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Abstract This paper investigates the role of homophily and focus constraint

in shaping collaborative scientific research. First, homophily structures col-

laboration when scientists adhere to a norm of exclusivity in selecting sim-

ilar partners at a higher rate than dissimilar ones. Two dimensions on

which similarity between scientists can be assessed are their research spe-

cialties and status positions. Second, focus constraint shapes collaboration

when connections among scientists depend on opportunities for social con-

tact. Constraint comes in two forms, depending on whether it originates

in institutional or geographic space. Institutional constraint refers to the

tendency of scientists to select collaborators within rather than across in-

stitutional boundaries. Geographic constraint is the principle that, when

collaborations span different institutions, they are more likely to involve

scientists that are geographically co-located than dispersed. To study ho-

mophily and focus constraint, the paper will argue in favour of an idea

of collaboration that moves beyond formal co-authorship to include also

other forms of informal intellectual exchange that do not translate into the

publication of joint work. A community-detection algorithm for formalising

this perspective will be proposed and applied to the co-authorship network

of the scientists that submitted to the 2001 Research Assessment Exer-

cise in Business and Management in the UK. While results only partially

support research-based homophily, they indicate that scientists use status

positions for discriminating between potential partners by selecting collab-

orators from institutions with a rating similar to their own. Strong support
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is provided in favour of institutional and geographic constraints. Scientists

tend to forge intra-institutional collaborations; yet, when they seek collab-

orators outside their own institutions, they tend to select those who are in

geographic proximity. The implications of this analysis for tie creation in

joint scientific endeavours are discussed.

Keywords Collaboration networks · Community structure · Intra- and inter-

institutional collaborations · Geographic distance · Research specialty

1 Introduction

The idea of using published papers to study collaboration patterns among scientists

is not new [49]. In information science, for example, there is a substantial body of

literature concerned with co-authorship networks [18] and co-citation networks [15],

where connections between authors are defined, respectively, in terms of collaboration

on the same paper or citation of their work in the same literature. Studies of scientific

collaborations have even a longer history in the mathematics community, in which

one of the earliest attempts to map and investigate the structure of social interaction

within a scientific community was formalised through the concept of the Erdös number,

a measure of a mathematician’s distance, in bibliographical terms, from the Hungarian

scholar [17]. Only recently, however, due to the advent of new technological resources

and the availability of comprehensive online bibliographies, have a number of much

larger and relatively complete and detailed collaboration networks been documented

and analysed [4,29,42,43,58].

While most of these recent studies have been interested either in the global struc-

tural and dynamic properties of the collaboration networks [4,42,43], or in the effects

that collaboration has on scientific performance [29,58], only little attention has been

given to the micro mechanisms underpinning the way scientists select their collabora-

tors at the local level. For example, while it has been documented that collaborations

spanning multiple universities, and in particular, among these, the collaborations in-

volving solely elite universities are more likely to result in more highly cited papers

than other forms of collaborations [29], it still remains to be explored how in reality

scientists assess potential partners and select them for collaborative relations. While

consideration of performance will certainly have some impact on the way collabora-

tions are forged, it is also true that only a minority of scientists may be in a position

to freely collaborate only with those that can help them achieve the highest levels

of performance. For the majority of scientists, there may be structural, disciplinary,

institutional, or geographic constraints that restrict their search behaviour to a delim-

ited subset of possible collaborators. Focusing on the principles that are conducive to

the highest levels of scientific performance, therefore, does not help understand how

ties are actually forged in a collaboration network. To this end, what is needed is an

approach to tie creation that uncovers the mechanisms that underlie the selection of

scientific collaborators, irrespective of their implications for performance.

In this paper, we take a step in this direction, and uncover the role of two funda-

mental mechanisms of tie creation in collaboration networks: homophily [36,40] and

focus constraint [20]. We examine whether scientists adhere to a principle of exclusivity

in selecting their collaborators, by choosing only among those with whom they share

similar attributes. We focus on two forms of homophily. First, scientists may take the
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research specialty of potential intellectual partners as cues, and select those with whom

there is a substantial overlap of research interests, scientific background, practices, per-

spectives, and standards. Second, when there is uncertainty on the scientific quality of

a joint work, scientists may choose to affiliate themselves with others whose status is

similar to their own [47].

We then shift our attention to focus constraint, and examine the extent to which

institutional and geographic constraints govern the creation of collaborative ties. First,

scientists may be more likely to select collaborators with whom they share the same in-

stitutional affiliation than others from different institutions. Second, intra-institutional

collaborations may be induced by the tendency of scientists to collaborate with others

that are geographically co-located. This tendency would also imply that, when collab-

orations span different institutions, they are more likely to involve scientists that are

in geographic proximity than at long distances from one another.

