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A myoelectric digital twin for fast and
realistic modelling in deep learning

Kostiantyn Maksymenko 1 , Alexander Kenneth Clarke 2,
Irene Mendez Guerra 2, Samuel Deslauriers-Gauthier1,3 & Dario Farina 2

Muscle electrophysiology has emerged as a powerful tool to drive human
machine interfaces, with many new recent applications outside the traditional
clinical domains, such as robotics and virtual reality. However, more sophis-
ticated, functional, and robust decoding algorithms are required to meet the
fine control requirements of these applications. Deep learning has shown high
potential in meeting these demands, but requires a large amount of high-
quality annotated data, which is expensive and time-consuming to acquire.
Data augmentationusing simulations, a strategy applied inother deep learning
applications, has never been attempted in electromyography due to the
absence of computationally efficient models. We introduce a concept of
Myoelectric Digital Twin - highly realistic and fast computational model tai-
lored for the training of deep learning algorithms. It enables simulation of
arbitrary large and perfectly annotated datasets of realistic electromyography
signals, allowing new approaches to muscular signal decoding, accelerating
the development of human-machine interfaces.

Biosignals have been classically used for studying the underlying
physiology, for clinical diagnostics, and formonitoring.More recently,
they have also been used for interfacing humans with external devices.
For example, signals measured at the surface of the skin from skeletal
muscle electrical activity, i.e. surface electromyography (sEMG), are
used for the control of bionic limbs1. In this application, the recorded
electrical signals are converted intomotion commands using machine
learning2–4. In recent years, with the development of deep-learning-
based methods as well as wearable and cost-effective recording devi-
ces, there has been increased interest in using muscular signals as a
basis for human-machine interfaces5,6. The potential applications go
well beyond the traditional clinical domains of prostheses and ortho-
ses and range from robotic control to gaming and virtual reality7.

To be useful in real-world applications, particularly for the mass
market, EMG-based muscle-computer interfaces need to be highly
intuitive and functional. They alsoneed towork for the vastmajority of
subjects with little or no user-specific calibration, regardless of their
anatomy and physiology. Traditional machine learning techniques
might work well for the relatively simple task of hand gesture

classification, but they require training on a specific subject and
potential regular recalibrations1,7. This is a major bottleneck for mass
market applications, where obtaining subject-specific data is not pos-
sible. Deep learning methods could tackle these problems8, but large,
annotated, and high-quality datasets are required. To consider deep
learning, training data needs to be recorded for different subjects, at
different times, with high variability in electrode configurations and
experimental paradigms. In addition, it is challenging and in some
cases impossible to properly describe the underlying physiological or
neural parameters (e.g. individual muscle forces, fibre physiological
parameters, motor neuron impulse timings), which are crucial for the
correct annotation of data samples. As a result, acquiring experimental
EMG data in sufficient quantity and quality is not only expensive and
time-consuming, but in many cases not possible.

Data augmentation via simulation is an alternative approach to
lengthy data acquisitions, and indeed, augmentation techniques have
been recently introduced for electrophysiological signals9–12. However,
most of these augmentationmethods use black-boxmodels, which aim
to capture essential features of the signal without relating them to the
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underlying physiology13. Thus, the ground truth for most of the crucial
parameters is still unknown, greatly limiting the potential use cases of
such approaches. More sophisticated biophysical modelling methods
are basedon solving so-called forward equations (e.g., Poisson equation
in the electrostatics case). However, this type of biophysical modelling
has not been considered in the context of data augmentation for
machine learning approaches. Indeed, state-of-the-artmodels are either
not sufficiently realistic or not computationally efficient to produce
suitable training data. For example, in the case of describing the gen-
erationof EMGsignals, analyticalmodels basedon simple geometries of
the tissues14–18 provide simulations that reflect the broad characteristics
of the signals, but cannot be used to reproduce specific experimental
conditions due to the overly simplified anatomy. The more realistic
models of EMG generation based on numerical solutions of the Poisson
equation with generic volume conductor shapes19,20 are currently lim-
ited by their prohibitive computational time.

Here, we describe an EMG simulation method, based on the
numerical solutionof the forwardequations suitable for deep learning
data augmentation. It produces highly realistic EMG recordings, pro-
vides access to all underlying physiological parameters, and is sig-
nificantly more computationally efficient, compared to the state-of-
the-art methods. Although, there is no benchmark to evaluate and
compare the exact performance of different simulation methods, our
model takes minutes (or even seconds) to perform simulations that
take hourswith the state-of-the-artmethods20,21. We achieved this gain
in computational efficiency not by simply optimizing the code or
using parallel computing, but by exploiting the mathematical and
structural properties of the model and reformulating them theoreti-
cally. Our results show that it is possible to simulate EMG signals for
anatomically accurate conductor geometries and multiple muscles
with tens of thousands of muscle fibres in a few seconds. This realistic
and fast model allows, for the first time, the generation of synthetic
EMG data in sufficient quantity and quality to train deep learning
algorithms. Figure 1a illustrates a general pipeline of using the Myo-
electric Digital Twin to train EMG processing AI. At the training stage,
the user can define a high variety of simulation parameters. The
software generates a corresponding EMG dataset coupled with all the
metadata that can potentially be used for annotation. The annotated
data is then used to train a specific AI. This trained AI can then be used
toprocess real EMGmeasurements and translate it into commands for
real-world applications.

Note, that our model and the proposed pipeline are quite general
and do not depend on a specific neural network architecture or the
final application. As a concrete example, Fig. 1a shows an AI which is
trained to reconstruct individual muscle forces from an EMG signal. In
this case, the exact muscle forces provided as input to the simulation
are used to annotate the simulated data. Notice that training such an
algorithm with experimental EMG data would be impossible, because
the ground truth of exact muscle forces is unavailable in real mea-
surements. Once trained on synthetic data, the AI can be used on real
subjectswithout calibrationorfine-tuning.When apersonmakes some
complexhandmovements, the corresponding EMGsignal is processed
by the AI and the muscle activations are reconstructed in real time.
This information can then be used to interfaces with different devices
with high precision and complexity of the gestures.

This particular application is just an example. The same approach
can be used for different tasks: categorical gesture classification,
denoising, fatigue detection, and so on. Our approach is also agnostic
to the exact neural network architecture. As an application scenario
and a proof of concept, in this work, we demonstrate the use of this
model for data augmentation by pre-training neural networks that
decompose EMG into the underlying neural activity sent from the
spinal cord to muscles22.

