110 research outputs found

    Compact CMOS active quenching/recharge circuit for SPAD arrays

    Get PDF
    Avalanche diodes operating in Geiger mode are able to detect single photon events. They can be employed to photon counting and time-of-flight estimation. In order to ensure proper operation of these devices, the avalanche current must be rapidly quenched, and, later on, the initial equilibrium must be restored. In this paper, we present an active quenching/recharge circuit specially designed to be integrated in the form of an array of single-photon avalanche diode (SPAD) detectors. Active quenching and recharge provide benefits like an accurately controllable pulse width and afterpulsing reduction. In addition, this circuit yields one of the lowest reported area occupations and power consumptions. The quenching mechanism employed is based on a positive feedback loop that accelerates quenching right after sensing the avalanche current. We have employed a current starved inverter for the regulation of the hold-off time, which is more compact than other reported controllable delay implementations. This circuit has been fabricated in a standard 0.18 μm complementary metal-oxide-semiconductor (CMOS) technology. The SPAD has a quasi-circular shape of 12 μm diameter active area. The fill factor is about 11%. The measured time resolution of the detector is 187 ps. The photon-detection efficiency (PDE) at 540 nm wavelength is about 5% at an excess voltage of 900 mV. The break-down voltage is 10.3 V. A dark count rate of 19 kHz is measured at room temperature. Worst case post-layout simulations show a 117 ps quenching and 280 ps restoring times. The dead time can be accurately tuned from 5 to 500 ns. The pulse-width jitter is below 1.8 ns when dead time is set to 40 ns.Ministerio de Economía y Competitividad TEC2012-38921-C02, IPT-2011-1625-430000, IPC-20111009 CDTIJunta de Andalucía TIC 2338-2013Office of Naval Research (USA) N00014141035

    INTEGRATED SINGLE-PHOTON SENSING AND PROCESSING PLATFORM IN STANDARD CMOS

    Get PDF
    Practical implementation of large SPAD-based sensor arrays in the standard CMOS process has been fraught with challenges due to the many performance trade-offs existing at both the device and the system level [1]. At the device level the performance challenge stems from the suboptimal optical characteristics associated with the standard CMOS fabrication process. The challenge at the system level is the development of monolithic readout architecture capable of supporting the large volume of dynamic traffic, associated with multiple single-photon pixels, without limiting the dynamic range and throughput of the sensor. Due to trade-offs in both functionality and performance, no general solution currently exists for an integrated single-photon sensor in standard CMOS single photon sensing and multi-photon resolution. The research described herein is directed towards the development of a versatile high performance integrated SPAD sensor in the standard CMOS process. Towards this purpose a SPAD device with elongated junction geometry and a perimeter field gate that features a large detection area and a highly reduced dark noise has been presented and characterized. Additionally, a novel front-end system for optimizing the dynamic range and after-pulsing noise of the pixel has been developed. The pixel is also equipped with an output interface with an adjustable pulse width response. In order to further enhance the effective dynamic range of the pixel a theoretical model for accurate dead time related loss compensation has been developed and verified. This thesis also introduces a new paradigm for electrical generation and encoding of the SPAD array response that supports fully digital operation at the pixel level while enabling dynamic discrete time amplitude encoding of the array response. Thus offering a first ever system solution to simultaneously exploit both the dynamic nature and the digital profile of the SPAD response. The array interface, comprising of multiple digital inputs capacitively coupled onto a shared quasi-floating sense node, in conjunction with the integrated digital decoding and readout electronics represents the first ever solid state single-photon sensor capable of both photon counting and photon number resolution. The viability of the readout architecture is demonstrated through simulations and preliminary proof of concept measurements

    Design of a smart SiPM based on focal-plane processing elements for improved spatial resolution in PET

    Get PDF
    Single-photon avalanche diodes are compatible with standard CMOS. It means that photo-multipliers for scintillation detectors in nuclear medicine (i. e. PET, SPECT) can be built in inexpensive technologies. These silicon photo-multipliers consist in arrays of, usually passively-quenched, SPADs whose output current is sensed by some analog readout circuitry. In addition to the implementation of photosensors that are sensitive to singlephoton events, analog, digital and mixed-signal processing circuitry can be included in the same CMOS chip. For instance, the SPAD can be employed as an event detector, and with the help of some in-pixel circuitry, a digitized photo-multiplier can be built in which every single-photon detection event is summed up by a counter. Moreover, this concurrent processing circuitry can be employed to realize low level image processing tasks. They can be efficiently implemented by this architecture given their intrinsic parallelism. Our proposal is to operate onto the light-induced signal at the focal plane in order to obtain a more elaborated record of the detection. For instance, by providing some characterization of the light spot. Information about the depth-of-interaction, in scintillation detectors, can be derived from the position and shape of the scintillation light distribution. This will ultimately have an impact on the spatial resolution that can be achieved. We are presenting the design in CMOS of an array of detector cells. Each cell contains a SPAD, an MOS-based passive quenching circuit and drivers for the column and row detection lines.Junta de Andalucía 2006-TIC-2352Ministerio de Ciencia e Innovación TEC 2009-11812Office of Naval Research (USA) N00014111031

