209 research outputs found

    Compact Deep Neural Networks for Computationally Efficient Gesture Classification From Electromyography Signals

    Get PDF
    Machine learning classifiers using surface electromyography are important for human-machine interfacing and device control. Conventional classifiers such as support vector machines (SVMs) use manually extracted features based on e.g. wavelets. These features tend to be fixed and non-person specific, which is a key limitation due to high person-to-person variability of myography signals. Deep neural networks, by contrast, can automatically extract person specific features - an important advantage. However, deep neural networks typically have the drawback of large numbers of parameters, requiring large training data sets and powerful hardware not suited to embedded systems. This paper solves these problems by introducing a compact deep neural network architecture that is much smaller than existing counterparts. The performance of the compact deep net is benchmarked against an SVM and compared to other contemporary architectures across 10 human subjects, comparing Myo and Delsys Trigno electrode sets. The accuracy of the compact deep net was found to be 84.2 +/- 0.06% versus 70.5 +/- 0.07% for the SVM on the Myo, and 80.3+/- 0.07% versus 67.8 +/- 0.09% for the Delsys system, demonstrating the superior effectiveness of the proposed compact network, which had just 5,889 parameters - orders of magnitude less than some contemporary alternatives in this domain while maintaining better performance

    Machine Learning for Hand Gesture Classification from Surface Electromyography Signals

    Get PDF
    Classifying hand gestures from Surface Electromyography (sEMG) is a process which has applications in human-machine interaction, rehabilitation and prosthetic control. Reduction in the cost and increase in the availability of necessary hardware over recent years has made sEMG a more viable solution for hand gesture classification. The research challenge is the development of processes to robustly and accurately predict the current gesture based on incoming sEMG data. This thesis presents a set of methods, techniques and designs that improve upon evaluation of, and performance on, the classification problem as a whole. These are brought together to set a new baseline for the potential classification. Evaluation is improved by careful choice of metrics and design of cross-validation techniques that account for data bias caused by common experimental techniques. A landmark study is re-evaluated with these improved techniques, and it is shown that data augmentation can be used to significantly improve upon the performance using conventional classification methods. A novel neural network architecture and supporting improvements are presented that further improve performance and is refined such that the network can achieve similar performance with many fewer parameters than competing designs. Supporting techniques such as subject adaptation and smoothing algorithms are then explored to improve overall performance and also provide more nuanced trade-offs with various aspects of performance, such as incurred latency and prediction smoothness. A new study is presented which compares the performance potential of medical grade electrodes and a low-cost commercial alternative showing that for a modest-sized gesture set, they can compete. The data is also used to explore data labelling in experimental design and to evaluate the numerous aspects of performance that must be traded off

    Deep Learning for Processing Electromyographic Signals: a Taxonomy-based Survey

    Get PDF
    Deep Learning (DL) has been recently employed to build smart systems that perform incredibly well in a wide range of tasks, such as image recognition, machine translation, and self-driving cars. In several fields the considerable improvement in the computing hardware and the increasing need for big data analytics has boosted DL work. In recent years physiological signal processing has strongly benefited from deep learning. In general, there is an exponential increase in the number of studies concerning the processing of electromyographic (EMG) signals using DL methods. This phenomenon is mostly explained by the current limitation of myoelectric controlled prostheses as well as the recent release of large EMG recording datasets, e.g. Ninapro. Such a growing trend has inspired us to seek and review recent papers focusing on processing EMG signals using DL methods. Referring to the Scopus database, a systematic literature search of papers published between January 2014 and March 2019 was carried out, and sixty-five papers were chosen for review after a full text analysis. The bibliometric research revealed that the reviewed papers can be grouped in four main categories according to the final application of the EMG signal analysis: Hand Gesture Classification, Speech and Emotion Classification, Sleep Stage Classification and Other Applications. The review process also confirmed the increasing trend in terms of published papers, the number of papers published in 2018 is indeed four times the amount of papers published the year before. As expected, most of the analyzed papers (≈60 %) concern the identification of hand gestures, thus supporting our hypothesis. Finally, it is worth reporting that the convolutional neural network (CNN) is the most used topology among the several involved DL architectures, in fact, the sixty percent approximately of the reviewed articles consider a CNN

