1 1 2

1

s
L Z Z

j
   (4-13) 

 
1 2

1 2

1

2
P

Y
C Y

j


 

 
  

 
 (4-14) 

 

1

1 2

1 2

2

P

Yj
L Y

 



 
  

 

 (4-15) 

where Y12 = 1/Z12. Using the given dimensions with stub length 8.1mm and feeding line width 4.8 

mm, the calculated results are LS = 0.15 nH, CP = 0.22 pF, and LP = 4.7 nH. Parameter extraction 

for a shorted stub encounters no spurious behaviors. The L-C loaded CRLH transmission line uses 

inductors loaded to ground to realize LP, however, the finite Q of the lumped elements disqualifies 

the use of them in higher frequency bands. 

4.2.6.  CRLH Unit Cell ECM 

The analysis of the CRLH unit cell can be conveniently performed using the equivalent circuit 

model as shown in Figure 4-16.  
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Figure 4-16    ECM of CRLH unit cell including lossy elements. Ideal loss-free unit 

cell ECM has no Rse and Gsh components. 

The two port network can be analyzed to obtain its ABCD matrix and S parameters assuming 

50 Ohm characteristic impedance in the system. Then the ABCD matrix can be used in the periodic 

structure calculations to find the dispersion relations and the Bloch impedances. 

First, define two resonance frequencies (in radian) as follows. 

 
1
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   (4-16) 
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The subscript ‘sh’ indicate the resonant frequency in the shunt circuit, and the subscript ‘se’ 

implies the resonant frequency in the series circuit. Following the same style, the two quantities of 

impedance and admittance are defined as follows. 
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In terms of the lumped elements in the ECM, the following equations can also be found. 
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A balanced design has two resonance frequencies equal to each other in order to have a 

balanced unit cell design. The condition also leads to the matched results [76] with the line 

impedances related by 

 
0

R L

R L

L L
Z

C C
  . (4-22) 

The condition (4-22) represents a balanced design with the left-handed line impedance equal 

to the right-handed line impedance. 

With the defined impedances and admittances, the ABCD matrix of the two-port network is 

given by 

 
1

1

s e s h

s e

s h

P

s h

Z Z
Z

ZA B
A

C D

Z

 

 
 

   
  
 
 

. (4-23) 

The theory of periodic structure [4] indicates that the forward phase delay of the two-port 

network can be calculated from the ABCD matrix as follows. 
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Using the conversion equations presented in [5], we have from ABCD matrix entries to S-

parameters as follows. 
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The equation (4-1) used in unit cell simulation is obtained in terms of simulated S parameters. 

Again, the notation βd represents the equivalent propagation phase constant when the periodic 

structure is treated as a continuous regular wave guiding structure. The subscript d distinguishes 

the equivalent propagation constant from the conventional phase constant β (or k0). The variable d 

denotes the physical length of the two-port network which serves as a unit cell in the periodic 

structure. 

In order to find the symmetric model Bloch impedance, the standard ECM must be modified 

assuming that the periodic structure consists of the symmetric unit cells. 

4.2.7. Symmetric CRLH Unit Cell ECM 

In practice, the unit cell shown in Figure 4-1 which can be modeled as in Figure 4-16 is often 

used with matching network. The objective of the matching network is usually to achieve double 

the capacitance in the asymmetric layout. If the CRLH structure consisting of multiple unit cells 

is well matched, the asymmetric unit cell ECM can be reorganized to obtain a symmetric ECM as 

shown in Figure 4-17. 

2CL Rse/2LR/2

LL GshCL

v(z, t)

i(z, t)

v(z+Δz, t)

i(z+Δz, t+Δt)2CLRse/2 LR/2

v(z+Δz, t+Δt)

 

Figure 4-17    ECM of CRLH unit cell in the symmetric form including lossy 

elements. Ideal loss-free unit cell ECM has no Rse and Gsh components. 
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The symmetric ECM is basically a T-network, with two series impedances denoted by 
T

s e
Z . The 

series impedance (4-21) applies here for the symmetric model as well. The series impedance can 

be calculated from the equation given by 
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The symmetric ECM would lead to symmetric ABCD matrix, which is given by 
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where T T
A D . The matrix entries are expressed in terms of the previously defined impedances 

and admittance as follows. 

 
1

1 1
2

T

se

T se shT

sh

Z
A Z Y

Z
     (4-28) 

 

2

2

se

T se sh

Z
B Z Y

 
   

 

 (4-29) 

 
T sh

C Y  (4-30) 

From the ABCD matrix of the symmetric model, the propagation constant and Bloch 

impedance can be formulated using the theory of periodic structure. Note that the propagation 

constant is calculated from 
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, (4-31) 

which is exactly same as (4-24) formulated based on the asymmetric model. The Bloch impedance 

can be derived as follows. 
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With (4-20) and (4-21) plugged in, the Bloch impedance can be calculated from the lumped 

elements in the ECMs. 

4.2.8. Calculation Example 

Using the aforementioned dimensions of the IDC and the short-stub and the simulation results, 

we can combine the π-network of IDC and T-network of short-stub and obtain an asymmetric 

model. The combination is shown in Figure 4-18. 

 

Figure 4-18    Combining the ECMs of IDC and short-stub to form an asymmetric 

unit cell model. 

The circuit model in the above figure is much less complicated if Ls of the short-stub is ignored. 

The given dimensions result in the stub’s Ls about 0.15 nH which is small enough to be ignored. 

Moreover, the left-most CP of the IDC’s model can be assumed to contribute in Ysh for the adjacent 

unit cell on the left. Therefore, we have Zse comprised of IDC’s CS and LS and Ysh comprised of 

IDC’s two CP’s, stub’s CP and LS.  

In conclusion, the asymmetric model has the following reactive elements as follows. 
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From the given dimensions, the resultant model has CL as 1.88 pF, LR as 2.9 nH, CR as 1.18 

pF, and LL as 4.65 nH. A Matlab code was written for the analysis of the unit cell ECM. The 

plotted curves can be compared with the simulated results in Figure 4-8 to Figure 4-11. 

First, the return loss is shown in Figure 4-19. 

   

Figure 4-19    Matlab plotted return loss (left) and insertion loss (right) of the unit 

cell ECM with Z0 terminated on both ports. 

The null in the return loss curve shows where the transition frequency is in proximity. The loss 

revealed in the insertion loss plots is much greater compared to a conventional right-handed 

transmission line. However, in such an ideal ECM analysis the components are considered lossless, 

and the unit cell losses are not accounted for. 

Secondly, the insertion loss (or gain, in the active unit cell demonstration) is also plotted in 

Figure 4-19. Note that the return loss and insertion loss are not plotted in the same scale. Actually, 
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close to reality, the unit cell is of loss that is not much more significant than a piece of microstrip 

line or strip line. However, this is only the loss of one single unit cell. When multiple unit cells are 

cascaded to be used as transmission lines, the insertion loss usually causes undesired degradation 

in signal or power transmissions.  

On the other hand, the loss which is desired in an LWA application environment is not great 

enough, indicating that the radiation efficiency is very poor.  

The dispersion relation and the phase delay of the unit cell ECM is plotted in Figure 4-20. 

From the dispersion diagram it is clear that below the transition frequency the phase propagation 

constant is a negative value. The curves in Figure 4-10 have their lower sections (below transition 

frequency, with negative phase values) flipped with respect to the vertical axis for a concise view 

of the radiation region. The dispersion curve in Figure 4-20 is not treated in the same way but 

plotted with two air-lines showing the dispersion relation of the electromagnetic wave in air. The 

curves in Figure 4-20 are plotted based on the constant ECM model which has been usually 

considered as an effective help with physical interpretation. 

     

Figure 4-20    Matlab plotted the calculated dispersion relation (left) and the phase 

propagation (right) across the unit cell ECM. 
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Since the lumped element values are intentionally adjusted to reflect a balanced ECM design 

[72], there is no band-gap, or transition gap in the dispersion diagram. A dispersion diagram 

containing band-gap near the transition frequency can be found in the demonstration of the active 

ECM and simulations. The frequency range where the phase delay is positive reflect a left handed 

region, while the frequency range where the phase delay is negative reflect a right handed region. 

It has been proven that the dispersion relation can be calculated from the asymmetric model, 

whereas the Bloch impedance must be calculated from the symmetric model. The calculation using 

the symmetric model and the asymmetric model are shown in Figure 4-21. 

     

Figure 4-21    Bloch impedance calculation based on the symmetric model (left) 

and the asymmetric model (right). The asymmetric model results in 

less resistance. 

The difference between the ECM calculation and the full-wave simulation is more significant 

further away from the transition frequency, because in reality the distribution elements in models 

are strongly dispersive (frequency dependent) and the picked values are intentionally from near 

the transition frequency. Note that the ECM is found with the transition frequency about 2.1 GHz, 

while the unit cell full wave simulation finds its transition frequency at about 2.05 GHz. The 

difference is primarily due to the neglected inter-coupling between the short-stub and the IDC, and 
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this inter-coupling is not incorporated in the separated IDC and stub simulations but certainly 

accounted for in the unit cell full wave simulation. 

Moreover, the unit cell simulation is not the most accurate either, as can be found in 

transmission line and leak-wave antenna design and analysis in [85]. The behavior of the TLs and 

LWAs is usually different from the prediction from the unit cell behaviors.  

Last but not the least, the insufficient aacuracy of the modelling methods using unit cell is also 

because the theory of periodic structure is based on the infinite series but in practice almost all the 

structures are of finite length or consisted of finite number of unit cells. The corrected theory of 

terminated periodic structure [4] can help but usually this category of inaccuracy is small enough 

for long structures. 

4.3. Negative Resistance 

4.3.1. Negative Resistance and Typical Applications in Amplifiers 

In radio frequency, negative resistance (NR) has been known since it was first introduced by 

Hull [39], disclosing the dynatron, the vacuum tube. Modern NR circuits often appear as two-

terminal circuits (one port device) that consist of active devices and biasing circuits [40]. When 

operated as a one-port device, the NR circuits amplify and reflect the incident power, enabling the 

design of reflection-type amplifier that uses a circulator to separate the input and output ports of 

the amplifier [42]. A typical schematic of a RF amplifier employing one-port amplification is 

shown as in Figure 4-22, and a photo of a prototyped waveguide amplifier utilizing the reflection-

type amplifier is presented in Figure 4-23. 
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Figure 4-22    A schematic of the two-port amplifier using one-port amplification 

mechanism and a circulator to isolate the input and output signals. 