In our study we also attempt to adopt a broader perspective on collaboration than

the one strictly implied by the idea of co-authorship. Co-authorship undoubtedly rep-

resents one of the major forms of intellectual cooperation. The literature, however, has

long argued in favour of a more permeable concept of collaboration to include other

forms of informal interaction among scientists [30,33]. For instance, the published work

of an author typically benefits from comments provided by colleagues, journal reviewers

and editors. Other forms of informal intellectual collaboration include the mentoring

that senior scientists offer to junior ones, and the commentary received during the pre-

sentation of papers at conferences, workshops, and professional meetings. Moreover, it

is not uncommon that scientists become indirectly connected as a result of collaborative

agreements between higher-level units, such as departments, institutions, and research

centres [30]. For instance, team leaders might agree on a common research agenda that

commits their respective groups to a number of collaborative endeavours. In this case,

while certain members of the groups may not be directly involved in joint work lead-

ing to formal co-authorship, nonetheless their research may indirectly benefit from the

transfer of knowledge and skills, cross-fertilisation of ideas, and the establishment of

common research standards and goals that the collaborative agreement between their

groups has made possible. In cases like these it is not always an obvious task to iden-

tify who is collaborating with whom precisely because patterns of co-authorship and

collaboration tend to diverge. While a strict bibliometric assessment would count as

collaboration only those activities that translate into a joint paper, there are certainly

other peripheral or indirect forms of intellectual exchange that are not reflected in

formal co-authorship, and yet represent genuine instances of associations that should

be taken into account to adequately capture the full extent of scientific collaboration.

To undertake an accurate assessment of collaboration one would therefore need to

integrate data on formal co-authorship with details on informal commentary [33]. This

would inevitably be an arduous task, especially when conducted on a large scale. Here,

we propose an alternative response to the problem of the opaqueness of collaboration.

We begin by constructing a collaboration network based on formal co-authorship, in

which, as is typically done in similar network studies, two scientists are assumed to be

connected when they appear among the authors of the same paper [4,43]. However,

we move beyond the idea of dyadic direct connections between scientists, and apply

recent community-detection methods to partition the network into communities [21].

A scientist belongs to a community when he or she collaborates with other members

of that community to a greater extent than with members of other communities. In

this sense, communities may be locally dense even when the network as a whole is



4

sparse. Moreover, because within each community scientists are inevitably connected

only to a subset of all other members, communities may include scientists that are only

indirectly connected with each other.

We study the role of homophily and focus constraint for all scientists within each

community, even those that are not directly connected with each other. In so doing,

we implicitly take on a two-fold perspective on the structure and meaning of collabora-

tion. First, we assume collaboration occurs only within but not across the boundaries

of communities. Second, while direct ties clearly reflect formal co-authorship, we re-

gard indirect ties as an indicator of informal forms of collaboration. We seek support in

favour of this perspective by examining the collaboration network based on the papers

submitted to the 2001 Research Assessment Exercise (RAE) in the UK in the field of

Business and Management. Drawing on accurate details on the scientists’ attributes,

we examine the extent to which the topological boundaries between the uncovered com-

munities reflect some fundamental ways in which scientists collaborate, either formally

or informally. We do this by testing the tendency of communities to include pairs of

scientists that work in the same research specialties, are affiliated with the same in-

stitutions, are associated with the same levels of status, and are located at geographic

proximity with each other.

The rest of the paper is organised as follows. In the next section, we place our work

within the relevant theoretical context. We then introduce the data and the methods for

partitioning the network into communities and assessing homophily and constraint in

each community. In Section 4, we present the results. The final section will summarise

and discuss the main findings.

2 Homophily and focus constraint in collaboration networks

Homophily represents one of the network mechanisms of tie creation with the longest

tradition of investigation in the social sciences. This is the principle that similarity

breeds connection [36,40]. A significant body of research has provided supportive evi-

dence in favour of homophily by documenting a positive association between sharing

an attribute and some baseline level of interpersonal attraction [40]. Attraction could,

in turn, be reflected in a heightened probability of similar people to select each other

[31], or communicate more frequently and develop a stronger social interaction [50].

