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Abstract
Computing all-pairs shortest paths is a fundamental and much-studied problem with many applica-
tions. Unfortunately, despite intense study, there are still no significantly faster algorithms for it
than the O(n3) time algorithm due to Floyd and Warshall (1962). Somewhat faster algorithms exist
for the vertex-weighted version if fast matrix multiplication may be used. Yuster (SODA 2009) gave
an algorithm running in time O(n2.842), but no combinatorial, truly subcubic algorithm is known.

Motivated by the recent framework of efficient parameterized algorithms (or “FPT in P”),
we investigate the influence of the graph parameters clique-width (cw) and modular-width (mw)
on the running times of algorithms for solving all-pairs shortest paths. We obtain efficient
(and combinatorial) parameterized algorithms on non-negative vertex-weighted graphs of times
O(cw2 n2), resp. O(mw2 n + n2). If fast matrix multiplication is allowed then the latter can be
improved to O(mw1.842 n + n2) using the algorithm of Yuster as a black box. The algorithm relative
to modular-width is adaptive, meaning that the running time matches the best unparameterized
algorithm for parameter value mw equal to n, and they outperform them already for mw ∈ O(n1−ε)
for any ε > 0.
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1 Introduction

all-pairs shortest paths (APSP) is a fundamental and much-studied problem in the
field of algorithmic graph theory. Next to the theoretical interest in the problem, all-pairs
shortest paths is important for many practical applications, e.g., it is closely related
to several vertex centrality measures in networks (for example, the betweenness centrality
of a vertex v is defined as the sum of the fraction of all-pairs shortest paths that pass
through v). The all-pairs shortest paths problem is also considered as the core of many
routing problems and has applications for example in areas such as routing protocols, driving
direction on web mappings, transportation, and traffic assignment problems, and many more.
See also the survey of Susmita [23] for more applications.

Despite the large interest in all-pairs shortest paths, there are only small improve-
ments known since the well-known O(n3)-time algorithm by Floyd and Warshall [8, 26] from
1962: Chan [3] as well as Han and Takaoka [12] gave an algorithm running in O(n3/ log2 n)
(omitting poly(log logn) factors) and Williams [27] gave an randomized algorithm running in
time O(n3/2Ω(logn)1/2). While there are no unconditional lower bounds known, it has been
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38:2 Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths

conjectured that there is no truly subcubic algorithm for all-pairs shortest paths, i.e.,
that no algorithm achieves time O(n3−ε) for any ε > 0. Using suitable subcubic reductions,
this is tightly connected to the existence of subcubic algorithms for several network centrality
measures, finding a directed triangle of negative total edge length, finding the second shortest
simple path between two nodes in an edge-weighted graph, or checking if a given matrix
defines a metric. This means that if one of those problems can be solved in truly subcubic
time (i.e., can be solved in time O(n3−ε) · poly(logM) for an ε > 0 and weights in [−M,M ]
for weighted problems), then all of the problems admit algorithms with truly subcubic
running time [28]. The situation is different for vertex-weighted all-pairs shortest
paths: While it is conjectured that there is no truly subcubic combinatorial algorithm,
faster algorithms are known if fast matrix multiplication may be used. The currently fastest
algorithm is due to Yuster [29] and runs in time O(n2.842). For sparse graphs there is an
algorithm running in time O(nm+ n2 log logn) for directed graphs [20] and an algorithm for
undirected graphs [21] with a running time of O(mn logα(m,n)), where α is the inverse of
the Ackermann’s function.

Independently of whether one believes in conditional lower bounds and hypotheses, the
fact remains that we do not know any truly subcubic algorithms for all-pairs shortest
paths nor truly subcubic, combinatorial algorithms for the vertex-weighted case. Besides
heuristics or approximation algorithms, one possible solution for faster algorithms for at
least some input graphs is to exploit structure in the input graph. In addition to measuring
the complexity of a problem relative to the input size of a graph (number n of vertices and
number m of edges), one may additionally consider some parameter, say k, that quantifies
structure that may be exploited by an algorithm; i.e., we may study the parameterized
complexity of the problem. This framework typically aims at NP-hard problems and a key
goal is to obtain fixed-parameter tractable (FPT) algorithms that run in time f(k)nc for
some constant c and some (usually exponential) function f(k) of the parameter. Initiated by
the work of Giannopoulou et al. [11], also efficient parameterized algorithms for tractable
problems are considered (apart from many older results that predate even parameterized
complexity). In this framework, also called “FPT in P”, one is interested in running times
O(kαnβ) when the best dependence on the input size alone is O(nγ) with γ > β, which then
results in a better running time for sufficiently small parameter k. Typically, the parameter
k is at most n, thus, in the case of α + β = γ, one already achieves truly better running
times for k ∈ o(n). We call such algorithms, which even for k = n are not worse than the
best unparameterized algorithm, adaptive algorithms.

Several recent publications dealt with efficient parameterized algorithms for different
problems and parameters [9, 14, 4, 1, 13, 19], however, all-pairs shortest paths got very
little attention. Coudert et al. [4] considered the clique-width of a graph as a parameter for
tractable problems related to cycle problems. Intuitively, clique-width captures the closeness
of a graph to a cograph, with cographs being exactly the graphs of clique-width at most two.
Alongside some positive results for triangle counting or girth, they proved a conditional
lower bound for diameter namely that there is no O(2o(cw) · n2−ε) time algorithm for any
ε > 0. That is, even computing just the greatest length of any shortest path in an unweighted
graph admits no such algorithm. A weaker parameter and an upper bound for clique-width is
the modular-width of a graph, which is another parameter that has been previously studied
regarding its use for efficient parameterized algorithms [4, 16].