Figure is a duplicate of Fig. 6 in [41] in the year of 1979. 

The schematic of the two port amplifier utilize a microwave circulator to isolate the input and 

output port. The incident power delivered toward the MESFET (denoted as the GaAsMESFET in 

the figure) is amplified and returned back to the circulator. The reflected power is then guided to 

its output port, isolated from the input port by the circulator. Therefore there is nearly zero reflected 

power leaking backward to the input power if the circulator is highly directional. Tohyama and H. 

Mizuno prototyped the amplifier using the rectangular waveguide technology. It has also been 

presented that implementing microwave circulating circuit and amplification circuit using 

microstrip technology [90] in W-band is feasible as well. 
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Figure 4-23    A photo of the two-port waveguide amplifier with one-port 

amplification and a circulator. Figure is a duplicate of Fig. 4 in [91] 

in the year of 1977. 

Generally, except for the intrinsic two-port devices like diodes [92], other NRs realized using 

three terminal components including all types of BJTs and FETs are essentially to terminate one 

of the two port circuits and leave the other port for NR response. For illustration, an abstracted 

amplifier schematic that demonstrates this category of implementations is shown in Figure 4-24, 

which provides more details on the functionality of the amplifying semiconductor.  

 

Figure 4-24    A schematic of terminating one port of a two-port circuit and use the 

other port as the NR. The realized NR is used in an amplifier circuit 

incorporating a circulator. Figure is a duplicate of Fig. 1 in [93]. 
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However, the diagram in Figure 4-24 does not include the other class of intrinsic 2-port device, 

typically diode. More specifically, tunnel-diode has found a lot of applications in single 

amplification since it was discovered by Esaki [94] in 1958. The use of tunnel-diode based negative 

resistance have been reported in the application of amplifier [42] as well, and extensive analysis 

regarding different types of negative resistance diodes can be found in [92].  

There is another active CRLH unit cell that incorporates tunnel diodes and realizes forward 

gain [37]. The NR-CRLH unit cell that will be described in the following sections will be compared 

with the tunnel-diode CRLH unit cell side by side. 

Among various NR circuits, the inverted common collector (ICC) is of particular interests to 

us. This circuit was one of the well-known circuit to simulate high-Q inductance in history. The 

circuit originated from the study of the active-circuit simulated inductance and capacitance. During 

the long and evolutionary history of semiconductor technology, the general trend toward 

microminiaturization had made it desirable to fabricate inductive and capacitive elements by a 

pure semiconductor approach [95]. The following sections are focused on the ICC circuit and its 

application in NR-CRLH structure. 

4.4. ICC NR Circuit 

The simplified schematic and the equivalent simple circuit model of the inverted common 

collector model is shown in Figure 4-25. The input impedance of the active circuit can be modeled 

as an inductor in series with a negative resistor as shown in Figure 4-25b). The circuit has caused 

considerable interests due to its combination of inductance and negative resistance. 
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The name inverted common collector (ICC) was first given in [96] in 1968, because the input 

terminal (base) of the conventional common-collector circuit is loaded and grounded while the 

output port is inverted as the input port and output since it is a one-port network (basics of common 

BJT transistor circuits can be found in numerous textbooks, e.g., in [97], [98] and [99] and is not 

in the scope of this work). The analysis of the circuit can be found in [100]. However, the accuracy 

of the approximated equations is not good enough to guide the actual circuit design, and the 

simulation tool will be the primary source to evaluate and predict circuit behaviors. 

Transistor

Rb

Lb
Zin

Rn<0

Le Lv

Rv

a)                                  b)                         c)  

Figure 4-25    Negative resistance circuit and its equivalent model. a) Negative 

resistance circuit based on a bi-polar junction transistor. b) The 

equivalent circuit model with an inductor and a negative resistor in 

series. c) The equivalent circuit model of the via-hole termination at 

the ends of the short stubs in the CRLH structure. 

Another circuit schematic with more details is shown in Figure 4-26 using a NPN type bi-polar 

junction transistor. The circuit can be implemented using a PNP transistor as well, provided that 

the circuits are properly biased using different class of BJTs. MOSFETs are potential substitutes 

in the same or different frequency bands, in particular higher frequency bands. The dashed line in 

Figure 4-26 indicates a simpler circuit eliminating the biasing network connected to the collector 

terminal, but experiments show that dual-biasing improves the NR response at higher frequency 

by increasing VCE with constant IC. Therefore in this schematic both configurations are presented. 

In the NPN-based circuit, the VEE is negative voltage and VCC is positive. 



 

131 

 

VCC

RF 

Short

RB

Lb

RE

RF 

Choke

RF 

Chock

VEE

RF 

Short

 

Figure 4-26    Schematic of the ICC NR circuit. The dashed line indicates the 

simplified configuration of grounding the collector terminal directly. 

VCC is a positive biasing voltage and VEE is negative for NPN 

transistors. 

The ICC NR circuits have been advised to realize the oscillator by Gibbons [101] and zero 

insertion-loss filters [102] as a practical replacement of the low-Q microstrip or lumped inductors 

in microwave circuits, and different types of filters have been designed using the ICC-simulated 

inductance and negative resistance. For example, the active direct-coupled filter was demonstrated 

by Chang and Itoh in [103]. 

4.4.1. Active Inductors 

If the illustrated ICC circuit was changed with the Lb removed (or Lb=0), the resultant circuit 

was used to realize active inductor. Before the ICC NR circuit was proposed in filter applications 

by Adams and Ho in 1968, a similar circuit was developed to realize active inductance. A broad 

survey of the active inductor realization utilizing various semiconductor technologies can be found 

in [95] by Dill. Pertinent analysis particularly addressing the ICC active inductor circuit was given 

by Lindmayer and Worth in 1965 [104] and by Dutta Roy in 1963 [105]. This analysis laid 

foundations for the ICC NR circuit application [102] and analysis in [100]. The diagram showing 
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the active inductor circuit is shown in Figure 4-27, which only differs from the ICC NR circuit by 

the absence of Lb loading at the base terminal. 

  

Figure 4-27    Duplicate of Fig. 1 in [104]. The input admittance is inductive and 

minimally lossy. 

When used to build active filters, the transistor based elements can either function as coupling 

elements (e.g., inverters) [106], or to strengthen the passive resonators by compensating the loss 

thereby boosting the overall quality factor [103].  

The semiconductor simulated inductors drew considerable attention because of its high quality 

factor, smaller area, operation in high frequency where spiral inductors fail, miniaturized and 

consistent dimensions that permit high density integration, and broad-band tunability that is not 

seen with semiconductor capacitive elements [107]. Broad range of applications have been 

reported using various semiconductor three-terminal devices (BJT or MOSFET).  

4.4.2. Mathematical Models 

Although the analytical models have been found not accurate enough the desired frequency 

bands, they certainly help with establishing the fundamental concepts and physical insights. 

Several previously recognized models will be discussed in this section. 



 

133 

 

The name of the circuit, inverted common collector, is given because the regular input port of 

a common-collector circuit is used for the loading port while the output port of it is used for the 

input port. A regular common-collector configuration can be found from many textbooks, for 

example, [97]. Its input voltage is applied to base terminal, and the output voltage is taken from 

the emitter terminal. A typical circuit can be found in Figure 4-28a), and the equivalent circuit 

model (ECM) is also given in Figure 4-28b) using T-model and high frequency model of the 

transistor. This circuit is better known as emitter follower [97]. 

a) 

VCC

RE

RB

-VEE

CB

CE

Vin
Vout

              b) 

RE

RB Vout
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Vin

αie 
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T-Model

 

Figure 4-28    Conventional common base amplifier circuit schematic. a) Circuit 

schematic. b) Equivalent circuit model schematic. 

The ECM shown in Figure 4-28 might not be reliable at high frequency, where parasitic 

parameters cause significant deviation in performance. The high-frequency model will be detailed 

in the following section. The most important parameter in the circuit analysis is finding a proper 

common base current gain, commonly denoted by α as shown in [97]. 

Dill [95] summarized an approximate mathematical model for the common-base current gain 

denoted by α as given by 
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where α0 is the DC common-base current gain and fb is the α cutoff frequency which can be 

calculated from 
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e ff
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 . (4-38) 

The notation D in the above equation is diffusion coefficient, and beff is called effective base 

width. Consequently the input impedance Zin as shown in Figure 4-25 can be calculated as follows. 

  1
in e b s

Z r r     (4-39) 

The note re represents the resistance at emitter terminal of the transistor, and rbs is the sum of 

Rb as shown in Figure 4-25 and resistance at base terminal of the transistor. Note that Lb is not 

involved (or, equivalently Lb=0) because in [95] the author was primarily interested in the 

inductive reactance of the input impedance. In this case the real part of the input impedance is the 

smaller the better in order to achieve higher Q value. Notice that if α is decomposed into its real 

part (αr) and imaginary part (αi) and both assumed to be greater than zero, Zin can be rewritten as 

follows. 

 (1 )
in e b s r b s i

Z r r jr      (4-40) 

Apparently the major problem that degrades the Q value is the emitter terminal resistance re, 

and the achievable inductance value depends on RB, although not exclusively. Therefore in the 

active inductor circuit, increasing RB in Figure 4-26 was preferred to increase inductance. 

A more accurate model also introduced in [95] is given as 
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where a more accurate model for α is given by 
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The new involved notation m is correction factor. The resultant imaginary part of Zin is positive 

and the circuit functions as an inductor. The quality factor of the simulated inductor is analyzed in 

the paper. 

Dutta-Roy proposed a more complex solution but with higher accuracy in [105] using the 

theory of exponentially tapered resistance capacitance transmission line [108]. In a similar form, 

the real and imaginary parts of the input impedance are given by 

  1
in e b

R r r A    (4-43) 

 
in b

X r B   (4-44) 

The notations A and B are given as follows. 
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The notations λ’ and μ’ are detailed in [105] and omitted here.  With the real part and imaginary 

part separated, the quality factor of the simulated inductor is readily to calculate from Q = X / R. 

4.4.3. Circuit Analysis and Simulations 

The ICC circuit shown in Figure 4-26 used in this design is further simplified and presented in 

Figure 4-29a. The collector terminal is not directly grounded but the bypass capacitor CC ensures 

RF shorting at the collector terminal. One single biasing voltage –VEE suffices to bias the transistor 
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properly, however, dual biasing voltages offer more flexibility in tuning the transistor behavior. 