In this paper, we begin our investigation of homophilous interactions in collabo-

ration networks by examining the extent to which scientists that work in the same

research specialty collaborate with one another with a higher likelihood than scien-

tists from different specialties. While research has long been interested in assessing the

benefits of conducting research across disciplinary fields and research specialties [33,

57], the fact that scientists can also develop dense and strong connections within their

own fields or specialties has often received scanty attention. Scientists can carefully

select their collaborators to draw on different knowledge pools without having to ac-

quire the needed knowledge personally, but they can also aim to strengthen their skills

and enhance scientific consensus within their own specialty area. Recent work suggests

that scientists embedded in collaboration networks share ideas, scientific standards and

technique [42,57]. By selecting their collaborators within their own specialty area, sci-

entists can enhance scientific cohesion and embeddedness, receive validation of their

own attitudes and beliefs, and facilitate their scientific production through the gener-

ation of shared norms of research practice.
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A second manifestation of homophilous interactions in collaborative research is re-

lated to the role of status similarity in tie creation. In the social sciences, a number

of empirical studies have long been interested in the processes and reasons underpin-

ning the creation of connections among economic actors of similar status. Research has

shown that processes of competitive isomorphism are likely to lead economic actors of

similar status to adopt similar practices and operating systems, which in turn facili-

tates the coordination of cooperative activities [12,39]. Status similarity also aligns the

expectations of potential partners about each other’s behaviour, and increases their

commitment to sharing both the costs and benefits of an interaction [12]. Moreover, a

substantial body of work in sociology has illustrated that economic actors, when con-

sidering the choice of creating a connection, assess the status of potential partners [12,

47]. For example, the way in which others perceive the quality of the output of a firm,

especially when it cannot be assessed without ambiguity, depends on the status of other

firms that interact with the focal firm [47]. As a result of the signaling effect of status

positions and social interactions, firms with similar status tend to establish connections

with one another when there is uncertainty about the output of their transaction.

Sociological research on culture, science and technology has proposed a similar

view on the relational foundations and signaling effect of status. For instance, it was

found that within artistic genres with limited objective standards and high levels of

uncertainty on quality, the perception and judgement of the work of an artist was

contingent on the status of other artists with whom the focal artist interacted in the

artistic community [24]. In the sociology of science, it was contended that, when there

are pronounced levels of uncertainty about scientific quality, such as during periods of

paradigmatic change, the way in which a scientist is regarded depends on the status

of those with whom the scientist is associated [10,35]. A similar perspective was also

suggested to explain the development of technology, in the sense that when an inventor’s

technology cannot be evaluated without uncertainty, assessment is fundamentally based

on the status of the economic actors that endorse that technology [48].

These studies thus suggest that a principle of exclusivity based on status may also

govern the selection of partners in scientific collaborations. Challenged by pronounced

levels of competitive pressure and uncertainties posed by the need to secure funding

and publish in high-quality journals, scientists will become increasingly exclusive in the

formation of collaborations. They will generally avoid collaborating with others of a

lower status, and instead select collaborators of roughly equivalent status [29]. In this

paper, to investigate status-based homophily, we measure the ranking of the institutions

with which scientists are affiliated, and then examine whether collaborations tend to

span institutions of different ranking or only those with a similar one.

The second ordering principle that we examine is focus constraint [20]. This refers

to the idea that social associations depend on opportunities for social contact. Research

has uncovered the tendency of connections to occur among individuals who share ac-

tivities, roles, social positions, institutional affiliations, and geographic location [20,31,

41]. Here a special emphasis is placed on institutional and geographic constraint. First,

we examine whether scientists are more likely to establish collaborations within their

own institutions than across institutional boundaries. Recent studies have investigated

forms of collaborations that involve organisations of various institutional profile, such

as academic departments, business firms, government and non-government organisa-

tions [37]. In particular, research has highlighted the role of these inter-institutional

collaborations in sustaining knowledge transfer and creation. There are, however, also

benefits associated with intra-institutional collaborations. In principle, scientists can
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choose their collaborators within their own institutions for a variety of reasons. For

instance, joint research may be facilitated by the ease and frequency of face-to-face

communication and meetings, and by the common cultural orientations, scientific stan-

dards and practices that are typically shared by the members of the same institution.

Hiring policies, in turn, can also promote collaborative research within institutions as

they tend to emphasise overlapping areas of research interests between applicants and

incumbents leading to potential joint work. For these reasons, here we examine the

role of institutional constraint in scientific collaboration by testing the tendency of

scientists to restrict the choice of their partners within institutional boundaries.

Intra-institutional collaborations may also originate from the benefits that scientists

gain from being geographically close to one another. The literature has long investi-

gated the benefits of geographic proximity, and in particular its impact on innovative

activities [28]. Even though knowledge could in principle travel through space inex-

pensively, nonetheless knowledge production tends to be geographically clustered [8].