Note that small clique-width or small modular-width does not imply the sparsity of
the graph, e.g. cliques have clique-width and modular-width two. For parameters that do
imply the sparsity of the graph (meaning that for parameter value k, the number of edges is
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bounded by O(kn), where n denotes the number of vertices in the graph), the algorithm of
Pettie and Ramachandran directly yield a running time of O(kn2 + n2 log logn), which is
nearly optimal.

Our work. We study efficient parameterized algorithms for all-pairs shortest paths
for its vertex-weighted variant. We consider the structural parameters clique-width (cw)
and modular-width (mw). As our main result, we present an O(cw2 n2)-time algorithm
for vertex-weighted all-pairs shortest paths, yielding a truly subcubic algorithm
for cw ∈ O(n0.5−ε). This immediately allows to solve the diameter problem in the same
asymptotic time O(cw2 n2), even with vertex weights, and thereby nicely complements the
lower bound ruling out O(2o(cw) · n2−ε) for any ε > 0 [4].

Further, we present a general framework to determine the running time for many al-
gorithms that use modular-width and the related modular decomposition tree. We use this
framework to prove an algorithm of time O(mw2 n+ n2) for vertex-weighted all-pairs
shortest paths on graphs of modular-width at most mw. This algorithm is combinat-
orial, however, it can benefit from subcubic algorithms for vertex-weighted all-pairs
shortest paths that use fast matrix multiplication. For example, we achieve a running
time of O(mw1.842 n+ n2) by using an O(n2.842)-time algorithm for the vertex-weighted case
by Yuster [29] in each prime node; this algorithm uses fast matrix multiplication whereas all
other algorithms (previous and new) are combinatorial.

Related Work. Following the work of Floyd and Warshall [8, 26], Fredman [10] achieved
the first subcubic algorithm, running in time O(n3 log1/3 logn/ log1/3 n). Chan [3] and Han
and Takaoka [12] both achieved a running time of O(n3/ log2 n) (omitting poly(log logn)
factors). Recently, Williams [27] solved APSP in randomized time O(n3/2Ω(logn)1/2). For
sparse graphs, Pettie and Ramachandran [21] get a running time of O(n2α(n,m) +mn). All
these algorithms solve the standard edge-weighted case.

In the vertex-weighted case, the currently fastest algorithm by Yuster [29] runs in O(n2.842)
and relies on fast matrix multiplication. Shapira et al. [22] considered some variants of APSP,
namely the all-pairs bottleneck paths, where one seeks the maximum bottleneck weight
on a graph, and provided an algorithm of time O(n2.575) for vertex-weighted graphs. Czumaj
and Lingas [6] analyzed the related problem of finding the minimum-weight triangle in vertex-
weighted graphs and achieved a running time of O(nω + n2+o(1)). All of these algorithms
for vertex-weighted graphs exploit fast matrix multiplication. There is no truly subcubic
combinatorial algorithm known for vertex-weighted all-pairs shortest paths.

There are some subcubic algorithms known for APSP on special graph classes, such as
uniform disk graphs with non-negative vertex weights, induced by point sets of bounded
density within a unit square. Lingas and Sledneu [18] showed how to solve APSP on such
graphs in time O(

√
rn2.75), where r is the radius of the disk around the vertices in a unit

square. Bentert and Nichterlein [2] considered the related problem of computing the diameter
of a graph, parameterized by several parameters.

Organization. Section 2 contains the preliminaries, in particular, the definition of clique-
width. In Section 3, we present the algorithm for vertex-weighted all-pairs shortest
paths parameterized by the clique-width. Due to space restrictions, most of the proofs, the
algorithm for modular-width as well as the running time framework can only be found in the
full version of this paper [17]. We conclude in Section 4.

STACS 2020
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2 Preliminaries

We follow basic graph notations [7]. For a natural number k ∈ N, define [k] = {1, . . . , k}.
All graphs are simple, i.e., without loops or multiple edges. In a graph G = (V,E), a path
P = (v1, v2, . . . , vn) is a sequence of vertices vi ∈ V with {vi, vi+1} ∈ E for i ∈ [n − 1].
We define by P[vi,vj ] the subpath of P starting in vi and ending in vj for i, j ∈ [n] with
i < j. The length of a path is the number of edges in it. In a vertex-weighted graph
G = (V,E) with weights ω : V → R≥0, the weight (also called cost) of a path P is defined as
ω(P ) =

∑n
i=1 ω(vi). Thus, every paths between two distinct vertices u and v has minimum

weight ω(v) + ω(u) and a path of length 0 from a vertex v to itself has always weight
ω(v). For a graph G = (V,E) and u, v ∈ V , we denote the minimum weight of all paths
between u and v as distG(u, v). For a set of vertices X ⊆ V and a vertex u ∈ V we
define distG(u,X) = minv∈X distG(u, v) and for two sets of vertices X,Y ⊆ V , we define
distG(X,Y ) = minu∈X,v∈Y (u, v).

For two sets A and B we denote the disjoint union by A∪̇B and we say that two sets A
and B overlap if A ∩B 6= ∅, A \B 6= ∅, and B \A 6= ∅.

2.1 Clique-width and NLC-width
A k-labeled graph is a graph in which each vertex is assigned one out of k labels. Formally,
a vertex-labeled graph G is a triple (V,E, lab) with V being the vertex set, E denotes the
set of edges, and lab : V → [k] is a function that defines the label for each vertex. For a
k-labeled graph G = (V,E, lab) we denote by unlab(G) = (V,E) the underlying unlabeled
graph. Intuitively, a graph G has clique-width at most k, if it is the underlying graph of
some k-labeled graph that can be constructed by using four operations: (1) Introducing a
single labeled vertex, (2) redefining one label to another label, (3) taking the disjoint union
of two already created k-labeled graphs, and (4) adding all edges between vertices of label i
to vertices of label j for a pair (i, j) of labels.

