
This is a repository copy of A temporal-to-spatial neural network for classification of hand
movements from electromyography data.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/163602/

Version: Submitted Version

Article:

Hartwell, A., Kadirkamanathan, V. and Anderson, S.R. orcid.org/0000-0002-7452-5681
(Submitted: 2020) A temporal-to-spatial neural network for classification of hand
movements from electromyography data. arXiv. (Submitted)

© 2020 The Author(s). For reuse permissions, please contact the Author(s).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A temporal-to-spatial deep convolutional
neural network for classification of hand
movements from multichannel
electromyography data

Adam Hartwell1,*, Visakan Kadirkamanathan1, Sean R.

Anderson1,

1 Department of Automatic Control and Systems Engineering,

University of Sheffield, Sheffield, S1 3JD, United Kingdom

* a.hartwell@sheffield.ac.uk

ABSTRACT

Deep convolutional neural networks (CNNs) are appealing

for the purpose of classification of hand movements from

surface electromyography (sEMG) data because they have the

ability to perform automated person-specific feature extraction

from raw data. In this paper, we make the novel contribution

of proposing and evaluating a design for the early processing

layers in the deep CNN for multichannel sEMG. Specifically,

we propose a novel temporal-to-spatial (TtS) CNN architecture,

where the first layer performs convolution separately on each

sEMG channel to extract temporal features. This is motivated

by the idea that sEMG signals in each channel are mediated by

one or a small subset of muscles, whose temporal activation

patterns are associated with the signature features of a gesture.

The temporal layer captures these signature features for each

channel separately, which are then spatially mixed in successive

layers to recognise a specific gesture. A practical advantage is

that this approach also makes the CNN simple to design for

different sample rates. We use NinaPro database 1 (27 subjects

and 52 movements + rest), sampled at 100 Hz, and database

2 (40 subjects and 40 movements + rest), sampled at 2 kHz,

to evaluate our proposed CNN design. We benchmark against

a feature-based support vector machine (SVM) classifier, two

CNNs from the literature, and an additional standard design of

CNN. We find that our novel TtS CNN design achieves 66.6%

per-class accuracy on database 1, and 67.8% on database 2, and

that the TtS CNN outperforms all other compared classifiers

using a statistical hypothesis test at the 2% significance level.

I. INTRODUCTION

Machine learning is an essential tool for extracting user

intention for control of devices. For hand movement recognition

[1], this can be done using bioelectric signals [2], [3], ultrasound

[4], cameras [5] or motion capture using smart gloves [6].

Hand movement classification from surface electromyography

(sEMG) has been performed using various methods, such

as linear discriminant analysis [7], support vector machines

(SVMs) [8]–[10], neural networks [8], [9], [11], neurofuzzy

[12], [13] and mixtures of experts [14]. These conventional

classifiers have mostly been applied to small numbers of

movement classes: e.g. 5-7 movements [9], [12], [13], [15]–[19]

or 9-12 movements [20]–[24]. Typically, for these conventional

classifiers, feature extraction is performed using fixed features

e.g. wavelets or Fourier transforms [25], [26]. This approach to

feature extraction is difficult and limited because the features

have to be carefully engineered by domain experts and are not

person-specific.

Deep convolutional neural networks (CNNs) [27] have the

potential to improve and simplify sEMG classifier systems,

due to their ability to perform automated person-specific

feature extraction from raw data inputs. Previous work has

already shown some potential for CNNs in this domain:

an early study in comparison to support vector machines

(SVMs) has demonstrated that CNNs can be competitive

although not necessarily outperform feature-based classifiers

[28]; subsequent studies have shown that CNNs can outperform

SVMs in the context of re-calibration [29] and regression

for motor control [30]; research on classifying sEMG signals

from instantaneous measurements has shown promise for low-

latency systems [31]; experiments across multiple days have

shown improvements in CNNs compared to linear discriminant

analysis [32]. However, no particular CNN designs stand-out

as optimal for sEMG classifiers, and there are no particular

guidelines that a user can follow, and so optimal CNN design

for sEMG is still an open question and one that requires study.

The focus of this paper is the design of a novel CNN

architecture where the lowest layers of the network perform

convolution only along the temporal direction of each separate

sEMG channel in order to extract temporal features. This is

motivated by the idea that sEMG signals in each channel are

mediated by one or a small subset of muscles, whose temporal

activation patterns are associated with the signature features

of a gesture. The temporal CNN layer captures these signature

features for each channel separately, which are then spatially

mixed in successive CNN layers to recognise a specific gesture.

We label this CNN design a Temporal-to-Spatial CNN (TtS

CNN).

The TtS CNN has some similarity to the wide and successful

use of temporal feature extraction from multi-channel sEMG

in conventional feature-based classifiers, e.g. using Fourier

and wavelet transforms, which operate on each sEMG channel

separately [33]. A practical advantage of the TtS CNN is that

the network architecture can be easily re-designed for different

input data sizes, caused by differences in sampling rate or

window length between sEMG classifier systems. The low-

level temporal convolutions are also combined here for the first

time with a modified version of the compression techniques

used in SqueezeNet - a technique that tends to reduce network

size for a given performance level [34].

To evaluate the TtS CNN we use NinaPro databases 1 and 2

[35]–[37], which are an open-source collection of sEMG data

associated with many hand movements, where in database 1

there are 27 subjects performing 53 movements (52 + rest), and

in database 2 there are 40 subjects performing 41 movements

(40 + rest). Ninapro database 1 consists of multi-channel sEMG

sampled at 100 Hz, whilst Ninapro database 2 is sampled at 2

kHz. These databases are ideal for demonstrating the advantage

of the temporal convolution layer in our proposed CNN design

1/11

ar
X

iv
:2

00
7.

10
87

9v
1

 [
ee

ss
.S

P]
 1

6
Ju

l 2
02

0

in comparison to other CNNs, when having to re-design the

CNN for different sample rates.

We compare and benchmark the TtS CNN design against the

CNNs from Atzori et al [28], Geng et al [31], [38] and our own

generic CNN design (without the temporal convolution layer).

We also compare to a feature-based classification method in the

form of a Support Vector Machine (SVM) using the following

features: marginal Discrete Wavelet Transform [39], Mean

Absolute Value (MAV) [40] and Waveform Length (WL) [40].

We use robust validation methods (stratified multi-split cross-

validation) to evaluate the performance of each classifier and a

per-class method of measuring accuracy that is resistant to bias

caused by data imbalance - the macro-average accuracy [41],

[42]. We also perform a statistical comparison of classifiers

based on a specialist method for multiple data sets (because

each classifier is trained separately on each human subject) [43],

in order to demonstrate a significant performance improvement

over the comparison classifiers.

II. METHODOLOGY

A. Standard Convolutional Neural Network Design

In this section we give a brief overview and background

on CNN design. All specific details are for the networks we

designed; reproduction of previous works used implementation

specifics defined in their respective papers.