The arguments often proposed to explain this phenomenon include the benefits that

geographic proximity offers in terms of knowledge spillovers [28], opportunities of face-

to-face interaction, transfer of tacit knowledge, and the occurrence of unanticipated

encounters between individuals [23]. While the literature has been concerned mainly

with the spatial distribution of economic activities, it may also help gain a better

understanding of the geography of scientific collaboration [29]. When selecting their

collaborators, scientists may be encouraged to choose them within short geographic

distances because spatial proximity facilitates informal communication and the trans-

fer of complex knowledge, which in turn may lead to an increasing commitment to

cooperation [30]. This argument thus not only suggests that scientific collaboration

may tend to occur within institutional boundaries, but also that, when collaborations

span different institutions, they may be more likely to involve scientists from institu-

tions that are geographically close than dispersed.

3 Data and methods

In this section, we will begin by introducing the RAE network dataset, and then the

measures for scientists’ attributes that will be used to study homophily and focus

constraint. We will then present the community-detection algorithm that will be used

to partition the network into groups of indirectly connected scientists. The section will

end with a discussion of the statistical methods developed to assess homophily and

focus constraint in each community.

3.1 The data

For our analysis, we have constructed the collaboration network of the social scientists

that authored or coauthored the publications submitted to the RAE 2001 in Busi-

ness and Management in the UK. The RAE was established in the UK in 1986, when

the government introduced the policy of selective funding [3,14,26]. The exercise is

traditionally carried out by the UK government through Higher Education Funding

Councils, and represents a peer-review evaluation process undertaken by panels con-

sisting of members who are chosen by the funding bodies according to their research

experience. The RAE that took place in 2001 represents the broader context from
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which our data were drawn. On the whole, it consisted of 68 units of assessment and

around 213, 000 publications examined. In this work, we restrict our analysis to the

unit of assessment that received the largest number of submissions. This was the Busi-

ness and Management Studies subject area, which received 97 submissions from 94

institutions [3,26]. Each institution was invited to put forward within its submission

all individuals who were actively engaged in research and in post on 31 March 2001.

Each of these individuals was required to submit up to four pieces of research output

produced during the period 1 January 1996 to 31 December 2000.

Panels composed of expert academics were formed to assess the quality of sub-

missions [2,14]. Evaluation criteria for each unit of assessment were published by the

panels before submissions were made to ensure that academics were informed of the

aspects of submissions that the panels regarded as most important as well as the areas

on which institutions were required to comment in their submissions [26]. Ratings were

allocated to submissions, and ultimately to universities, on the grounds of their ability

to reach national or international levels of excellence. Ratings of research quality were

expressed in terms of a standard scale including 7 points ranging from 1 to 5* (i.e., 1, 2,

3b, 3a, 4, 5, and 5*). The RAE aimed to ensure that institutions that produced research

of the highest quality were allocated a higher proportion of the available funding than

institutions with lower-quality research. In the RAE 2001, for example, institutions

that acquired a rating of 1 or 2 did not obtain any funding, while institutions that

received a rating of 5* were given four times as much funding as the institutions with

a rating of 3b. The allocation of funding according to research quality was therefore

intended to act as an incentive both to protect and develop research of excellent quality

in the UK.

Our data contain detailed information about each paper that was submitted to the

RAE 2001 in Business and Management, including the paper title, the names of author

and co-authors, the RAE ratings of their institutions as well as the publication type

and publishing details. Among the advantages of this dataset over other sources of data

on publications is that disambiguation of institutional affiliations of the authors who

submitted to the RAE is relatively straightforward. Our sample includes 9, 325 papers

submitted to the RAE by 2, 609 scientists. These papers were also co-authored by

5, 752 scientists that did not submit to the RAE. Thus, the total number of scientists

in our sample amounts to 8, 361. A tie is established between two scientists if they

have co-authored one or more papers. Following [44], the weight of a tie between two

scientists reflects their contributions in their collaboration: the larger the number of

scientists collaborating on a paper, the weaker their interactions. Thus, tie weight

increases with the total number of papers co-authored, and is inversely proportional to

the total number of co-authors of those papers. In our analysis we looked at the largest

connected component of this weighted network which contains 3, 338 authors.1

3.2 Scientists’ attributes

To study the role of homophily and focus constraint, we needed a number of addi-

tional attributes for the scientists. Because these attributes were available only for the

scientists who submitted to the RAE (and not, for example for non-UK scientists or

UK PhD students who co-authored with someone who submitted, but did not submit

1 The next largest component has fewer than 100 authors.
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themselves), we then had to extract the subset of these scientists from the largest con-

nected component of the network. Of the 3, 338 scientists in the component, only 973

submitted to the RAE. For each of these 973 scientists, we measured research specialty,

status, institutional affiliation, and geographic location.