I Definition 1 (Clique-width, [5]). Let k ≥ 2. The class CWk consists of all k-labeled graphs
that can be constructed by the following operations:

The nullary operation •a, that corresponds to a graph consisting of a single vertex with a
label a ∈ [k].
Let G = (V,E, lab) ∈ CWk be a k-labeled graph, and let a, b ∈ [k]. Then

ρa,b(G) = (V,E, lab′) with lab′(v) =
{
lab(v) , if lab(v) 6= a

b , if lab(v) = a

is in CWk.
Let G = (VG, EG, labG) ∈ CWk and H = (VH , EH , labH) ∈ CWk be two k-labeled graphs
in CWk with VG ∩ VH = ∅. Then the disjoint union, defined by

G⊕H = (VG∪̇VH , EG∪̇EH , lab′) with lab′(v) =
{
labG(v) , if v ∈ VG
labH(v) , if v ∈ VH

is in CWk.
Let G = (V,E, lab) ∈ CWk be a k-labeled graph, and let a, b ∈ [k] with a 6= b. Then

ηa,b(G) = (V,E′, lab) with E′ = E ∪ {{u, v} | lab(u) = a, lab(v) = b}

is in CWk.
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The clique-width of a graph G, denoted by cw(G), is the smallest k ≥ 2 such that there is a
labeled graph G′ ∈ CWk with unlab(G′) = G. The expression consisting of the operations
defined in Definition 1 is called a (clique-width) k-expression. For a k-expression t, we denote
with val(t) the resulting labeled graph and by tree(t) the so called k-expression tree of t,
which is the canonical tree representation of t. Clique-width is a strict generalization of
modular-width, which is defined in the appendix. In fact, the clique-width of a graph G is
equal to the maximum clique-width of any quotient graph of a prime node in the modular
decomposition tree of G. On the other hand, modular-width cannot be bounded by a function
of clique-width.

Very similar to clique-width, one can define NLC-width, which was introduced by
Wanke [25]. The main differences are that the join operation η and the disjoint union
operation ⊕ are somewhat combined and consecutive relabel operations are compressed into
one operation.

I Definition 2 (NLC-width). Let k ≥ 1. The class NLCk consists of all k-labeled graphs that
can be constructed by the following operations:

The nullary operation •a, that corresponds to a graph consisting of a single vertex with a
label a ∈ [k].
Let G = (V,E, lab) ∈ NLCk and let R : [k]→ [k]. Then

◦R(G) = (V,E, lab′) with lab′(v) = R(lab(v))

is in NLCk.
Let G = (VG, EG, labG) ∈ NLCk and H = (VH , EH , labH) ∈ NLCk be two k-labeled
graphs in NLCk. Let S ⊆ [k]2. Then

G×S H = (VG ∪ VH , E′, lab′) with lab′(v) =
{
labG(v) , if v ∈ VG
labH(v) , if v ∈ VH

and E′ = EG ∪ EH ∪ {{u, v} | u ∈ VG, v ∈ VH , and (labG(u), labH(v)) ∈ S}

is in NLCk.
The NLC-width of a graph G, denoted by nlc(G), is the smallest k ≥ 2 such that there
is a labeled graph G′ ∈ NLCk with unlab(G′) = G. As for clique-width, the expression
consisting of the operations defined in Definition 2 is called a (NLC-width) k-expression. For
a k-expression t, we again denote with val(t) the resulting labeled graph and by tree(t) = T

canonical tree representation of t, the so called k-expression tree of t. This means each
leaf node of T is marked with •a for some a ∈ [k] and each internal node is either marked
with ◦R for some R : [k] 7→ [k] or with ×S for some S ⊆ [k]2, according to the operations
defined in Definition 1 resp. Definition 2. For a node x ∈ V (T ) we denote by Gx the labeled
graph defined by the k-expression represented by the subtree of T rooted in x and we define
by Lxi = {v ∈ V (Gx) | lab(v) = i} the set of vertex in Gx with label i ∈ [k]. For a node
x ∈ V (T ), we will use the shortcut distx(u, v) := distGx(u, v) to denote the distance between
two vertices u and v in Gx.

The following lemma shows that we can safely focus on NLC k-expression trees, since the
NLC-width and clique-width only differs by a factor of two at most.

I Lemma 3 ([15]). For any graph G it holds that nlc(G) ≤ cw(G) ≤ 2 · nlc(G).

STACS 2020
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3 APSP parameterized by clique-width

Assuming SETH, one cannot solve diameter (and thus, unweighted all-pairs shortest
paths) in time 2o(cw) · n2−ε [4]. In this section, we show how to solve vertex-weighted
all-pairs shortest paths in time O(cw2 n2).

I Theorem 4. For every graph G = (V,E), given together with a clique-width k-expression
and vertex weights ω : V → R≥0, vertex-weighted all-pairs shortest paths can be
solved in time O(k2n2).