Note, that because large EMG dataset simulation was not possible
before, the effect of using this data for AI training is not yet well

studied. It includes all the potential advantages of using synthetic EMG
data, as well as potential biases that it can introduce to the training.
Our tool, however, opens doors for new research topics in this domain.

Our model is the only realistic and computationally efficient
simulator targeted to AI training and approaching the concept of a
Myoelectric Digital Twin. It allows generating arbitrary large datasets
of realistic and personalized EMGsignals, with high data variability and
with aperfect annotationofdiversehiddenparameters. As a result, our
model may allow breakthrough approaches in AI-based EMG signal
processing and decoding.

Results
Software structure and user interface
Our Myoelectric Digital Twin is a cloud-based software with a Python
API which allows users a simple yet flexible way to define various
simulation parameters and to control the simulation pipeline. User can
define subject’s anatomy (by providing surfaces of themuscles, bones,
fat and skin), different tissue conductivities, the electrode configura-
tion (electrode locations, sizes, shapes), individual fibre properties
(location of neuromuscular junctions, tendon lengths, action potential
propagation velocities), motor unit and recruitment model para-
meters, as well as the activations of each muscle, etc.

Our software is not limited to individual muscle activations.
Instead, it allows users to define arbitrary activation (% of MVC as a
function of time) for each muscle of the model (e.g. a forearm) simul-
taneously. The corresponding EMG signal is a superposition of con-
tributions of each individual muscle. Figure 1b shows a schematic
representation of the user’s input, main simulation modules and their
interaction. Each step of the simulation pipeline depends on the output
of thepreviousmodule andona specific subsetof the inputparameters.
This architecture, dictated by the mathematical properties of the
model, allows efficient management of pre-computed data (i.e. chan-
ging fibre properties does not require recomputing the forward solver).
Moreover, users canprovide their owndata as an input for eachmodule
instead of using automated tools of our software, if necessary
(see Supplementary Movie for a video example of a simulation script).

Biophysics
To allow the efficient simulation of a large quantity of highly realistic
EMG recordings, we have developed a novel approach to solve the
forward problem of the volume conductor in electrostatic conditions.
Our approach is based on a hierarchical and flexible decomposition of
the EMG simulation pipeline, which allows the reuse and optimisation
of individual steps.

In this section, we give a general overview of the model and
advantages that it provides. Thedetails and allmathematical equations
related to the model development are described in the ‘Methods’.

First, a realistic anatomy, described by bone, muscle, skin, and
electrode surfaces, is discretized into a tetrahedral volume mesh. A
conductivity tensor, anisotropic for muscles and isotropic elsewhere,
is associated with each tetrahedral of the volume. Unlike the state-of-
the-art approaches, which solve the quasi-static Maxwell’s equations
for each fibre source and for each time instant, we solve them for a set
of unit point sources located at each vertex of the mesh associated
with themuscle tetrahedra, which are referred to as basis sources. This
computation does not depend on the time variable, nor on the fibres
and motor unit geometry and their physiological properties. There-
fore, changing these parameters does not require recomputing the
forward solutions.

Moreover, due to a rewriting of the equations involved using the
so-called adjoint method, the solution is obtained by solving as many
systems of equations as there are electrodes, rather than basis sources.
Because the number of electrodes (≈102) is typically much lower than
the number of basis sources (≈105), computational performance is
substantially improved.
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Second, using the same muscle surfaces used to describe the
volume conductor, individual fibre geometries can be automatically
generated, if this data is not available from other sources (e.g. from
diffusion magnetic resonance imaging). Moreover, the fibres are
grouped into motor units (MUs) following the state-of-the-art models
for MU physiology. This step does not depend on the forward com-
putations, and thus altering the relatedparameters and producing new
simulation is highly efficient.

Third, the current source density propagating along the fibres is
generated using a realistic intracellular action potential model. The
contribution of individual fibres to the EMG recordings is obtained by
discretizing each fibre into a set of points, integrating the current
source density along its length, and projecting onto the sensor loca-
tions using the basis points computed in the first step. This approach
effectively decouples the number of fibres and their discretization
from the conductor model, allowing the simulator to handle tens of
thousands of fibres per muscle. Again, changing the fibre parameters
(end-plate location, action potential propagation velocity, tendons

length, etc.) does not require recomputing the other blocks of the
simulation.

Fourth, given amuscle activation profile, we use the size principle
to recruit MUs and their associated fibres. This allows a simple and
easily interpretable input to the simulation that can be used to simu-
late EMG recordings associated to specific muscle contractions and
their movements.

As a result, our model is the first that allows the generation of
highly realistic and arbitrarily large (because of its computational
performance) datasets of simulated EMGsignals that canbeused forAI
training.

The simulator reproduces analytical solutions
To produce realistic EMG data, the simulator leverages a flexible
representation of the underlying anatomy and physiology. This flex-
ibility does not only allow the use of realistic and personalizedmodels,
but also permits reproducing simple conductor geometry used in
analytical solutions. We compare our numerical solution with its

Fig. 1 | Simulationpipeline. aGeneral strategy of usingMyoelectric Digital Twin to
train an artificial intelligence (AI), that then can be used to process real surface
electromyography (sEMG) signals in real-world applications. b Schematic repre-
sentation of the software’s input, main elements of the simulation pipeline and
output. User can define a large set of simulation parameters describing anatomical
and physiological properties of the tissues, geometry and montage of electrodes,

fibres geometry and their physiological properties, motor unit (MU) distribution
and their recruitment model, activation of individual muscles, etc. The main
components of the simulationpipeline aredescribed in details in ‘Methods’ section.
For a given set of the parameters, the softwareoutputs the resulting simulated EMG
data as well as all the metadata of the simulation (e.g. individual motor unit action
potentials (MUAPs)).
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analytical counterpart for a cylindrical volume conductor geometry23.
Taking into account the complexity of the model and the number of
approximations used in computing the numerical solution, it is
important to show that it reproduces the analytical solution with low
error. The normalized mean square error between the two solutions
depended on the depth of the fibre and varied between 3% (1-mm
depth from the muscle surface) and 5% (11-mm depth). Figure 2 illus-
trates the analytical and numerical solutions for a fibre depth of 1 mm
from the muscle surface. Because of the low error, the two waveforms
are almost indistinguishable. It is important to note that the two
volume conductor models in this validation are not identical. The
theoretical/analytical solution is computed for an infinitely long
cylinder (repeated periodically when discretized), while the numerical
solution uses a cylinder of a large (sufficiently longer than the fibre and
the electrode array), yet finite length. Increasing the length of the
cylinder did not significantly alter the error.