The input to our classifiers is a window of sEMG data,

X ∈ R
ns×nc , where ns is the number of samples and nc the

number of sEMG channels. The main building block of CNNs

is the convolutional layer, where a 2D convolution is a single

2D map, indexed by k, in layer l, is Z(l,k) ∈ R
rl×cl , where

Z0,1 = X . At each layer there is a stack of dl maps, i.e. a 3D

volume of dimension rl × cl × dl. The value of a unit, z
(l,k)
r,c ,

at location (r, c), in the map Z(l,k), is given by

z(l,k)r,c = ha









dl−1
∑

m=1

Rl
∑

i=1

Cl
∑

j=1

w
(l,k,m)
i,j z

(l−1,m)
r̃+i,c̃+j



+ b(l,k)





(1)

where z
(l,k)
r,c is the neuron output at location (r, c), for

r = 1, . . . , rl, c = 1, . . . , cl, Rl × Cl is the convolution filter

size, the convolution filter indexed by k, for k = 1, . . . , dl,

is composed of the adjustable CNN weights w
(l,k,m)
i,j , b(l,k)

is a bias term, and r̃ = r − ⌈Rl/2⌉ and c̃ = c − ⌈Cl/2⌉ for

odd valued Rl and Cl. ha(.) is the activation function of the

neuron, defined here, for all but the final layer of each network,

as the leaky rectified linear unit (LReLU) [44], [45], where

ha(x) =

{

x, x ≥ 0

αx, x < 0
(2)

where 0 < α < 1.

The final layer, which performs the classification, is a dense

layer with a softmax activation function in each case, which

is defined as

z∗j = exp
(

z̃
(l)
j

)

×

(

M−1
∑

k=0

exp
(

z̃
(l)
k

)

)−1

(3)

for class j = 1, . . . ,M −1, where M is the number of classes,

z∗j is the normalised output of the softmax layer for class j
and

z̃(l)r =





dl−1
∑

m=1

rl−1
∑

j=1

cl−1
∑

i=1

w
(l,m)
i,j z

(l−1,m)
i,j



+ b(l,r) (4)

for r = 1, . . . ,M − 1.

The network weights were trained using the cross-entropy

loss function, for N data samples and M classes,

L(Θ) = −

N
∑

i=1

M−1
∑

j=0

1{y(i) = j} log z∗ij (5)

where Θ is the set of all CNN parameters, including weights

and biases from all layers, z∗ij is the softmax output for data

sample i and prediction of class j, y(i) is the true class label

for data sample i, 1{.} is the indicator function, i.e. 1{.} = 1
for true and 1{.} = 0 for false. The weight parameters were

randomly initialised using the Glorot uniform kernel [46], and

bias parameters were initialised to zero.

During training a class weighting prior was also used to aid

training based on the frequency of examples in the training set

γj = 1 + log2
nmax

nj
(6)

where γj is the weighting of movement j, nmax is the number

of examples of the most represented movement and nj is the

number of examples of movement j.
We implemented our work in Python primarily using Keras

[47] with Tensorflow [48] except for re-implementation of the

Geng et al network [31] which was re-implemented in MXNet

[49]. Training was performed using an NVIDIA Tesla K40

GPU with 12 GB RAM.

Decisions about hyper-parameters were made based on a

rapid-prototyping approach that evaluated potential modifica-

tions on a small subset of the data consisting of one validation

fold of three subjects worth of data. The subjects and validation

split were generated randomly for each different parameter that

was worked on.

The selection for hyper-parameters to test was driven by best

practice for CNNs in other domains, sEMG domain knowledge

and informed by previous prototyping results.

B. Temporal-to-Spatial Network Design

Tables I and II show our main network designs for the two

databases. Fig 1 shows a graphical representation.

The key contributions of this paper lie in these network

designs which encode domain knowledge into the network

architecture. We shall call the network which incorporates all

of the points below, the Temporal-to-Spatial (TtS) network

based on how its architecture manipulates data flow.

The convolutional layers (marked “Conv (Temporal)” and

“Temporal Fire” in the tables) allow rapid non-linear expansion

of input data and learning of complex low level features which

we constrain in the lower layers to the temporal direction by

using filters of size N × 1 which perform convolution on only

a single channel of sEMG data. This specifically encodes that

2/11

TABLE I. Breakdown of TtS network architecture for database 1. Channels last format.
Layer Type Output Size # Filters Filter Size Stride Activation # Params

Input EMG 15x10x1

Gaussian Noise 15x10x1 α = 0.001
Conv (Temporal) 15x10x64 64 3x1 1x1 LReLU 256

Temporal Fire 15x10x128 (32, 64, 64) (1x1, 1x1, 3x1) 1x1 LReLU 10,400

Conv (Spatial) 15x10x32 32 3x10 1x1 LReLU 122,912

Dropout 4,800 rate = 0.5

Dense 128 128 LReLU 614,528

Dropout 128 rate = 0.5

Dense 53 53 Softmax 6,837

Total 754,933

TABLE II. Breakdown of TtS network architecture for database 2. Channels last format.
Layer Type Output Size # Filters Filter Size Stride Activation # Params

Input EMG 300x12x1

Gaussian Noise 300x12x1 α = 0.001
Conv (Temporal) 12x12x64 64 50x1 25x1 LReLU 3,264

Temporal Fire 12x12x128 (32, 64, 64) (1x1, 1x1, 3x1) 1x1 LReLU 10,400

Conv (Spatial) 12x12x32 32 3x12 1x1 LReLU 147,488

Dropout 4,608 rate = 0.5

Dense 128 128 LReLU 589,952

Dropout 128 rate = 0.5

Dense 41 41 Softmax 5,289

Total 756,393

Fig 1. Graphical representation of the TtS network. Brackets

show number of filters followed by filter size. The X or Y on

filter sizes shows the size for database 1 and database 2

respectively.

we expect useful low level features to be temporal in nature

i.e. not calculated across channels. This has shown to be the

case with the majority of hand designed features which are

calculated on a per-channel basis rather than across all channels

[26], [33], [50].

By enforcing the temporal constraint we greatly increase

the likelihood of learning useful, generalisable features. Then

by using large numbers of early filters we ensure complex

expansions are possible that can tailor the temporal feature

extraction to a specific subject. For instance this may be likened

to selection of the best wavelet for a set of subjects when

using the Discrete Wavelet Transform (DWT) as a hand crafted

feature except we may now automatically tailor that to a specific

subject and not be constrained by a pool of wavelets to select

from.

We also augment the Fire Module described in SqueezeNet

[34]. The Fire Module consists of a 1x1 convolution whose

output is fed to another 1x1 convolution and a 3x3 convolution

which are then concatenated together to form the output.

The aim of this design was model compression: allowing a

network with far fewer parameters to compete with much larger

networks in terms of performance. We reverse that idea here

and modify the Fire Module to include temporal enforcement

in order to boost performance. The key insight is that the Fire

Module learns inter-filter connections i.e. connections between

different features. Combinations of features have been shown

to improve performance in traditional classification solutions

to sEMG classification [51] and thus by encoding specifically

that these are likely to be important we can further enhance

performance

To enforce temporal features we modify the 3x3 convolution

in the Fire Module to be a 3x1 and rename it a “Temporal

Fire Module” for clarity.

This temporal first approach is diametrically opposite to

Atzori et al [28] and Geng et al [31], [38] who both explicitly

perform spatial convolution first in their networks.

The final convolutional layer (marked “Spatial” in the tables)

is the only convolution that allows inter-channel features.

Intuitively, in a similar way to low level temporal feature

enforcement, this layer encodes the idea that high level features

will relate to combinations across channels e.g. patterns of

channel activation relate to specific kinds of movements.

The Gaussian noise layer helps prevent overfitting by intro-

ducing noise to incoming training samples. The α parameter

was selected based on Atzori et al’s [28] work.