This is difficult to manifest in calculation but easy to demonstrate in simulation and measurement. 

The emitter terminal is hooked up to the biasing resistor RE and negative voltage source –VEE 

through the RF blocking inductor LE. The component CE is simply DC blocking capacitor at the 

input. Although it is not necessary to use CE in the CRLH transmission line or leaky-wave antenna 

because the connected stub is in conjunction with two IDCs on both sides (thus the NR circuit is 

not physically connected to other active circuits with low resistance path), the component is kept 

for possible phase adjustment or impedance matching in the simulation and layout. 
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Figure 4-29    ICC circuit and its high-frequency equivalent circuit model. a) ICC 

circuit used in the BJT-based design. b) The small-signal equivalent 

circuit model. 

The ECM of the AC-circuit is shown in Figure 4-29b), incorporating the high-frequency 

hybrid-π ECM of a BJT. The hybrid-π model is different from the low-frequency T-model in 

Figure 4-28b). Similar models can also be found in other analog and RF circuit books, like the 

classical analog circuit book by Gray et. al. [109] and the popular RF technique book by Lee 

Thomas [110]. 

The ECM circuit can be put in a schematic circuit simulator to evaluate the behavior. Normally, 

a transistor model having constant real-valued transconductance gm does not reflect a negative real 
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part of Zin. As pointed out by Dill [95], the inductive response of the conventional circuit is caused 

by delayed conductivity modulation of the base. This time delay is modeled in Figure 4-30 which 

shows an ADS circuit schematic. The transistor is modeled by a controlled current source with 

time delay as ‘T’ in the component ‘SRC1’. 

 

Figure 4-30    ECM with controlled source modeling the current delay. 

The simulated results are plotted in Figure 4-31. The input resistance is seen smaller than zero 

from 200 MHz up to 4.2 GHz, and the inductive response appears at higher frequency band starting 

from 2.8 GHz all the way up to 6 GHz. It is difficult to reflect the circuit precisely, thus the circuit 

model results are provided only to illustrate the physical rationale of the existence of the negative 

resistance.  
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Figure 4-31    Simulation results of the transistor model with delayed conductivity. 

Solid line: input resistance. Dashed curve: input reactance.  

In summary, three analyses of the NR circuit response have been briefed. These approximate 

results can be used in the early phase of the design procedure. However, due to the limited accuracy 

of the mathematical models, NR response model equations surrenders their credibility to the circuit 

simulation results incorporating the SPICE models or S-parameter models. Therefore the 

simulation results will be the primary source of predicting and designing the circuit responses in 

this work. 

In the circuit analysis, most of the lumped elements need to be determined from the very low 

level device characterization, and are difficult to obtain the accurate values across broad bandwidth. 

It can be much easier to use the component’s measured S-parameters or SPICE models. The S-

parameter simulation has limitations that require the circuit layout to mimic the layout of the board 

on which the S-parameters are tested. Whereas the SPICE model is much more flexible and 

promises even better accuracy. 

The circuit simulation schematic is shown in Figure 4-32. Lumped inductors and capacitors 

are assumed to give extremely high Q. Voltage sources are assumed to be ideal as well. The 
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capacitor(s) connecting to the collector terminal (the pin on the left of the square box named 

bfg425w) is shorting the terminal to ground at RF frequency to perform common-collector 

configuration. In actuality the collector may be grounded directly using via-holes and only one 

biasing source is needed, which simplifies the circuit design but sacrifice high frequency 

performance. Differences will be shown in the simulation results. The resistors are for base 

terminal loading and biasing. 

 

Figure 4-32    Circuit simulation using the SPICE model of the BFG425W from 

NXP semiconductor. 

The simulated results are shown in Figure 4-33 in the format of reflection coefficient and input 

impedance. Notice that the input resistance goes below 0 Ohm between 1.6 GHz up to about 4GHz. 

The circuit responds inductively in the entire simulation frequency band. The simulation takes two 

biasing conditions. The red curves show that when the Vcc voltage is shut off, and blue curves 

show represent that when the Vcc voltage is set 1 V. The higher the Vcc frequency is, the higher 

reflection coefficient is at higher frequency region. However the high reflection coefficient 

indicates great amount of power being reflected and may saturate the transistor. This nonlinearity 
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is not reflected in the presented curves and it determines the linear region. The high amplification 

will be suppressed for practicality purposes. 

a)  

b)  

Figure 4-33    ICC NR circuit response. The solid curves represent the case when 

Vcc is turned off. The dashed curves represent the case when Vcc is 

turned on at 1 V. a) The simulated S-parameters. b) The simulated 

input impedance. 

The circuit simulation results demonstrate the circuit response in the ideal circuit. However in 

RF circuit the layout and its parasitic effects produces significant difference. The best way to 

estimate the actual circuit behaviors on the customized layout is to combine layout and circuit 

simulations, which will be referred to as post-layout simulation shown in the next section. 
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4.4.4.  Post Layout Simulations 

In order to obtain the most accurate predictions, we utilize the layout and post-layout 

simulation feature in ADS. After the basic circuit is preliminarily determined, we incorporate 

physical layout to evaluate the RF performances.  

The microstrip layout in Keysight® Momentum® simulation software is drawn as 

demonstrated in Figure 4-34a). Near the north pole of the figure lies the input port, which is the 

only TML calibration port in Momentum port setting. The rest of all the ports are non-calibration 

ports as junctions with component pins. The four-pad footprint near the middle of the figure is 

where the transistor sits, and the larger pad is one of the emitter pins (the other one is the diagonal 

pad). The bottom two ports are where the biasing DC wires are soldered. Via-hole diameters are 

0.6 mm. All surface mount discrete components are of 0603 code size (EIA code). 

a) 

Input Port

(TML)

 b)  

Figure 4-34    (Colored) Layout and post layout simulations. a) Board layout of the 

circuit (without matching stub). The picture has black background and 

orange copper feature. b) Mixed simulation with EM results and 

schematic components. The picture has white background. 
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The layout simulation is then used in a schematic simulation. Models of lumped elements are 

filled in between the pads, which are the locus of the ports that are set in the layout simulation. 

The schematic simulation is shown in Figure 4-34b). Although the schematic components are 

hardly recognizable due to the limited space (only key voltage points and junctions are marked in 

black texts), it is given to provide a closer view of the entire circuit with both layout and lumped 

components. Nevertheless, the circuit can be reconstructed by comparing the post layout 

simulation with the schematic simulation. 

The lumped components are all from Murata, who provide device library based on the 

measured results. It is known that the lumped elements are barely ideal because of the parasitic 

effects. For example, inductors come with intrinsic resistance, capacitors come with conductance 

and parasitic inductance. Therefore the measurement-based library allows the best prediction of 

the actual circuit behavior by means of taking all the parasitic parameters in components into 

consideration.  

Because the input port of the circuit layout in Figure 4-34 needs to be connected to the CRLH 

unit cell’s stub, its line width has to be same as that of the stub. However this creates difficulty in 

measuring the reflection coefficient using 50 Ohm based network analyzer. One of the best way 

to measure the circuit response is to connect to the circuit to the 50 Ohm system using mcirostrip 

line and then de-embed the connection line to obtain the circuit port response. The TRL 

(transmission-reflection-line) calibration feature in network analyzers is dedicated for this purpose. 

Such a design is shown in Figure 4-35. 
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Figure 4-35    Layout design of the circuit with TRL calibration kit on the same 

board. 

Now we have established simulation and measurement methodologies. In order to verify the 

results, the circuit will be fabricated and measured to compare with the simulation. 

4.4.5.  Circuit Prototype 

The circuit is then fabricated on a 62mil thick Rogers Duroid 5880 substrate with 1 oz. copper 

clad. Since highly accurate information of phase response is critical, the test equipment must run 

TRL calibration to de-embed the microstrip transmission line structure. The board on which the 

TRL calibration kit and the device under test (DUT) are printed is shown in Figure 4-36.  

The measured one-port S-parameter is illustrated in Figure 4-37 and compared with the 

simulation results. The data obtained from the network analyzer are in the form of S-parameters. 

In the figure they are converted into input impedance curves. Satisfactory agreement can be found 

below 3 GHz, though the discrepancy in return-loss decibel curves starts to become greater around 

2.8 GHz. 
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Figure 4-36    NR circuit board with TRL calibration kit built on the same board. 

  

Figure 4-37    The simulated and measured NR circuit responses without the 

matching short-stub. The obtained reflection coefficients are 

converted to input impedance for the observation of negative 

resistance values. 

In Figure 4-37, it can be seen that the example NR circuit response is inductive below about 

2.7 GHz but becomes capacitive above 2.7 GHz. This transition is specific due to the part chosen 

and the biasing circuit designed. The capacitive response may affect the unit cell’s phase behavior 

severely. In the unit cell evaluation, it was found that the NR circuit itself is difficult to be used 

solely to realize CRLH unit cell behaviors. Hence adding a matching shorted-stub helps to 
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maintain the unit cell’s unique metamaterialistic phase behaviors. If the NR circuit response is 

pure inductive in the entire working frequency, then the matching stub may not be needed. The 

layout of the NR circuit with short stub is shown in Figure 4-38a), and the fabricated NR circuit 

with de-embedding line is shown in Figure 4-38b). The matching shorted-stub is between the wide 

de-embedding line and the junction to the NR circuit. 

a)     b)  

Figure 4-38    Layout design and the fabricated NR circuit with matching shorted-

stub. 

The measured results are shown in Figure 4-39 and compared with the simulated results. Two 

major differences between the results in Figure 4-37 and Figure 4-39 are as follows. First, the NR 

circuit with matching stub consistently exhibit inductive response in the entire simulation and 

measurement band. This guarantees the CRLH stub to produce inductive response for the unit cell. 

Secondly, the negative resistance values become controllable and is much smaller in magnitude 

than the circuit without the matching stub. 
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Figure 4-39    The simulated and measured NR circuit responses with the matching 

short-stub. The obtained reflection coefficients are converted to input 

impedance for the observation of negative resistance values. 

With the circuit well studied thoroughly, it is ready to be combined with CRLH unit cell to 

realize NR-CRLH unit cell.  