    A portable device for time-resolved fluorescence based on an array of CMOS SPADs with integrated microfluidics

    Get PDF
    [eng] Traditionally, molecular analysis is performed in laboratories equipped with desktop instruments operated by specialized technicians. This paradigm has been changing in recent decades, as biosensor technology has become as accurate as desktop instruments, providing results in much shorter periods and miniaturizing the instrumentation, moving the diagnostic tests gradually out of the central laboratory. However, despite the inherent advantages of time-resolved fluorescence spectroscopy applied to molecular diagnosis, it is only in the last decade that POC (Point Of Care) devices have begun to be developed based on the detection of fluorescence, due to the challenge of developing high-performance, portable and low-cost spectroscopic sensors. This thesis presents the development of a compact, robust and low-cost system for molecular diagnosis based on time-resolved fluorescence spectroscopy, which serves as a general-purpose platform for the optical detection of a variety of biomarkers, bridging the gap between the laboratory and the POC of the fluorescence lifetime based bioassays. In particular, two systems with different levels of integration have been developed that combine a one-dimensional array of SPAD (Single-Photon Avalanch Diode) pixels capable of detecting a single photon, with an interchangeable microfluidic cartridge used to insert the sample and a laser diode Pulsed low-cost UV as a source of excitation. The contact-oriented design of the binomial formed by the sensor and the microfluidic, together with the timed operation of the sensors, makes it possible to dispense with the use of lenses and filters. In turn, custom packaging of the sensor chip allows the microfluidic cartridge to be positioned directly on the sensor array without any alignment procedure. Both systems have been validated, determining the decomposition time of quantum dots in 20 nl of solution for different concentrations, emulating a molecular test in a POC device.[cat] Tradicionalment, l'anàlisi molecular es realitza en laboratoris equipats amb instruments de sobretaula operats per tècnics especialitzats. Aquest paradigma ha anat canviant en les últimes dècades, a mesura que la tecnologia de biosensor s'ha tornat tan precisa com els instruments de sobretaula, proporcionant resultats en períodes molt més curts de temps i miniaturitzant la instrumentació, permetent així, traslladar gradualment les proves de diagnòstic fora de laboratori central. No obstant això i malgrat els avantatges inherents de l'espectroscòpia de fluorescència resolta en el temps aplicada a la diagnosi molecular, no ha estat fins a l'última dècada que s'han començat a desenvolupar dispositius POC (Point Of Care) basats en la detecció de la fluorescència, degut al desafiament que suposa el desenvolupament de sensors espectroscòpics d'alt rendiment, portàtils i de baix cost. Aquesta tesi presenta el desenvolupament d'un sistema compacte, robust i de baix cost per al diagnòstic molecular basat en l'espectroscòpia de fluorescència resolta en el temps, que serveixi com a plataforma d'ús general per a la detecció òptica d'una varietat de biomarcadors, tancant la bretxa entre el laboratori i el POC dels bioassaigs basats en l'anàlisi de la pèrdua de la fluorescència. En particular, s'han desenvolupat dos sistemes amb diferents nivells d'integració que combinen una matriu unidimensional de píxels SPAD (Single-Photon Avalanch Diode) capaços de detectar un sol fotó, amb un cartutx microfluídic intercanviable emprat per inserir la mostra, així com un díode làser UV premut de baix cost com a font d'excitació. El disseny orientat a la detecció per contacte de l'binomi format pel sensor i la microfluídica, juntament amb l'operació temporitzada dels sensors, permet prescindir de l'ús de lents i filtres. Al seu torn, l'empaquetat a mida de l'xip sensor permet posicionar el cartutx microfluídic directament sobre la matriu de sensors sense cap procediment d'alineament. Tots dos sistemes han estat validats determinant el temps de descomposició de "quantum dots" en 20 nl de solució per a diferents concentracions, emulant així un assaig molecular en un dispositiu POC

    High Sensitivity Photodetector for Photon-Counting Applications

    Get PDF
    In the last years, there has been a large development of low-light applications, and many of them are based on photon counting using single-photon detectors (SPDs). These are very sensitive detectors typically with an internal gain. The first candidate SPD was the photomultiplier tube (PMT), reaching a very high gain (~106), but there have been a large development of many other solutions, like solid-state solutions. Among them, single-photon avalanche diodes (SPADs) have been used in spectroscopy, florescence imaging, etc., particularly for their good detection efficiency and time resolution (tens of picoseconds). SPADs have been developed in silicon and III–V materials, for the NIR wavelength range. SPADs can be used as single high-performance pixels, or in arrays. SPAD arrays have imaging capabilities, with high sensitivity. Another kind of array is the silicon photomultiplier (SiPM), where all the pixels are connected to a common anode and a common cathode. SiPMs are used in nuclear medicine, physics experiments, quantum-physics experiments, light detection and ranging (LIDAR), etc., due to their high detection efficiency combined with large sensitive areas, and high dynamic range. SiPMs with many small cells present several advantages and nowadays the SPAD pitch can be reduced down to 5 μm