Another key contribution, seen in the TtS and Baseline

CNN designs, is adaption to different input sizes caused either

by different window lengths or sampling frequencies. This is

illustrated here in the implementation differences of the TtS

network between databases 1 and 2 caused by the 20x higher

sampling frequency in database 2 (Tables I and II). The key

insight is that the first convolution can be expanded along the

temporal direction to cover a similar span of time and the

stride increased to also cover a similar time increment through

the window. This approach drastically reduces the necessary

3/11

parameters, compared to a direct conversion by updating the

input shape, while still maintaining performance.

For training we used the Adam algorithm [52] with a learning

rate of 0.001, β1 = 0.9 and β2 = 0.999. From our prototyping

we found that 10 epochs was a sufficient training length for

all cases except the baseline CNN on database 2 which only

required 5.These choices as well as the other architectural

and hyper-parameter choices not mentioned explicitly were

identified by a combination of random search and manual

tuning [27] cross validated using the training data from 10

randomly selected subjects from the main benchmark to ensure

informational separation.

C. Baseline CNN Design

Table III shows an alternative network architecture we

implemented to demonstrate performance against a more

generic architecture that does not have the Temporal-to-Spatial

feature enforcement. It also serves to show how early temporal

enforcement helps guide network learning as although it is

possible for the network to learn temporal features in this design

adding temporal enforcement still improves performance. This

architecture was also configured to have a similar number of

total parameters to our other implementations to help maintain

comparability, although on database 2 there is ∼ 20% increase

in total parameters. We call this network the Baseline CNN.

Table IV shows another example of how it is possible to

manipulate a network to cover the same time period in the first

convolution on database 2 as on database 1 by multiplying

the temporal dimension of the filter size by the difference in

sampling period (20x) and compensating for this size increase

by increasing the stride in the temporal dimension by the same

factor. As in our TtS design this allows us to limit the extra

parameters added while maintaining performance.

The increase in size along spatial dimensions in the later

convolutional filters is necessary to account for increased

number of channels in database 2.

D. Feature Based Classification (SVM)

We implemented a Support Vector Machine (SVM) as a

baseline for comparison to feature based classification on our

robust methodology. The SVM used a Radial Basis Function

Kernel (RBF) and three different features: the marginal Discrete

Wavelet Transform (mDWT) [39], Mean Absolute Value (MAV)

[40] and Waveform Length (WL) [40].

The mDWT for a channel is described as

xmdwt =

N/2s−1
∑

τ=0

∣

∣

∣

∣

∣

N
∑

n=1

xnψl,τ (t)

∣

∣

∣

∣

∣

(7)

for s = 1...S, where S is the maximum level of decomposition

(3 levels were used), ψ is the mother wavelet (sym4 here based

on [8]), l is a translation and τ is a dilation, xn is the signal

value at sample n and N is the length of the signal.

The MAV is described as

xmav =
1

N

N
∑

n=1

|xn| (8)

The WL is described as

xwl =

N−1
∑

n=1

|xn+1 − xn| (9)

SVM feature data was independently normalised after

extraction using training set data, class weighting was used

based on frequency in the training set (see Equation 6) and

one-vs-all multi-classing was used.

E. Data Preprocessing

The open source NinaPro databases 1 and 2 were utilised

here [36], [37], [53].

Database 1 contains labelled data from 27 human subjects,

performing 10 repetitions of 52 hand movements. The subjects

rested between each repetition and so rest is treated as an

additional movement, leading to 53 movements in total (where

rest vastly outnumbers all other movements, leading to an

imbalanced classification problem). The corresponding sEMG

signals were recorded with a 10 channel Otto Bock system,

sampled at 100 Hz. This low sampling frequency is due to the

root mean square filtering of the Otto Bock electrodes, which

shifts the frequency spectrum to 0-5 Hz [8] from the relevant

range for sEMG of 20-500 Hz [54]. An sEMG signal window

of length 150 ms, with 10 ms increment, was used as input to

the classifiers. At the sample rate of 100 Hz, this corresponded

to windows of 15 samples, with an increment of 1 sample.

Database 2 contains labelled data from 40 human subjects,

performing 6 repetitions of 40 hand movements, with rest

treated as an additional movement, so 41 movements in total.

The corresponding sEMG signals were recorded with a 12

channel Delsys system, sampled at 2000 Hz. Database 2 also

includes 9 finger-based force pattern exercises that we do not

consider here. An sEMG signal window of length 150 ms,

with 10 ms increment, was used as input to the classifiers. At

the sample rate of 2000 Hz, this corresponded to windows of

300 samples, with an increment of 20 samples.

The data set for an individual subject from either database

comprises sEMG input data and corresponding hand movement

class labels,

D =
{(

X(1), y(1)
)

, . . . ,
(

X(N), y(N)
)}

(10)

where D is the data set for a given subject, the matrix X(j) ∈
R

ns×nc is a window of sEMG data, with number of samples

ns and number of channels nc, N is the number of data pairs,

and y(j) is the corresponding movement label/class,

y(j) ∈ M = {0, . . . ,M − 1} for j = 1, . . . , N (11)

where M is the total number of movements.

We used a sliding window method to segment data in

both databases with a window length of 150ms and window

increment of 10ms. The window length of 150ms was chosen

to help ensure classification can occur within an acceptable

latency [55] and to allow some comparison with the work of

Geng et al [31], [38] and Atzori et al [28].

The sliding window method is illustrated in Fig 2. An

important issue with this method is that overlapping windows

4/11

TABLE III. Baseline CNN architecture for database 1. Channels last format.
Layer Type Output Size # Filters Filter Size Stride Activation # Params

Input EMG 15x10x1

Gaussian Noise 15x10x1 α = 0.001
Conv 15x10x128 128 3x3 1x1 LReLU 1,280

Conv 15x10x64 64 5x3 1x1 LReLU 122,944

Conv 15x10x32 32 5x3 1x1 LReLU 30,752

Dropout 4,800 rate = 0.5

Dense 128 128 LReLU 614,528

Dropout 128 rate = 0.5

Dense 53 53 Softmax 6,837

Total 776,341

TABLE IV. Baseline CNN architecture for database 2. Channels last format.
Layer Type Output Size # Filters Filter Size Stride Activation # Params

Input EMG 300x12x1

Gaussian Noise 300x12x1 α = 0.001
Conv 15x12x128 128 60x3 20x1 LReLU 23,168

Conv 15x12x64 64 5x3 1x1 LReLU 122,944

Conv 15x12x32 32 5x3 1x1 LReLU 30,752

Dropout 4,800 rate = 0.5

Dense 128 128 LReLU 737,408

Dropout 128 rate = 0.5

Dense 53 53 Softmax 5,289

Total 919,561

Fig 2. Illustration of sliding window method for an example

window length of 4 samples and increment of 1 showing

overlap in information between nearby windows.

share information which makes it necessary to use an alternative

to random selection when dividing into training and testing

sets, see Section II-F.

In the original data all instances of the rest class are labelled

as being part of an additional repetition 0 however due to the

need to split via repetition number (and to keep inline with

previous work [8], [28]) we labelled half the rest data before

and after each non-rest movement as belonging to the repetition

of that movement up to a maximum of 10 seconds of rest data

on either side. To avoid information sharing between windows

in different repetitions a gap the size of the window length is

also enforced between successive repetitions.