4.5.  NR-CRLH Unit Cell 

All the previous efforts that aimed to increase the forward energy propagation add 

amplification along the direction of wave guiding. The structures consisting of multiple unit cells 

had to be chopped to add series amplifying elements. In this Section, a novel NR-CLRH unit cell 

is detailed. 

4.5.1. Short Stub Revisit 

It is evident that adding amplification in series with the CRLH unit cells can interfere the 

CRLH structure’s metamaterialistic phase behaviors. In this dissertation, we propose to 

incorporate energy compensation circuit at the terminating end of the unit cell stub as shown in 

Figure 4-40. 



 

147 

 

a)                                    b)

?

NR

 

Figure 4-40    A normal CRLH unit cell in a) and an NR-CRLH unit cell in b). 

The first question from the audience when a structure shown in Figure 4-40b) is presented is 

usually if (and how) the structure would work similarly to the passive one. Simulations, fabrication 

and measurements may be convincing but one can quickly do some derivations and calculations 

to verify the idea. 

First we consider the approximate calculation that gives the left-handed inductance LL of the 

passive unit cell as shown in Figure 4-40a). If we assume the via provides ideal grounding from 

the stub to ground, then effectively the impedance of the shorted-stub seen from the edge of the 

transmission line (or the IDC) is given by [5] 
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 (4-47) 

The Zt represents the termination impedance of the short stub, which is in this ideal case to be 

zero. Zstub denotes the characteristic impedance of the stub line, determined by the width and the 

substrate. The propagation constant of the stub line βs multiplies the length of the stub ls to become 

the phase delay on the stub. Then the effective left-handed inductance can be obtained from the 

imaginary part (which is the non-zero part in this case where Zt = 0) of the Zin as follows. 
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Because the shorted stub itself is just a piece of regular RH transmission line, the propagation 

constant and characteristic impedance are easily obtainable through calculations. It is common to 

adjust the ls when tuning the unit cell into a balanced status [85]. The LL obtained using the 

equation (4-48) is usually noticeably different from the simulation results as mentioned in former 

sections, considering that the via is usually not a perfect shoring path [111] and T-junction effects 

[112] varies the length of the stub. Nevertheless, it demonstrates the fundamental mechanism of 

producing effective left handed inductance. 

4.5.2. The NR Terminated Stub 

To demonstrate the idea of incorporating NR, consider a non-zero Zt in (4-47). Actually to be 

more precise, it is better to assume Zt none zero which is common among via terminations [111]. 

A more accurate model that is used to analyze shorted-stubs uses the inductive model to 

incorporate the via impedance Zt as follows. 

 _t v ia v ia v ia
Z R j L   (4-49) 

The resistive part (real part) is given by 
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And the inductance is calculated from 
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The notations are as follows. Rdc represents the DC resistance of the via which can be 

calculated from the via dimensions and material conductivity σ. The notation t is the penetration 
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depth. The letter h is the thickness of the substrate, or the length of the via, and the letter r is the 

radius of the via. These equations are presented in [111]. 

Replacing Zt with Zt_via the impedance of the via-shorted-stub Zin can be calculated using 

(4-47). For broader generality and convenience to incorporate the negative resistance, we define 

the general terminated impedance as 

 
t t t

Z R X  . (4-52) 

If the termination impedance is normalized to the characteristic impedance of the stub Zstub or 

Zs, the normalized impedance is denoted as 

 /
t t s t t

z Z Z r x   . (4-53) 

Using these notations, we can derive the input impedance (4-47) as follows (note that Zstub 

disappears in the equation as the equation is normalized to Zs) 
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 (4-54) 

Interesting phenomena can be observed by manipulating the above equation. The real part of 

zin can be simplified to 

  
2

1 tan
in t

r r l   (4-55) 

when rt is assumed much smaller in magnitude than Zs, and xt is assumed very small (or Xt << Zs). 

The assumption reflects the case when NR circuit response is very close to the response of an ideal 

negative resistor. The most inspiring fact is that, the resultant rin which is the shunt loading of the 

transmission line caused by the stub is a negative value if rt is negative, because its sign is the same 
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as rt. With this said, the model of the CRLH can be changed to what the following section would 

present. 

The imaginary part of zin has to be greater than zero in order to preserve the shunt inductance 

LL in CRLH model. If the xt and the stub length l can be designed arbitrarily, it is best to have the 

shunt inductance xin same as the reactance of a via-shorted stub, thus the phase response of the 

NR-CRLH unit cell can emulate that of a passive unit cell.  

To quantitatively demonstrate the idea, the Zs of the passive and active unit cell design both 

use 1 mm wide stub with short length. The Zs can be easily found as 112 Ω. The length of the NR-

terminated stub is restricted to be less than electrically π/4. Therefore the multiplication of rt square 

and tanβsl can be considered as a small quantity in (4-54), consequently the requirement of a 

positive xin can be met if the following condition is satisfied. 
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Then the inductive response of the terminating NR circuit can be quickly checked using this 

condition.  

These effects of the input impedance results due to stub and NR termination will be 

demonstrated in the ECM and calculations. Again, the generalized equation (4-54) can quickly 

compute the Re and LL values from a given stub and termination configuration, it qualifies to be 

used in evaluating the phase propagation of the modified structure. 
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4.5.3. Equivalent Circuit Model 

From the previously derived equations, it can be justified that the following ECM model of a 

NR-CRLH unit cell with NR-terminated-stub can be used to evaluate the modal behaviors. 

CL RseLR

LL

Re Gsh

P1
P2

CL

 

Figure 4-41    The equivalent circuit model of a NR-CRLH unit cell with NR-

terminated stub. 

Through examinations of the ECM behaviors, the novel unit cell behaviors can be predicted 

roughly. Moreover, the validity of the ECM also helps establish physical understanding of the 

active unit cell. 

Basically the similar analyses and calculations compared with Section 4.2.6 through Section 

4.2.8 will be done. Some of the benefit of using an NR-CRLH unit cell relies heavily on the 

similarity between the ECMs in Figure 4-41 and Figure 4-16.  

The IDC of the active unit cell is the same as the passive cell. Thus the IDC simulation and 

parameter abstraction explained in Section 4.2.4 can still be used. The NR-terminated-stub cannot 

be simulated in a 3-D model, because full-wave simulators cannot handle active circuits and copper 

features at the same time (in the same model). Therefore, the unit cell simulation will be done in 

ADS schematic simulation, incorporating layout simulation and NR circuit components. This 

simulation will be detailed later. 

In order to calculation the ECM network, we first redefine shunt admittance as follows. 
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 (4-57) 

And the series impedance can take the same form as (4-21). The ABCD matrix defined for the 

passive network can also be used in this active model as well. Therefore, the propagation constant 

can be calculated using the same equation, too. 

 

Figure 4-42    The symmetric ECM of an active NR-CRLH unit cell including lossy 

elements and possibly negative effective resistor Re. 

The symmetric active model adopts the passive model and add Re as shown in Figure 4-42. 

With the Ysh redefined in (4-57), the equations defined for the passive unit cell can be used also 

for this active unit cell, since all the equations are based on the Zse and Ysh, for symmetric or 

asymmetric structures. Notice that we use asymmetric equations for propagation and phase 

response, but symmetric equations for Bloch impedance and scattering parameter matrix 

calculations. 

4.5.4. Active ECM Calculation Example 

It has been shown in Figure 4-41 and Figure 4-42 that the active unit cell (AUC) ECM differs 

from its passive version in that the AUC contains an effective resistor Re in series with the shunt 

left-handed inductor LL. The ECM entails Rse and Gsh to account for the low efficient leaky-wave 

radiation and they can close the band-gap for the passive unit cells. 
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In the calculated results of the following example, the components are all given constant values 

except for the effective resistor, whose value will be varied for the study of the unit-cell behaviors. 

The fixed values of the lumped components are CR = 1.18 pF, LR = 2.9 nH, CL = 1.88 pF, LL = 4.6 

nH, Rse = 1.5 Ω and Gsh = 10e-3 S. The Re values are set 0.5 Ohm, 0 Ohm, -3 Ohm, and an 

exponential function (denoted as Var Model). The exponential Re values which was obtained to 

mimic the actual measured NR response are plotted in Figure 4-43. It will be shown later where 

the simulation and measurement are presented that the exponential curve is realistic and close to 

NR circuit response. Another ECM model that incorporates the realistic circuit measurement data 

will be presented later, too. 

 

Figure 4-43    The exponential Re model used in the ECM calculations. 

The reactive component values are abstracted from the full wave simulations of the passive 

CRLH design to be compared with, utilizing the corrected equations described previously. The 

values of the resistive components that mainly account for the radiation losses are modeled such 

that the constant-radiation-rate condition is satisfied. However, it is worth pointing out that due to 

the nonlinearity of the involved transistor and its resultant effective resistance in the ECM, the 

constant-radiation-rate condition does not necessarily hold any more and the radiation rate will be 
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controllable. Once again, the ECM models are provided to demonstrate the concepts and to 

illuminate the physical insight of the artificial structures. 

First, the return loss curves are plotted in Figure 4-44. When Re is just slightly greater than 

zero, the return loss is just slightly different. However, when Re reflects a negative resistor, the 

return loss curves are apparently different. The raised level of return loss is due to that the reflection 

type amplification would also cause extra power flowing backward. Potentially, if the number of 

active unit cell is large, the return loss might be too high, or even causing the system in an instable 

status. However, for periodic structure, no unit cell is standing alone. The reversely reflected 

energy from one unit cell may cancel the reflection from another different unit cell which is a 

certain distance away from the first unit cell. Therefore, as long as the Bloch impedance, which 

shows the overall behaviors when multiple unit cells are cascaded in series, does not show negative 

resistance, the entire system should not be unstable. 

  

Figure 4-44    Return loss of the ECM model with different Re values. 
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Secondly, the insertion loss curves are plotted in Figure 4-45. Apparently when Re is greater 

than zero, the model becomes more lossy. When Re is a negative value, the insertion gain is realized 

in certain frequency range. From the calculation equation (4-54), it is understood that the stub 

impedance is not a constant value but frequency dependent. The “Var Model” for Re in the plots 

are designed to reflect the impedance of a NR terminated stub. 

It has been found that for constant Re models, the insertion gain at higher frequency range is 

not as high as at the lower frequency range. To conquer this problem, the Re model is chosen 

exponentially as shown in Figure 4-43 such that the negative resistance is stronger at higher 

frequency but weaker at lower frequency. Thus it leads to a rather flat insertion gain curve in the 

working frequency band. 