To assess research-based homophily, we assigned each scientist to a research spe-

cialty by using the domain statements of the 24 divisions and interest groups identified

by the Academy of Management. For each of these divisions and groups, the Academy

provides a brief description of the main research topics, objectives and methods.2 By

using an algorithm, we matched the titles of the papers submitted to the RAE with the

Academy’s statements, and assigned each author to a unique research specialty [57].

To assess status-based homophily, each scientist was assigned the RAE ranking

acquired by the institution with which he or she was affiliated. Two measures of status

were obtained by using the RAE ratings that institutions received in 1996 and 2001. To

study geographic constraint, we obtained the latitude and longitude values in degrees

for each institution, and then calculated the distance in kilometers between any pair

of institutions. The geographic distance between any two scientists was then assumed

to be equal to the distance between the two institutions with which the scientists

were affiliated. Finally, for institutional constraint, scientists were associated with their

respective institutions of affiliation.

3.3 Community detection

The detection of communities, or modules, in networks has attracted much attention

in the last few years. Modules are defined as sub-networks that are locally dense even

though the network as a whole is sparse. They have been observed in a variety of

networks (e.g., biological networks, brain functional networks, and collaboration net-

works), where they usually correspond to functional sub-units, namely sets of nodes

that have a (usually unknown) property or function in common. This architecture is

expected to naturally emerge in groups of interacting scientists [54], as it presents the

advantage of combining two types of social organisation [34]: close networks which fos-

ter trust and facilitate the transfer of complex and tacit knowledge, and open networks

which are rich in structural holes and facilitate knowledge creation and information

diffusion. Several methods have been developed to detect modules in large networks,

and they cover a broad range of concepts and implementations [21]. In the field of

Scientometrics, a division of citation or collaboration networks into communities has

been used as a taxonomic scheme in order to map knowledge domains [6,7,11,38,53,

56], but also as way to track their temporal changes and the mobility of researchers

[25].

In this paper, we adopt a partitioning-based viewpoint, as we look for non-overlapping

communities. Partitions are uncovered by optimising the multi-resolution modularity

introduced by Reichardt and Bornholdt [51]:

Q(γ) =
1

2m

∑
C∈P

∑
i,j∈C

[
Aij − γ

kikj
2m

]
, (1)

2 Descriptions of these divisions and groups are available at the website of the Academy of
Management: http://www.aomonline.org/aom.asp
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where A is the weighted adjacency matrix of the collaboration network, ki ≡
∑
j Aij

is the strength of node i and m ≡
∑
i,j Aij/2 is the total weight in the network. The

summation over pairs of nodes i, j ∈ C belonging to the same community C of the

partition3 P counts intra-community links. This quality function measures if links are

more abundant within communities than would be expected on the basis of chance,

and incorporates a resolution parameter γ allowing to tune the characteristic size of the

modules. Q(1) corresponds to Newman-Girvan modularity [45]. The resolution param-

eter γ is essential in order to get rid of the size dependence of modularity and to uncover

the true multi-scale organisation of the network. In what follows, the optimisation of

Q(γ) is performed by using a reliable greedy algorithm [5]. 4

3.4 Statistical significance of module attributes

By definition, uncovered modules consist of groups of scientists that are indirectly

connected but are close in a topological sense. Modules thus provide coarse-grained

levels of interactions which allow us to go beyond known dyadic connections between

scientists present in the data and to uncover intermediate units (building blocks) from

the organisation of the collaboration network. It is also important to emphasise that

scientists are expected to be driven by antagonistic forces, e.g. geographic distance vs

research specialty, in their choice of collaboration. The non-overlapping organisation

imposed by the partitioning algorithm is thus expected to highlight the dominant

factors, namely it uncovers communities underpinned by one dominant mechanism.

In order to test the effect of homophily and focus constraint on scientific collabo-

rations, we look at two measures of attribute diversity within each community:

SC = −
∑
v∈Γ

pc;v ln(pc;v) and RC = 1−
∑
v∈Γ

p2c;v, (2)

where pc;v is defined as the density of authors in community C who possess attribute v

in the set Γ of possible attributes. SC andRC are the Shannon entropy and the Simpson

diversity index of pc;v, respectively. By construction, SC and RC are measures of the

diversity of a certain set Γ of attributes within community C. Low values of SC and RC
correspond to communities whose nodes are affiliated with the same institution, work

in the same specialties or are associated with the same levels of status, respectively.