The data is first compiled into a single stream by concate-

nating the data from each exercise then the windowing starts

at the first sample and is slid across the entire data stream (in

the increments previously described) with labels for repetition

and movement class taken from the most recent sample. The

relabelling of rest repetitions prevents the discontinuity between

exercises being used in training/testing since the data is split

into sets based on repetition number and the remaining windows

labelled with repetition 0 are ignored.

All data was independently normalised to zero-mean and

standard deviation one using training set data for each validation

fold.

F. Per Sample Accuracy versus Per Class Accuracy

We use two main performance metrics in this paper. The first

is a per sample metric that weights samples equally when taking

the average performance, termed the micro-average accuracy

[41], which is commonly used elsewhere but is sensitive to class

imbalance and so not recommended here. The micro-average is

reported only because it has been used elsewhere. The second

metric is a per class metric that weights classes equally when

taking the average performance, termed the macro-average

accuracy [41], which is not sensitive to class imbalance. Area

Under Curve metrics are not used since they are not well

defined for the multi-class case [41].

The micro-average accuracy is defined as

Accmicro =

∑M
i=1 TPi

∑M
i=1 (TPi + FNi)

(12)

where TPi (True Positives) is the number of correct classifica-

tions for movement i, FNi (False Negatives) is the number of

instances of movement i that are predicted to be a different

movement and M is the number of movement classes.

Macro-average accuracy is then defined as

Accmacro =
1

M

M
∑

i=1

(

TPi

TPi + FNi

)

(13)

where the average is taken over the M classes equally weighted.

G. Cross-Validation

The major two studies on these databases we compare

against [28], [31], [38] use a single training-test split in their

evaluations specifically repetitions [2, 5, 7] were used for testing

and repetitions [1, 3, 4, 6, 8, 9, 10] training on database 1 and

repetitions [2, 5] for testing with [1, 3, 4, 6] for training on

database 2. Using only a single split in this way negatively

impacts the utility of results as a single split can bias results

making them unrepresentative of true expected performance.

Therefore we use a stratified cross-validation procedure across

multiple splits to achieve a more representative result.

5/11

TABLE V. Training and Testing Sets for Multi Split Cross

Validation. Each number refers to a movement repetition (for

10 total repetitions in database 1 and 6 repetition in database

2).

Database 1 Database 2

Split Training Testing Training Testing

1 [1, 3, 4, 6, 8, 9, 10] [2, 5, 7] [1, 3, 4, 6] [2, 5]

2 [1, 2, 3, 5, 7, 9, 10] [4, 6, 8] [1, 4, 5, 6] [2, 3]

3 [1, 2, 4, 6, 7, 8, 10] [3, 5, 9] [1, 2, 3, 5] [4, 6]

4 [1, 2, 5, 6, 8, 9, 10] [3, 4, 7] [1, 2, 4, 6] [3, 5]

5 [2, 3, 4, 6, 8, 9, 10] [1, 5, 7] [2, 3, 4, 5] [1, 6]

6 [1, 2, 3, 4, 5, 7, 9] [6, 8, 10] [2, 3, 5, 6] [1, 4]

7 [3, 5, 6, 7, 8, 9, 10] [1, 2, 4]

8 [1, 2, 4, 5, 7, 8, 9] [3, 6, 10]

9 [3, 4, 5, 6, 7, 8, 10] [1, 2, 9]

10 [1, 2, 3, 4, 5, 6, 7] [8, 9, 10]

Table V shows the splits used here on the two databases:

these splits ensure ∼ 70% of the data is used for training and

∼ 30% for testing (validation) on any single split, for both

databases. Selection was also stratified to ensure each repetition

was equally represented in the training and test sets to prevent

bias due to differences in repetitions.

Regarding cross-validation using repetition splits; due to the

usage of a sliding window with overlap, the random selection of

windows as typically used in k-fold cross validation would be

an inappropriate way to divide into training and test sets. This is

because adjacent windows share the majority of their data (see

Fig 2), thus violating the assumption of independence between

training and testing sets. Therefore splitting by repetition

number instead ensures proper separation.

Finally we use Forman et al’s method to report the final

accuracies across validation folds [56]. This method helps

eliminate bias caused by differences in validation folds and is

described for the micro-average accuracy as:

Acc∗micro =

∑M
i=1

∑K
j=1 TPi,j

∑M
i=1

∑K
j=1 (TPi,j + FNi,j)

(14)

where K is the number of cross-validation folds, TP i,j is the

number of correct predictions of movement i for validation

fold j and FN i,j is the number of instances of movement i
that are predicted to be a different movement for validation

fold j.
For macro-average accuracy the equation becomes:

Acc∗macro =
1

M

M
∑

i=1

(

∑K
j=1 TPi,j

∑K
j=1 TPi,j +

∑K
j=1 FNi,j

)

(15)

The final performance for a given classifier, under both

metrics, is calculated as the inter subject mean and standard

deviation of the current metrics in order to capture the

variability between different subjects.

H. Reproduction of Previous Studies

In order to provide a benchmark comparison to the literature

directly, we re-implement the networks presented by Atzori et

al [28] and Geng et al [31], [38].

When re-implementing Geng et al’s network we utilised

their available code [38], [57] and retested using their own

methodology to ensure correctness. We found a < 1%
difference in performance between our implementations which

may be caused by differences in supporting software/hardware

and random number seeding which was not set explicitly in

their implementation. When running this network with our

validation procedures we used majority voting over each of

the windows to determine the final predicted output as used

in their study.

The key differences in methodology between our work and

Geng et al’s [31], [38] are that Geng et al omit the rest class

from consideration, compare performance based on micro-

average accuracy, validate on a single split and only classify 8

finger force exercises on database 2 rather than the 41 hand

movements that we classify.

For the Atzori et al network [28] we re-implement their

network based on their description. In their paper several

parameters were unspecified, including convolution stride and

padding, therefore we tested a small pool of potential parame-

ters and used the best performing among them. Specifically

we assumed padding was used to maintain shape (as in our

networks), both pooling layers used stride equal to their size

(3x3), Block 3’s convolutional layer used a stride of 5x5 and

Block 4 used a stride of 9x1 on database 2. These parameters

allowed all the specified parameters to remain the same while

accounting for shape changes necessary for operation.

Our validation methods are similar to Atzori et al with the

major differences being our use of multiple splits in validation

(versus their single split) and choice of performance metrics.

In Atzori et al [28] an earlier paper was referenced as the

methodological base [8]: this earlier paper uses the micro-

average accuracy as its metric without data balancing however

it is stated in [28] that the data was balanced by repetition

number. This removes the large skew towards rest however

does not take account of the difference between other classes

which on this data causes some classes to be weighted as up

to 2x more important than other classes (section II-F) leading

to bias in the result.

The other main difference between our work and both these

studies is that we do not perform the additional preprocessing

step of zero-phase low-pass filtering. We chose to omit this

as it is not possible perform true zero-phase filtering in online

contexts which is a primary use-case for sEMG classification

methods making it an inappropriate method to use when

benchmarking.

