296,582 research outputs found

    Communities and patterns of scientific collaboration

    Get PDF
    This is the author's accepted version of this article deposited at arXiv (arXiv:1006.1788v2 [physics.soc-ph]) and subsequently published in Scientometrics October 2011, Volume 89, Issue 1, pp 381-396. The final publication is available at link.springer.com http://link.springer.com/article/10.1007%2Fs11192-011-0439-1Author's note: 17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full paper17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full paper version)17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full paper version)17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full paper version)17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full paper version)This paper investigates the role of homophily and focus constraint in shaping collaborative scientific research. First, homophily structures collaboration when scientists adhere to a norm of exclusivity in selecting similar partners at a higher rate than dissimilar ones. Two dimensions on which similarity between scientists can be assessed are their research specialties and status positions. Second, focus constraint shapes collaboration when connections among scientists depend on opportunities for social contact. Constraint comes in two forms, depending on whether it originates in institutional or geographic space. Institutional constraint refers to the tendency of scientists to select collaborators within rather than across institutional boundaries. Geographic constraint is the principle that, when collaborations span different institutions, they are more likely to involve scientists that are geographically co-located than dispersed. To study homophily and focus constraint, the paper will argue in favour of an idea of collaboration that moves beyond formal co-authorship to include also other forms of informal intellectual exchange that do not translate into the publication of joint work. A community-detection algorithm is applied to the co-authorship network of the scientists that submitted in Business and Management in the 2001 UK RAE. While results only partially support research-based homophily, they indicate that scientists use status positions for discriminating between potential partners by selecting collaborators from institutions with a rating similar to their own. Strong support is provided in favour of institutional and geographic constraints. Scientists tend to forge intra-institutional collaborations; yet, when they seek collaborators outside their own institutions, they tend to select those who are in geographic proximity

    Communities and patterns of scientific collaboration in Business and Management

    Get PDF
    This is the author's accepted version of this article deposited at arXiv (arXiv:1006.1788v2 [physics.soc-ph]) and subsequently published in Scientometrics October 2011, Volume 89, Issue 1, pp 381-396. The final publication is available at link.springer.com http://link.springer.com/article/10.1007%2Fs11192-011-0439-1Author's note: 17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full pape

    Analysis of Computer Science Communities Based on DBLP

    Full text link
    It is popular nowadays to bring techniques from bibliometrics and scientometrics into the world of digital libraries to analyze the collaboration patterns and explore mechanisms which underlie community development. In this paper we use the DBLP data to investigate the author's scientific career and provide an in-depth exploration of some of the computer science communities. We compare them in terms of productivity, population stability and collaboration trends.Besides we use these features to compare the sets of topranked conferences with their lower ranked counterparts.Comment: 9 pages, 7 figures, 6 table

    Communities, Knowledge Creation, and Information Diffusion

    Get PDF
    In this paper, we examine how patterns of scientific collaboration contribute to knowledge creation. Recent studies have shown that scientists can benefit from their position within collaborative networks by being able to receive more information of better quality in a timely fashion, and by presiding over communication between collaborators. Here we focus on the tendency of scientists to cluster into tightly-knit communities, and discuss the implications of this tendency for scientific performance. We begin by reviewing a new method for finding communities, and we then assess its benefits in terms of computation time and accuracy. While communities often serve as a taxonomic scheme to map knowledge domains, they also affect how successfully scientists engage in the creation of new knowledge. By drawing on the longstanding debate on the relative benefits of social cohesion and brokerage, we discuss the conditions that facilitate collaborations among scientists within or across communities. We show that successful scientific production occurs within communities when scientists have cohesive collaborations with others from the same knowledge domain, and across communities when scientists intermediate among otherwise disconnected collaborators from different knowledge domains. We also discuss the implications of communities for information diffusion, and show how traditional epidemiological approaches need to be refined to take knowledge heterogeneity into account and preserve the system's ability to promote creative processes of novel recombinations of idea