Different sets of attributes are considered in order to assess the salience of different

factors for community structure: institution, research specialty and RAE rating. For

research specialty, for instance, (2) becomes SC = −
∑24
v=1 pc;v ln(pc;v), where pc;v is

now the density of authors with research specialty v in community C and the sum-

mation is performed over the set of 24 possible research specialties. The significance

of these diversity measures is evaluated through a permutation test [55], namely by

measuring SC;α and RC;α for each community C on 1, 000 different instances α where

the assignment of the nodes to communities is preserved but where the attributes of

the nodes are randomly re-shuffled. The diversity of community C is then assessed

3 Here P is a partition of the vertices of our graph. That is, P is a set of communities C and
every author in the largest connected component of our full weighted co-authorship graph is
in one but only one of these communities.

4 The java code used to perform the optimisation of Q(γ) is available on request from Tim
Evans.
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Fig. 1 Statistical significance of the diversity of research specialties in Business and Man-
agement for a partition of 24 communities. (a) Points show the entropy SC of the modules
for the research specialty variable. Comparison is against 1, 000 different instances of the null
model described in the text. The ends of the bars mark the entropies at the quantiles 2.5% and
97.5%. (b) Points show the probability PC that the diversity found in a null model is greater
than the one found in reality.

by comparing SC (RC) to the value of diversity of the null models and by measuring

the probability Pc that community C is less diverse than the one observed in the null

model (see Fig. 1).

The salience of geographic proximity for community structure is assessed as fol-

lows. For each community, we look at two average distances: the average distance

dUIP between an author and all other authors in the same community provided they

are not from the same institution, and the average distance dUAP between an author

and all authors in the same community whatever their institution. There is almost

no difference in the results obtained from these two distance measures in terms of the

comparison of the null models to the actual average distance measured in communities.

The important point is that these distances are measured regardless of whether or not

scientists co-authored a paper. Moreover, a separation of 100km when one institution

is in a relatively sparsely populated location with few institutions (e.g., Northern Is-

land) may be a short scale whereas 100km may be a comparatively large distance in a

dense urban environment with many institutions. Therefore, these distances have to be

compared to an appropriate null model defined as follows. Each author in a community

is considered in turn. The locations of all the institutions except for the one associated

with the author being considered are shuffled. Authors in the same institution thus

remain in the same institution, but the distance from the author under consideration

to those in another institution will almost certainly change. We calculate the average

distance between all pairs of authors in the same community in 1, 000 realisations of

the null model and compare the range of average distances found in the null model

against the average distance measured for the community with institutions in the real

location.

4 Results

Our analysis was performed on the largest connected component of the weighted col-

laboration network defined in 3.1. Modules at different scales have been uncovered by

optimising Q(γ) over a broad range of values of γ. In what follows, we will discuss

the properties of the partition optimising Q(0.091), keeping in mind that similar con-
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clusions are also obtained for other values of γ. Results are similar for both diversity

measures discussed in 3.4, and therefore we will only show entropy in our figures. The

obtained partition is made of 24 modules, and has been chosen to coincide with the

number of research specialties. Our main purpose is to compare this algorithmically-

obtained partition to our information about the scientists, namely their research spe-

cialty, RAE rating, institutional affiliation, and geographic distance.

To investigate the mechanisms driving the formation of communities, we measured

the diversities SC and RC for the first 3 sets of attributes. Community C is said to

exhibit a significant uniformity (lack of diversity) for a certain set of attributes if it is

less diverse than in 97.5% of the null models, i.e., PC > 0.975 in the above notations. In

that case, the attributes of C are thus significantly different from a random assignment.

On the contrary, the composition of a community is not distinguishable from a random

assignment for values of PC < 0.975. Geographic distance is said to be a significant

factor underpinning the composition of community C if the average distances dUIP and

dUAP between its scientists are smaller than in the null model in 97.5% of the random

realisations.

The analysis incorporates four sets of results. The first two test our hypothesis

of specialty- and status-based homophily, respectively. As shown in Fig. 1, research

specialty is weakly correlated with community structure. Only 5 communities out of

24 exhibit a degree of homogeneity in research specialty that is statistically significant.

The rest of the communities are not statistically significantly different from what would

be randomly expected. These findings thus provide only partial support in favour of

the hypothesis that in Business and Management scientists tend to collaborate with

others within their own research specialty. At the same time, results also suggest that

scientists do not work across research specialties to a greater degree than by chance.

For instance, while Fig. 1b indicates that a few communities have a large probability

(close to 1) of exhibiting a greater research similarity than the one found in the null

model, there is no community for which the probability that the corresponding null

model has a higher research diversity is close to zero.