For an input graph G = (V,E), given together with a clique-width k-expression for
some k ≥ 2, we transform in a first step the clique-width k-expression to an NLC-width
k-expression in linear time as described for example in [15]. For the rest of this section, by
writing k-expression we always refer to an NLC-width k-expression instead of a clique-width
k-expression. We interpret the (NLC-width) k-expression as a k-expression tree T , in which
each node v ∈ V (T ) is marked with an operation of the k-expression that is applied to the
children of v. Accordingly, T has exactly n leafs, each marked with an operation •i for
i ∈ [k], and exactly n− 1 nodes marked with an operation ×S for some S ⊆ [k]2. For ease
of presentation, we assume that there is exactly one node marked with an operation ◦R for
some R : [k]→ [k] in between any two nodes marked with ×S (using R(i) = i when no actual
relabeling is necessary), hence, the length of the k-expression is O(n). Note, that the length
of a clique-width k-expression is O(n+m) in general. For a node x ∈ V (T ) we denote by
Gx the labeled graph that is defined by the subexpression tree of T rooted in x.

The algorithm consists of three phases. In the first phase, we traverse T in a bottom-up
manner: For each node x ∈ V (T ) we partition the vertex set into sets of same-labeled vertices
and compute the shortest distance for each single vertex to (the closest vertex in) each label
set. Additionally, we compute the distance between each pair of label sets, i.e., the shortest
distance of two vertices of the respective sets. Note, however, that in the first phase we only
consider for each each node x ∈ V (T ) the distances in the graph Gx. In the second phase,
we perform a top-down traversal of the k-expression tree T and consider the whole graph G.
Once we have computed the necessary values in phase one and two, we traverse T one last
time and finally compute the shortest path distances between all pairs of vertices.

First Phase. For a node x ∈ V (T ), which corresponds to the k-labeled graph Gx, we define
Lxi = {v ∈ V (Gx) | lab(v) = i} as the set of all vertices in Gx with label i. Note, that
unlab(Gx) is an induced subgraph of G for any x ∈ V (T ). We traverse T in a bottom-up
manner and compute for each node x ∈ V (T ) and for all pairs (i, j) ∈ [k]2 of labels the
shortest distance between some vertex in Lxi and some vertex in Lxj . Additionally, we compute
for any vertex v ∈ V (Gx) and any label i ∈ [k] the shortest distance from v to some vertex
in Lxi . To be precise, for a node x ∈ V (T ) we compute the following values:

cxi,j = distx(Lxi , Lxj ) for i, j ∈ [k]
axv,i = distx(v, Lxi ) for v ∈ V (Gx), i ∈ [k]

For nodes x ∈ V (T ) that are marked with ×S for some S ⊆ [k]2 we need to compute
some auxiliary values. Let y and z be the two children of x in T . This means that Gx
consists of the disjoint union of Gy and Gz together with a full join between the vertex sets
Lyi and Lzj for each (i, j) ∈ S. Thus, one can partition the vertex set of Gx into the 2k sets
{Ly1, . . . , L

y
k, L

z
1, . . . , L

z
k} = Lx. For each pair (A,B) ∈ Lx × Lx of vertex sets, we compute

the shortest distance between some vertex in A to some vertex of B. In addition, we compute
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the shortest distance between A and B with the constraint that either the first edge, the
last edge, or the first and the last edge of the shortest path is an edge of a newly inserted
full join defined by S. This achieves the effect that we additionally compute the shortest
distance from (1) all vertices of A to some vertex of B, (2) from some vertex of A to all
vertices of B, and (3) from all vertices of A to all vertices of B. Doing this, one can e.g.
combine a path that ends at some vertex of A with a path that can start at any vertex of A.
In the following, we will describe how to compute the required values for each of the three
different types of nodes in the k-expression tree T .

For the base case, let x be a leaf of the k-expression tree T . Thus, the node x ∈ V (T )
is marked with •` for some ` ∈ [k]. This means that Gx consists of a single vertex v with
label `. In this case the following holds:

cxi,j =
{
ω(v) if i = j = `

∞ otherwise
for i, j ∈ [k]

axv,i =
{
ω(v) if i = `

∞ otherwise
for v ∈ V (Gx), i ∈ [k]

Now, let x ∈ V (T ) be an internal node of the k-expression tree T marked with ◦R for some
R : [k]→ [k]. Let y ∈ V (T ) be the unique child of x in T . Since we traverse T in a bottom-up
manner, we have already computed the values ayv,i for all v ∈ V (Gy) and i ∈ [k] and the
values cxi,j for all i, j ∈ [k]. Note, that unlab(Gx) = unlab(Gy), which, in particular, implies
that distances between vertices are identical in both graphs (though distances between label
sets may be not, as these sets may be different).

I Lemma 5. Let x ∈ V (T ) be an internal node of a k-expression tree T marked with ◦R for
some R : [k] → [k] and let y be the child of x in T . Then cxi,j = mini′∈R−1(i),j′∈R−1(j) c

y
i′,j′

for all i, j ∈ [k].

Note, that the computation of all cxi,j can be realized in time O(k2) by updating for every
cyi,j the corresponding value cxR(i),R(j). The values axv,i can be similarly computed from the
values at the child node:

I Lemma 6. Let x ∈ V (T ) be an internal node of a k-expression tree T marked with ◦R for
some R : [k]→ [k] and let y be the unique child of x in T . Then axv,i = minj∈R−1(i) a

y
v,j for

all v ∈ V (Gx) and i ∈ [k].

The running time for computing the values axv,i is O(nk) since we need to consider each value
ayv,i for any v ∈ V (Gy) and i ∈ [k] exactly once.

Finally, let x ∈ V (T ) be an internal node of the k-expression tree T marked with ×S
for some S ⊆ [k]2. Denote by y ∈ V (T ) and z ∈ V (T ) the two children of x in T , meaning
that Gx combines the two labeled graphs Gy and Gz by introducing for each (i, j) ∈ S a full
join between the vertices in Lyi and those in Lzj . Thus, V (Gx) = V (Gy)∪̇V (Gz) and one can
partition the vertices of Gx into the 2k vertex sets {Ly1, . . . , L

y
k, L

z
1, . . . , L

z
k} and Lxi = Lyi ∪̇Lzi .