 

Figure 4-45    Insertion loss or gain of the four ECM models with different Re values. 

The unique phase properties of a metamaterialistic CRLH unit cell is preserved in a NR-CRLH 

unit cell. This can be seen in Figure 4-46 where the dispersion diagrams of the ECM models are 

shown. Notice that the four dispersion relation curves in Figure 4-46 are almost overlapping. This 
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is an evidence to confirm that the introduced Re in the ECM would minimally affect the phase 

behavior. It is ascertained that the phase propagation of LH and RH regions are both preserved, 

although a very narrow band-gap is seen when the plot is zoomed in to the proximity of the 

transition frequency. 

  

Figure 4-46    Dispersion relation curves of the ECM models with different Re 

values. In the left figure the solid red curve and the dotted red curves 

are almost overlapping, and the difference can only be seen in the 

zoomed-in view (on the right) in proximity of the transition frequency 

on the right. 

This similarity between the Re = 0 case and Re < 0 cases allows the mixed antenna or 

transmission line design containing both active and passive unit cells. In LWA applications, such 

mixed design would also be able to retain the beam scanning capability. This will be demonstrated 

in the next chapter. 

Last but not least, the Bloch impedance of an active unit cell is plotted in Figure 4-47. It is 

noticed that for Re < 0 models, the Bloch impedance gap is shown slightly wider, but the measured 



 

157 

 

data from the fabricated prototype shown that the original performance was maintained. The 

imaginary part of the Bloch impedance are close to zero in most of the frequency band. 

   

Figure 4-47    The real (resistance) and imaginary parts (reactance) of the Bloch 

impedance curves with different Re values. 

It is worth emphasizing that although negative resistance is incorporated in this model, the 

Bloch impedance does not present negative resistance corresponding to input/output instability. 

4.6. Simulation, Fabrication and Measurement 

The presented ECM calculations have shown that incorporating a negative resistance in series 

with the left-handed inductance can maintain the metamaterialistic behaviors of a CRLH unit cell 

and is able to completely diminish the insertion loss, realizing insertion gain instead. In this section, 

the simulations and fabrications with measured results will be presented to further prove the idea. 
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4.6.1. Simulation 

The full-wave simulators cannot handle an entire circuit with passive layout and active circuits. 

There are circuit simulators that are able to analyze the models with known network parameters. 

We chose ADS post-layout simulation for this task. 

From the equation used to evaluate Re and LL from the given termination impedance Zt and 

stub length, it is clear that these two factors determine how the active unit cell should behave. 

Therefore the simulation can start with a port terminated stub which is relatively short, and 

combined the simulated model with circuit simulation through a transmission line in between. The 

port-terminated unit cell is shown in Figure 4-48, and the simulation topology is shown in Figure 

4-49. 

 

Figure 4-48    The unit cell layour simulation with the stub terminated with a port. 

In schematic simulation the stub end can be connected to a NR circuit 

through a piece of transmission line. 

The NR circuit simulation has been detailed in the corresponding section. Here the necessity 

of the tuning/matching stub between the NR circuit and the passive layout simulation is explained 

as follows. 

The chosen NR circuit based on BFG425W can realize negative resistance up to a high 

frequency sufficient to cover the entire working band of the unit cell. However, in order to make 

the NR circuit inductive in the same frequency range, an inductive shorted stub needs to be inserted. 

If a different transistor were used and it provide inductive response when the proper NR is achieved, 
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the inductive matching stub should be not necessary. It is also possible to have the matching 

shorted-stub is removed if other circuit and transistors are used, but it has been concluded through 

experiments and simulations that it is optimum to have the matching stub in this circuit and unit 

cell design. 

Port1

Port2

P3

Matching

NR Circuit

   

a)                                                             b)  

Figure 4-49    a) ADS schematic simulation incorporating the port-terminated unit 

cell, NR circuit simulation (post-layout) and the tuning/matching 

shorted stub in between. b) A schematic view of the post-layout 

simulation with complete copper features. 

Notice that in the schematic simulation shown in Figure 4-49a), an active unit cell (on the left) 

and a passive unit cell (on the right) are put next to each other for comparison. The two simulations 

use the same unit cell layout with port-terminated stub. This is shown only to demonstrate that this 

port-terminated stub simulation can give accurate passive unit cell evaluation compared to the 

hundred percent layout simulation (usually a pure full-wave simulation). 
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The post layout simulation in a schematic design view can be found in Figure 4-49b). A 

complete unit cell copper layout simulation and its post-layout simulation diagram can be found 

in Figure 4-50a) and Figure 4-50b), respectively. A more illustrative diagram of the unit cell post 

layout simulation is shown in Figure 4-50b). This simulation is used when the matching stub and 

unit cell stub length are determined in schematic simulation. After all, the simulation containing 

all the layout would be considered more accurate.  
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DC Block 
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a)                                                           b) 

Figure 4-50    a) The layout simulation consists of all the unit cell copper features. 

b) Diagram that demonstrates the post layout simulation of a complete 

NR-CRLH unit cell including the lumped elements and transistor. 

The result of the above simulation method can be verified through fabrication and 

measurement. 

4.6.2. Fabrication and Measurement 

An NR-CRLH unit cell is fabricated at Syracuse University Microwave Laboratory at CASE 

Center. The unit cell is built on 62 mil thick RO/Duroid 5880 substrate with 1 oz. copper cladding. 

A photo of the unit cell is shown in Figure 4-51. 



 

161 

 

 

Figure 4-51    Photo of the fabricated NR-CRLH unit cell. The length of the unit 

cell is 11.4 mm, and the length of the entire board is 21.4 mm. 

The unit cell is measured at Syracuse University Microwave Lab. The measured results are 

shown in Figure 4-52, with magnified view of the insertion gain from 1.8 GHz to 3.4 GHz. In the 

same figure the measured results and simulated results are presented simultaneously for 

comparison. The input and output transmission lines are de-embedded in schematic simulation. It 

can be seen that the simulation gives very accurate results that agree well with the measured results. 

     

a)                                                                                            b) 

Figure 4-52    The measured and simulated results of the active unit cell. LH below 

2.3 GHz. RH above 2.3 GHz. a) S parameters. b) Magnified zoom-in 

view of the insertion loss/gain. 
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Through comparison between the simulation and the fabrication and measurement results, we 

have demonstrated that an NR-CRLH unit cell can be designed using existing simulation 

techniques, and its behavior inherits the significant features of the metamaterialistic properties of 

a CRLH unit cell. In the following chapter, the active unit cell is incorporated in a LWA application 

to further demonstrate the consistency between the passive and active unit cells, and to demonstrate 

the usefulness of the energy compensation and controllable forward amplification. 

4.7. Summary 

In this chapter, the novel NR-CRLH structure is presented with analysis and experiments. The 

original CRLH structure is analyzed and presented with calculations and curves. It was shown that 

by adapting a new energy compensating mechanism incorporating the ICC NR circuit the active 

unit cell can simultaneously preserve the unique phase behaviors and consistent Bloch impedance 

in a broad bandwidth, while realizing down-to-zero insertion loss or even forward gain. Unit cell 

analysis and experimental results are provided to prove that the inserted negative resistance 

minimally perturbs the phase behaviors of the original passive unit cells and does not introduce 

stability issue. Physically, the novel power compensating mechanism does not prolong the length 

of each unit cell, therefore the amplification is not in series with the unit cells. Thus this energy 

compensating mechanism does not interrupt the tight periodicity of the original periodic structure.  

 

{MT next chapter} 
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Chapter 5  NR-CRLH TL Based Leaky-Wave Antenna 

In 2006, a comprehensive summary of the development of the metamaterial radiative structures 

was written [113], when the structures gained considerable interest in the microwave field. Various 

types of metamaterial antennas were discussed including single negative metamaterial antenna 

with one of permittivity or permeability as zero, double negative metamaterial antenna with both 

ε and μ being negative, and zero-index metamaterial radiation systems. Along with the 

conventional-material based antennas, the four types of realizations are depicted in Figure 5-1.  

 

Figure 5-1    Duplicate of Fig. 1 in [113]. Classification of metamaterials by the real 

parts of their constitutive parameters, ε and μ. 

More recent review and summary can be found in [114] which emphasizes more on planar 

CRLH and substrate integrated waveguide (SIW) based resonant antennas and leaky-wave 

antennas. A broad range of CRLH concept based antennas were discussed in [114].  

Particularly, regarding the metamaterial leaky wave antenna, a closely related paper is written 

by Jackson et al. [81]. Recent leaky-wave antenna techniques including SIW LWA, CRLH LWAs, 

quarter-wave transformer LWA, and the ferrite LWA, etc., are discussed. The principle of beam 
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tilting, the range of beam tilting angle, system efficiency and many other design factors are 

summarized.  

From the antenna synthesis theory, the desired antenna radiation pattern, or sometimes referred 

to as beam shaping, can be designed by controlling the current distribution along the antenna 

surface [115]. If the current amplitude distribution is controllable, then the antenna can be 

manipulated to deliver the desired radiation patterns. For example, as theoretically presented in 

[38], an LWA with uniform current distribution will generate maximum directivity for a given 

physical length.  

In this chapter, a mixed antenna design (comprising of alternating AUC and PUC) will be to 

demonstrate the improved directivities within the operating band. Since the radiation performances 

of an LWA is physically determined by the length of the LWA, the measured radiation patterns of 

the mixed-design LWAs will be presented and compared with the passive LWAs of the same 

antenna lengths, consisting of the PUCs of exactly the same dimensions.  

5.1. Leaky-Wave Antenna 

The class of leaky waves represents a very important and fundamental wave type [116]. LWAs 

have been studied since the 1940s when Hansen introduced the energy leaking cylindrical 

waveguide [81]. Then Oliner then paved the way to modern LWA applications [117]. 

LWAs are useful in the microwave bands and above [81] because they can achieve very high 

directivity and can be designed to give any desired radiation pattern without the need of a 

complicated and expensive feeding network as usually used in phased array. 
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Leaky-wave antennas are different from the resonant type antennas like patch antennas, 

dipole/monopole antennas, and loop antennas. The phase distributions over resonant type antennas 

are assumed to be constant. The sinusoidal current distribution of long open-ended linear antenna 

is a standing wave constructed by two waves of equal amplitude and 180 phase difference at the 

open end traveling in opposite directions along its length [118]. The current and voltage 

distributions on resonant-type antennas are similar to the standing wave patterns on open-ended 

transmission lines. 