The second set of results is concerned with status homophily, namely the hypothesis

that scientists tend to collaborate with others that are affiliated with institutions with

the same RAE rating as their own. As shown by Fig. 2a,b, the salience of status

homophily for collaboration depends on which measure of status is used. While the 1996

RAE rating appears to be a statistically significantly strong driver of collaboration for

13 communities, similarity in the 2001 rating is correlated with collaboration only for 6

communities. This should not be surprising. On the one hand, when scientists selected

their collaborators, they were aware of the RAE rating that institutions obtained in

1996. In this respect, the results provide support to the hypothesis that scientists in

most communities used the 1996 RAE rating as a signal to infer the quality of potential

collaborators and discriminate between them. On the other, since the papers in our

dataset were published before 2001, the RAE ratings obtained in 2001 were obviously

not available to the scientists at the time of their collaboration. Thus, the 2001 RAE

ratings could not have been used before 2001 to make inferences about quality, which

explains the weaker support that Fig. 2a,b provides to homophily based on the 2001

rating than on the 1996 one. Due to the (weak) correlation between the 1994 and 2001

ratings, some of the scientists that before 2001 chose collaborators with a status similar

to their own continued to maintain such similarity when the new RAE ratings were

released in 2001. However, Fig. 2a,b suggests that there were also a number of scientists
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Fig. 2 Statistical significance of the diversity of 1996 and 2001 RAE assignments (a and
b), institutions (c) and geographic distance (d) for a partition of 24 communities. For each
community, we plot the probability that diversity (a,b and c) or average distance (d) found in
a null model is greater than the one found in reality.

who changed their status in 2001, and as a result some of the similarities based on the

1996 ratings eventually disappeared in 2001.

The last two sets of results test the hypotheses of institutional and geographic con-

straints, respectively. As can be seen in Fig. 2c, communities are extremely uniform in

terms of the institutional affiliation of their UK members. All 24 communities are sta-

tistically significantly different from a random assignment, as the probability that the

corresponding null model includes scientists with more diverse institutional affiliations

than the actual community is one. This strongly supports the hypothesis of institu-

tional constraint leading scientists in Business and Management to seek collaborators

within institutional boundaries.

Like institutional constraint, geographic distance also plays an important role in

shaping collaborations. As shown by Fig. 2d, 10 communities exhibit statistically sig-

nificantly small distances between their scientists. If the condition for significance is

loosened to PC > 0.9, significance is even extended to 19 communities. For a large

number of communities, the probability that the average distance between all their

UK members is less than randomly expected approaches one. Thus, results also pro-

vide support to the hypothesis of geographic constraint within the field of Business

and Management: when scientists seek their collaborators outside their own institu-

tions (but within the UK), they are more likely to select those who are in geographic

proximity than at long distances.

In summary, the findings show that for the social scientists who submitted to the

RAE 2001 in Business and Management in the UK, institutional constraint was the

primary organising principle underlying their choice of scientific collaborations within

the UK. Geographic constraint and status-based homophily based on the 1996 RAE
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rating also played a major role in shaping such collaborations, whereas research-based

homophily was only marginally significant.

5 Discussion and Conclusions

Prior work established that teamwork production in science is increasingly composed of

collaborations that span university boundaries [29,58]. Unlike these studies that have

typically looked at institutions from multiple countries (and scientists from different

disciplinary fields), our analysis has focused only on UK universities (and within a sin-

gle discipline), and has suggested that scientists in Business and Management in the

UK seek their collaborators within their own institutions to a greater extent than ran-

domly expected. In this respect, our study integrates previous work on multi-university

collaboration by highlighting that, when scientists’ search behaviour is directed toward

domestic partners within a single broad disciplinary field, it tends to remain localised

within institutional boundaries. Scientists may consider collaborating with interna-

tional partners [29]; however, within their own countries and disciplinary borders, they

prefer to interact with colleagues from their own institutions.

Our results also supported the role of geography in the selection of collaborators in

Business and Management in the UK. Our analysis illustrated that, when collabora-

tions span institutional boundaries, they tend to be geographically clustered. On the

one hand, these findings corroborate related studies of multi-university collaborations

highlighting how geographic distance can hinder group communication and decision-

making [16]. The importance of face-to-face contacts has long been reported by the

literature. Allen’s [1] rule of thumb, for example, is that collaborators should be no

more than 30 metres apart, as longer distances would negatively impact on the effective-

ness of their collaboration [32]. On the other hand, there is an equally substantial body

of literature suggesting a weakening relevance of geographic location for scientific pro-

duction [9,29]. The so-called “death of distance” has been mainly associated with the

increasing availability of communication and computer-based technologies in research

collaborations [9,29]. Our findings complement this argument by suggesting that, when

scientists choose their collaborators within their own country and discipline, they tend

to favour geographic proximity. In this sense, even though the scientists included in

our dataset were only partially affected by the rapid spread of information technologies

in the 1990s, our results seem to suggest that technology, at least within national and

disciplinary boundaries, is an imperfect substitute for geographic co-location [16].