To compute the desired distances between the label sets {Ly1, . . . , L
y
k, L

z
1, . . . , L

z
k}, we construct

an edge-weighted directed graph Hx that represents all the distances between the label sets
in a graph with only 4k vertices.

For each label set Lai of Gx with i ∈ [k] and a ∈ {y, z} we create two vertices vai and
uai . Let V a = {vai | i ∈ [k]} resp. Ua = {uai | i ∈ [k]} for a ∈ {y, z}. We add a directed full
join from V y to Uy resp. from V z to Uz with weight equal to the length of a shortest path
between the two corresponding label sets. Finally, we connect vertices in Uy with vertices in

STACS 2020
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V y

Uy V z

Uz

cyi,j

S

czi,j

S−1

Figure 1 Construction of the auxiliary graph Hx. Each large node consists of k disjoint vertices
corresponding to one of the k label sets in Gy resp. Gz. Between V y and Uy there is a full join, each
edge between the corresponding vertex of Ly

i and Ly
j is weighted by cy

i,j , analogously for V z and Uz.
Vertices in Uy are only connected to those vertices in V z for which the corresponding label sets are
connected via S, analogously for Uz and V y.

V z, resp. vertices in Uz with vertices in V y, if and only if the corresponding pair is contained
in S, i.e., if there is a full join in Gx between the two corresponding label sets. See also
Figure 1 for an illustration. Formally, we define the directed, edge-weighted graph Hx as
follows.

I Definition 7. Let x ∈ V (T ) be an internal node of a k-expression tree T marked with ×S
for some S ⊆ [k]2 and let y ∈ V (T ) and z ∈ V (T ) be the children of x. We define Hx as a
directed, edge-weighted graph on 4k vertices created as follows:

For each label set Lai ∈ {L
y
1, . . . , L

y
k, L

z
1, . . . , L

z
k} we create two vertices vai and uai for

i ∈ [k] and a ∈ {y, z}.
Add edges (vyi , u

y
j ) with cost cyi,j for all i, j ∈ [k].

Add edges (vzi , uzj ) with cost czi,j for all i, j ∈ [k].
Add edges (uyi , vzj ) with cost zero for all (i, j) ∈ S.
Add edges (uzi , v

y
j ) with cost zero for all (j, i) ∈ S.

Note, that some edges may have cost ∞ as there is no path of the requested type exists.
Next, we will see that Hx exhibits all the desired distances from Gx in a compact way.

I Theorem 8. Let x ∈ V (T ) be an internal node of a k-expression tree T marked with ×S
for some S ⊆ [k]2 with children y and z. Let Hx be the graph as defined in Definition 7.
Then the following holds:
(1) distHx(vai , ubj) = distx(Lai , Lbj) for all a, b ∈ {y, z} and i, j ∈ [k].
(2) distHx(uai , ubj) = minP∈P ω(P ) − minv∈La

i
ω(v) where P is the set of all paths in Gx

starting in Lai , ending in Lbj, and having the second vertex in V (Gx) \ V (Ga).
(3) distHx(vai , vbj) = minP∈P ω(P ) − minv∈Lb

j
ω(v) where P is the set of all paths in Gx

starting in Lai , ending in Lbj, and having the penultimate vertex in V (Gx) \ V (Gb).
(4) distHx(uai , vbj) = minP∈P ω(P )−minv∈La

i
ω(v)−minv∈Lb

j
ω(v) where P is the set of all

paths in Gx starting in Lai , ending in Lbj , and having the second vertex in V (Gx) \V (Ga)
and the penultimate vertex in V (Gx) \ V (Gb).

We prove Theorem 8 in two steps. We first prove that every path in Hx corresponds to
some path in Gx. Later, we prove that also each optimal path between two label sets in Gx
corresponds to some shortest path in Hx. We start with statement (1) of Theorem 8.
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I Lemma 9. Let x ∈ V (T ) be an internal node of the k-expression tree T marked with
×S for some S ⊆ [k]2 with children y and z. Let Hx be the auxiliary graph as defined in
Definition 7 and let P ∗ be an arbitrary vyi -uzj -path in Hx for some i, j ∈ [k]. Then there
exists an Lyi -Lzj -path P in Gx with ω(P ) = ωHx(P ∗).

Proof. Due to the circular structure of Hx, each vyi -uzj -path in Hx will repeat the sequence
(vyp , uyq , vzr , uzs) for some p, q, r, s ∈ [k] until reaching uzj at the end of a sequence. Thus, each
vyi -uzj -path in Hx consists of 4` vertices for ` ∈ N and can be written as

P ∗ = (vyi = vyp1
, uyq1

, vzr1
, uzs1

, vyp2
, uyq2

, vzr2
, uzs2

, . . . , vyp`
, uyq`

, vzr`
, uzs`

= uzj ).