Antennas can also be designed with travelling wave patterns in current and voltage which is 

similar to the propagating pattern on infinitely long or properly terminated transmission lines. This 

type of antenna design can be realized by properly terminating the antenna wire so that the reflected 

wave is minimized [118]. In order to effectively utilize the entire antenna, usually the LWAs are 

designed such that only about 10% of the input power is terminated [119]. 

5.2. LWA Analysis 

A conventional LWA can be considered as a terminated transmission line, and the leaky wave 

exists only when the guided wave travels faster than the speed of light. More realistically, the 

requirement is that the leaky wave must have greater phase velocity than the speed of light in free 

space, into which the leaking wave is radiated. Consequently, the propagating wave along +Z 

direction can be modeled as a traveling wave with a propagation constant β as follows. 

 j z
A e

  (5-1) 

The coefficient A might not necessarily be real. A complex coefficient A contains the 

excitation phase information as well as the magnitude. A complex valued functional A (a function 

of location z) describes the propagating wave in a physically practical way. Considering that the 
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propagation wave continuously leaks energy as radiation, the current amplitude must attenuate as 

the physics law of energy conservation requires. Thus a more practical formulation is given by 

 
0

d
j z z

A e e
  

, (5-2) 

where A0 is the excited amplitude at the LWA input, and then the direction of the main beam can 

be estimated through calculations using the integral equation using the travelling wave [115]. 

Therefore, in tailoring LWAs, it all comes down to achieving the desired phase constant and 

attenuation constant. 

The main beam direction of the LWA is primarily determined by the relation between β and 

free-space wavenumber k0 as follows. 
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 (5-3) 

The beam angle θ0 is defined as the angle between the broadside direction and the beam direction. 

This approximate direction was first summarized in [117] and [120], where the complementary 

angle of θ0 denoted by Φ is defined in the figure below, i. e., θ0 = 90° – Φ. 

 

Figure 5-2    The direction of the main beam of a leaky wave antenna [117]. The 

beam angle Φ is defined as the complementary angle of θ0 here. 
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5.2.1. Travelling Wave Antenna  

Stutzman and Thiele describes a kind of travelling-wave antenna that works similarly to a 

leaky-wave antenna [115]. A picture that illustrates the travelling wave antenna is given in the 

following figure. 

 

Figure 5-3    Duplicate of Figure 7-2 in Stutzman and Thiele’s antenna textbook 

[115], demonstrating the travelling wave antenna. 

The travelling wave antenna is only a long conducting wire fed from one terminal and 

terminated properly at the other terminal. The reflected wave from the termination side is 

minimized such that on the conducting wire only the forward wave is present. This distinguishes 

the travelling wave antenna from the resonant antennas which must have standing wave formed 

from both forward propagating wave and the reflected backward wave. 

The propagating wave along the antenna’s longitudinal direction is assumed to be of the same 

phase constant as free space. The equality relation determines that the radiation pattern must be 

end-fire pattern. From a line source with arbitrary current pattern, the radiation calculation can be 

calculated from the integral equation given by [115] 
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Assuming the lossless current distribution in the form of (5-1) the radiation pattern equation 

can be obtained as [115] 
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, (5-5) 

where K is a normalization coefficient dependent on the length of the antenna L. Note that the 

angle θ in (5-4) and (5-5) is not the regular elevation angle in a Cartesian coordinate system but 

defined in Figure 5-3. From the pattern equation, we can see apparently that the radiation pattern 

and beam angle are determined by the antenna physical length L. 

As previously mentioned, a more practical current distribution function is given in (5-2) with 

the attenuation due to radiation and material loss accounted for. Consequently, the radiation pattern 

we used in the integral equation must be changed accordingly. After mathematical manipulation, 

the pattern function can be found as 
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 (5-6) 

The above derived equation can be used to evaluate the effect of the attenuation along the 

propagating path, although the wire travelling wave antenna is not exactly same as the planar 

LWAs like CRLH LWA and microstrip LWAs. One may find more similarity between the 

Beverage antenna and the planar LWAs, however the comparison is not detailed in this work. 

5.2.2. Arbitrary Decaying Current Distribution 

Previous calculations assume that the current distributions are either constant in magnitude or 

decaying exponentially. The resultant radiation patterns are also of the limited styles because 

amplifying or increasing current distribution is not realizable. 
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A traveling wave antenna can be designed to give a desired amplitude distribution by realizing 

current distribution varies with distance away from the excitation (along the propagation path). An 

example of controlling the side lobe level by tuning α is given in 1953 by Hines, Rumsey and 

Walter [121], where the waveguide slot is curved to approximately form a Gaussian amplitude 

distribution. The artificially shaped slot in a rectangular waveguide is shown in Figure 5-4.  

a)  

Figure 5-4    Duplicated Fig. 15 in [121]. The slot is engineered to obtain a Gaussian 

amplitude distribution along the propagation of the slotted waveguide. 

Along the guided travelling path, the slot size is first gradually opened wider and then gradually 

shrinks. It is assumed that the wider slot would cause the leaky wave radiate more power than 

narrower slots, thus the guided wave amplitude attenuate faster in the middle of the entire slot and 

attenuate slower when closer to the beginning and end terminals. If this position-dependent 

attenuation is characterized mathematically, a Gaussian distribution would be assumed to be 

proper as follows. 
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The mean value of the Gaussian distribution function is set to be zero, because physically once 

the excited wave starts propagating and leaking down the guided leaky path, the magnitude can 

only decrease. Thus the maximum magnitude can only occur at the origin of the Z axis (or z’) 

where the leaky path is excited. The Gaussian distribution’s variation denoted by σ is supposed to 

be dependent on the position and length of the wide slot and the total length of the leaky wave 

guide.  

The resultant equivalent magnetic current source over the slot when TE mode is excited 

generates radiated beams of minimum side lobes as shown in Figure 5-5b). 

a)  b)  

Figure 5-5    Radiation patterns of the LWAs in [121]. a) The radiation pattern of a 

uniform slot. b) The radiation pattern at different frequencies of a iris 

slot. 
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The patterns shown in Figure 5-5 show that the radiation patterns from a Gaussian current 

amplitude distribution contain zero side-lobe, although the length of the antenna varies. Another 

example that is pertinent to this work is the long wire travelling wave antenna. Using the integral 

equations in [115] and [118], the calculated radiation patterns for a long traveling-wave antenna 

that electrically extends three wavelength long are plotted in Fig. 9 in [38]. It clearly shows that 

the increased attenuation constant widens the beamwidth thus lowers the directivity. 

5.3. CRLH LWA 

Aside from the RWG slot LWA, the microstrip LWA was developed because of easy 

fabrication and convenient integration into the rest of the system ons printed circuit boards. In 

1978, Menzel introduced a microstrip line LWA and showed its application in a 4 element LWA 

array [122]. The microstrip LWA was shown to tilt the main beam forward (toward the direction 

of guided wave propagation from the normal direction). The level of interest and the pace of 

development in this filed have recently accelerated significantly partly due to the surge of interest 

in metamaterials [81] [70]. The similarity between SIW and conventional RWG also intrigued the 

considerable study on CRLH SIW based LWAs [114]. 

The CRLH transmission line was first proposed to be used as LWA by Liu et al. in [26]. The 

relation between the propagation constant and the radiating main beam was demonstrated in the 

figure reproduced below. 
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Figure 5-6    Duplicate of Fig. 1 in [26] describing the relation between radiation 

and propagation constant. In the cross-section view the wave number 

is decomposed into the direction of guided wave and the direction of 

the substrate thickness (ky). 

A conventional multiple-unit-cell long CRLH LWA is a terminated periodic structure made of 

identical passive unit cells that behave nearly identically [85], thus the phase propagation across 

each unit-cell can be assumed to be consistent. Consequently the propagating wave can be modeled 

as a traveling wave with a propagation constant β. The main beam direction of the LWA is 

primarily determined by the relation between β and free-space wavenumber k0 by 

 0

0

a rc c o s
d

k




 
  

 

 (5-8) 

Equation (5-8) differs from (5-3) by using a different propagation constant βd. The subscript d 

indicate the length of each unit cell of the periodic structure. The same notation is used with the 

attenuation constant as well.  

Presented in Figure 5-7 is an LWA prototype made of CRLH unit cells at Syracuse University 

Microwave Laboratory. The unit cells have been introduced in the previous chapter. This particular 

antenna consists 11 symmetric unit cells, including 11 shorted stubs and 12 inter-digital capacitors. 

The total physical length of the antenna is 129 mm excluding the input/output transmission line 

for SMA connector junctions.  
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Figure 5-7    Figure of the LWA with conventional dimensions as described in 

Chapter 4. The LWA presented in this figure is denoted as LWA-1. 

 

 

Figure 5-8    Photo of the LWA with optimized dimensions for consistent radiation 

performance and lumped element matching capacitor. 

5.3.1. Simulated Radiation Performances 

The radiation of a CRLH can be simulated using full-wave electromagnetic simulation 

software. A simulation model in HFSS is shown in Figure 5-9. The antenna is modeled on the 

RO/Duroid5880 substrate which is 62 mil thick with 1 Oz copper (0.7mil copper layer thickness).  
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Figure 5-9    HFSS model of a CRLH LWA consists of 11 unit cells. The positive 

Y direction is toward the right side of the structure. Port-1 is on the 

left side of the structure (y=0). 
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Figure 5-10    Simulation LWA radiation pattern in E- plane co-polarization. 
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The antenna is excited from port-1 (left terminal) with 1 W input power. The simulated 

radiation patterns at different frequencies are plotted in the following figures. At each sampled 

frequency (2 GHz, 2.5 GHz and 3.0 GHz), the E-plane co-pol patterns are plotted in Figure 5-10 

in the normalized scale for pattern comparison. 

5.3.2. Effect of Loss 

Instead of simulations, we can calculate the raidaiotn patterns using the previously introduced 

equations. Modelling the current distribution as (5-2) and using the integral equation, we can 

estimate the radiation patterns of a continuous current source once the approximate values of 

propagation constant and attenuation constants are obtained. We have known that the propagation 

constant is critical in main-beam direction. The effect of attenuation constant has less general effect 

whereas more specific and different from case to case. Here we present an ideal case where the 

propagation constant is fixed while the α is a variable. Four values of α are used in calculations to 

demonstrate the effect of loss in Figure 5-11. 