The simulator generates realistic EMG data
To evaluate the performance of the simulator at multiple scales, we
startedby simulating EMGsignals associated to a singlefibre activation
inside the brachioradialismuscle. The signal recorded by an array of 16
rectangular electrodes (15 differential channels) when a single fibre
was active is shown in Fig. 3a. The volume conductormodel is basedon
an anatomically accurate forearm geometry, which includes all the
muscles, bones, fat and skin tissues.

Different distinctive features are present in the simulated signal
that are also observed in experimental EMG signals24. In particular,
electrodes of channel 4 are located on different sides of the neuro-
muscular junction (NMJ) and thus the respective signals cancel each
other out. Channels 7–11 present propagating EMG components
resulting from the fibre action potentials (AP) propagating from the
NMJ to the tendons. Channels 2–6, as well as channels 12–15, contain
non-propagating sEMG components, which are due to the AP gen-
eration at theNMJ and its extinction at the tendon (end-of-fibre effect),
respectively.

A further example is a simulation of an excitation of a single
muscle, illustrated in Fig. 3b. A simple excitation drive for the Bra-
chioradialis muscle is simulated as gradually increasing from 0% to
100% of themaximumvoluntary contraction and smoothly decreasing
back to 0%. As described in the section ‘Computational performance’,
50,000 muscle fibres were realistically distributed into 200 motor
units over the muscle volume and recruited according to the size
principle25. The signal was simulated for 8 circular bipolar electrodes
located around the forearm. In this example, the volume conductor
effect becomes particularly visible with electrodes nearer to the active
muscle having higher signal amplitudes. Notice that the electrodes
record different signal waveforms as the muscle units are located at

varying distances from the electrodes, weighting their contribution to
the observed EMG signals. We also observe an increase of the signal
amplitude with muscle excitation, an important feature of experi-
mental EMG signals, which is a consequence of progressivemotor unit
recruitment and of an increase in the discharge rates of the active
motor units.

Finally, we simulated sEMG signals from multiple muscle excita-
tions, corresponding to the active wrist flexion and extension and
passive wrist abduction against gravity. We used a simple muscle
excitation model for three groups of muscles (flexors, extensors and
abductors). More details about the experimental design are presented
in the section ‘Details of realistic simulation examples’. Figure 3c and
Fig. 3d clearly show the qualitative similarities in signal characteristics
between experimental and simulated data. Our model was able to
reproduce the different signal patterns during both flexion and
extension. Beside the different activation across the electrodes during
flexion and extension, the effect of wrist abduction is also visible in
both datasets. Thus, channels 2, 3 and 7, 8 present a small signal
activity during the whole duration of the simulation, and not only
during flexion/extension peaks. Similar activity can also be seen in
experimental data, with channels 2 and 7 being the most active.

Figure 4a shows the comparison between the experimental and
simulated signals for hand flexion and extension using root mean
square (RMS) values per electrode. This is a pattern recognition feature
which is commonly used in EMG. Most of the simulation parameters
werefixed fordefault values, only the amplitudes ofmuscle activations
were roughly chosen to match the real measurements (without a
specific optimization). The simulated data reproduces well the RMS
properties of the experimental signals. Yet, the match is not perfect,
especially for the wrist flexion. This is, however, not surprising,
because the model was not personalized, and simulation parameters
were not optimized.

In addition to the analysis in the timedomain, simulateddatawere
compared against the experimental data in the frequency domain.
Figure 4b illustrates an example of themeasured and simulated single-
channel sEMG. It has to be noted that the spectral characteristics of a
signal strongly depends on multiple simulation parameters. In this
example, we ran several hundreds of simulations by varying the
simulation parameters in a realistic range and selected the set of
parameters leading to the minimal spectral difference. This approach,
which is a simple version of inversemodelling, was possible becauseof
the high computational speed of the simulations.

The simulator is fast
The computational performance of an EMG signal simulation depends
on the model properties and the particular experimental setup. Con-
sequently, there is no benchmark to evaluate and compare the

Fig. 2 | Comparison of the numerical and analytical solutions. a Tetrahedral mesh of the four layer cylindrical volume conductor. b Analytical23 (red) and numerical
(black) EMG signals for a differential array electrode montage. The depth of the source fibre in this example is 1 mm from the muscle surface.
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performance of different simulationmethods. The computational time
magnitude of the state-of-the-art methods is, in the best cases, in the
order of hours for a single simulation (with a fixed set of model para-
meter values, ≈50,000 fibres, 5 electrodes)20,21.

By exploiting the mathematical properties of the forward equa-
tions and the model architecture described in the previous sections,
we were able to achieve a computational performance of the order of
minutes per simulation. Because in our model, changing most of the

simulation parameters does not require recomputing thewholemodel
and reduces the computational timeof new simulations to the order of
seconds, if the volume conductor remains constant.

As a result, it becomes practically possible to simulate arbitrary
large datasets of highly realistic EMG signalswith high variability in the
simulation parameters. Details on the computational time in several
conditions are provided in Methods (section ‘Computational
performance’).
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The proposed model is also highly scalable for multiprocessing,
and the current computational time can be further reduced by several
orders of magnitude by implementing parallel computation on CPU
and GPU.

Realistic and fast EMG simulations open unique perspectives for
deep learning
Here, we show a potential use of high volumes of simulated surface
EMG data for deep learning, utilising the proposed model to generate
data which canbe used to pretrain neural networks. Thismethodology
is used in other deep learning domains, such as the use of the Ima-
geNet image database to pretrain object classifiers prior to adaptation
to specific applications26. The selected application was that of a time
series classifier, which took as an input unwhitened high-density sur-
face EMG (HD-sEMG) signals recorded from the dominant wrist of nine

participants and detected discrete MU activation events (Fig. 5a).
Participants performed an isometric contraction at a constant force of
15% of the maximal voluntary contraction, as measured by a force cell
and fed back to the user on a computer monitor. Only four seconds of
data was used to optimise each network. The objectivewas to examine
whether a neural network that was pre-trained using simulated sEMG
and then fine-tuned on individual experimental data outperformed a
neural network that used only a random initialisation, potentially
compensating for low volumes of training data.