One can construct a path P in Gx from P ∗ as follows: For each edge (vypi
, uyqi

) in P ∗ of
cost cypi,qi

pick a shortest path in Gy of total cost cypi,qi
and for each edge (vzri

, uzsi
) in P ∗

of cost cyri,si
pick a shortest path in Gz of total cost czri,si

for each i ∈ [`]. Those paths
always exist since cypi,qi

resp. cyri,si
are defined as the cost of a shortest Lypi

-Lyqi
-path in Gy,

resp. as the cost of a shortest Lzri
-Lzsi

in Gz. Since each edge (uqi , vri) only exists if and
only if there is a full join between the sets Lyqi

and Lzri
, one can connect the last vertex

of the path corresponding to the previous edge in P ∗ (that ends in some vertex in Lyqi
) to

the first vertex of the path corresponding to the following edge in P ∗ (that starts at some
vertex in Lzri

). In the same manner one can argue that due to each edge (uzsi
, vypi+1

) one can
connect the last vertex of the path corresponding to the edge (vzri

, uzsi
) with the first vertex

of the path corresponding to the edge (vypi+1
, uyqi+1

). In both cases, the cost of the vertices is
already accounted for in the resp. c··,· value. Thus, each v

y
i -uzj -path in Hx corresponds to an

Lyi -Lzj -path in Gx of same cost. J

Next, we generalize this argumentation to the following corollary:

I Corollary 10. Let x ∈ V (T ) be an internal node of the k-expression tree T marked with
×S for some S ⊆ [k]2 with children y and z. Let Hx be the auxiliary graph as defined in
Definition 7. Then for every i, j ∈ [k] and a, b ∈ {y, z} the following holds:
(1) For any vai -ubj-path P ∗ in Hx there exists an Lai -Lbj-path P in Gx with ωHx(P ∗) = ω(P ).
(2) For any uai -ubj-path P ∗ in Hx there exists an Lai -Lbj-path P = (p1, p2, . . . , p`) in Gx with

the property that p2 ∈ V (Gx) \ V (Ga) and ωHx(P ∗) = ω(P )− ω(p1).
(3) For any vai -vbj-path P ∗ in Hx there exists an Lai -Lbj-path P = (p1, . . . , p`−1, p`) in Gx

with the property that p`−1 ∈ V (Gx) \ V (Gb) and ωHx(P ∗) = ω(P )− ω(p`).
(4) For any uai -vbj-path P ∗ in Hx there exists an Lai -Lbj-path P = (p1, p2, . . . , p`−1, p`) in

Gx with the property that p2 ∈ V (Gx) \ V (Ga), p`−1 ∈ V (Gx) \ V (Gb), and ωHx(P ∗) =
ω(P )− ω(p1)− ω(p`).

For any path in Hx that starts at some vertex uai (resp. ends at some vertex vbj) one
can find a corresponding path P in Gx with the property that the second vertex (resp. the
penultimate vertex) is connected to all vertices of Lai (resp. Lbj). Thus, one can extend any
path that ends at some vertex in Lai by such a path (resp. one can prepend any path that
starts in Lbj by such a path). Hence, the cost of the first vertex (resp. last vertex) is neglected
if the path starts in some vertex uai or ends at some vertex vbj for a, b ∈ {x, y}. In general,
every path that one can find in Hx corresponds to a path in Gx of essentially the same cost,
possibly without the first or last vertex (which can be chosen as the minimum of the label
set). This proves “≤” in the equations of Theorem 8.

For the other direction, we will show that every optimal shortest path between two label
sets in Gx is represented by a path in Hx.

STACS 2020
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I Lemma 11. Let x ∈ V (T ) be an internal node of a k-expression tree T marked with ×S for
some S ⊆ [k]2 with children y and z. Let Hx be the auxiliary graph as defined in Definition 7.
Let P be a shortest Lyi -Lzj -path in Gx for some i, j ∈ [k]. Then there exist a vyi -uzj -path P ∗
in Hx with ωHx(P ∗) = ω(P ).

Again, one can generalize the argumentation of Lemma 11 to the following corollary:

I Corollary 12. Let x ∈ V (T ) be an internal node of the k-expression tree T marked with
×S for some S ⊆ [k]2 with children y and z. Let Hx be the auxiliary graph as defined in
Definition 7. Then for every i, j ∈ [k] and a, b ∈ {y, z} the following holds:
(1) For every shortest Lai -Lbj-path P in Gx there exists a vai -ubj-path P ∗ in Hx of cost

ωHx(P ∗) = ω(P ).
(2) For every shortest Lai -Lbj-path P in Gx with the property that the second vertex is

in V (Gx) \ V (Ga) there exists a uai -ubj-path P ∗ in Hx of cost ωHx(P ∗) = ω(P ) −
minv∈La

i
ω(v).

(3) For every shortest Lai -Lbj-path P in Gx with the property that the penultimate vertex
is in V (Gx) \ V (Gb) there exists a vai -vbj-path P ∗ in Hx of cost ωHx(P ∗) = ω(P ) −
minv∈Lb

j
ω(v).

(4) For every shortest Lai -Lbj-path P in Gx with the property that the second vertex is in
V (Gx) \ V (Ga) and the penultimate vertex is in V (Gx) \ V (Gb) there exists a uai -vbj -path
in Hx of cost ωHx(P ∗) = ω(P )−minv∈La

i
ω(v)−minv∈Lb

j
ω(v).

Corollary 12 shows that every shortest Lai -Lbj-path in Gx is represented in Hx for i, j ∈ [k]
and a, b ∈ {y, z}. Together with Corollary 10, this proves Theorem 8.

After the construction of the auxiliary graph Hx as defined in Definition 7, we compute
and store the shortest distances for all pairs of vertices in Hx. With those values one can
now compute the values cxi,j and axv,i for i, j ∈ [k] and v ∈ V (Gx). Note that some of the
values are only required in the second phase.

I Corollary 13. Let x ∈ V (T ) be a node in the k-expression tree T marked with ×S for some
S ⊆ [k]2. For all i, j ∈ [k] it holds that

cxi,j = min
{
distHx(vyi , u

y
j ), distHx(vyi , u

z
j ), distHx(vzi , u

y
j ), distHx(vzi , uzj )

}
.