 

Figure 5-11    Theoretically calculated radiation pattern of multiple current 

distributions characterized by different attenuation constants. 
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In the figure above, apparently the beamwidth is obviously widen because of the higher level 

of loss. Thus the resultant antenna would has smaller gain (and generally less directivity) in the 

main beam direction and degraded spatial resolution. 

5.3.3. Array Method 

Alternatively, the relation between current distribution and radiation pattern can be predicted 

using the array factor, particularly for periodic structures [123]. In the array factor method, the 

periodic structure is treated as an array and each unit-cell is thus a radiating element. Oftentimes 

actual array elements are physically separated by certain distance and excited at the same 

magnitude by feeding networks. Conversely, the unit cells of a CRLH LWA are contiguous and 

excited by the wave propagating along the guided path. The phase difference between adjacent 

two unit cells are determined by the propagation constant βd, and the magnitude difference 

between them are determined by the attenuation constant α. The excitation signals at the nth unit 

cell can be obtained from the traveling wave expression as follows [123]. 

  
( 1 ) ( 1 )

0
, 1, 2 , 3d d

j n d n d
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   (5-9) 

The magnitude term I0 is the excitation current amplitude at the LWA input. If the antenna is 

properly terminated at the termination port, the relation between the excitation voltage and current 

are related by the following relation. 

 
0

0

c

V
I

Z
  (5-10) 

The notation Zc represents the characteristic impedance of the transmission line that is used as 

LWA. For periodic structures, the characteristic impedance is taken as the Bloch impedance. If Zc 
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is different from the source impedance which is usually the characteristic impedance Z0 of the 

feeding transmission line (50 Ohm), tapering from Zc to Z0 is usually practical.  

In (5-9), the two natural exponential terms approximately describe the guided and leaky wave 

propagating along the LWA. The propagation constant β is the same as the βd used in (5-3), and 

the term ( 1 )j n d
e

   represents the incident wave at the nth unit cell. The attenuation constant α, or 

interchangeable with αd, represents the attenuation before the propagation wave reaches the nth 

unit cell, and with I0 they determine the magnitude of the excitation at the nth unit cell or array 

element if the LWA is treated as an array. Note that the periodic structure can be treated as an 

array of radiating elements because each unit cell behaves the same, hence the total radiated pattern 

can be calculated from the multiplication of the unit cell radiation pattern and the array factor. The 

array factor of a CRLH LWA is given by [115] 
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   (5-11) 

Assuming the same PUC as in Figure 5-7, the calculated results of a 51-unit-cell long CRLH 

LWA are shown in the following figure.  
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Figure 5-12    Calculated radiation patterns of a periodic structure LWA consisted 

of fifty one unit cells, yet the electrical length is less than λ. The 

antenna is assigned with different attenuation constants. The antenna 

is assumed lying along the bottom horizontal line and the wave is 

excited to travel toward right side (0 degree). Same as the proposed 

prototype, at 2.1GHz the main beam tilts backward and the phase 

constant is approximately -10 Radian/m. 

Figure 5-12 illustrates the increased beamwidth due to higher attenuation. It is worth 

mentioning that the number of unit cells affects the beamwidth. An LWA of more unit cells would 

show equally great change of beamwidth with less variance of α. 

To this point, the relation between the current distribution and radiation patterns is established. 

In [38], the authors demonstrated the improved directivity using the unidirectional amplifier to 

compensate for the power loss. However, radiation patterns at the frequency points other than the 

broadside radiation frequency are not presented. This is due to the extra phase shift across the 

inter-section connections and the amplifiers. The applications of long LWAs or TLs using the 

AUC introduced in tunnel-diode based CRLH [33] have not been presented. This may be due to 

the differences between the behaviors of an AUC and its counterpart PUC and the greater-than-

0dB return loss at the input port that can cause serious stability issue. 
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5.4. Mixed Design 

Theoretically, since the Bloch impedance and dispersion relation of an NR-CRLH unit cell 

show desired behaviors, it is feasible to design an LWA consisting of only the NR-CRLH unit 

cells. By tuning the active NR circuits, it is possible to design an LWA of arbitrary current 

distribution. Examples of LWA with all the unit cell having the same forward gain or forward loss 

is illustrated in Figure 5-13. At the termination of the LWAs, the one having only active unit cells 

may terminate more powers than excited (Vt > Vi) since the current flows toward termination and 

is amplified across each active unit cell. Whereas, the one that has only passive unit cells must 

have termination voltage lower than the excitation voltage (Vd < Vi). Therefore the power 

terminated at the termination is greater than the power excited at the input port when AUC is used. 

The leaky-wave radiation occurs while the wave propagates along the guided transmission line. 

Termination

Vi

Vt

V

Length

Vref

Current Flow

Leaky Wave Radiation

Unit Cell 

Length

AUCs

PUCs
Vd

 

Figure 5-13    An example of LWA with all the unit cells having the same forward 

gain. The input to termination gain is realized thus the increasing 

ramp of current distribution. 
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The similarity between the passive antenna and its active counterpart makes the mixing of the 

two types of unit cells practical. The overall phase propagation behaviors and thus the radiation 

patterns of a passive LWA and an LWA with active cells are comparable only if the unit cell 

behaviors are similar. It is also worth noting that the active unit cell can be designed independently 

if desired, not having to preserve the same phase propagation constant as the passive counterpart. 

A figure that illustrate the current amplitude along a mixed LWA is shown in Figure 5-14. In the 

demonstrated case, the current amplitude fluctuates as the wave travels through active unit cells 

and passive unit cells, but overall maintain a flat current distribution. It has been shown in the 

calculations that a flat current distribution along propagation produces the highest directivity and 

narrowest beamwidth, but increased level of side lobes. 

Termination

Vi

V

Length
Vref

Current Flow

Leaky Wave Radiation

Unit Cell 

Length

Vi ≈ Vt

 

Figure 5-14    An example of LWA with alternative passive unit cell and active unit 

cell. The unit cells having the same forward gain. The antenna has 

narrower beamwidth. 
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The ECM diagram or schematic that demonstrates the mixed antenna design is shown in Figure 

5-15. The ABCD matrices describe the passive unit-cell behaviors, while the primed ABCD 

matrices describe the active unit-cell behaviors. Another perspective that helps understanding the 

functionality of a mixed antenna is that the combination of a passive unit cell and an active unit 

cell form a new unit cell, which is about double the phase propagation of a single unit cell (either 

active or passive one). This new combinational unit cell has unit forward gain, or 0dB, if the 

negative resistance is adjusted such that the total lost power is just compensated. Such a unit cell 

possesses the similar propagation constant as a pure passive LWA, thus the radiation directions of 

the two are almost the same. 
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Figure 5-15    A diagram of the LWA containing both active unit cells and passive 

unit cells in the alternating fashion.  

In sum, through the demonstration of the beam-tilting from the LWA consisted of the passive 

and active unit cells, it can be effectively shown that the active unit cell has the similar phase 

propagation behavior as the passive one. The observation of beam-tilting is a direct evidence of 

the unique phase behaviors of this metamaterial transmission line. The return loss at the LWA 

input port can serve as a proof of matched Bloch impedance. 
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5.4.1. An 11-Unit-Cell Design Example 

A photo of the passive and the active LWAs is shown in Figure 5-16. The left side terminal or 

SMA connector is labeled as Port-1, and the other SMA connector which is terminated by a 

wideband 50 Ohm RF terminator is labeled as Port-2. The LWA consists of 10 asymmetric unit 

cells, but with the added matching IDC and the corresponding shorted stub. Equivalently, the 

antenna is consisted of 11 symmetric unit cells, four out of which are active ones. This design has 

all the four NR ICC circuits biased at the same voltage level, therefore each active unit cell behaves 

same as all other three ones. 

 

Figure 5-16    Photo of the fabricated mixed-design LWA with active unit cells and 

passive unit cells. Rectangle-A (dashed line) shows the ICC NR 

circuit; rectangular-B (dashed line) shows a normal unit cell; 

rectangle-C (dashed line) encloses a matching IDC which makes the 

periodic structure a symmetric structure. 

The antenna was also measured using a spectrum analyzer connected to the indicated input 

port (Port 1). This measurement shows no oscillation occurs although multiple NR circuit are 

connected in a system. Note that the NR values are designed to have relatively small magnitude 

(compared to the impedance of the stub lines) thus small reflection amplification. 
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This antenna shown in the Figure 5-16 has the same dimensions as the previously presented 

passive antennas, except the NR-terminated-stubs. The NR circuit has been analyzed in detail in 

the previous chapter. The measured S-parameters are shown in Figure 5-17. 

Radiation Region

Right-Handed

Left-Handed

Non-Radiation 

Region

 

Figure 5-17    Measured return losses and insertion losses of the fabricated 

NRCRLH LWA prototype with biasing voltage turned on and off. 

The transition frequency is 2.2GHz. 

It is noticed that the insertion loss can be reduced by turning the bias voltages of the NR circuits 

on and off, while the return loss is minimally affected by the status of the NR circuits. The raised 

S21 curve is attributed to the compensated power from the active circuits that amplify the guided 

propagating wave. Due to some minor fabrication error within the matching IDC (marked as B 

and C in dashed rectangles in Figure 5-16) the impedance matching was not as satisfactory as what 

was simulated in ADS and S11 curve is not well below –10dB in the radiation band. But this can 

certainly be improved with better fabrication capability and does not affect this demonstration of 

the NR-CRLH concept. 
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The antenna is also measured in an anechoic chamber. Figure 5-18 demonstrates the antenna 

mounted in the chamber and connected to biasing voltage regulators. 

 

Figure 5-18    Photo of the active LWA mounted in the anechoic chamber. Wires 

connect DC biasing voltage form the voltage regulator, powered by a 

lithium-ion battery. 

The anechoic chamber could record the radiated power at every angle. From the radiated power 

measurement we can roughly calculate antenna radiation patterns and various performances. The 

orientation and coordinate axes definitions can be found in Figure 5-19. The θ = 90° direction is 

the broadside direction with φ = 90° (φ = 0 starting at positive x axis).  

Port-1

Port-2

x

y

z  

Figure 5-19    Coordinate axes definition diagram. 
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The measured antenna patterns of the active antenna and the passive counterpart are presented 

in Figure 5-20. The figure contains 8 polar plots of the measured radiation patterns from 1.9 GHz 

up to 2.57 GHz. In these plots, the measured radiation power values are in dBm scale. In order to 

compare the beamwidth, at each single frequency, the data are normalized to the maximum value 

of the dataset. 