Specifically, the myoelectric digital twin simulation (Fig. 5b) was
used to generate a large library of MUAP templates, which were then
used to pretrain a gated recurrent unit (GRU) neural network archi-
tecture. GRU-based neural networks were selected because they have
been shown to be effective at sEMG decomposition in past studies27,
but pre-training is applicable to any neural network design, such as
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convolutional neural networks. The architecture of the GRU network
was selected through grid search hyperparameter optimisation, and
consisted of a single GRU cell with a hidden dimension of 1024. This
was used to convert 130-channel HD-sEMG to a 1024-channel fea-
turised signal, of which 20 samples were taken into a densely-
connected linear layer for final prediction of MU activity for each
time step.

The network was pre-trained using 320 simulation-generated
MUAP templates. Training a classification network with an output
dimension of 320 is very unstablewhen the target data is highly sparse
and class-imbalanced, so instead a multitask framework was used. The
task of training a classifier on 320 MUAPs was subdivided into 64
individual tasks, each predicting 5 MUAPs. The value of the GRU fea-
turisation layer parameters were used and updated simultaneously for
all 64 tasks, but each task used its own final linear layer with output
dimension of 5. In this way, the GRU-layer could be pre-trained to find
an efficient featurisation, which could then be used as a starting point

for fine-tuning on the final prediction task with experimental wrist
sEMG signals (see ‘Details of deep learning experiment’ for details).

The simulation pre-trained network outperformed random initi-
alisation in decomposition accuracy when compared to the original
decomposition as measured by the rate of agreement (RoA) metric
calculated on a one second segment of data28 (Fig. 5c). The RoAmetric
efficiently incorporates false positive and false negative into a single
metric of accuracy relevant to the decomposition of discrete events in
time series data. Themedian (IQR) RoAof the pre-trained network was
93.8% (84.8 to 100.0), compared to 82.4% (71.6 to 100.0) in the random
initialisation network, with a median difference of 8.1 (Hodges-Leh-
mann estimator, 95% CI 3.4 to 13.3 using method of Walsh averages),
significant according to the two-tailed Wilcoxon signed-rank test (p =
0.00006, Z = 4.0). Of the 39 decoded motor units, 22 had improved
RoAs with pre-training and one had a worse RoA, with the remaining
16 showing no change, generally because the initial RoA was already
100% without pre-training (these are large-amplitude MUAPs that are
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simple to detect). The pre-trained network had a much lower variance
in the accuracy of predictions on the test sets than random initialisa-
tion, quickly optimising to a model effective for generalisation to new
signals.

When units were subdivided into those from female (18 units) and
male (21 units) subjects, both subsamples also showed a significant
difference. For female subjects themedian difference between trained
and random initialisation was 9.1 (Hodges-Lehmann estimator, 95% CI
0.0 to 20.3 usingmethodofWalsh averages) and significant (two-tailed
Wilcoxon signed-rank, p = 0.00694, Z = 2.7). For male subjects the
median difference between trained and random initialisation was 5.7
(Hodges-Lehmann estimator, 95% CI 1.6 to 9.7 using method of Walsh
averages) and significant (two-tailed Wilcoxon signed-rank, p =
0.00064, Z = 3.4).

Discussion
We have proposed an efficient computational approach to highly
realistic surface EMG modelling. The method provides the solution to
the generation of EMG signals from anatomically accurate volume
conductor properties and number of muscle fibres, within limited
computational time compatible with real-time signal generation. The
proposed model is the only available EMG simulator with realistic
description of the volume conductor and optimized for such compu-
tational efficiency. The main value of the model is that it opens per-
spectives for using simulated sEMG for data augmentation in the deep
learning framework, something that was never done before using
state-of-the-art simulation methods.

The computational efficiency in the volume conductor solution
has been recognized as an important component of EMG modelling,
and some attempts to decrease the computational time in EMG
simulations have been described. For example, the approaches
developed by Dimitrov and Dimitrova29 and Farina et al.23,30 sub-
stantially decreased the computational time in analytical EMG mod-
elling for simple volume conductor geometries. Thesemodels provide
simulations which reflect the broad characteristics of EMG signals, but
cannot be anatomically accurate because of the restrictions on the
volume conductor and fibre source geometry. Realistic models using
numerical solutions have also been recently proposed. The previous
most complete and efficient model has been proposed by Pereira
Botelho et al.20. These authors have used an anatomically accurate
model to simulate EMG signals generated during index finger flexion
and abduction. They gained computational speed by using the prin-
ciple of reciprocity. In fact, one part of our calculations also includes
the adjoint method, which is an algebraic representation of this prin-
ciple. By using reciprocity, Pereira Botelho et al.20 reported a compu-
tational time of 1 h for simulating the activation of nearly 15,500 fibres
for 5 electrodes. This time, however, remains impractical for simulat-
ing arbitrary large datasets for a variety of parameter values. The
model we proposed in this paper significantly surpasses the compu-
tational efficiency reported in ref. 20. We achieved it by efficiently
exploiting mathematical properties of the forward equations, in par-
ticular by introducing the concept of basis points and by separating
model parameters and variables into independent computational
blocks.Our approach does not only reduce the computational time for
a full simulation, but also allows us to scale the solution, so that new
solutions for the same volume conductor can be obtained without
recomputing the volume conductor transformation. In this way, the
generation of EMG signals within the same volume conductor, but
varying all other simulation parameters, can be performed in even
shorter time. Complex EMG signals from tens of thousands of muscle
fibres located in multiple muscles, can be generated (and regenerated
with different parameter values) in a computational time of the order
of seconds.

Some limitations remain in the current state of the presented
model. It does not include some sources of variability that are present

in experimental EMG signals and strongly impact their processing and
analysis. For example, themodel does not include advanced noise and
artefacts descriptions, biomechanical modelling of the musculoskele-
tal system, and non-stationary volume conductor properties and fibre
geometry.

Also, the automated modelling of muscle forces (or % MVC) for
specific movements is out of the scope of this work. We recognize,
however, the value of such a tool, and we see two potential ways to
approach this task. First, by integrating our myoelectrical model with
biomechanical modelling of the musculoskeletal system. This would
allow users to define a movement by the dynamics of degrees of
freedom (e.g. of a hand). Then, inverse dynamics could be used to
estimate the corresponding muscle forces and % MVC, that can be
used as an input to our current model. Another possibility is to esti-
mate individualmuscle activity from real EMGdata. This would require
an inverse problem solving algorithm. As a matter of fact, our Myo-
electric Digital Twin is, practically, the only way to obtain labelled data
for training such inverse algorithms, because the exact muscle forces
of real subjects are not, in general, accessible.