I Corollary 14. Let x ∈ V (T ) be a node in the k-expression tree T marked with ×S for some
S ⊆ [k]2. Then for any v ∈ V (Gy) and i ∈ [k] it holds that axv,i = minj∈[k],a∈{y,z}

{
ayv,j +

distHx(uyj , uai )
}
.

Second Phase. In this phase, we process the k-expression tree T in a top-down manner
and use the local values that we have computed in the first phase to determine distances in
the whole graph G.

Consider an internal node x ∈ V (T ) of the k-expression tree T marked with ×S for some
S ⊆ [k]2 and let y and z be the children of x in T . Let Lyi resp. Lzi denote the set of vertices
with label i in Gy resp. Gz for i ∈ [k]. For an internal node x with children y and z we will
compute for any vertex set Lyi resp. Lzi and every vertex v ∈ V (Gx) the minimum cost of all
paths in G that start in v and end in Lyi resp. Lzi with the property that the penultimate
vertex is in V (G) \V (Gy), resp. in V (G) \V (Gz). Thus, the penultimate vertex is connected
to all vertices of the vertex set Lyi resp. Lzi . It will therefore be convenient not to include
the cost of the final vertex in these costs (cf. definition below). Note, that we consider the
whole graph G in this step instead of just Gx.

Formally, for a node x ∈ V (T ) marked with ×S for some S ⊆ [k]2 with children y and z
we compute for every v ∈ V (Gx) and i ∈ [k] the following values:
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dxv,i,y = minP∈P ω(P )−minu∈Ly
i
ω(u) where P is the set of all paths in G starting in v,

ending in Lyi , and having the penultimate vertex in V (G) \ V (Gy).
dxv,i,z = minP∈P ω(P )−minu∈Lz

i
ω(u) where P is the set of all paths in G starting in v,

ending in Lzi , and having the penultimate vertex in V (G) \ V (Gz).

For a node x ∈ V (T ) marked with ◦R for some R : [k] 7→ [k] and the child y, we only
compute dxv,i,y. We start by computing those values for the root node. We can assume,
w.l.o.g., that the root node has label ×S for some S ⊆ [k]2.

I Lemma 15. Let r ∈ V (T ) be the root node of the k-expression tree T marked with ×S for
some S ⊆ [k]2 and let y and z be the children of r. Let further Hr be the graph defined in
Definition 7. Then, for any v ∈ V (Gy) and for every i ∈ [k] it holds that

drv,i,y = min
j∈[k]

{
ayv,j + distHr (uyj , v

y
i )
}

and drv,i,z = min
j∈[k]

{
ayv,j + distHr (uyj , v

z
i )
}
.

Analogously, for any v ∈ V (Gz) and for every i ∈ [k] it holds that

drv,i,y = min
j∈[k]

{
azv,j + distHr (uzj , v

y
i )
}

and drv,i,z = min
j∈[k]

{
azv,j + distHr (uzj , vzi )

}
.

Next, we show how to propagate those values downwards in the k-expression tree, starting
with a node marked with ◦R for some R : [k] 7→ [k].

I Lemma 16. Let x ∈ V (T ) be an internal node of the k-expression tree T marked with ◦R
for some R : [k]→ [k]. Let y be the unique child of x and w be the unique ancestor of x in
T . Then dxv,i,y = dwv,R(i),x

We now show the propagation for nodes x of T that are marked with ×S . We start with
one specific case and then conclude the general case as a corollary.

I Lemma 17. Let x ∈ V (T ) be an internal node of the k-expression tree T that is marked
with ×S for some S ⊆ [k]2. Let y and z be the two children of x in T , let w be the unique
ancestor of x in T , and let v ∈ V (Gy) be arbitrary. Then dxv,i,y is the minimum of the
following three values:

dwv,i,x
minj∈[k]

{
ayv,j + distHx(uyj , v

y
i )
}

minj∈[k],c∈{y,z}
{
dwv,j,x + distHx(vcj , v

y
i )
}

Proof. After possibly adding nodes marked with ◦id to the k-expression tree, with id being
the identity function, one can assume, that w is marked with ◦R for some R : [k]→ [k] and
that x is the only child of w.

Let P = (p1, . . . , pn−1, pn) be a shortest v-Lxi -path in G with penultimate vertex in
V (G) \ V (Gy), i.e., with p1 = v, pn ∈ Lyi , and pn−1 ∈ V (G) \ V (Gy); thus, ω(P )− ω(pn) =
dxv,i,y. We distinguish three cases:
Case 1: pn−1 ∈ V (G) \ V (Gx). In this case, P is also a v-Lxi -path with the property that

the penultimate vertex is in V (G) \ V (Gx); thus, dxv,i,y ≥ dwv,i,x.
Case 2: pn−1 ∈ V (Gz) and all vertices of P are in Gx. In this case, we can compute

the value in the same way as done in Lemma 15 for the root node and get dxv,i,y =
minj∈[k]{ayv,j + distHx(uyj , v

y
i )}.

Case 3: pn−1 ∈ V (Gz) and at least one vertex in P is in V (G) \ V (Gx). Let p` be the
last vertex of P that is in V (G) \ V (Gx); clearly, p`+1 ∈ V (Gx). We split the path P
into the two subpaths P1 = (p1, . . . , p`) and P2 = (p`+1, . . . , pn). Let j ∈ [k] such that
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p`+1 ∈ Lxj . Since p` is connected to p`+1, the vertex p` is connected to every vertex in
Lxj . We extend P1 by p′ = arg minu∈Lx

j
ω(u) and denote the resulting path by P ′1. Now

it holds by definition that ω(P ′1)− ω(p′) ≥ dwv,j,x, as the penultimate vertex p` of P ′1 is in
V \ V (Gx). Let further c ∈ {y, z} such that p`+1 ∈ Lcj , noting that it does not change its
label at x. Then ω(P2) − ω(pn) ≥ distHx(vcj , v

y
i ) by Theorem 8, as P2 is a path in Gx.