Previous research on scientific collaboration has also focused on the benefits of inter-

disciplinarity, and suggested that scientists prefer collaborators from outside their own

disciplinary field over those within their field [33,57]. Since the scope of our analysis

was limited only to one disciplinary field, the findings cannot provide evidence either in

favour or against the tendency towards collaborations across broad disciplinary fields

(e.g., physics and economics). By contrast, what they enable us to assess is the degree

to which, within the boundaries of a single disciplinary field, scientists tend to collab-

orate across the research specialties within that field. In this respect, our results do

not provide strong evidence in favour of such inter-specialty collaborations. They only

partially support the hypothesis of specialty-based homophily, in that only a relatively

small number of communities included scientists that were more similar in their re-

search specialty than by chance. Since individual UK institutions inevitably tend to

include only a fraction of all research specialties within Business and Management, and
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because scientists were found to prefer collaborations within institutional boundaries

to those spanning institutions, it is not surprising to find that at least some of these

collaborations occurred within the scientific boundaries of distinct specialties.

Moreover, our results provide support in favour of the signaling role of status in

the choice of collaborators. In qualitative agreement with a substantial body of liter-

ature on status-based homophily [12,39,47], scientists in Business and Management

were found to collaborate preferentially with others affiliated with institutions hold-

ing an RAE rating similar to the one obtained by their own institution. Similarly,

recent work on multi-university research teams indicated that status is a crucial exclu-

sivity principle underpinning scientific collaboration [29]. These studies, for instance,

reported that collaborations between top universities tend to be more common than

randomly expected, especially in the social sciences. The same pattern was also found

to occur between lower-tier schools, thus further intensifying the social stratification

of scientific collaborations. Status therefore acts as a tangible basis for discriminating

among opportunities of collaboration. Drawing on related lines of inquiry in the social

sciences [47,48], it can be speculated that, especially when there is uncertainty about

the quality of potential partners’ research, the ranking of the institutions to which

they belong is an attribution that scientists use to make inferences about the quality

of future joint work with them. Thus, they tend to avoid partners from institutions of

lower ranking than their own, and forge collaborations only with those affiliated with

similarly ranked institutions. This would lead the market for collaboration to take on a

“rich-club” structure, in which a core of scientists from top institutions form exclusive

relationships with one another [13,46,27].

Taken as a whole, our findings offer important insights on the underlying forces driv-

ing collaboration between scientists within a disciplinary field, and have implications

for the development of mathematical models of science. Our work provides support for

models going beyond a purely network point of view, and motivates the incorporation

of competing non-structural factors. The importance of space on network organization

is noteworthy and strongly suggests the generalization of gravity-like models [22] in

order to properly account for attractiveness over spatial distance as well as the con-

trary effects of the barriers between disciplines, specialties, and institutions. Similarly,

the observed rich-club organization inspires the development of models where research

quality across scientists and institutions is heterogeneous and constrains the way in

which collaborations are forged. We believe that a precise description of these mech-

anisms of tie creation is crucial for predicting the emergence of complex structures

such as new leading scientific communities and research teams across disciplines and

specialties.

Our study is not without its limitations. First, the generalisability of the results is

inevitably affected by the dataset used, with a limited geographic scope (the UK) and

concerned only with a specific disciplinary field (Business and Management). Most no-

tably, the limited scope of our dataset does not warrant generalisability of our findings

to the broader domain of international and inter-disciplinary collaborations. By con-

trast, our analysis can only apply to collaborations involving scientists and institutions

within the scientific boundaries of a single discipline and the geographic boundaries

of a single country. Second, for the sake of simplicity the analysis was based only on

the largest connected component of the collaboration network. Extending the anal-

ysis to other smaller connected components may well provide new insights that our

analysis could not reveal. Moreover, we wish to close this section by cautioning about

interpretations drawn from our method. One should indeed be careful about how our
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results might be influenced by the methodology, for instance our choice of community-

detection algorithm. As stressed before, there exist numerous, sometimes contradictory,

ways to uncover communities in networks, and we have focused here on just one partic-

ular method (i.e., optimisation of Q(γ)). More definitive conclusions about the relation

between topological communities and characteristics of scientists should be drawn by

comparing results obtained through different algorithms that partition the network

into different communities, or even that allow scientists to belong to multiple overlap-

ping communities. Finally, while our approach takes a purely structural viewpoint, an

interesting approach would be to incorporate non-structural attributes in the definition

of modules, such as more clearly hidden structural similarities between the nodes [19].
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