1,689 research outputs found

    Compact Labelings For Efficient First-Order Model-Checking

    Get PDF
    We consider graph properties that can be checked from labels, i.e., bit sequences, of logarithmic length attached to vertices. We prove that there exists such a labeling for checking a first-order formula with free set variables in the graphs of every class that is \emph{nicely locally cwd-decomposable}. This notion generalizes that of a \emph{nicely locally tree-decomposable} class. The graphs of such classes can be covered by graphs of bounded \emph{clique-width} with limited overlaps. We also consider such labelings for \emph{bounded} first-order formulas on graph classes of \emph{bounded expansion}. Some of these results are extended to counting queries

    Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths

    Get PDF
    Computing all-pairs shortest paths is a fundamental and much-studied problem with many applications. Unfortunately, despite intense study, there are still no significantly faster algorithms for it than the O(n3)\mathcal{O}(n^3) time algorithm due to Floyd and Warshall (1962). Somewhat faster algorithms exist for the vertex-weighted version if fast matrix multiplication may be used. Yuster (SODA 2009) gave an algorithm running in time O(n2.842)\mathcal{O}(n^{2.842}), but no combinatorial, truly subcubic algorithm is known. Motivated by the recent framework of efficient parameterized algorithms (or "FPT in P"), we investigate the influence of the graph parameters clique-width (cwcw) and modular-width (mwmw) on the running times of algorithms for solving All-Pairs Shortest Paths. We obtain efficient (and combinatorial) parameterized algorithms on non-negative vertex-weighted graphs of times O(cw2n2)\mathcal{O}(cw^2n^2), resp. O(mw2n+n2)\mathcal{O}(mw^2n + n^2). If fast matrix multiplication is allowed then the latter can be improved to O(mw1.842n+n2)\mathcal{O}(mw^{1.842}n + n^2) using the algorithm of Yuster as a black box. The algorithm relative to modular-width is adaptive, meaning that the running time matches the best unparameterized algorithm for parameter value mwmw equal to nn, and they outperform them already for mwO(n1ε)mw \in \mathcal{O}(n^{1 - \varepsilon}) for any ε>0\varepsilon > 0

    On String Graph Limits and the Structure of a Typical String Graph

    Full text link
    We study limits of convergent sequences of string graphs, that is, graphs with an intersection representation consisting of curves in the plane. We use these results to study the limiting behavior of a sequence of random string graphs. We also prove similar results for several related graph classes.Comment: 18 page

    Hyperbolic intersection graphs and (quasi)-polynomial time

    Full text link
    We study unit ball graphs (and, more generally, so-called noisy uniform ball graphs) in dd-dimensional hyperbolic space, which we denote by Hd\mathbb{H}^d. Using a new separator theorem, we show that unit ball graphs in Hd\mathbb{H}^d enjoy similar properties as their Euclidean counterparts, but in one dimension lower: many standard graph problems, such as Independent Set, Dominating Set, Steiner Tree, and Hamiltonian Cycle can be solved in 2O(n11/(d1))2^{O(n^{1-1/(d-1)})} time for any fixed d3d\geq 3, while the same problems need 2O(n11/d)2^{O(n^{1-1/d})} time in Rd\mathbb{R}^d. We also show that these algorithms in Hd\mathbb{H}^d are optimal up to constant factors in the exponent under ETH. This drop in dimension has the largest impact in H2\mathbb{H}^2, where we introduce a new technique to bound the treewidth of noisy uniform disk graphs. The bounds yield quasi-polynomial (nO(logn)n^{O(\log n)}) algorithms for all of the studied problems, while in the case of Hamiltonian Cycle and 33-Coloring we even get polynomial time algorithms. Furthermore, if the underlying noisy disks in H2\mathbb{H}^2 have constant maximum degree, then all studied problems can be solved in polynomial time. This contrasts with the fact that these problems require 2Ω(n)2^{\Omega(\sqrt{n})} time under ETH in constant maximum degree Euclidean unit disk graphs. Finally, we complement our quasi-polynomial algorithm for Independent Set in noisy uniform disk graphs with a matching nΩ(logn)n^{\Omega(\log n)} lower bound under ETH. This shows that the hyperbolic plane is a potential source of NP-intermediate problems.Comment: Short version appears in SODA 202

    Forbidden minor characterizations for low-rank optimal solutions to semidefinite programs over the elliptope

    Get PDF
    We study a new geometric graph parameter \egd(G), defined as the smallest integer r1r\ge 1 for which any partial symmetric matrix which is completable to a correlation matrix and whose entries are specified at the positions of the edges of GG, can be completed to a matrix in the convex hull of correlation matrices of \rank at most rr. This graph parameter is motivated by its relevance to the problem of finding low rank solutions to semidefinite programs over the elliptope, and also by its relevance to the bounded rank Grothendieck constant. Indeed, \egd(G)\le r if and only if the rank-rr Grothendieck constant of GG is equal to 1. We show that the parameter \egd(G) is minor monotone, we identify several classes of forbidden minors for \egd(G)\le r and we give the full characterization for the case r=2r=2. We also show an upper bound for \egd(G) in terms of a new tree-width-like parameter \sla(G), defined as the smallest rr for which GG is a minor of the strong product of a tree and KrK_r. We show that, for any 2-connected graph GK3,3G\ne K_{3,3} on at least 6 nodes, \egd(G)\le 2 if and only if \sla(G)\le 2.Comment: 33 pages, 8 Figures. In its second version, the paper has been modified to accommodate the suggestions of the referees. Furthermore, the title has been changed since we feel that the new title reflects more accurately the content and the main results of the pape
    corecore