While these aspects are beyond the scope of this paper, they are
relevant features to include in future developments.

The advances presented in this work, together with the pro-
posed future developments, naturally lead to the concept of a Myo-
electric Digital Twin—a realistic, personalized, computationally-
efficient model which generates EMG data in a quality and quantity
sufficient not only to augment but to replace real data, with utility for
AI training in the various real-world applications. Here, we have
illustrated the potential of this approach by augmenting training data
for deep neural networks, with the aim of identifying the discharge
times of spinal motor neurons from surface EMG signal. By using the
simulator to augment training (through a pre-training procedure),
we showed an increase in the performance of the decomposition
network when applied to experimental data, demonstrating a
highly relevant use of the proposed approach for decreasing the
need for experimental training data in human-machine interfacing
applications.

Methods
Forward problem
The fibre extracellular potentials that aremeasured by EMG electrodes
are generated by transmembrane currents. The properties of bio-
electric currents and potentialfields can be determined from solutions
of the Maxwell’s equations, taking into account the electrical proper-
ties of biological tissues. Because of the relatively low frequencies of
signal sources of biological origin, the quasi-static assumption can be
applied31,32, so that the electric potential and the primary current
sources are related by the following Poisson equation31,33,34 with Neu-
mann boundary conditions:

∇ � ðσ∇ϕÞ= � I in Ω

σ ∂ϕ
∂n = σ∇ϕ � n=0 on∂ Ω

(
ð1Þ

where Ω � R3 is a volume conductor domain of interest, ∂Ω its
boundary with outward pointing normal unit vector n, ϕ(r)[V] is the
electric potential, I(r)[A/m3] is the current source density (CSD), σ(r)
[S/m] is a conductivity tensor. The second line of the equation
(boundary condition) reflects the assumption that no currentflowsout
of the domain of interest. In the context of EMGmodelling, this implies
that there is no current flow between the skin and air. The current
source density I(r) is interpreted as the volume density of current
entering or leaving the extracellular medium at position r∈Ω. A
negative CSD corresponds to current leaving the extracellularmedium
(due to the fibre transmembrane currents) and is thus conventionally
called a sink. Likewise, current entering the extracellular medium is
called a source35,36.
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Equation (1) cannot be solved analytically for general volume
conductor geometries, but several numerical methods can be used
to approximate its solution. Here, we use the finite element method
(FEM)37, which discretizes the volume conductor Ω as a tetrahedral
mesh Ωt. Given this mesh, we use the Galerkin method to project
the potentialϕ onto the space of piecewise affine functions defined
on Ωt. Figure 6a and Fig. 6b illustrate an example of a realistic
forearm model and corresponding discretized volume mesh,
respectively.

This discretization process converts the continuous operator
problem of Eq. (1) to a finite system of linear equations:

Av=b ð2Þ

where A is a symmetric and sparse nv × nv matrix, nv is the number of
mesh vertices, v 2 Rnv is a vector of potential values at mesh nodes,
and b 2 Rnv is a vector containing source information. Because the
electric potential is defined up to a constant, the matrix A always has a
one-dimensional null space. To obtain a unique solution to the system
of Eq. (2), we constrain potentials v to have a zero sum.

In the context of EMG, we are not interested in finding electric
potentials everywhere in the conductor, but only at the electrode
locations. Let S be a selection matrix with a shape ne × nv which only
selects the values at EMG electrode locations (ne is the number of
electrodes). Each row of S can be designed to select a single point
location or to integrate over an area (e.g. the electrode-skin interface)
depending on the location and number of its non-zero elements. Also,
let b(r) correspond to a point source at location r. The resulting EMG

signal is thus given by:

vpointðrÞ= SA�1bðrÞ: ð3Þ

Let us analyse inmore detail the structure of A and b from Eq. (2).
Let {wi(r), i = 1…nv} be a set of nvP1 (piecewise linear) basis functions
over the tetrahedral meshΩt. Note, thatwi is 1 at the i-th vertex of the
mesh, is 0 at all other vertices and is linear at all tetrahedra adjacent to
the i-th vertex. In this case, A and b have the following structure:

Aij =
Z

Ωt

σðrÞ∇wiðrÞ∇wjðrÞdr

bi =
Z

Ωt

IðrÞwiðrÞdr:

First, let us notice that A is symmetric and, in general, a very large
matrix which can be stored only because it is sparse. Indeed, the
functionswi have a compact support and their pairwise scalar product
is non-zero only for neighbour functions. Since the pseudo-inverse (or
the inverse) of a sparse matrix is usually not a sparse matrix, it is
impractical to compute it because of the amount ofmemory needed to
store it. Thus, iterative methods are typically used to solve the system
of Eq. (2) for every given b.

Consider the case of IðrÞ= δðr� �rÞ which corresponds to a unit
point current source at a location �r. Without loss of generality, we
assume that this source is inside a tetrahedron formed by the vertices

Cross section
morphing 3d mappingFiber distribution MU distribution

a b

c d

Fig. 6 | Model geometry. a Surface geometry of muscles, bones, subcutaneous
tissue, skin and electrodes used for arm modelling (taken from BodyParts3D, The
DatabaseCenter for Life Science (http://lifesciencedb.jp/bp3d/)).bCross-sectionof
the volume mesh generated from the arm surfaces. c Uniformly distributed fibres

inside a unit circle are grouped into motor units (MUs) of different sizes, locations
and territories. d Example of mapping of 10 small motor units from the circle into
an arbitrary muscle by morphing the unit circle into the muscle cross section.
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i1,…, i4 of the mesh. In this case, we obtain:

bi =
λj , if i 2 fi1, . . . ,i4g,
0, otherwise

�

where {λj, j = 1,…, 4} are the barycentric coordinates of the point �r
inside the tetrahedron {i1,…, i4}. Applying this expression to Eq. (3), we
obtain:

vpointð�rÞ= SA�1bð�rÞ= SA�1Bλ:

where �B is a nv × 4 matrix with Bij ,j
= 1 for j = 1,…, 4, and 0 otherwise.