    Geiger-Mode Avalanche Photodiodes in Standard CMOS Technologies

    Get PDF
    Photodiodes are the simplest but most versatile semiconductor optoelectronic devices. They can be used for direct detection of light, of soft X and gamma rays, and of particles such as electrons or neutrons. For many years, the sensors of choice for most research and industrial applications needing photon counting or timing have been vacuum-based devices such as Photo-Multiplier Tubes, PMT, and Micro-Channel Plates, MCP (Renker, 2004). Although these photodetectors provide good sensitivity, noise and timing characteristics, they still suffer from limitations owing to their large power consumption, high operation voltages and sensitivity to magnetic fields, as well as they are still bulky, fragile and expensive. New approaches to high-sensitivity imagers tend to use CCD cameras coupled with either MCP Image Intensifiers, I-CCDs, or Electron Multipliers, EM-CCDs (Dussault & Hoess, 2004), but they still have limited performances in extreme time-resolved measurements. A fully solid-state solution can improve design flexibility, cost, miniaturization, integration density, reliability and signal processing capabilities in photodetectors. In particular, Single- Photon Avalanche Diodes, SPADs, fabricated by conventional planar technology on silicon can be used as particle (Stapels et al., 2007) and photon (Ghioni et al., 2007) detectors with high intrinsic gain and speed. These SPAD are silicon Avalanche PhotoDiodes biased above breakdown. This operation regime, known as Geiger mode, gives excellent single-photon sensitivity thanks to the avalanche caused by impact ionization of the photogenerated carriers (Cova et al., 1996). The number of carriers generated as a result of the absorption of a single photon determines the optical gain of the device, which in the case of SPADs may be virtually infinite. The basic concepts concerning the behaviour of G-APDs and the physical processes taking place during their operation will be reviewed next, as well as the main performance parameters and noise sources

    Design of CMOS Digital Silicon Photomultipliers with ToF for Positron Emission Tomography

    Get PDF
    This thesis presents a contribution to the design of single-photon detectors for medical imaging. Specifically, the focus has been on the development of a pixel capable of single-photon counting in CMOS technology, and the associated sensor thereof. These sensors can work under low light conditions and provide timing information to determine the time-stamp of the incoming photons. For instance, this is particularly attractive for applications that rely either on time-of-flight measurements or on exponential decay determination of the light source, like positron emission tomography or fluorescence-lifetime imaging, respectively. This thesis proposes the study of the pixel architecture to optimize its performance in terms of sensitivity, linearity and signal to noise ratio. The design of the pixel has followed a bottom-up approach, taking care of the smallest building block and studying how the different architecture choices affect performance. Among the various building blocks needed, special emphasis has been placed on the following: • the Single-Photon Avalanche Diode (SPAD), a photodiode able to detect photons one by one; • the front-end circuitry of this diode, commonly called quenching and recharge circuit; • the Time-to-Digital Converter (TDC), which determines the timing performance of the pixel. The proposed architectural exploration provides a comprehensive insight into the design space of the pixel, allowing to determine the optimum design points in terms of sensor sensitivity, linearity or signal to noise ratio, thus helping designers to navigate through non-straightforward trade-offs. The proposed TDC is based on a voltage-controlled ring oscillator, since this architecture provides moderate time resolutions while keeping the footprint, the power, and conversion time relatively small. Two pseudo-differential delay stages have been studied, one with cross-coupled PMOS transistors and the other with cross-coupled inverters. Analytical studies and simulations have shown that cross-coupled inverters are the most appropriate to implement the TDC because they achieve better time resolution with smaller energy per conversion than cross-coupled PMOS transistor stages. A 1.3×1.3 mm2 pixel has been implemented in an 110 nm CMOS image sensor technology, to have the benefits of sub-micron technologies along with the cleanliness of CMOS image sensor technologies. The fabricated chips have been used to characterize the single-photon avalanche diodes. The results agree with expectations: a maximum photon detection probability of 46 % and a median dark count rate of 0.4 Hz/µm2 with an excess voltage of 3 V. Furthermore, the characterization of the TDC shows that the time resolution is below 100 ps, which agrees with post-layout simulations. The differential non-linearity is ±0.4LSB, and the integral non-linearity is ±6.1LSB. Photoemission occurs during characterization - an indication that the avalanches are not quenched properly. The cause of this has been identified to be in the design of the SPAD and the quenching circuit. SPADs are sensitive devices which maximum reverse current must be well defined and limited by the quenching circuit, otherwise unwanted effects like excessive cross-talk, noise, and power consumption may happen. Although this issue limits the operation of the implemented pixel, the information obtained during the characterization will help to avoid mistakes in future implementations
    corecore