2,681 research outputs found

    The DS-Pnet modeling formalism for cyber-physical system development

    Get PDF
    This work presents the DS-Pnet modeling formalism (Dataflow, Signals and Petri nets), designed for the development of cyber-physical systems, combining the characteristics of Petri nets and dataflows to support the modeling of mixed systems containing both reactive parts and data processing operations. Inheriting the features of the parent IOPT Petri net class, including an external interface composed of input and output signals and events, the addition of dataflow operations brings enhanced modeling capabilities to specify mathematical data transformations and graphically express the dependencies between signals. Data-centric systems, that do not require reactive controllers, are designed using pure dataflow models. Component based model composition enables reusing existing components, create libraries of previously tested components and hierarchically decompose complex systems into smaller sub-systems. A precise execution semantics was defined, considering the relationship between dataflow and Petri net nodes, providing an abstraction to define the interface between reactive controllers and input and output signals, including analog sensors and actuators. The new formalism is supported by the IOPT-Flow Web based tool framework, offering tools to design and edit models, simulate model execution on the Web browser, plus model-checking and software/hardware automatic code generation tools to implement controllers running on embedded devices (C,VHDL and JavaScript). A new communication protocol was created to permit the automatic implementation of distributed cyber-physical systems composed of networks of remote components communicating over the Internet. The editor tool connects directly to remote embedded devices running DS-Pnet models and may import remote components into new models, contributing to simplify the creation of distributed cyber-physical applications, where the communication between distributed components is specified just by drawing arcs. Several application examples were designed to validate the proposed formalism and the associated framework, ranging from hardware solutions, industrial applications to distributed software applications

    Hybrid performance modelling of opportunistic networks

    Get PDF
    We demonstrate the modelling of opportunistic networks using the process algebra stochastic HYPE. Network traffic is modelled as continuous flows, contact between nodes in the network is modelled stochastically, and instantaneous decisions are modelled as discrete events. Our model describes a network of stationary video sensors with a mobile ferry which collects data from the sensors and delivers it to the base station. We consider different mobility models and different buffer sizes for the ferries. This case study illustrates the flexibility and expressive power of stochastic HYPE. We also discuss the software that enables us to describe stochastic HYPE models and simulate them.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Practical Distributed Control Synthesis

    Full text link
    Classic distributed control problems have an interesting dichotomy: they are either trivial or undecidable. If we allow the controllers to fully synchronize, then synthesis is trivial. In this case, controllers can effectively act as a single controller with complete information, resulting in a trivial control problem. But when we eliminate communication and restrict the supervisors to locally available information, the problem becomes undecidable. In this paper we argue in favor of a middle way. Communication is, in most applications, expensive, and should hence be minimized. We therefore study a solution that tries to communicate only scarcely and, while allowing communication in order to make joint decision, favors local decisions over joint decisions that require communication.Comment: In Proceedings INFINITY 2011, arXiv:1111.267

    Petri net based development of globally-asynchronous locally-synchronous distributed embedded systems

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de ComputadoresA model-based development approach (MBDA) for Globally-Asynchronous Locally- Synchronous (GALS) Distributed Embedded Systems (DESs) is proposed. This approach relies on the GALS-DESs specification through (low- or high-level) Petri net classes, which ensure that the created models are GALS, locally deterministic, distributable, networkindependent, and platform-independent and support their simulation, verification, and implementation (using simulation, model-checking, and code generation tools). The use of network- and platform-independent models enable the use of heterogeneous communication networks to support the distributed components interaction and enable the use of heterogeneous platforms to support the components and the communication nodes implementation. To enable the proposed MBDA, Petri nets are extended with a set of the concepts, most notably time-domains and asynchronous-channels. Algorithms to support the verification of GALS-DES models and their decomposition into implementable sub-models are also proposed. A tool chain framework (IOPT-tools) was extended with this work proposals, supporting their validation and the GALS-DESs development.Fundação para a Ciência e a Tecnologia - grant ref. SFRH/BD/62171/200

    A computer architecture for intelligent machines

    Get PDF
    The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems

    Service-oriented process control using high-level petri nets

    Get PDF
    Service-oriented systems constitute a suitable approach for the development of modular, flexible and reconfigurable production systems, addressing the current requirements imposed by global markets. This paper focuses on the process control of Service-oriented production systems, whose behavior is regulated by the coordination of services that are available from distributed modular and collaborative control components. The proposed control is based on a kind of High-level Petri Nets tailored for the description, connection and synchronization of different concurrent processes. Several features can be distinguished by this approach, since its modularity, control reusability, flexibility and other valuable inherited characteristics from the proposed High-Level Petri Nets

    Petri net model decomposition - a model based approach supporting distributed execution

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica, Especialidade de Sistemas Digitais, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaModel-based systems development has contributed to reducing the enormous difference between the continuous increase of systems complexity and the improvement of methods and methodologies available to support systems development. The choice of the modeling formalism is an important factor for success-fully increasing productivity. Petri nets proved to be a suitable candidate for being chosen as a system specification language due to their natural support of modeling processes with concurrency, synchronization and resource sharing, as well as the mechanisms of composition and decomposition. Also having a formal representation reinforces the choice, given that the use of verification tools is fundamental for complex systems development. This work proposes a method for partitioning Petri net models into concurrent sub-models, supporting their distributed implementation. The IOPT class (Input-Output Place Transition) is used as a reference class. It is extended by directed synchronous communication channels, enabling the com- munication between the generated sub-models. Three rules are proposed to perform the partition, and restrictions of the proposed partition method are identified. It is possible to directly compose models which result from the partitioning operation, through an operation of model addition. This allows the re-use of previously obtained models, as well as the easy modification of the intended system functionalities. The algorithms associated with the implementation of the partition operation are presented, as well as its rules and other procedures. The proposed methods are validated through several case studies emphasizing control components of automation systems
    • …
    corecore