I. Statistical Comparison of Classifiers

Accepted best practice for statistical testing of multiple

classifiers over multiple data sets is well defined by Dems̆ar

[43]. Here each subject is a different data set since each

classifier is trained independently on each subject. In order

to demonstrate that our TtS design significantly improves

over other classifiers we take the approach recommended by

Dems̆ar [43], of using the Friedman test [58], with Iman and

Davenport’s improved statistic [59], to establish that the pool of

classifiers under investigation show different performances and

6/11

Fig 3. Experimental process flowchart.

then the post-hoc Holm Procedure [60], to confirm that the TtS

network improves upon each other classifier. We performed

the Holm Procedure separately on each Ninapro database and

use 2% as our significance level.

The Holm Procedure first calculates the p value for each

pair of interest (TtS classifier vs another classifier) based

upon the average performance rank calculated by the Friedman

test. These p values are then sorted in ascending order (most

significant value first). Then the procedure operates in a step

down fashion, at the first step the significance level α is

reduced by α/(k − 1) where k is the number of classifiers

being investigated (here k = 5) to account for the number of

comparisons that may occur. If p < α then the null hypothesis

is rejected and we are allowed to compare to the next most

significant p value with α/(k− 2) and this process is repeated

up to k − 1 times. If any null hypothesis cannot be rejected

then the process is stopped and all remaining null hypotheses

are kept as well.

The full experimental process, from data to statistical

analysis, is illustrated in Fig 3.

III. RESULTS

Our proposed Temporal-to-Spatial (TtS) CNN was compared

to our re-implementations of two published CNNs by Geng

et al. [31] and Atzori et al. [28], as well as a feature-based

classifier, an SVM with RBF kernel, and a baseline CNN of our

own design with no TtS structure. The results are summarised

in Table VI, which show that the TtS network outperformed all

other classifiers on both Ninapro databases 1 and 2 in terms of

macro-average accuracy (which is a measure of performance

that equally weights all classes). The results are given as the

inter-subject mean and standard deviation to show expected

performance on a new subject. Results are ordered by the

mean macro-average accuracy since it is more representative

of expected performance on this data (see Section IV-A).

Following Dems̆ar [43] we used the Friedman test [58]

(see Section II-I) to confirm rejection of the null hypothesis

that all classifiers performed the same (p < 1x10−31 for

both databases). We then used the recommended post-hoc

Holm Procedure [60], which confirmed that our TtS network

performed significantly better than each other classifier on both

databases at the 2% significance level.

Fig 4 supplements the table demonstrating the relative

performance of the TtS network against its competitors for each

subject to highlight its consistent performance enhancement.

Micro-average is also reported in Table VI, despite being

an imbalanced metric that is unrepresentative of performance

across classes, to allow comparison with previous work which

uses the metric. Our results are consistent with previous

findings with the micro-average accuracy being similar to the

results of Geng et al [31], [38] and Atzori et al [28] for their

respective networks. The differences found here are due to our

more robust validation procedure which uses stratification and

multiple splits to account for bias from different splits. We

also note that our SVM implementation performs better than

TABLE VI. Summary of classifier accuracies using our

re-implementations on our methodology. *Repetition 1

removed from test set without retraining.
Database 1

Classifier
Per Class Acc. (%) Per Sample Acc. (%)
Mean Std. Mean Std.

Atzori et al [28] 51.4 4.8 71.0 4.6

Geng et al [31], [38] 58.9 5.7 79.9 3.6

SVM 60.4 5.4 77.8 4.1

Baseline CNN 65.0 5.1 77.1 4.7

TtS 66.6 5.1 77.5 4.5

TtS* 69.3 5.4 78.0 4.6

Database 2

Classifier
Per Class Acc. (%) Per Sample Acc. (%)
Mean Std. Mean Std.

Geng et al [31], [38] 24.5 6.3 58.2 8.3

Atzori et al [28] 50.3 5.9 61.3 8.1

Baseline CNN 57.0 6.2 64.8 8.3

SVM 60.5 6.3 71.2 6.8

TtS 67.8 5.7 69.5 7.8

TtS* 70.6 6.1 70.9 7.6

Atzori et al’s network under micro-average accuracy which is

consistent with their results [28].

We also tested the networks for computational feasibility. On

a high end computer equipped with an NVIDIA GTX1080Ti

GPU, AMD Ryzen 1700 CPU and DDR4-2933MHz RAM all

networks took, on average, 1-4 ms to perform a forward pass

on a single data point.

IV. DISCUSSION

A. Representative Performance Evaluation

One of the most important factors in comparing performance

is the metric used. The performance metric in many related

studies is either not directly specified, or is the micro-average

accuracy [15], [16], [20], [28], [31], [38]. However it is

known that the micro-average accuracy is sensitive to class

imbalance which means its usage on imbalanced data will

lead to unrepresentative results [41] particular when classifying

EMG data [42]. In the databases under investigation the data

is highly imbalanced with there being many more examples of

rest than any other class and some non-rest classes having over

twice as many examples as other non-rest classes. Therefore

using the micro-average accuracy on this data leads to a skewed,

unrepresentative result with some classes being weighted much

more than others based, effectively on how long they took

to perform since longer movements lead to more data on the

class.

The issue is most egregious when contrasting rest and non-

rest classes as for most subjects there is more data on the

rest classes than all other classes combined. This makes the

micro-average accuracy effectively a measure of performance

on the rest class since over 50% of the variance of the micro-

average accuracy is dictated by performance on rest class. Fig

5 demonstrates how this leads to an unrepresentative metric

on this data in particular; the micro-average accuracy reports

a performance higher than the performance of any class other

than rest.

The macro-average accuracy alleviates the issue of skewed

results due to the aforementioned class imbalance by weighting

7/11

Fig 4. Per subject comparison of performance between the TtS network and its competitors, where each dot represents

classifier performance on a single human subject. The results demonstrate that for almost any given subject on either database

the TtS network outperforms all the other tested classifiers. The only exception is the SVM on database 1 which outperforms

the TtS on 8 of the 27 subjects.

Fig 5. Accuracy of individual movement classes compared to

the overall micro-average and macro-average accuracy for

Geng et al’s classifier [31] on database 2 evaluated using our

methodology. The lines indicate the large difference between

reported performance under the micro-average and

macro-average metrics.

performance on each class equally rather than based on the

number of examples in the test set (which is unlikely to be

representative of any particular application). Therefore the

macro-average accuracy is recommended as the default metric

for comparison of performance for the classification of hand

movements from sEMG since it is robust to the issue of class

imbalance and better represents the overall performance of a

classifier particularly as the number of classes increases.

Note as a final point that confusion matrices are often used

to analyse classification results [61]. However, in this case the

large number of classes in database 1 (53 classes) and database

2 (41 classes) makes visualisation of the confusion matrices

not particularly effective and so has been avoided here.

B. Comparison to Alternative Classification Methods

To compare to alternative classification methods we re-

implemented deep CNNs from Geng et al. [31] and Atzori et

al. [28], and an SVM feature-based classifier similar to that

used in [8]. To summarise, we found that our TtS network

outperformed all of these methods in terms of macro-average

accuracy (66.6% database 1, 67.8% database 2, Table VI) and

that this performance improvement was also confirmed by

statistical hypothesis testing, at the 2% significance level (see

Results).

Compared to our re-implementation of the Geng et al net-

work [31], the TtS network improved on database 1 windowed

classification performance by ∼ 7.7% macro-average accuracy,

while maintaining a slightly lower standard deviation between

subjects. On database 2 the performance of their network

decreased significantly to 24.5% (15.4% in instantaneous

mode) which is likely because the network does not account for

the 20x higher sampling frequency leading to 20x denser data.