    Italian sociologists: A community of disconnected groups

    Get PDF
    Examining coauthorship networks is key to study scientific collaboration patterns and structural characteristics of scientific communities. Here, we studied coauthorship networks of sociologists in Italy, using temporal and multi-level quantitative analysis. By looking at publications indexed in Scopus, we detected research communities among Italian sociologists. We found that Italian sociologists are fractured in many disconnected groups. The giant connected component of the Italian sociology could be split into five main groups with a mixture of three main disciplinary topics: sociology of culture and communication (present in two groups), economic sociology (present in three groups) and general sociology (present in three groups). By applying an exponential random graph model, we found that collaboration ties are mainly driven by the research interests of these groups. Other factors, such as preferential attachment, gender and affiliation homophily are also important, but the effect of gender fades away once other factors are controlled for. Our research shows the advantages of multi-level and temporal network analysis in revealing the complexity of scientific collaboration patterns

    Andrzej Pekalski networks of scientific interests with internal degrees of freedom through self-citation analysis

    Get PDF
    Old and recent theoretical works by Andrzej Pekalski (APE) are recalled as possible sources of interest for describing network formation and clustering in complex (scientific) communities, through self-organisation and percolation processes. Emphasis is placed on APE self-citation network over four decades. The method is that used for detecting scientists field mobility by focusing on author's self-citation, co-authorships and article topics networks as in [1,2]. It is shown that APE's self-citation patterns reveal important information on APE interest for research topics over time as well as APE engagement on different scientific topics and in different networks of collaboration. Its interesting complexity results from "degrees of freedom" and external fields leading to so called internal shock resistance. It is found that APE network of scientific interests belongs to independent clusters and occurs through rare or drastic events as in irreversible "preferential attachment processes", similar to those found in usual mechanics and thermodynamics phase transitions.Comment: 7 pages, 1 table, 44 references, submitted to Int J Mod Phys

    Italian sociologists: a community of disconnected groups

    Get PDF
    Examining coauthorship networks is key to study scientific collaboration patterns and structural characteristics of scientific communities. Here, we studied coauthorship networks of sociologists in Italy, using temporal and multi-level quantitative analysis. By looking at publications indexed in Scopus, we detected research communities among Italian sociologists. We found that Italian sociologists are fractured in many disconnected groups. The giant connected component could be split into five main groups with a mix of three main disciplinary topics: sociology of culture and communication (present in two groups), economic sociology (present in three groups) and general sociology (present in three groups). By applying an exponential random graph model, we found that collaboration ties are mainly driven by theresearch interestsof these groups. Other factors, such aspreferential attachment,genderandaffiliation homophilyare also important, but the effect of gender fades away once other factors are controlled for. Our research shows the advantages of multi-level and temporal network analysis in revealing the complexity of scientific collaboration patterns.Merit, Expertise and Measuremen

    International scientific collaboration in HIV and HPV: a network analysis.

    Get PDF
    Research endeavours require the collaborative effort of an increasing number of individuals. International scientific collaborations are particularly important for HIV and HPV co-infection studies, since the burden of disease is rising in developing countries, but most experts and research funds are found in developed countries, where the prevalence of HIV is low. The objective of our study was to investigate patterns of international scientific collaboration in HIV and HPV research using social network analysis. Through a systematic review of the literature, we obtained epidemiological data, as well as data on countries and authors involved in co-infection studies. The collaboration network was analysed in respect to the following: centrality, density, modularity, connected components, distance, clustering and spectral clustering. We observed that for many low- and middle-income countries there were no epidemiological estimates of HPV infection of the cervix among HIV-infected individuals. Most studies found only involved researchers from the same country (64%). Studies derived from international collaborations including high-income countries and either low- or middle-income countries had on average three times larger sample sizes than those including only high-income countries or low-income countries. The high global clustering coefficient (0.9) coupled with a short average distance between researchers (4.34) suggests a "small-world phenomenon." Researchers from high-income countries seem to have higher degree centrality and tend to cluster together in densely connected communities. We found a large well-connected community, which encompasses 70% of researchers, and 49 other small isolated communities. Our findings suggest that in the field of HIV and HPV, there seems to be both room and incentives for researchers to engage in collaborations between countries of different income-level. Through international collaboration resources available to researchers in high-income countries can be efficiently used to enroll more participants in low- and middle-income countries
    corecore