Note, that ω(P ) = ω(P ′1) + ω(P2)− ω(p′). Thus, in this case it holds that

dxv,i,y = ω(P )− min
u∈Ly

i

ω(u)

= ω(P ′1)− ω(p′) + ω(P2)− min
u∈Ly

i

ω(u)

≥ dwv,j,x + distHx(vcj , v
y
i ) + ω(pn)− min

u∈Ly
i

ω(u)

≥ dwv,j,x + distHx(vcj , v
y
i )

≥ min
j∈[k],c∈{y,z}

{
dwv,j,x + distHx(vcj , v

y
i )
}

We have seen in the case analysis above that in each case dxv,i,y is at least the value considered
in the case; in particular, it is at least equal to their collective minimum value. On the
other hand, for each case there is a path P fulfilling the definition of dxv,i,y such that
ω(P ) −minu∈Ly

i
ω(u) equals the value of the considered case. Thus, dxv,i,y is also at most

equal to the minimum taken over all three cases. This completes the proof. J

I Corollary 18. Let x ∈ V (T ) be an internal node of the k-expression tree T marked with
×S for some S ⊆ [k]2. Let y and z be the unique children of x in T , w be the unique ancestor
of x in T , and let α, β ∈ {y, z} be arbitrary. Then, for v ∈ V (Gα) the value dxv,i,β is the
minimum of the following three values:

dwv,i,x
minj∈[k]

{
aαv,j + distHx(uαj , v

β
i )
}

minj∈[k],c∈{y,z}
{
dwv,j,x + distHx(vcj , v

β
i )
}

Third Phase. In the third phase, we traverse the k-expression tree T one final time; the
ordering is immaterial. We go over all nodes x with label ×S for some S ⊆ [k]2 and compute
for each pair of vertices (u, v) with u ∈ V (Gy) and v ∈ V (Gz) the shortest u-v-path in G,
where y and z are the two children of x in T . Since the leaves of T correspond one-to-one
to single-vertex graphs, one for each vertex of G, this procedure will consider every pair of
vertices in G at some node x ∈ V (T ).

I Lemma 19. Let x ∈ V (T ) be an internal node of the k-expression tree T marked with ×S
for some S ⊆ [k]2. Let y and z be the two children of x and let u ∈ V (Gy) and v ∈ V (Gz).
Then distG(u, v) = mini∈[k]

{
dxu,i,z + azv,i

}
.

Running time. First, we need to transform the clique-width k-expression into a NLC-width
k-expression tree T , which can be done in linear time O(n+m) [15].

In the first traversal, we compute for every node x ∈ V (T ) the values axv,i for v ∈ V (Gx)
and i ∈ [k]. Thus, we compute at most n · k values, each in time O(k), which results in
a running time of O(nk2) per node of T . In the case of a node x with label ×S for some
S ⊆ [k]2 we first compute the auxiliary graph Hx in time O(|V (H)|+ |E(H)|) = O(k2) and
solve (edge-weighted) all-pairs shortest paths on Hx in time O(k3). After this, by using
Corollary 13 resp. Corollary 14, we compute each cxi,j in constant time resp. each axv,i in time
O(k) resulting in a running time per node x ∈ V (T ) of O(k3 + k2 · n).
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In the second phase we perform a top-down traversal of T to compute the for each node
x the values dxv,i,y and dxv,i,z for all v ∈ Gx and i ∈ [k]. Again, we compute at most n · k
values, each in time O(k), which results in a running time of O(nk2) per node of T . Since
there are O(n) nodes in the k-expression tree T , the total running time for Phase One and
Phase Two is O(nk3 + n2k2) = O(n2k2).

In the last phase, we consider each pair (u, v) of vertices exactly once and compute each
pairwise distance in time O(k). Thus, running time for the last phase is O(n2k). In total,
we obtain the claimed bound of O(k2n2).

4 Conclusion

We started the study of vertex-weighted all-pairs shortest paths in the FPT in
P framework and obtained efficient parameterized algorithms with respect to clique-width
and modular-width. The algorithm parameterized by modular-width is adaptive, i.e., even
if the parameter reaches its upper bound of n, the algorithm is not worse than the best
unparameterized algorithm, and even for k ∈ O(n1−ε) for any ε > 0, it outperforms the best
unparameterized algorithm. The algorithm parameterized by the stronger parameter clique-
width is truly subcubic if cw ∈ O(n0.5−ε) for any ε > 0. It also permits us to solve diameter
in the same time O(cw2 n2), complementing the lower bound ruling out O(2o(cw) · n2−ε) for
any ε > 0, due to Coudert et al. [4]. The algorithms only apply to the vertex-weighted
case. Note also that the algorithm relative to clique-width assume to be given a suitable
expression or decomposition, whereas the modular decomposition of a graph, and hence its
modular-width, can be computed in linear time [24].

As mentioned in [16], considering edge-weighted graphs with (low) clique-width resp.
low modular-width is hopeless, as one could modify an arbitrary input graph by adding all
the missing edges with sufficiently large weights. Clearly, the shortest path lengths do not
change, but the resulting graph is a clique and has constant clique-width and modular-width.

Apart from considering other parameters, one interesting open question is whether there
is an adaptive algorithm for all-pairs shortest paths parameterized by clique-width,
e.g., can the running time be reduced to O(cwn2)? This seems quite challenging, since even
computing some variant of all-pairs shortest paths for each node in the expression tree
(on a graph with cw many nodes) results in a non-adaptive running time.
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