A smaller, although still significant, drop off also occurred in

terms of micro-average accuracy.

The paper by Geng et al [31] also reported performance

over each movement trial, that is: majority voting over all

segments known to be from the same movement. We found

that, in this setup, their network achieved 87.0% macro-average

accuracy on database 1 and 20.1% on database 2, whilst the

TtS network achieved 92.9% on database 1 and 95.0% on

database 2. We suggest this trial based performance measure,

however, is impractical since it is likely to induce significant

latency as movements can last up to 5000 ms which is likely to

push the classification latency above the ∼ 200 ms maximum

acceptable control delay latency [55]. Further, in a practical

context this would require a strong prior on when a subject

begins and end a movement of interest which is not generally

8/11

available.

Compared to our re-implementation of Atzori et al’s [28]

CNN, the TtS network improved on database 1 classifica-

tion performance by ∼ 15.2% macro-average accuracy and

∼ 17.5% on database 2.

The feature-based classifier, an SVM with RBF kernel,

achieved a macro-average accuracy on database 1 of 60.4%
and 60.5% on database 2. On database 2 it was the second

top performer behind our TtS network. The consistency of the

SVM is likely due to the feature extraction methods effectively

reducing the data in both databases to a similar feature space,

combined with leveraging of the SVM’s ability to construct

an optimal hyper-plane to divide the space.

We suggest the improvement of the TtS design over the

other CNN methods is due to the reason that the EMG data

in each channel are mediated by one or a small subset of

muscles, whose temporal activation patterns are associated

with the signature features of a gesture. The temporal layer

captures these signature features for each channel separately.

Once these signature features for each channel are captured they

are spatially mixed to recognise a specific gesture. This is the

key design difference that allowed us to produce the significant

performance improvement demonstrated in this paper.

C. Computational complexity

Deep CNNs can be computationally intensive to implement.

The computational complexity of a convolutional layer is

O(ninorlclRlCl), where ni is the number of input feature

maps, no is the number of output feature maps, rl × cl is the

feature map size, and Rl × Cl is the size of the convolution

filter [62]. In practice, the computation time is limited by the

number of cores in the GPU used for implementation (as well

as other factors such as memory bandwidth).

We found here that on a high performance workstation GPU,

an NVIDIA Geforce 1080Ti, the computation time was on

the order of 1-4 ms to process a single forward pass through

the TtS network, which is likely to be sufficient for real-

time implementation. Of more relevance to embedded systems,

CNNs of a similar design have been implemented by the authors

in [63], on an NVIDIA Jetson Tx2 (embedded system), with

times of around 20 ms for a single forward pass that can be

reduced to ∼ 8 ms using network compression. This suggests

that deep CNNs can be implemented currently at usable sample

rates in both modern computational settings and embedded

systems.

D. Effect of First Repetition

During analysis we found that, on average, the first repetition

of each movement each subject performed had a lower

classification rate than the later repetitions of the movement

(Fig. 6). The magnitude of this effect is shown in Table IV

which shows ∼ 3% performance improvement when repetition

1 is not considered in testing, dropping other repetitions leads to

a much smaller effect on the reported performance. We suggest

that this is likely an artefact of the experimental procedure:

the first, or first few times a subject performs a movement or

after having performed another movement there is a higher

Fig 6. Performance by repetition of the TtS network on the

two databases demonstrating a distinct performance reduction

in the first repetition for both databases.

likelihood of error. This is backed up by the observation from

Fig 6 that the first repetition is noticeably worse than the

others.

To a lesser degree the later repetitions on database 1 also

show a decline in performance. This is unlikely to be from

muscle fatigue (due to the limited number of repetitions [64])

but may be caused by preemption of the video stimuli or

inattention causing non-optimal replication of the movement.

Alternatively this may be explained by user adaptation during

periods of consistent training, an effect that would be amplified

by classifier-feedback technology if it is used.

V. CONCLUSION

We have developed a novel deep CNN, with a Temporal-to-

Spatial (TtS) architecture, for hand movement classification

from surface EMG signals. The TtS architecture constrains

early convolutions to only expand along the temporal dimension

which enforces learning of temporal features (rather than cross-

channel spatial features) as the basis of classification. We

also introduce the Temporal Fire Module which is based on

the SqueezeNet architecture which improves performance for

a minimal cost in number of parameters. Lastly our design

includes a simple solution to account for vastly different

sampling frequencies or changes in window length in different

sEMG data sets which requires minimal architectural changes

while maintaining performance. Cross-validation and statistical

comparison of classifiers demonstrated that the proposed TtS

network outperformed previous CNN designs and a feature-

based classifier, an SVM with RBF kernel. These results

suggest that the TtS network design is particularly effective

for EMG based hand gesture classification.

A. Future Work

While we demonstrate significant improvements over previ-

ous work, our best macro-average accuracy across subjects is

70.6%, which indicates that classification of 40+ movements is

not necessarily practical. Therefore, a primary avenue for future

research is further improvements to either the classification

9/11

approach or data acquisition methods in order to improve

overall performance.

During data acquisition, careful choice of electrode size and

position can help improve performance [65]. Sub-selection

of movements on a person-specific basis from a larger set

of movements like the NinaPro Databases can help improve

performance when not all movements need to be classified

simultaneously [66]. Similarly, sensor fusion methods could

also be used to improve CNN performance, incorporating other

sensor data along with the sEMG such as accelerometers [67],

[68], inertial measurement units [69], [70] and/or near-infrared

spectroscopy [71].

Part of the deployment procedure could incorporate classifier-

feedback user training regimes [72] which may also improve

performance without the need for changes in the CNN or data

acquisition strategy.

Alternatively, extension of these network architectures to

other facets of the muscle-computer interface problem, such

as force-related prosthetic control [73], could lead to improve-

ments in the performance of interface devices.

REFERENCES

1. Mitra S, Acharya T. Gesture recognition: A survey. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews).
2007;37(3):311–324.

2. Asghari Oskoei M, Hu H. Myoelectric control systems-A sur-
vey. Biomedical Signal Processing and Control. 2007;2(4):275–294.
doi:10.1016/j.bspc.2007.07.009.

3. Farina D, Jiang N, Rehbaum H, Holobar A, Graimann B, Dietl H, et al.
The extraction of neural information from the surface EMG for the
control of upper-limb prostheses: emerging avenues and challenges.
IEEE Transactions on Neural Systems and Rehabilitation Engineering.
2014;22(4):797–809.

4. Huang Y, Yang X, Li Y, Zhou D, He K, Liu H. Ultrasound-based sensing
models for finger motion classification. IEEE Journal of Biomedical
and Health Informatics. 2017;22(5):1395–1405.

5. Patsadu O, Nukoolkit C, Watanapa B. Human gesture recognition using
Kinect camera. In: 2012 ninth international conference on computer
science and software engineering (JCSSE). IEEE; 2012. p. 28–32.

6. Ju Z, Liu H, Zhu X, Xiong Y. Dynamic grasp recognition using
time clustering, Gaussian mixture models and hidden Markov models.
Advanced Robotics. 2009;23(10):1359–1371.

7. Duan F, Ren X, Yang Y. A gesture recognition system based on time
domain features and linear discriminant analysis. IEEE Transactions
on Cognitive and Developmental Systems. 2018;.