This implies that the solution of the system of Eq. (2) for any unit point
source can be computed as a barycentric sum of solutions on the
vertices of the corresponding tetrahedron. Therefore, it is sufficient to
compute solutions of Eq. (2) for basis sources located on mesh ver-
tices, to be able to evaluate a solution for any point inside this mesh
efficiently. Let ns be the number of such basis sources. For the most
general case, when the source can be located anywhere inside the
mesh and ns = nv, let B be a nv × ns identity matrix. The objective is to
compute basis solutions:

Vbasis = SA
�1B ð4Þ

where Vbasis is a ne × nsmatrix, whose columns contain the solutions of
Eq. (2) for a unit point source located at the corresponding mesh
vertex. Hence, the potentials for any source location r is given by:

vpointðrÞ=VbasisλðrÞ ð5Þ

where λðrÞ 2 Rns is a vector,whose four non-zero elements contain the
barycentric coordinates of a point r inside a corresponding tetrahe-
dron. Note, that onemay restrict potential sources to be located inside
specific subdomains of the whole mesh (which is the case for EMG). In
this case, ns corresponds to the number of vertices of these
subdomains, and the matrix B is a submatrix of the identity matrix.

The most straightforward way to compute Vbasis from Eq. (4) is to
solve a problem of the form Ax =bi for each column of the matrix B. It
would thus require solving ns systems of linear equations. For realistic
conductor geometries,whichhave a largenumber of vertices, solving a
single system may take up to a few minutes and solving ns systems
quickly becomes impractical. Therefore, we propose the use of the
adjoint method38, which requires solving ne systems only. In the con-
text of EMG, the number of electrodes is usually significantly smaller
than the number of vertices in the muscle subdomain meshes, i.e.
ne << ns. Let us define K = SA−1, which is a matrix of size ne × nv. Because
A is symmetric, and the inverse of a symmetric matrix is also sym-
metric, we can write KT =A−1ST. Then, K can be found by solving the
system:

AKT = ST : ð6Þ

Thematrix ST hasne columns and, thus, onlyne linear systemsneed
to be solved to find K. The basis solutions can then be found as:

Vbasis =KB: ð7Þ

EMG signal of a single fibre activation
The action potential generated by the flow of ionic currents across the
muscle fibre membrane is the source of excitation. For a given intra-
cellular action potential (IAP)modelVm(z), the transmembrane current
source per unit length is proportional to the second derivative of
Vm(z), where z is a fibre arc length measured in mm. A general
description of the current source density travelling at velocity v along

the fibre with the origin at the neuromuscular junction at location z0
is28,30,39:

Iðz,tÞ=σinπr
2 � ∂

∂z
ψðz � z0 � vtÞwL1

z � z0 � L1
2

� �
� ψð�z + z0 � vtÞwL2

z � z0 +
L2
2

� �� �

ð8Þ

where z∈ [0, L] is a location along the fibre of length L,
ψðzÞ= d

dz Vmð�zÞ, L1 and L2 are the semi-lengths of the fibre from the
end-plate to the right and to the left tendon, respectively, σin is the
intracellular conductivity, and r is the fibre radius. We have chosen wL

to be a Tukey window, as proposed in ref. 21. The intracellular action
potentials (IAP) Vm

mV
mm

� �
can be mathematically described in the space

domain as proposed in ref. 40:

VmðzÞ=96z3e�z � 90:

Let r(z) be a fibre geometry parametrizedwith respect to the fibre
arc length z. Combining the transfer function of a point source in
Eq. (3) with the fibre’s current density in Eq. (8), weobtain the equation
for the EMG signal resulting from a single fibre activation:

vfibreðtÞ=
Z

vpointðrðzÞÞ I ðz,tÞdz: ð9Þ

This integral can be efficiently approximated by discretizing the
fibre geometry into sufficiently dense spatial samples frðziÞgi and
assuming that vpoint(r(z)) is piecewise constant around these points. If
we also rewrite Eq. (8) in a shorter form as Iðz, tÞ= σinπr

2 � ∂
∂z Fðz, tÞ,

Eq. (9) becomes:

vfibreðtÞ≈
X
i

vpointðrðziÞÞ
Z zi +Δi

zi�Δi

Iðz,tÞdz

=
X
i

vpointðrðziÞÞ
Z zi +Δi

zi�Δi

σinπr
2 � ∂

∂z
Fðz,tÞdz

= σinπr
2
X
i

vpointðrðziÞÞ Fðzi +Δi,tÞ � Fðzi � Δi,tÞ
	 


:

ð10Þ

Note, that vpoint(r(zi)) can be efficiently computed from Eq. (5).
Moreover, once vpoint(r(zi)) are computed for all given fibres, we can
change the parameters of the current source density (action potential
waveform shape, propagation velocity, location of neuromuscular
junction), and compute the corresponding EMG signal with Eq. (10) by
only matrix multiplication complexity.

Geometrical and physiological modelling of motor units
Themotor unit action potential (MUAP) is the summation of the single
fibre action potentials (APs) of the muscle fibres in the MU. Different
types ofMUs canbemodelled41,42. Our approach consists in generating
fibre and motor unit distributions inside a unit circle, and then pro-
jecting it into arbitrary 3D muscle geometry (Fig. 6d), using methods
similar to thosedescribed in ref. 43. This provides a high level of control
for the fibre and MU distribution parameters independently of a par-
ticular muscle geometry. A commonway to simulate fibres andMUs is
to start by defining MU positions, sizes and territories, and then
simulatefibres inside theseMUs according to their parameters44,45.We,
however, propose another approach. First, we simulate uniformly
distributed fibres inside a unit circle. Then, MU centres and their cir-
cular territories are generated and, finally, we associate eachfibre to an
MU. A fibre is associated to one of the MUs that contains it inside its
territory with a probability proportional to the MU density (Fig. 6c).
This approach has two main advantages. First, it guaranties (by con-
struction) the uniform fibre distribution inside a circularmuscle cross-
section. Second, once fibres are generated andprojected into amuscle
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geometry, different MU distributions can be generated very quickly,
without regenerating fibres and recomputing transfer functions
vpoint(r(zi)) for their nodes.

MU recruitment model. During muscle contraction, the MUs are
recruited according to the size principle25. This can be simulated by
associating a threshold of excitation to each MU, as described for
example by Fuglevand et al.46. Linear or non-linear rate coding models
can be used46–48.