    sEMG-based hand gesture recognition with deep learning

    Get PDF
    Hand gesture recognition based on surface electromyographic (sEMG) signals is a promising approach for the development of Human-Machine Interfaces (HMIs) with a natural control, such as intuitive robot interfaces or poly-articulated prostheses. However, real-world applications are limited by reliability problems due to motion artifacts, postural and temporal variability, and sensor re-positioning. This master thesis is the first application of deep learning on the Unibo-INAIL dataset, the first public sEMG dataset exploring the variability between subjects, sessions and arm postures, by collecting data over 8 sessions of each of 7 able-bodied subjects executing 6 hand gestures in 4 arm postures. In the most recent studies, the variability is addressed with training strategies based on training set composition, which improve inter-posture and inter-day generalization of classical (i.e. non-deep) machine learning classifiers, among which the RBF-kernel SVM yields the highest accuracy. The deep architecture realized in this work is a 1d-CNN implemented in Pytorch, inspired by a 2d-CNN reported to perform well on other public benchmark databases. On this 1d-CNN, various training strategies based on training set composition were implemented and tested. Multi-session training proves to yield higher inter-session validation accuracies than single-session training. Two-posture training proves to be the best postural training (proving the benefit of training on more than one posture), and yields 81.2% inter-posture test accuracy. Five-day training proves to be the best multi-day training, and yields 75.9% inter-day test accuracy. All results are close to the baseline. Moreover, the results of multi-day trainings highlight the phenomenon of user adaptation, indicating that training should also prioritize recent data. Though not better than the baseline, the achieved classification accuracies rightfully place the 1d-CNN among the candidates for further research

    A temporal-to-spatial neural network for classification of hand movements from electromyography data

    Get PDF
    Deep convolutional neural networks (CNNs) are appealing for the purpose of classification of hand movements from surface electromyography (sEMG) data because they have the ability to perform automated person-specific feature extraction from raw data. In this paper, we make the novel contribution of proposing and evaluating a design for the early processing layers in the deep CNN for multichannel sEMG. Specifically, we propose a novel temporal-to-spatial (TtS) CNN architecture, where the first layer performs convolution separately on each sEMG channel to extract temporal features. This is motivated by the idea that sEMG signals in each channel are mediated by one or a small subset of muscles, whose temporal activation patterns are associated with the signature features of a gesture. The temporal layer captures these signature features for each channel separately, which are then spatially mixed in successive layers to recognise a specific gesture. A practical advantage is that this approach also makes the CNN simple to design for different sample rates. We use NinaPro database 1 (27 subjects and 52 movements + rest), sampled at 100 Hz, and database 2 (40 subjects and 40 movements + rest), sampled at 2 kHz, to evaluate our proposed CNN design. We benchmark against a feature-based support vector machine (SVM) classifier, two CNNs from the literature, and an additional standard design of CNN. We find that our novel TtS CNN design achieves 66.6% per-class accuracy on database 1, and 67.8% on database 2, and that the TtS CNN outperforms all other compared classifiers using a statistical hypothesis test at the 2% significance level

    A myoelectric digital twin for fast and realistic modelling in deep learning

    Get PDF
    Muscle electrophysiology has emerged as a powerful tool to drive human machine interfaces, with many new recent applications outside the traditional clinical domains, such as robotics and virtual reality. However, more sophisticated, functional, and robust decoding algorithms are required to meet the fine control requirements of these applications. Deep learning has shown high potential in meeting these demands, but requires a large amount of high-quality annotated data, which is expensive and time-consuming to acquire. Data augmentation using simulations, a strategy applied in other deep learning applications, has never been attempted in electromyography due to the absence of computationally efficient models. We introduce a concept of Myoelectric Digital Twin - highly realistic and fast computational model tailored for the training of deep learning algorithms. It enables simulation of arbitrary large and perfectly annotated datasets of realistic electromyography signals, allowing new approaches to muscular signal decoding, accelerating the development of human-machine interfaces

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steer—a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden
    • …
    corecore