8. Atzori M, Gijsberts A, Kuzborskij I, Elsig S, Mittaz Hager AG,
Deriaz O, et al. Characterization of a Benchmark Database
for Myoelectric Movement Classification. IEEE Transactions on
Neural Systems and Rehabilitation Engineering. 2015;23(1):73–83.
doi:10.1109/TNSRE.2014.2328495.

9. Castellini C, Van Der Smagt P. Surface EMG in advanced hand
prosthetics. Biological Cybernetics. 2009;100(1):35–47.

10. Quitadamo LR, Cavrini F, Sbernini L, Riillo F, Bianchi L, Seri S, et al.
Support vector machines to detect physiological patterns for EEG and
EMG-based human-computer interaction: a review. Journal of Neural
Engineering. 2017;14(1):11001.

11. Duan F, Dai L, Chang W, Chen Z, Zhu C, Li W. sEMG-based
identification of hand motion commands using wavelet neural network
combined with discrete wavelet transform. IEEE Transactions on
Industrial Electronics. 2016;63(3):1923–1934.

12. Balbinot A, Favieiro G. A neuro-fuzzy system for characterization of
arm movements. Sensors. 2013;13(2):2613–2630.

13. Khezri M, Jahed M. A neuro-fuzzy inference system for sEMG-
based identification of hand motion commands. IEEE Transactions on
Industrial Electronics. 2011;58(5):1952–1960.

14. Baldacchino T, Jacobs WR, Anderson SR, Worden K, Rowson J.
Simultaneous Force Regression and Movement Classification of Fingers
via Surface EMG within a Unified Bayesian Framework. Frontiers in
Bioengineering and Biotechnology. 2018;6:13.

15. Shin S, Tafreshi R, Langari R. A performance comparison of hand
motion EMG classification. In: Proceedings of the 2nd Middle East
Conference on Biomedical Engineering. IEEE; 2014. p. 353–356.

16. Khushaba RN, Al-Jumaily A, Al-Ani A. Evolutionary fuzzy discrimi-
nant analysis feature projection technique in myoelectric control. Pattern
Recognition Letters. 2009;30(7):699–707.

17. Khezri M, Jahed M. Real-time intelligent pattern recognition algorithm
for surface EMG signals. Biomedical Engineering Online. 2007;6(1):1.

18. Huang Y, Englehart KB, Hudgins B, Chan ADC. A Gaussian mixture
model based classification scheme for myoelectric control of powered
upper limb prostheses. IEEE Transactions on Biomedical Engineering.
2005;52(11):1801–1811.

19. Lucas MF, Gaufriau A, Pascual S, Doncarli C, Farina D. Multi-channel
surface EMG classification using support vector machines and signal-
based wavelet optimization. Biomedical Signal Processing and Control.
2008;3(2):169–174. doi:10.1016/j.bspc.2007.09.002.

20. Ju Z, Ouyang G, Wilamowska-Korsak M, Liu H. Surface EMG based
hand manipulation identification via nonlinear feature extraction and
classification. IEEE Sensors Journal. 2013;13(9):3302–3311.

21. Khushaba RN, Al-Jumaily A. Fuzzy wavelet packet based feature
extraction method for multifunction myoelectric control. International
Journal of Biological and Medical Sciences. 2007;2(3):186–194.

22. Tenore FVG, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R,
Thakor NV. Decoding of individuated finger movements using surface
electromyography. IEEE Transactions on Biomedical Engineering.
2009;56(5):1427–1434.

23. Zhou R, Liu X, Li G. Myoelectric signal feature performance in
classifying motion classes in transradial amputees. In: Proceedings
of the Congress of the International Society of Electrophysiology and
Kinesiology; 2010. p. 16–19.

24. Ortiz-Catalan MJ, Brånemark R, Håkansson B. Biologically inspired
algorithms applied to prosthetic control. In: BioMed 2012; 2012. p.
764.

25. Canal MR. Comparison of wavelet and short time Fourier transform
methods in the analysis of EMG signals. Journal of Medical Systems.
2010;34(1):91–94.

26. Reaz MBI, Hussain MS, Mohd-Yasin F. Techniques of EMG
signal analysis: detection, processing, classification and applications.
Biological Procedures Online. 2006;8(1):11–35.

27. LeCun Y, Bengio Y, Hinton G, Y L, Y B, G H. Deep learning. Nature.
2015;521(7553):436–444. doi:10.1038/nature14539.

28. Atzori M, Cognolato M, Müller H. Deep learning with convolutional
neural networks applied to electromyography data: A resource for
the classification of movements for prosthetic hands. Frontiers in
Neurorobotics. 2016;10(SEP):1–10. doi:10.3389/fnbot.2016.00009.

29. Zhai X, Jelfs B, Chan RHM, Tin C. Self-recalibrating surface EMG
pattern recognition for neuroprosthesis control based on convolutional
neural network. Frontiers in Neuroscience. 2017;11:379.

30. Ameri A, Akhaee MA, Scheme E, Englehart K. Regression convolu-
tional neural network for improved simultaneous EMG control. Journal
of Neural Engineering. 2019;16(3):36015.

31. Geng W, Du Y, Jin W, Wei W, Hu Y, Li J. Gesture Recognition by
Instantaneous Surface EMG Images. Scientific Reports. 2016;6:36571.

32. Zia-ur Rehman M, Waris A, Gilani S, Jochumsen M, Niazi I, Jamil M,
et al. Multiday EMG-Based Classification of Hand Motions with Deep
Learning Techniques. Sensors. 2018;18(8):2497.

33. Phinyomark A, Quaine F, Charbonnier S, Serviere C, Tarpin-Bernard
F, Laurillau Y. EMG feature evaluation for improving myoelectric
pattern recognition robustness. Expert Systems with Applications.
2013;40(12):4832–4840. doi:10.1016/j.eswa.2013.02.023.

34. Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K.
SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and
<1MB Model Size. arXiv:160207360. 2016;doi:10.1007/978-3-319-
24553-9.

35. Atzori M, Gijsberts A, Heynen S, Hager AgM, Deriaz O, Van Der
Smagt P, et al. Building the NINAPRO Database : A Resource for the
Biorobotics Community. Biomedical Robotics and Biomechatronics.
2012; p. 1258 – 1265.

36. Atzori M, Gijsberts A, Castellini C, Caputo B, Hager AGM,
Elsig S, et al. Electromyography data for non-invasive
naturally-controlled robotic hand prostheses. Scientific Data.
2014;doi:10.1038/sdata.2014.53.

37. NinaPro Project. Ninapro Database Website; 2015. Available from:
http://ninapro.hevs.ch/.

38. Du Y, Jin W, Wei W, Hu Y, Geng W. Surface EMG-based inter-session
gesture recognition enhanced by deep domain adaptation. Sensors.
2017;17(3):458.

10/11

http://ninapro.hevs.ch/

39. Lucas MF, Gaufriau A, Pascual S, Doncarli C, Farina D. Multi-channel
surface EMG classification using support vector machines and signal-
based wavelet optimization. Biomedical Signal Processing and Control.
2008;3(2):169–174.

40. Hudgins B, Parker P, Robert N. A New Strategy for Multifunction
Myoelectric Control. IEEE Transactions on Biomedical Engineering.
1993;40(1):82–94.

41. Sokolova M, Lapalme G. A systematic analysis of performance mea-
sures for classification tasks. Information Processing and Management.
2009;45(4):427–437. doi:10.1016/j.ipm.2009.03.002.