The excitation rate as a function of time for each muscle is con-
verted into the firing rates of the active MUs. Inter-discharge intervals
are then generated with variability of the discharges around the mean
firing interval49.

Implementation remarks
The implementation of the main steps presented in the previous sec-
tion can be summarized as follows. Once the matrices S, A and B are
computed, thematrix K is determined using Eq. (6) by solving ne linear
systems. Then, Eq. (7) is used to find the solutions for ns basis points,
which is a fast matrix multiplication operation. For any given point
source location r, we compute its barycentric coordinates in asso-
ciated tetrahedron and apply Eq. (5) to get values of electrical poten-
tials at electrode locations. Finally, for a given fibre geometry, the
single fibre action potential as recorded by the EMG electrodes is
computed using Eq. (9).

The results presented in this study are obtained using a Python
implementation of the proposed strategy. Assembling the matrix A
and solving the system (6) is delegated to the FEniCS computing
platform50,51. The forearm geometry that is here representatively used
as a conductor model is taken from the website of BodyParts3D, The
Database Center for Life Science (http://lifesciencedb.jp/bp3d/). The
volume mesh is generated from the surface meshes of the forearm
tissues using the CGAL C++ library52.

Computational performance
In this section, we report the computational time of the proposed
model for a specific simulation case. The exact computational time
values strongly depend on the implementation, experiment design,
model parameters etc. The order of magnitude, however, stays the
same. Note, that no multiprocessing tools were used in these com-
putations. Each step, however, is highly scalable and can be efficiently
distributed between parallel processes, which would significantly
increase the performance. Computations for eachmuscle and fibre are
independent and can be performed in parallel. Parallel computing
would also apply to the electrodes in the general basis points
computation.

The reduction of the time complexity allowed by our model can
be generally expressed in the followingway. Solving forward equations
naively, i.e. for each fibre and each time sample separately, the cor-
responding complexity is in order of the product of corresponding
parameters O(∏ini), where ni are respectively the number of mesh
vertices, electrodes, fibres, time samples, etc. Our method decom-
poses this original product into a sum of smaller products of para-
meter subsets OðPj

Q
i2Ij niÞ. Each such sub-product corresponds to a

specific step in the simulation pipeline. For example, computing the
forward solver is dominated by solving Eq. (6) with the conjugate
gradient method, which only depends on the number of electrodes
and mesh vertices. Not only this decomposition reduces the overall
time complexity, but also allows using pre-computed data for a new
simulation if only a subset of parameters is changed.

For the purpose of demonstration, we simulated a 1-min-long,
100% maximum voluntary contraction (MVC) excitation of the Bra-
chioradialis muscle with 50,000 individual fibres and 200motor units.
The mesh of the volume conductor contained 2.1M vertices, which
formed 13M tetrahedra. 16 rectangular and 16 circular electrodes were

included in the model. The sampling frequency of the simulated sig-
nals was 2000 Hz. Table 1 shows the computational time for each of
the main steps in this simulation.

An important property of our model is that each step depends
only on the data produced by the previous steps. This property can be
exploited to change some simulation parameters without recomput-
ing every step of the simulation. For example, it is not necessary to
recompute solutions for the fibre basis points if fibres geometry and
conductormodel stay the same and only the parameters related to the
fibre properties (AP velocity, end-plate location, tendon sizes, etc.),
MU distribution or recruitment model are modified. In this example,
the total simulation time for this new set of parameters will only take
approximately 30 s + 0.8 s + 2.6 s = 33.4 s.

A brief description of the main parameters required at each step
follows. The full arm and electrode geometry as well as the tissue
conductivities define the computation of general basis points. To
compute fibres basis points solutions, the 3D geometry of the fibres is
required. Computing the fibre EMG responses requires the shape of
the intracellular AP waveforms, AP propagation velocity, sizes of ten-
don and active fibre parts, neuromuscular junction location, fibre
diameter and intracellular conductivity, and sampling frequency. To
compute theMUs action potentials, theMUdistribution in themuscle,
i.e. the association of fibres to each motor unit, need to be defined. In
the proposedmodel, once the number ofMUs, their sizes and territory
areas are selected, the MU distribution is randomly generated. Finally,
to synthesize the sEMG signal, the muscle excitation drives and
recruitment model parameters (motor unit recruitment thresholds
and firing rates) are required.

Comparison with the cylindrical analytical solution
First, we compared our numerical solution with its analytical coun-
terpart for a simple volume conductor geometry23. We used a four
layer cylindrical model with layers corresponding to bone
(r = 0.7 cm), muscle (r = 2 cm), fat (r = 2.3 cm) and skin (r = 2.4 cm)
surfaces. 16 point electrodes were simulated on the skin surface
directly above a fibre. The fibrewas located at varying depths into the
muscle tissue, in the range of 1–11mm.Differential sEMG signalswere
simulated using the analytical and numerical solutions of the forward
problem.

Details of realistic simulation examples
For the single muscle excitation example, 50k muscle fibres were
generated inside the muscle and distributed within 200 motor units.
The size of MUs varied exponentially from 11 to 1150 fibres. The areas
of MU territories varied from 10% to 50% of themuscle cross-sectional
area. The muscle excitation drive was decomposed into MU impulse
trains according to the size principle. In this example, the firing rate for
each MU ranged from 8 Hz to 35 Hz and all MUs were recruited when
an excitation level of 75% MVC was reached.

For the multiple muscles experiment, the flexor group included
the Palmaris longus, Flexor carpi ulnaris (ulnar head), Flexor carpi
ulnaris (humeral head), and Flexor carpi radialis muscles. The
extensor group included the Extensor digitorum, Extensor carpi
ulnaris, Extensor carpi radialis brevis, and Extensor carpi radialis
longus muscles. During a wrist flexion, the muscles of the flexor
group reached an excitation level of 50%MVC. During extension, the

Table 1 | Computational performance of each of the main
steps of a raw EMG simulation

General forward
solution

Fibres
basis points

Fibres EMG
response

MUAPs
assembling

Raw sEMG
assembling

7min (13 s/elec) 2min 30 s 0.8 s 2.6 s

General basis points computation refers to Eq. (7); fibre basis points are computed with Eq. (5);
fibres EMG response is computed with Eq. (9).
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extensor group was activated with the same excitation level. More-
over, a small but constant excitation (7% MVC) of the abduction
muscle group was added to simulate the wrist resistance against
gravity. The abduction muscle group included the Flexor carpi
radialis, Extensor carpi radialis brevis, and Extensor carpi radialis
longusmuscles. For eachmuscle, a number ofmuscle fibres between
32k and 78k was simulated, depending on the muscle cross-sectional

area. Muscle fibres were distributed within motor units, whose
number varied from 150 to 300 per muscle.