At 1.9 GHz, the active antenna shows wider beamwidth than the passive one. This might be 

because the NR circuit is not compensating sufficient energy at this frequency and the NR circuit 

reactive response is not well maintaining the same response as the shorted stub on the passive 

antenna. 

At 2.0 GHz, the two beams begin to show better consistency, both in beamwidth and tilting 

angle. It is interesting to seen that at 2.1 GHz, the active antenna radiates narrower beam than the 

passive antenna. The similar phenomenon is observed at 2.2 GHz as well. At this frequency, it is 

also apparent that the side-lobe is higher though the main-beam is narrower. Both observations 

reflect the assumed flat current distribution along the leaky guide. 
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Figure 5-20    Measured E-cut radiation patterns of the passive and the active 

antennas in an anechoic chamber. The patterns are normalized in each 

frequency for comparison. 
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Near the transition frequency at 2.3 GHz, 2.4 GHz and 2.5 GHz, the two antennas radiate 

toward almost the same directions, while the active antenna has narrower beamwidth as expected. 

Higher side-lobes can be seen too. At broadside radiation frequency (transition frequency) 2.4 GHz, 

the active antenna scans to the broad side. 

At all the frequencies, the beams plotted in dashed line tiltes to a smaller θ angle. This implies 

that the active antenna has a dispersion relation that is consistently lower than the passive one, 

considering both curves in the dispersion relation. 

Although antenna gain and efficiency cannot be obtained from the chamber, the directivity at 

each frequency can be calculated. A comparison between the mixed-design active antenna and its 

passive counterpart is shown in Table 5-1. 

Table 5-1    The measured directivity at different frequencies of the passive antenna 

(CRLH) and the active antenna (NR-CRLH).  

f [GHz] 1.8 1.9 2.0 2.2 2.3 2.4 2.5 

CRLH 10.8 9.4 8.2 7.7 7.8 6.8 6.8 

NR-CRLH 10.4 10.7 10.6 10.9 8.3 7.8 7.1 

 

The measured directivity values are obtained in dB scale. At most of the measured frequency 

points, the obtained directivity of the NR-CRLH LWA is higher than its passive counterpart. The 

two antennas are exactly the same in physical dimensions except for the stub length and 

termination. Primarily the increased directivity and narrowed beamwidth are due to that the current 

distribution on the active LWA is different from that of the passive LWA. This can be verified in 

the calculations in the following sub-section. 
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5.4.2. Explanations 

In Figure 5-20, the two patterns are not significantly different from each other, which brings 

questions to the credibility of the change of the current distributions. The reason why the two 

results are similar is because the antenna is relatively short. The array factor calculation method 

would explain why it is not feasible to demonstrate more significant difference with antennas of 

11 unit cells. 

The radiation patterns with different attenuation constants from two antennas will be calculated 

using the array factor method and plotted. The first antenna is a short LWA with only 11 unit cells. 

The radiation patterns are plotted in Figure 5-21 with backward tilting and forward tilting. It is 

clearly shown that the curves of minimal loss (α=0.5) and moderate loss (α=5) are hardly 

distinguishable. When the attenuation is large (α=10), the pattern starts to show small difference, 

which is similar to the previously demonstrated measurement data. When the attenuation is 

extremely severe, although it is a very effective radiator since most power can be radiated within 

a short length, the pattern is still very close to the minimal loss case. The small difference among 

different patterns is seen in both backward and forward scanning. 

  

Figure 5-21    Calculated radiation pattern from an 11-unit-cell LWA. 
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However, when the antenna length is 51, the difference in radiation pattern caused by different 

attenuation constant become much more drastic. The patterns plotted in Figure 5-22 demonstrate 

that each pattern is easy to identify from the plots. No two curves are overlapping as in the 11-

unit-cell antenna case. 

In conclusion, it is the antenna length that limits the demonstration of the beamwidth reducing. 

If longer antennas can be designed and measured, the reduction in beamwidth would be much 

more significant. However, the small change in the radiation pattern on a relatively short LWA is 

a strong proof of the idea because it is difficult to realize such change unless the current distribution 

is well controlled. 

 

Figure 5-22    Calculated radiation pattern from a 51-unit-cell LWA. 

5.5. Summary 

The possibility of adjusting the radiation pattern by changing the current distribution is 

calculated and shown. Radiation patterns of the mixed active LWA prototype are presented and 

compared with those of a conventional passive LWA to prove the increased directivity and 

narrowed beamwidth. Depending on the manner the AUCs are employed, the current distribution 

can be controlled at different resolutions, from the highest (adjusting each unit cell) to any arbitrary 
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level (adjusting every n unit cells where n is a positive integer greater than one). A future work 

could be a design of a mixed (alternative) active LWA or pure active-unit-cell LWA of up to 

several tens of unit cells long, exhibiting unprecedented directivity and beamforming capability. 
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Chapter 6  Conclusions 

The wave-guiding problems in two types of unconventional structures are addressed. The 

characteristics of the guided waves are studied. 

The first half of the dissertation described comprehensively the problems and solutions of the 

RWG filled with a uniaxially anisotropic or uniaxial medium. First we considered the cases when 

the optic axis is aligned with one of the coordinate axes. We proposed the method of mode 

decomposition with respect to the direction of the optic axis and demonstrated mathematical 

derivations and analytic solutions. The cutoff frequencies for TEC and TMC modes where the 

subscript C denotes the direction of the optic axis are obtained and found dependent on anisotropic 

permittivities, so are the dominant modes. Particularly, the TMZ mode (similar to the conventional 

TM modes) can become the dominant mode when the uniaxial anisotropy of the inserted medium 

is strong enough. Other important wave properties including wave impedance and attenuation 

constants due to conductor loss are also studied, and closed form equations are obtained. The 

presence of the medium anisotropy leads to the changes in the wave mode characteristics and field 

distributions. 

Secondly, when the optic axis is tilted but lying in sidewall planes, a computational method is 

proposed to solve the problems. In these cases TE0n or TEm0 (to z) modes exist depending on 

whether the optic axis lies on either the y-z plane or x-z plane, and the proposed computational 

method is designed for calculating supported hybrid wave modes in these tiled cases. The 

methodology is to discretize the wavenumbers in their appropriate domains and examine the 

boundary condition matrix (BCM) determinant with each set of wavenumbers that satisfy the 

dispersion relations. As a compromise of speed and accuracy, the calculated data from the 
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proposed numerical process are then used in curve fitting to search for more accurate numbers. 

The algorithm was executed using MATLAB scripts and its validity is verified by comparing the 

results of the limiting cases with the aligned cases whose analytical solutions were obtained 

previously. Through calculations it was found that although the conventional TE modes exist, they 

are not necessarily serving as the dominant modes. The lowest hybrid mode can become the 

dominant mode if certain condition is satisfied. This can be understood considering that in the 

uniaxial-Z case the TMZ modes can become the dominant mode, and these tilted cases can be 

considered as the tilted uniaxial-Z case and the effect of anisotropy could perturb the order of the 

lowest cutoff frequency modes. 

In the future, this method may be applied to verify with the results against gyrotropic RWG 

problems, and to evaluate other waveguide problems including different types of media. The effect 

of finite side wall conductivity and dielectric losses are also interesting to investigate. Moreover, 

we could design an experiment to verify the calculated results. The methodology of this calculation 

process could also be used in other bounded media problems and to investigate the effect of 

anisotropy in different types of microwave structures. 

In the second half of this dissertation, the novel negative resistance enhanced composite 

right/left-handed (NR-CRLH) structure is presented with analysis and experiments. It was shown 

that by adapting a new energy compensating circuit the active unit cell (AUC) incorporating the 

ICC NR circuit can simultaneously preserve the unique phase behaviors and consistent Bloch 

impedance in broad bandwidth while realizing zero insertion loss or even forward gain. The AUC 

was compared with its passive unit cell (PUC) counterpart through calculations and experiments. 

Unit cell analysis and experiment showed that the involved negative resistance minimally perturbs 

the phase behaviors of the passive unit cells and does not introduce stability issue, thus the 
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advantageous phase control and beam scanning capability of the original CRLH are both 

repeatable in the AUC based design. The novel power compensating mechanism does not prolong 

the length of each unit cell, therefore it does not break the direct connections between adjacent unit 

cells thus does not interrupt the periodicity of the original periodic structure. The design of the 

AUC can follow the mature PUC design guide and needs only to change a section of the stub line 

and add the NR circuit. By tuning of the NR circuit, the AUC can exhibit different level of forward 

loss or gain while maintaining the designed phase behaviors.  

To demonstrate the application of the NR-CRLH structure as an leaky-wave antenna (LWA), 

the experiments and analysis of LWA radiation from different current distributions are presented. 

The possibility of adjusting the radiation pattern by changing the current distribution is calculated 

and shown in radiation pattern plots. In the experiment, the patterns of the mixed active LWA 

prototype are measured and compared with those of a conventional passive CRLH LWA to prove 

the increased directivity and narrower beamwidth. The comparison between the radiation angles 

also proves that the active unit cells preserved the metamaterial phase behaviors. Depending on 

the manner the AUCs are incorporated, the current distribution can be controlled at the desired 

resolutions from the highest (adjusting each unit cell) to any reasonably lower level (adjust after 

every an arbitrary number of unit cells) for any particular applications.  

In antenna applications, the flexibility of including NR-enhanced unit cells in NR-CRLH 

structure allows the design of active LWAs that can have arbitrary current distributions. Because 

of the possible forward gain in a NR-CRLH unit cell, these current distributions may accurately 

follow desired mathematical description as long as the forward gain is high enough to realize the 

ramp rate. The NR-CRLH structure can also be used for resonant type antennas since the NR-

CRLH structure is essentially a new type of transmission line. As well as resonant antenna, many 
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other microwave circuits/components can be designed using the NR-CRLH structure. Particularly, 

due to the zero-loss nature of the structure, it is practical to realize resonators of much higher Q 

than those realized by conventional microstrip lines and striplines. Furthermore, high-Q resonators 

can improve the performances of a broader range of microwave components, like oscillators, 

mixers, and power amplifiers. Therefore, many applications of NR-CRLH structure are to be 

explored in the future. 
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