42. Ortiz-Catalan M, Rouhani F, Brånemark R, Håkansson B. Offline
accuracy: a potentially misleading metric in myoelectric pattern
recognition for prosthetic control. In: Proceedings of the 37th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society. IEEE; 2015. p. 1140–1143.

43. Demšar J. Statistical Comparisons of Classifiers over Multiple
Data Sets. Journal of Machine Learning Research. 2006;7:1–30.
doi:10.1016/j.jecp.2010.03.005.

44. Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve
neural network acoustic models. In: Proceedings of the International
Conference on Machine Learning. vol. 30; 2013.

45. Xu B, Wang N, Chen T, Li M. Empirical evaluation of rectified
activations in convolutional network. arXiv:150500853. 2015;.

46. Glorot X, Bengio Y. Understanding the difficulty of training deep
feedforward neural networks. Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics. 2010;9:249–256.
doi:10.1.1.207.2059.

47. F Chollet and others. Keras; 2015. Available from: https://github.com/
fchollet/keras.

48. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow:
A System for Large-Scale Machine Learning. In: OSDI. vol. 16; 2016.
p. 265–283.

49. Chen T, Li M, Li Y, Lin M, Wang N, Wang M, et al. Mxnet: A flexible
and efficient machine learning library for heterogeneous distributed
systems. arXiv:151201274. 2015;.

50. Scheme E, Englehart K. On the robustness of EMG features for pattern
recognition based myoelectric control; a multi-dataset comparison. In:
Proceedings of the 36th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE; 2014. p. 650–653.

51. Pizzolato S, Tagliapietra L, Cognolato M, Reggiani M, Müller H, Atzori
M. Comparison of six electromyography acquisition setups on hand
movement classification tasks. PLOS ONE. 2017;12(10):e0186132.

52. Kingma DP, Ba JL. Adam: a Method for Stochastic Optimization.
International Conference on Learning Representations. 2015; p. 1–15.

53. Gijsberts A, Atzori M, Castellini C, Müller H, Caputo B. Move-
ment Error Rate for Evaluation of Machine Learning Methods for
sEMG-Based Hand Movement Classification. IEEE Transactions on
Neural Systems and Rehabilitation Engineering. 2014;22(4):735–744.
doi:10.1109/TNSRE.2014.2303394.

54. De Luca CJ. The use of surface electromyography in biomechanics.
Journal of Applied Biomechanics. 1997;13:135–163. doi:citeulike-
article-id:2515246.

55. Farrell TR, Weir RF. The optimal controller delay for myoelectric
prostheses. IEEE Transactions on Neural Systems and Rehabilitation
Engineering. 2007;15(1):111–118.

56. Forman G, Scholz M. Apples-to-apples in cross-validation stud-
ies. ACM SIGKDD Explorations Newsletter. 2010;12(1):49.
doi:10.1145/1882471.1882479.

57. Geng W, Du Y, Jin W, Wei W, Hu Y, Li J. Gesture Recognition by
Instantaneous Surface EMG Images [code]; 2016. Available from:
http://zju-capg.org/myo/.

58. Friedman M. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American Statistical
Association. 1937;32(200):675–701.

59. Iman RL, Davenport JM. Approximations of the critical region of the
fbietkan statistic. Communications in Statistics-Theory and Methods.
1980;9(6):571–595.

60. Holm S. A simple sequentially rejective multiple test procedure.
Scandinavian Journal of Statistics. 1979; p. 65–70.

61. Yang Y, Duan F, Ren J, Xue J, Lv Y, Zhu C, et al. Performance
Comparison of Gestures Recognition System Based on Different
Classifiers. IEEE Transactions on Cognitive and Developmental
Systems. 2020; p. 1–10, in press.

62. Cong J, Xiao B. Minimizing computation in convolutional neural
networks. In: International Conference on Artificial Neural Networks.
Springer; 2014. p. 281–290.

63. Hartwell A, Kadirkamanathan V, Anderson SR. Compact Deep Neural
Networks for Computationally Efficient Gesture Classification From
Electromyography Signals. In: Proceedings of the 7th IEEE RAS/EMBS
International Conference on Biomedical Robotics and Biomechatronics;
2018. p. 891–896.

64. Farrell TR. A comparison of the effects of electrode implantation and
targeting on pattern classification accuracy for prosthesis control. IEEE
Transactions on Biomedical Engineering. 2008;55(9):2198–2211.

65. Young AJ, Hargrove LJ, Kuiken TA. The effects of electrode size and
orientation on the sensitivity of myoelectric pattern recognition systems
to electrode shift. IEEE Transactions on Biomedical Engineering.
2011;58(9):2537–2544.

66. Hartwell A, Kadirkamanathan V, Anderson SR. Person-Specific Gesture
Set Selection for Optimised Movement Classification from EMG Signals.
In: Proceedings of the 38th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society; 2016. p. 880–883.

67. Zhang X, Chen X, Li Y, Lantz V, Wang K, Yang J. A framework for
hand gesture recognition based on accelerometer and EMG sensors.
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans. 2011;41(6):1064–1076.

68. Lu Z, Chen X, Li Q, Zhang X, Zhou P. A hand gesture recognition
framework and wearable gesture-based interaction prototype for mobile
devices. IEEE transactions on human-machine systems. 2014;44(2):293–
299.

69. Jiang S, Lv B, Sheng X, Zhang C, Wang H, Shull PB. Development
of a real-time hand gesture recognition wristband based on sEMG and
IMU sensing. In: Robotics and Biomimetics (ROBIO), 2016 IEEE
International Conference on. IEEE; 2016. p. 1256–1261.

70. Krasoulis A, Kyranou I, Erden MS, Nazarpour K, Vijayakumar S.
Improved prosthetic hand control with concurrent use of myoelectric and
inertial measurements. Journal of neuroengineering and rehabilitation.
2017;14(1):71.

71. Guo W, Sheng X, Liu H, Zhu X. Toward an Enhanced Human–Machine
Interface for Upper-Limb Prosthesis Control With Combined EMG
and NIRS Signals. IEEE Transactions on Human-Machine Systems.
2017;47(4):564–575.

72. Fang Y, Zhou D, Li K, Liu H. Interface Prostheses With Classifier-
Feedback-Based User Training. IEEE Transactions on Biomedical
Engineering. 2017;64(11):2575–2583.

73. Yang X, Yan J, Liu H. Comparative Analysis of Wearable A-
mode Ultrasound and sEMG for Muscle-Computer Interface. IEEE
Transactions on Biomedical Engineering. 2019; p. 1–9, in press.

11/11

https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://zju-capg.org/myo/

	I Introduction
	II Methodology
	II-A Standard Convolutional Neural Network Design
	II-B Temporal-to-Spatial Network Design
	II-C Baseline CNN Design
	II-D Feature Based Classification (SVM)
	II-E Data Preprocessing
	II-F Per Sample Accuracy versus Per Class Accuracy
	II-G Cross-Validation
	II-H Reproduction of Previous Studies
	II-I Statistical Comparison of Classifiers

	III Results
	IV Discussion
	IV-A Representative Performance Evaluation
	IV-B Comparison to Alternative Classification Methods
	IV-C Computational complexity
	IV-D Effect of First Repetition

	V Conclusion
	V-A Future Work

	References