Details of deep learning experiment
To evaluate the effect of using the simulation-pretrained network, an
experimentally collected high-density surface electromyography (HD-
sEMG) signal dataset was used, originally created to test low-force
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Fig. 7 | Neural network training pipeline. a Methodology used to build windows
from the simulated MUAP template set for the pre-training phase. Each simulated
template was 160 samples wide at a 2048Hz sampling rate and with 130 channels.
First, either a MUAP template was placed in the centre of the window or it was left
empty at a 50% probability. Then MUAP templates from other MU classes were
added to the window at a random offset to generate superpositions. Finally, stan-
dard normal distributed noise was added to the window, with the central 80 sam-
ples then paired with the label for supervised learning. b The neural network

architecture and pre-training methodology used to improve the performance of a
deep learning-based HD-sEMG decomposition algorithm. The neural network
consists of a single gated recurrent unit layer, with predictions made using a 20-
sample wide window of the hidden vector output, which is flattened before being
passed to a sigmoid-activated densely-connected linear layer. In the pre-training
phase amultitask learning regimen is used to optimise the parameters of the gated
recurrent unit using the simulated sEMG. This pre-trained layer can then be used to
improve the optimisation performance on real sEMG data.
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human-computer interaction with wrist-wearable interfaces7. The
experimental protocol was designed in agreement with the Declara-
tion of Helsinki and was approved by Imperial College London ethics
committee (JRCO: 18IC4685). A balanced gender distribution (as self-
reported) was prioritised during participants’ recruitment. Nine par-
ticipants (4 females, 5 males, ages: 23–31) took part in the study after
signing informed consent forms. Participants were not compensated
for their involvement in the experiments. The participants performed
5-s isometric contractions of their dominant-hand index finger at 15%
of maximal force, with sEMG activity measured using two flexible 5x13
electrode grids with 8-mm spacing placed on the circumference of the
wrist, immediately proximal to the ulnar head. HD-sEMG signal was
acquired using a Quattrocento amplifier (OT Bioelettronica) at
2048Hz sampling frequency, while force profiles were sampled with a
Phidget load cell at 10Hz. A Matlab 2019b (The MathWorks, Inc) pro-
gram was used to synchronyse both modalities. The HD-sEMG signal
was then decomposed into motor neuron activity using convolutive
blind source separation53. For the purpose of training and testing the
supervised decomposition pipeline, motor neuron activity was
accepted if it was present for at least 80% of the contraction window.
For each participant the HD-sEMG signal and accompanying decom-
posed motor neuron activity (as a sparse binary matrix) was then split
into a 4-s training window and a 1-s testing window.

A gated recurrent unit (GRU) neural networkwas used as the deep
learning model due to previous studies showing good performance
with this data type27. After hyperparameter optimisation by grid
search, a minimally-parameterised model was found to perform opti-
mally, likely due to the short length of the training data available. Input
HD-sEMG signal was first encoded by a single layer GRU with a hidden
dimension of 1024 in length54. To make a time instant prediction a
densely-connected linear layer with sigmoid activation function took
as an input a moving 20 sample-wide window from the GRU output,
centred on the time instant of interest. Predicted activity was con-
verted to spike timestamps using a two-class K-means clustering
algorithm. Binary cross entropy was used as the loss function and
Adam with weight decay used as the optimising algorithm55.

To improve model generalisation an early-stopping framework
was used, based on 10%of the training data retained as a validation set.
Training, validation and test data was z-score standardised using the
mean and standard deviation calculated from the training set. During
training the input signal was augmentedwith noise of standard normal
distribution. To account for the high sparsity of the output matrix,
samples containing motor neurons were artificially oversampled, with
each input batch of 512 time instants containing at least 20% motor
neuron activation. All machine learning was implemented using the
PyTorch library in python. Final performance was assessed using the
rate of agreement metric (RoA).

The optimised architecture of the GRU network was used for pre-
training, which was conducted using multitask learning in a hard
parameter sharing paradigm56. Four digital twins were created for
simulation using different model parameters (tissue conductivities,
MU distribution, fibre properties, etc.), with the generated motor unit
activation (MUAP) templates from flexor digitorum profundus and
superficialis used to create 64 sets, each containing 5 MUAPs. Each set
was used to generate windows of signal with a range of MUAP super-
positions (Fig. 7a). In signal windows with motor neuron activity a
MUAP template was placed in the centre of the window, before being
additively superimposed with a random number of MUAP templates
from other motor units at random time offsets. In windows without
activity no template was placed in the centre of the window. During
multitask learning training, the sameGRU layer (and parameters) were
shared between the 64 recordings, but each recording had its own
output layer, operating on a 20 sample-wide window as in the
experimental recordings (Fig. 7b). In thisway theGRU layerwas trained

to act as a more general feature extractor, while the individual linear
output layers made class predictions specific to each recording.
Training again used noise augmentation, binary cross-entropy and
Adam with weight decay.

To use the simulation-pre-trained network in the experimental
data the GRU parameters from the pre-trained network were used,
while the linear output layer used a normal random initialisation. This
was the compared to a normal random initialisation of both the GRU
and output layer. In both instances the network was trained using the
methodology specified above, with the only difference being whether
the GRU layer was simulation-pre-trained or not.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Surface geometry of muscles, bones, subcutaneous tissue and skin
data used for arm modelling were taken from BodyParts3D, The
Database Center for Life Science (http://lifesciencedb.jp/bp3d/). The
simulatedMUAPs data that was used to train the neural network in the
deep learning experiment have been deposited in the Science Data
Bank database under https://doi.org/10.57760/sciencedb.07548 and
CC BY-NC-SA 4.0 licence. The raw experimental data that was used in
the deep learning experiment has also been deposited in the Science
data Bank database under https://doi.org/10.57760/sciencedb.07586
and CC BY-NC 4.0 licence.

Code availability
The EMG simulation software, the code is proprietary and is not pub-
licly available. To request the access to the simulation software, please
contact kostiantyn.maksymenko@neurodec.ai.
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